Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

5-2008

A verification system for timed interval calculus

Chunging CHEN
Jin Song DONG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation

CHEN, Chunging; DONG, Jin Song; and SUN, Jun. A verification system for timed interval calculus. (2008).
Proceedings of the 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
2008 May 10-18. 271-280.

Available at: https://ink.library.smu.edu.sg/sis_research/4963

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4963&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

RIGHTS

A Verification System for Timed Interval Calculus

Chunging Chen and Jin Song Dong and Jun Sun
School of Computing
National University of Singapore
Computing 1, Law Link
Singapore 117590
{chenchun, dongjs, sunj}@comp.nus.edu.sg

ABSTRACT

Timed Interval Calculus (TIC) is a highly expressive set-based no-
tation for specifying and reasoning about embedded real-time sys-
tems. However, it lacks mechanical proving support, as its verifica-
tion usually involves infinite time intervals and continuous dynam-
ics. In this paper, we develop a system based on a generic theorem
prover, Prototype Verification System (PVS), to assist formal ver-
ification of TIC at a high grade of automation. TIC semantics has
been constructed by the PVS typed higher-order logic. Based on
the encoding, we have checked all TIC reasoning rules and discov-
ered subtle flaws. A translator has been implemented in Java to au-
tomatically transform TIC models into PVS specifications. A col-
lection of supplementary rules and PVS strategies has been defined
to facilitate the rigorous reasoning of TIC models with functional
and non-functional (for example, real-time) requirements at the in-
terval level. Our approach is generic and can be applied further to
support other real-time notations.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
Formal Methods, Validation; D.2.1 [Software Engineering]: Re-
quirements/Specifications—Languages

General Terms

Verification

Keywords

Real-Time Systems, Specification Language, Theorem Proving, PVS

1. INTRODUCTION

Real-time systems usually consist of computer-based controllers
that interact with physical environment. As they have been used
widely in safety-critical applications, it is necessary to formalize
the properties of the environment for rigorously verifying these
embedded real-time systems at early development stage [5]. Con-
sequently, their formal models are desired to represent the discrete

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE’08, May 10-18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

i,

271

logic of the controllers as well as the continuous dynamics of the
environment [12]. It is also crucial that the modeling notation pos-
sesses powerful verification capability to formally check that the
models fulfill requirements.

Timed Interval Calculus (TIC) [10] is a formal specification no-
tation used to specify and reason about real-time systems. It is
set-theory based and reuses the well-known formal notation Z [22]
mathematical and schema notations. It adopts total functions of
continuous time [13] to model analog and discrete state variables.
In addition, differential and integral calculus are supported [9].
System properties (for example, periodic behavior) and require-
ments (for example, timing bounded response) are specified at in-
terval level by measuring the set of intervals during which predi-
cates over state variables hold everywhere. TIC includes a collec-
tion of reasoning rules which capture the generic features of sets
of intervals. These rules and the support of mathematical analy-
sis in TIC are useful to validate functional and non-functional (for
example, real-time) requirements.

When analyzing complex systems in TIC, it is difficult to ensure
the correctness of each proof step and to keep track of all proof
details in a pencil-and-paper manner. It is necessary and impor-
tant to develop a verification system for TIC to ease the proving.
The verification usually requires mathematical analysis such as in-
tegral calculus used in modeling physical dynamics, and induction
mechanism for dealing with infinite intervals and continuous time
domain. These characteristics are not well supported by model
checking [6] which usually applies discrete abstraction for infinite
state space. The abstraction could decrease the analysis accuracy
of continuous dynamics [15]. On the other hand, theorem prov-
ing [19] can handle infinite state space directly as well as support
expressive specifications.

Instead of building a theorem prover from scratch, we choose
one of the powerful generic theorem provers, Prototype Verifica-
tion System (PVS) [18], because of its highly integrated environ-
ment for writing formal specifications and developing rigorous ver-
ification. The PVS specification language is based on higher-order
logic associated with a rich type system. Its interactive theorem
prover offers powerful automatic reasoning technique at low level
such as arithmetic of real numbers and decision procedure over
sets. Users can directly control proof development at high level,
for example selecting proper user-defined strategies. A recently
developed NASA PVS library [1] has formalized and validated the
elementary calculus such as integration and derivation. The library
has been successfully applied to verify a practical aircraft traffic
system [15]. The above features of PVS are useful to achieve our
goal of developing the mechanical proving support for TIC.

When constructing the TIC semantics in PVS, the higher-order
logic eases the encoding, and the automatic type checking of PVS

RIGHTS

helps to ensure the correctness. Based on the encoding, we have
formalized and checked all TIC reasoning rules. Some proofs are
difficult without tool support. For example, validating the rule
of concatenation associativity needs to manually check 16 cases
in terms of interval types. Moreover, we have discovered subtle
flaws in some original rules, which are used frequently to check
important requirements such as safety requirements. A transla-
tor has been implemented in Java to support editing TIC models
and transforming them into PVS specifications. The transformation
preserves the hierarchical structure represented in the TIC models.

Besides the TIC reasoning rules, we have defined and validated
a set of supplementary rules to model certain domain-specific fea-
tures. To make the proving process more automated, we have de-
veloped a collection of PVS strategies to capture repetitive patterns
of proof commands. In addition, these strategies keep the detailed
encoding of TIC transparent from users. Using our verification sys-
tem, we can validate TIC models in PVS at the interval level by
applying the reasoning and supplementary rules, and proof goals at
the low level can be automatically discharged by the PVS prover, in
particular the powerful reasoning capability on propositional logic,
real numbers and sets. Moreover, the tool is generic and can be ap-
plied to support other notations of real-time systems, for instance,
Duration Calculus (DC) [24].

The rest of the paper is organized as follows. A study of related
works is given in the following sections. Section 2 introduces TIC
and PVS. The construction of TIC semantics in PVS is described in
Section 3. In the next section we validate the TIC reasoning rules
with the illustration of discovered flaws. Section 5 presents the
transformation from TIC models to PVS specifications. Section 6
shows the feasibility and benefits of our approach from the example
studies, and the support for DC is also discussed. Conclusion and
future work are provided in Section 7.

1.1 Related Works

There are two preliminary works on supporting TIC by exploit-
ing theorem provers. Dawson and Goré [7] validated the correct-
ness of TIC reasoning rules in Isabelle/HOL [17]. The encoding
of the TIC semantics was incomplete. For example, the construc-
tion of TIC predicates and expressions which make up TIC models
was not modeled. It is hence difficult to support TIC verification in
general as the interpretation of TIC models is essential. Cerone [2]
defined several axioms to formalize TIC models. However, in their
encoding a concatenation can be formed by two both-open inter-
vals, and that is different from the original definition [10]. More-
over, his work dealt with only five reasoning rules. In contrast,
we have constructed the TIC semantics systematically in PVS, and
checked all reasoning rules. We have discovered one subtle flaw
that has not been identified before. In addition, our verification
system can handle mathematical analysis (such as differential and
integral calculus) which is not supported by the previous works.

Some researchers have investigated the machine-assistant proof
for another formal notation of real-time systems, Duration Calcu-
Ius (DC) [24]. Skakkebaek and Shankar [20] developed a proof
checker upon PVS, and Heilmann [11] applied Isabelle to sup-
port the mechanized proof. Chakravorty and Pandya [3] digitized
a subclass of DC, Interval Duration Calculus, into another subclass
which is used for just discrete systems. DC and its extensions [26,
25] adopt a relative time, and cannot define an absolute time point,
so they are limited to represent the properties which are relevant
to special intervals of specific time points. These properties can
be specified in TIC which allows interval endpoints to be accessed
explicitly. As we will discuss more in Section 6.4, DC models and
verification can be supported in our system.

Ay

272

Recently the interval concept is becoming popular in real-time
notations which are based on time points. Mok et al. [14] pro-
posed to adopt time intervals to represent the ranges where an event
should occur when the exact occurrence time of the event is un-
certain. They developed an efficient algorithm to monitor timing
constraints under the event timing uncertainty. Yu et al. [23] ex-
tended the work to support the analysis of timing constraint viola-
tions caused by transient failure models with exponential distribu-
tion. In both works, system models are highly abstract as functional
requirements are not their main concern. On the other hand, TIC
can specify both functional and timing requirements. With the sup-
port of mathematical analysis in TIC and in PVS, we can reason
about the functional requirements using our verification system.

2. BACKGROUND
2.1 Timed Interval Calculus (TIC)

TIC is set-theory based and reuses the well-known formal no-
tation Z [22] mathematical and schema notations. It adopts total
function of continuous time to model system behavior [13], and
defines interval brackets to concisely express properties in terms of
intervals [10]. Interval endpoints can be explicitly accessed, and
hence TIC can model behavior over specific intervals.

Time domain (T) is nonnegative real numbers, and an interval is
a continuous range of time points. Intervals are classified into four
basic types based on the inclusion of endpoints. For example, the
type of both-closed intervals is defined in the Z axiomatic style.

‘ -....]:TxT—PT

‘ Vx,y: Rex...y] ={z: T |x<z<y}
Primitive elements in TIC are:

e Constants. For example, the maximum temperature, MaxTmp
can be declared as a real number, MaxTmp : R where R de-
notes real numbers.

o Timed traces. A timed trace is a total function from time
domain to the type which the variable has. For example, the
temperature in a room can be represented by a timed trace,
Tmp with the real number range, Tmp : T — R.

e [nterval operators. There are three interval operators in TIC.
They are «, w, § with the same type I — T where I denotes
all intervals. These operators return the starting point, ending
point and length of a given interval respectively.

A key construction of TIC is interval brackets. A pair of interval
brackets returns all intervals during which a predicate in the brack-
ets holds everywhere. The predicate is usually a first-order predi-
cate, and elides all explicit references to time domain and intervals.
For example, the following TIC expression, [Tmp(a) < Tmp], de-
notes a set of both-closed intervals, where in each interval the val-
ues of the variable Tmp are not less than the value obtained at the
beginning of the interval. Without the interval brackets, we need
to explicitly specify variables of time and intervals associated with
corresponding timed traces and interval operators. Specifically, the
domain of Tmp is time, and the domain of « is intervals shown in
the following equivalent set expression.

[Tmp(a) < mmp]l = {x,y : T |Vit:[x...y]
Tmpla((x...3])) < Tmp(t) o [x..- ¥]}

Set operators such as U and N can be applied to TIC expressions
to form new sets of intervals. To express the sequential behavior

RIGHTS LI

over intervals, concatenation operator ~ defined below connects
two sets of intervals end-to-end, i.e., no gap and no overlap.

‘ _nv_:IxI-+1

‘ VX, Y : TeX~Y={z:I|3x:X;y:Ye
\ z=xUyA Vel :x; 12:yetl <12)}

By constraining the relation (e.g., C, =) among sets of intervals,
we can specify system properties and requirements at the interval
level. For example, we can specify a periodic behavior below that
a detector stores the input temperature Tmp_in every k time units.

[Hi:Nea=ixkANw=(i+1)%k
= tstore = Tmp_in(a))

Note that in the above TIC predicate, the TIC expression at the
left decomposes the time domain into a sequence of left-closed,
right-open intervals, and each interval lasts for £ time units; the
TIC expression at the right depicts the periodic update behavior of
the value stored in the detector.

To manage TIC models in a structural manner, we adopt the Z
schema notation to group a list of variables in its declaration part
and specify the relations of the variables in its predicate part. For
example, we represent the above detector in the following schema,
where the continuity feature of the input temperature is denoted by
the symbol > (defined in [9]).

— Detector
Tmp_in : T & R; store: T — R

[3i:Nea=ixkANw=(_(+1)*h
= fstore = Tmp_in(a))

TIC contains 13 primitive rules on capturing the timing proper-
ties of sets of intervals and their concatenations. These reasoning
rules are used to carry out the TIC verification at the interval level.
For example, the rule given below states that for any non-pointer in-
terval in which a predicate P holds, the interval can be decomposed
into two concatenated sub-intervals, and in each sub-intervals the
predicate is still true everywhere.

if @, w, and § do not appear free in predicate P, then
[P A >0y =[P~ [P

The interval brackets [] denote a union of four basic types of inter-
val brackets. Namely, [(P)] == ¢PYU¢PJULPYUEP]. They are often
used when predicates are independent of interval endpoints. Note
that the above rule is valid provided the time domain is continuous.

Using TIC, we can specify important requirements, such as safety
and bounded liveness requirements. The verification in TIC is to
show if a design logically implies requirements. A proof is usually
decomposed into several sub-proofs, and each sub-proof concen-
trates on a subsystem. A proof is a deduction that starts from hy-
pothesis and processes in a forward manner. Each deductive step is
reached by rigorously applying a fact (as an axiom), a TIC reason-
ing rule, a mathematic law, or a pre-proved requirement.

2.2 Prototype Verification System (PVS)

PVS [18] is an integrated environment for formal specification
and formal verification. The specification language of PVS is based
on classic typed, higher-order logic. Built-in types in PVS include
Boolean (bool), real numbers (real), natural numbers (nat),
and so on. Standard operations of predicate logic and arithmetic,
such as conjunction (and), less-inequality (<) and addition (+) on
the built-in types are also defined in PVS.

Ay

273

Functions in PVS are total, and partial functions are supported
by predicate subtypes and dependent types. In addition, functions
in PVS can share the same name as long as they have different pa-
rameter types. PVS specifications are organized in theories, which
usually contain type declaration, axioms and lemmas. A theory can
be reused in other theories by means of the importing clause.

The PVS prover maintains a proof tree, and the objective is to
construct a complete proof tree of which all leaves are trivially true.
Each node in a proof tree is a proof goal which is a sequent consists
of a list of formulas named antecedents and a list of formulas called
consequents. The intuitive interpretation of a proof goal is that
the conjunction of the antecedents implies the disjunction of the
consequents.

The PVS prover provides a collection of primitive proof com-
mands when applied such as expanding definitions (expand) and
eliminating quantifies (skosimp), to manipulate proof trees. A
frequently used powerful proof command is grind, which does
skolemization, instantiation, propositional simplification, rewrit-
ing, and applying decision procedures. Users can introduce more
powerful proof strategies which combine basic proof commands so
as to enhance the automation of verification in PVS.

PVS contains many built-in theories about logics, sets, numbers,
and so on. They offer much of the mathematics needed to sup-
port specification and verification in PVS. Recently the NASA PVS
library [1] has formalized the elements of mathematical analysis
covering continuity, differentiation, and integration. The library
has also developed a number of validated theories to support the
rigorous analysis of continuous dynamics.

3. ENCODING TIC SEMANTICS IN PVS

In this section, we encode the TIC semantics into PVS. The en-
coding forms a foundation from which we formalize the reasoning
rules, and further verification of TIC models. An important require-
ment is that the resulting PVS specifications should be concise in
a structural way and ease the proving. We construct the PVS theo-
ries of the TIC semantics in a bottom-up manner, and each subsec-
tion below corresponds to a PVS theory. Simple theories are used
to compose complex ones (The complete PVS specifications are
available online [4]). We also adopt the hierarchy concept to avoid
sub-goals explosion problem occurred during reasoning process (in
particular the way to define bracket intervals and concatenation op-
eration illustrated later). In addition, the flexible type declaration
technique of PVS can reduce the size of the PVS specifications for
different types of intervals.

Time and Interval Domains

The time domain is represented by the PVS built-in type nnreal.
Namely, Time: TYPE = nnreal.

An interval is a tuple in PVS, where the first element indicates
the interval type (for example, CO for left-Close, right-Open inter-
vals), and the second element is also a tuple denoting the starting
and ending points of an interval. The corresponding PVS specifi-
cation is below.

Interval_Type : TYPE = {00, OC, CO, CC};
GenInterVal: TYPE = [invt: Interval_Type,
{stp: Time, etp: Time | stp <= etp}]

All types of intervals is defined below by the type, I I, where the
PVS projection operators ‘1 and ‘2 are used to access components
of a tuple. Note that the definition relates specific interval types
with their endpoints. By using the predicate subtype mechanism
from PVS, specific interval type is easily constructed. For example,
COInterVal denotes the type of left-closed, right-open intervals.

RIGHTS LI MNI

II: TYPE = { gi : GenInterVal |
((gi'l = 00 or gi‘l = OC or gi'‘l =
and gi‘2'1l < gi‘2'2)
or(gi‘'l = CC and gi‘2'1l <= gi‘2'2)};
COIntervVal: TYPE = {i: II | il = CO}

co)

Timed Trace and Interval Operators

A timed trace is a function from time to real number. We further de-
fine a type of discrete timed traces to model Boolean-valued states.
A discrete timed trace has just two values, 0 and 1.

TYPE =
TYPE =

Trace:
BTrace:

[Time -> reall;

[Time -> {x:real | x = 0 or x =

1}]

In TIC, interval operators are functions from intervals to time
point. For example, operator « returns the infimum of an interval.
Note that in its definition' below we can just specify the functional-
ity of the general interval type I T rather than listing out individual
cases for each basic interval type.

Term: TYPE =
ALPHA (1) :

[IT -> Time];
Time = 1i'2'1 % 1 II

Expressions and Predicates

As a modeling feature, time points and intervals are abstracted in
the predicate within TIC interval brackets. However, they are re-
quired to be explicit when interpreting expressions and predicates
in PVS. Therefore, both expressions and predicates are declared to
be functions where time points and intervals compose the domain.

TYPE =
TYPE =

TExp:
TPred:

ITI —-> reall;
II -> booll;

[Time,
[Time,

Primitive elements in TIC form expressions and in turn predi-
cates. An element can be one of the three types, namely, a constant,
a timed trace and an interval operator. By applying the overloading
mechanism of PVS, we define below a function LIFT to execute
respective functionalities according to the element type. For exam-
ple, the function returns the value at a time point for a timed trace
while evaluates an interval operator by a given interval.

LIFT(c) (t, 1i): real = x; %$ t: Time, c: real
LIFT (tr) (t, 1): real = tr(t); % tr: Trace
LIFT (tm) (t, 1): real = tm(1i); % tm: Term

When representing an expression (a predicate), time points and
intervals are the parameters passed to its constituent sub-expressions
(sub-predicates or expressions). This parameter propagation stops
until all sub-expressions are primitive elements. For example, the
following PVS specifications model a subtraction and a disjunction
of TIC. Note that the parameters such as el and p1 are also func-
tions of time and intervals.

el, er: var TExp

-(el, er)(t, 1): real = el(t, i) - er(t, 1)
pl, pr: var TPred;

or(pl, pr) (t, i): bool = pl(t, i) OR pr(t, 1i);

Elementary calculus is supported in TIC, in particular integration
and differentiation. They can be modeled based on the PVS theo-
ries from the NASA PVS library which provides their formal defi-
nitions. For example, the integration () of a function t r over an
interval is expressed in PVS below where the function Integral
is adopted from the NASA PVS library.

TICIntegral (el, er,
= Integral (el (t,

tr) (t,
i), er(t,

i): real
i), tr);

! Characters following the symbol ‘%’ are comments.

274

TIC Expressions

A TIC expression represents a set of intervals. Here we illustrate
the way of encoding the interval brackets and the concatenation
operation. Other types of TIC expressions are constructed by the
built-in functions from the PVS ser theory.

In TIC, a pair of interval brackets denotes a set of intervals, and
in each interval an enclosed predicate holds everywhere, namely, at
every time point within the interval. Note that there are four basic
types of interval brackets. We firstly model the semantics of the
general interval brackets [()], and then specify the encoding of spe-
cific basic types of interval brackets such as [) by the predicate sub-
type technique. For example, function A11S (for [¢J]) and function
COS (for })) given below share the same function Everywhere?
which checks if a predicate holds everywhere during an interval.
The function t_in_i is used to detect if a time point is within an
interval based on the interval type.

t_in_i(t, 1i): bool =
(11 = 00 and t > 1'2'1 and t < 1'2'2) or
(11 = OC and t > 1'2'1 and t <= 1'2'2) or
(11 = CO and t >= 1'2'1 and t < 1'2'2) or
(i1 = CC and t >= 121 and t <= 1'2'2);
Everywhere? (pl, i): bool =
forall t: t_in_i(t, 1) => pl(t, 1);
AllS(pl): setof[II] = {i | Everywhere?(pl, 1i)};
COS (pl) : setof[COInterval] =
{i: COInterval | Everywhere?(pl, 1i)};

A concatenation in TIC requires that any two connected intervals
must meet exactly, namely, no overlap and no gap. There are thus
eight correct concatenation ways from four basic interval types. In-
stead modeling each concatenation with their constraints, we repre-
sent all eight cases as one shown below. Function concat receives
two sets of intervals, and each interval in the returned set is formed
by two adjacent intervals.

ConcatType ((l1, r, re: II)): bool =
(re'l = OO0 AND ((1'1 = OC AND r‘l = 00) OR
(1'1 = 00 AND r'l = CO)))
OR (re'l = CO AND ((1'1 = CC AND r'‘'l = 00) OR
(1'1 = CO AND r'l = CO)))
OR (re'l = OC AND ((1‘'1 = OO0 AND r‘l = CC) OR
(1'1 = OC AND r'l = 0C)))
OR (re'l = CC AND ((1'1 = CO AND r'‘'l = CC) OR
(1'1 = CC AND r'l = 0C)));
concat ((iisl, diisr: PII)): PII =
{1 | exists (il, i2: II):
member (il, iisl) AND member (i2, iisr) AND
OMEGA (1i1) = ALPHA(i2) AND ALPHA(il) = ALPHA (i) AND
OMEGA (1i2) = OMEGA (i) AND ConcatType(il, 12, 1i)};

Note that the adjacency of two intervals is checked by the set
predicates which applies function ConcatType. The function
captures all correct situations of concatenation in terms of the types
of connected intervals. We hence create a hierarchical structure to
represent the constraints. Namely, the function Concat Type can
be treated as a lower level of the function concat. This way is
useful in practice to avoid sub-goal explosion problem encountered
in reasoning process in PVS: if we directly list the eight constraints
of interval types in concat, the PVS prover will automatically
split a current proof goal into eight sub-goals when expands the
concatenation definition concat, although usually there are many
repetitive proof commands in the proofs of eight sub-goals.

So far, we have demonstrated how to construct the TIC seman-
tics in PVS, while the way of handling schemas and requirements
will be given in Section 5. During the encoding, the overloading
mechanism allows a function to execute different functionalities
(for example, the function LIFT), and the higher-order logic of
PVS makes the constructions of expressions and predicates easier

RIGHTS LI

with the bottom-up manner. The encoding forms a base to validate
TIC reasoning rules and support mechanical verification as follows.

4. CHECKING TIC REASONING RULES

TIC reasoning rules capture the properties of sets of intervals.
They are used to verify TIC models at the interval level. Hence
guaranteeing their correctness is important and necessary. In this
section, we first explain the challenge with an illustration by vali-
dating a specific rule. Next, we demonstrate the flaws discovered
during the checking, and provide the solutions. In addition, we
derive a new rule which simplifies proving process.

Checking TIC reasoning rules is not trivial. Though some of
them are automatically proved by the PVS prover, others involve
complex proofs which may cover all interval types (for example,
analyzing concatenations over three sets of intervals can lead to 16
different cases) and various types of predicates (for example, if a
predicate relies on interval operators). Taking the rule given in Sec-
tion 2.1 as an example, its PVS specification is formed based on
the encoding in the previous section, where function No_Term?
returns true when predicate pl contains no free interval operators.

CONC_CONC: LEMMA No_Term? (pl) =>
AllS(pl AND LIFT(DELTA) > LIFT(0)) =
concat (A11S (pl),AllS(pl))

The checking considers all types of intervals as well as the con-
catenation over all types of intervals. During the proving process,
human interactions are helpful to increase the efficiency. For ex-
ample, one simplified proof sub-goal shown below needs to instan-
tiate two intervals to form a left-closed, right-open interval x!1.
The Skolem constant x ! 1 is generated by the PVS prover. We can
choose the middle point of x ! 1 as the connecting point of the con-
catenation by applying proof strategy assignconcat to explic-
itly assign two left-closed, right-open intervals.

PROJ_1(x!1) = CO

AllS(pll!l AND LIFT(DELTA) > LIFT(0)) (x!1)
No_Term? (pll!1)

[1]

concat (Al1S(pll1!1), AllS(pll!'l)) (x!'1)

Rule? (assignconcat 1
"(CO, (ALPHA(x!1), (ALPHA(x!1) + OMEGA(x!1))/2))"
"(CO, ((ALPHA(x!1l) + OMEGA(x!1))/2, OMEGA(x!1)))")

Note that the above instantiation is validated by the PVS prover
for its correctness. In other words, we are required to show that
two specified intervals fulfill the constraints of a concatenation.
The PVS prover can hence prevent potential mistakes introduced
by users such as instantiating incorrect types of intervals.

During the validation of all TIC reasoning rules, two subtle flaws
of the original reasoning rules have been discovered. Below we
list the problematic rules with counterexamples, followed by the
solutions that have been validated.

e Rule True and False is frequently used to reason about safety
requirements. The original rule states that predicate P is true
everywhere iff its negation is true nowhere. Namely,
fPAA=1<E-P=9g
The implication [f— P)J = @ = [PJ = I fails in certain
circumstances. For example, let timed trace x have value 1
from time points 5 to 7, and value 0 elsewhere, and predicate
- Pbex =1AJ = 3,itis obvious that the predicate fails
everywhere, although its negation P, x # 1 V § # 3, does
not hold in every interval such as the interval [5. .. 8].

To solve the problem, a stronger hypothesis is a must. The
predicate within interval brackets should be independent on

Ay

275

interval characteristics, namely, the starting time, ending time
and length of an interval. The modified rule is represented in
PVS below, where sets emptyset and fullset denote
the empty set and the set of all intervals respectively.

Emp_to_All: LEMMA No_Term? (pl) =>

AllS(not pl) = emptyset => AllS(pl) = fullset

e Rule Concatenation Duration is useful to deal with proofs
involving concatenation. The rule can decompose a set of in-
tervals into two concatenated sets of intervals with specified
interval lengths. Namely, given a predicate P where inter-
val operators do not occur freely, if we have r,s : T and
r>0Vs>D0,then,
FPAS=r+SI=FPANS=r P AS=s)

The above equality of two sets of intervals does not always
hold. For example, if » = 0, then any interval of [P A 6 =)]
must be both-closed by the interval definition. However, it
is possible that [P A § = r + s contains intervals which
are left-open, and hence type conflict occurs. The conflict is
removed by a stronger assumption, namely, » > 0 A s > 0.

We remark that it is the first time to discover the first flaw (while
the second flaw has also been observed by Dawson and Goré [7]).
In other words, the discoveries show one benefit of exploiting a
theorem prover for rigorous verification.

Moreover, based on the lemma Emp_to_2A11, we derive a new
rule EmpCC_to_All to reduce the proving complexity. When ap-
plying lemma Emp_to_A11, we have to check the correctness of
four basic interval types respectively, and each takes similar proof
commands. In contrast, the new rule defined below requires only
one type of intervals, namely, both-closed intervals to be checked.

EmpCC_to_All: LEMMA No_Term? (pl)
CCS (not pl) = emptyset => AllS(pl) =

=>
fullset

We have checked all TIC reasoning rules in PVS. Two flaws have
been found out and fixed. These rules can thus be applied as lem-
mas in PVS to verify TIC models at the interval level.

S. TRANSFORMING TIC MODELS TO PVS

Based on the encoding of TIC semantics in PVS (refer to Sec-
tion 3), we present in this section an algorithm to automatically
transform TIC models into PVS specifications. The transformed
PVS specifications follow closely to original TIC models so the di-
agnostic information obtained at the level of PVS can be reflected
back to the level of TIC. The algorithm has been implemented in
Java. We adopt an adaptive temperature control system [16, 21] as
a running example to demonstrate the transformation here as well
as the verification in the next section.

5.1 Representing TIC Models in PVS

Using TIC, system properties are modeled by TIC schemas, and
requirements are specified as TIC predicates. In the following, we
explain the way of representing them in PVS respectively.

Schemas are used to structure and compose models; collating
pieces of information, encapsulating them and naming them for
reuse. A TIC schema consists of two parts, where variables are
defined with their types in the declaration part, and their values are
constrained in the predicate part. Each schema denotes a compos-
ite type which is made up of a set of bindings, and each binding
relates a declared variable with its restrictive values. This mod-
eling feature allows schemas to be used as types so as to support
component-based design [22].

RIGHTS LI

Each schema is represented by a set of PVS records. Each record
stores the declared variables by record accessors with their cor-
responding types in PVS, and expresses the constraints over the
record accessors as set predicates. Additional constraints are gen-
erated to capture implicit properties of certain kinds of functions of
TIC, in particular continuity, differentiability and integrability.

A TIC predicate specifying a requirement of a system or some
components is formed based on the TIC schemas which correspond
to the system or components. Each requirement is represented by
a PVS theorem formula, and its contents are specified by the PVS
specifications accordingly.

Informally, the above relationships between TIC models and PVS
specifications can be illustrated below, where variable temp used
in the construction of records is auxiliary to access record accessors
in the generated Predicate specification.

__sch_name

declaration SchName TYPE = {temp:

. [# Declaration #] |
predicate Predicate }

reqname == RegName THEOREM
predicate Predicate

5.2 Transformation Algorithm

The transformation algorithm consists of three main steps, scan-
ning, parsing, and transforming®. A scanner splits TIC models into
a sequence of meaningful tokens such as TIC interval brackets,
mathematical operators and so on. A parser constructs an abstract
syntax tree (AST) for TIC models based on the tokens from the
scanner. The root of an AST is a list of TIC models, and each el-
ement represents a TIC schema or a TIC predicate (but not both).
From an element, we can find out the relevant information stored
in its child nodes, such as the name, declarations and predicate of
a schema, or the name and predicate of a requirement. From these
child nodes, we can explore deeper to obtain more information, for
example expressions. The leaves of an AST are the primitive ele-
ments of TIC, namely, constants, timed traces or interval operators.
‘We develop an algorithm below to generate the corresponding PVS
specifications by traversing an AST in the top-down manner.

Algorithm 1 Transforming TIC models
Require: A list of TIC models ModList

1: for i = 1 to ModList.length do

2: if ModList[i] instanceof TICSchema then
3: anaSchName(ModList[i].Name)

4: DeclList < ModListli].Declarations
5: for j = 1 to DeclList.length do

6: anaDeclName(DeclList[j].Name)
7 InSchema < true

8: LIFTED « false

9: anaExpr(DeclList[j].Expr, InSchema, LIFTED)
10: end for

11: anaPredicate(ModList[i].Predicate)
12: createNewPred(DeclList)

13: else

14: anaReqName(ModList[i].Name)

15: anaPredicate(ModList[i].Predicate)
16: end if

17: end for

In the above algorithm, method anaExpr at line 8 analyzes 14
types of expressions, and method anaPredicate at lines 10 and 14
supports 8 types of predicates. These are sufficient to handle the
TIC models in practice. Note that the method anaExpr is applied

2We emphasize the transforming phase here, and the tool is avail-
able from the website [4].

Ay

276

in the method anaPredicate. Two flags, InSchema and LIFTED, as
the parameters of the method anaExpr indicate the environment of
an expression, and hence assist proper transformation. For exam-
ple, when analyzing a variable expression, if LIFTED is true, that
means the variable is within a pair of interval brackets, then we ap-
ply the function LIFT to make the references of time and intervals
to the variable explicit. Method createNewPre at line 12 generates
additional constraints which are implicitly denoted in TIC models.
For example given a continuous timed trace v (indicated by symbol
- in TIC), we adopt the function continuous from the NASA PVS
library to capture the continuity feature, namely, continuous(v).

5.3 Temperature Control System

A temperature control system [16, 21] is a hybrid application to
control the temperature by turning a heater on or off. We adapt
it to fit for the demonstration in this paper. The modified system
involves discrete logic and continuous dynamics, and important re-
quirements including safety requirements and timing requirements.

Two components compose the system. A plant represents the
physical environment where the temperature changes continuously
following different integration functions based on the heater status.
A controller turns on or off the heater according to the temperature
from the plant. Initially, the heater is off and the temperature is 30.
The TIC models of the system are available in Appendix A. We use
the controller here to demonstrate the transformation.

The properties of the controller are modeled below. For any in-
terval in which the temperature tmp_in is not larger than the mini-
mum value 20, the heater heater_out must be on (denoted by value
1). Similarly for interval during which tmp_in is not smaller than
the maximum value 40, the heater is off.

— Controller
tmp_in : T & R; heater_out : T — {0, 1}

[etmp_in < 20) C [theater_out = 13
[ermp_in > 403 C [theater_out = 03

In the following transformed PVS specification, the schema is
represented by a PVS record type. The declaration part is captured
by the record accessors with their corresponding types in PVS. The
predicate part is mapped into a conjunction of three constraints.
Note that the last constraint which is generated by the method cre-
ateNewPred in algorithm 1, models the continuous characteristic
of the timed trace tmp_in.

Controller: TYPE = {
temp: [# tmp_in: Trace, heater_out: BTrace #] |
subset? (A11S(LIFT (temp ‘tmp_in) <= LIFT(20)),
Al1S(LIFT (temp ‘heater_out) = LIFT(1l))) AND
subset? (AL11S(LIFT (temp‘tmp_in) >= LIFT (40)),
AllS(LIFT (temp ‘heater_out) = LIFT(0))) AND
continuous (temp ‘tmp_in) }

One safety requirement of the system is that the temperature is
always within the valid range from 20 to 40.
Safety == Vs : System o
I = [ts.pla.tmp_out < 40 A s.pla.tmp_out > 203

Safety: THEOREM forall (s: System): fullset =
Al1S(LIFT (s '‘pla‘tmp_out) <= LIFT(40) and
LIFT (s‘pla‘tmp_out) >= LIFT(20));

Using TIC, we can specify important timing requirements. A
requirement Length describes that for any interval which starts from
time point 0, the accumulation of the lengths of the intervals in
which the heater is on is always less than three-fourths of the length
of the interval. We show below its TIC model and the transformed

RIGHTS LI

PVS specifications respectively. We remark that the requirement is
not supported in the original papers [16, 21] which lack the support
for modeling continuous behavior.

Length == Vs : System o
fao =0j C [: s.con.heater_out < % * 09

Length: THEOREM forall (s: System):
AllS (LIFT (ALPHA) = LIFT(0)),
Al11S(TICIntegral (LIFT (ALPHA), LIFT (OMEGA),

s‘con‘heater_out) <= LIFT(3/4) %= LIFT(DELTA)));

subset? (

6. VERIFYING TIC MODELS IN PVS

Verification of TIC models is nontrivial, as usually systems con-
tain continuous dynamics and requirements involve infinite inter-
vals. When verifying TIC models in PVS, certain grade of automa-
tion is desired. In this section, we first define a set of supplementary
rules and PVS proof strategies to ease the reasoning process. Next
we present a general proving procedure to systematically analyze
TIC models in PVS. The procedure application is then illustrated
through our example studies. In the end we discuss how to enhance
our system to support other notations of real-time systems.

6.1 Supplementary Rules and Proof Strategies

The TIC reasoning rules validated in Section 4 capture primitive
properties of sets of intervals. However, they are inadequate to sup-
port special characteristics of specific domains such as continuous
functions. For example, if a continuous timed trace fr crosses a
threshold TH at an interval i in a way fr(«(i)) < TH A tr(w(i)) >
TH, then we can infer that the interval can be decomposed into
three connected intervals, where the values of the trace are larger
than the threshold everywhere in the /ast subinterval and equal to
the threshold in the middle subinterval. We declare below a PVS
lemmamid_ivl_exi, where o is the function composition oper-
ator, to express the special feature of continuous timed traces.

mid_ivl_exi: LEMMA continuous (tr) => subset?(

AllS ((LIFT(tr) o LIFT(ALPHA)) < LIFT(TH) and
(LIFT (tr) o LIFT(OMEGA)) > LIFT(TH)),
concat (A11S(TRUE), concat (AL1S(LIFT(tr) = LIFT(TH)),
Al1S(LIFT (tr) > LIFT(TH)))));

The above feature has not been captured by any existent TIC rea-
soning rule. It is derived from the classic intermediate value theo-
rem of continuous functions. We have reasoned about its correct-
ness in PVS, and hence we can apply the lemma when analyzing
continuous dynamics.

To make proving process more automated, and ease users from
grasping detailed TIC encoding in PVS, we have developed several
PVS proof strategies. Each strategy combines repetitive proof com-
mands which are used frequently in practice. The strategies mainly
cope with quantified PVS formulas during the reasoning process,
as the PVS prover possesses powerful capabilities (such as auto-
matic deduction, simplification) on reasoning about primitive for-
mulas which are represented in the propositional logic. Based on
the quantifier type, the strategies are classified into two categories.
One eliminates the universal quantifier by skolemization, and the
other removes the existential quantifier by proper instantiation. In
addition, the strategies usually automatically expand definitions of
TIC semantics in PVS, and hence we can keep the detailed encod-
ing of TIC transparent to users. Below we illustrate the strategy
AssignInterval which offers a flexible way to instantiate spe-
cific interval and time point to a user-specified formula.

Ay

277

1: (defstep AssignInterval (fnum &OPTIONAL ivl pt)
2: (try (else (expand "OOS" fnum)

3: (else (expand "OCS" fnum)

4. (else (expand "COS" fnum)

5: (else (expand "CCS" fnum)

6: (else (expand "AllS" fnum)
7: (skip))))))

8: (then (if ivl (inst fnum ivl)

9: (inst? fnum))
10: (expand "Everywhere?" fnum)
11: (if pt (inst fnum pt) (inst? fnum))
12: (skip)))

In the above strategy, users can provide explicit values of the in-
terval and the time point denoted by the parameters iv1 and pt
respectively (following the keyword s OPTIONAL at line 1), or let
the PVS prover automatically fix an interval and a time point by
applying the PVS proof command inst? (at lines 9 and 11). The
strategy is able to handle different types of intervals by repeatedly
using a basic PVS strategy e 1 se (which applies the first step, and if
that does nothing, then the second step is applied) to expand appro-
priate definition of the interval brackets in the specified formula.
Note that the strategy automatically expands the Everywhere?
function (at line 10). In other words, it keeps the definition which
encodes TIC semantics transparent to users.

We have constructed 25 supplementary rules used frequently in
practice, and 11 PVS strategies. They facilitate the verification of
TIC models by elevating the grade of automation.

6.2 General Proving Procedure

In general, verification in TIC is to show logical implication
relationships among TIC models, namely, to check whether TIC
schemas that represent system properties imply TIC predicates that
denote requirements. The proving procedure is a deduction which
starts from hypotheses (for example, TIC schemas) and processes
in a forward manner. Each deductive step is reached by applying a
TIC reasoning rule or a mathematical law to a hypothesis. Usually
a TIC proof can be decomposed into several sub-proofs of subsys-
tems to simplify the proving.

In our system, we can verify the PVS specifications that repre-
sent TIC models in a close manner with a high degree of automa-
tion. During a proving process, a proof goal is a sequent initially
expressed in terms of intervals. The objective is to concretize the
sequent by assigning proper values to intervals and time points to
eliminate quantified formulas. Hence the PVS prover can directly
manipulate the sequent and automatically discharge most of tedious
proof steps such as reasoning about arithmetic and sets. We sketch
a proving procedure below for a proof goal.

1. Introducing new antecedents that represent system proper-
ties. As only system names are referenced in the PVS spec-
ifications that depict requirements in the beginning, system
properties can be introduced to the sequent as new antecedents
by applying the PVS proof command typepred.

2. Applying TIC reasoning rules and supplementary rules. It
can change the sequent in two directions. (1) Backward proof:
generate new consequents provided some of the current con-
sequents match the conclusion of a rule. (2) Forward proof:
create new antecedents if some of the current antecedents
satisfy the premise of a rule.

3. Using proved lemmas. These lemmas are often sub-goals
which capture simpler requirements over subsystems, and
they can be used to compose complex proofs.

4. Instantiating intervals and time points. This step makes the
intervals and time explicit. They can be assigned by users or
automatically by the PVS prover.

RIGHTS LI

5. Adopting mathematical laws. As TIC models often contain
continuous dynamics represented by integral and differential
calculus, we can select special lemmas from the NASA PVS
library to support the analysis.

6. Applying PVS proof command grind. It is the last step to
automatically discharge the proof goal.

In the above procedure, the first three steps manipulate a proof se-
quent at the interval level, and the last step eases the workload on
checking low level proofs by exploiting the PVS powerful reason-
ing capability. The proposed procedure can result in an efficient
and effective way to reason about TIC models in our verification
system. In the following section we demonstrate how it facilitates
the analysis of our example studies.

6.3 Evaluation with Example Studies

We have experienced the proving procedure with two applica-
tions. One is the temperature control system mentioned in Sec-
tion 5.3. The other is a brake control system which aims to prevent
vehicle from dangerous speed by turning on brakes in time. It is
necessary for both systems to satisfy important requirements such
as safety requirements and real-time constraints.

Due to the page limit, we just show how to check two require-
ments stated in Section 5.3. The first checking focuses on illus-
trating the advantages of the general proof procedure. The second
checking emphasizes on demonstrating the capability of handling
induction proofs in PVS. At the end of this section, we summa-
rize the experimental results of both example studies. The detailed
specifications of the proved lemmas with their complete proofs can
be found online [4].

Proof of Safety Requirement

Instead of checking the temperature in every interval, we adopt the
proof by contradiction mechanism to show that there is no interval
during which the temperature is outside the valid range. Moreover,
by the reasoning rule, EmpCC_to_All defined in Section 4, we
just need to prove that no such both-closed interval exists.

The proof is divided into two sub-proofs which check whether
the temperature is greater (or lower) than the maximum (or mini-
mum). Each sub-proof relies on a lemma which depicts the contin-
uous behavior of the temperature respectively. We illustrate below
how a lemma Decreasing is verified by using the above proving
procedure. The lemma denotes that for any both-closed interval in
which the temperature is not lower than 40 the temperature at the
ending point is not greater than that at the starting point.

Decreasing ==V s : System o
ts.pla.tmp_out > 40] C
ts.pla.tmp_out(w) < s.pla.tmp_out(a)]

The verification of the proof commands used is shown below.

1: ((skosimp)

2: (expandsubset)

3: (typepred "s!1l") (typepred "s!l‘con")

4: (assignsubset -1)

5: (("1" (typepred "s!l'pla")

6: (assignsubset -1)

7 (("1" (lemma "Integral_ge_0")

8: (inst - "ALPHA(x!1)" "OMEGA (x!1)"
"s!l'pla‘tmp_out")

9: (ground)

10: (("1" (grind)) ("2" (grind))

11: ("3" (use "cont_Integrable?") (grind))

12: ("4" (skosimp) (grind))))

13: ("2" (rewrite "Invariant_True_R")

14: (expintervaltotime 1) (grind))))

15: ("2" (rewrite "Invariant_True_R") (grind))))

."f

278

e Properties (for example, the connections between compo-
nents) of the whole system s ! 1 and its subsystems, s! 1 ‘con
and s!1‘pla, are added as new antecedents by applying
the proof command t ypepred to corresponding names (at
lines 3 and 5).

e The proof strategies developed by us are used to manipulate
the proof sequent at the interval level (at lines 2, 4, 6, 14). For
example, the application (assignsubset -1) atline 4
directs the PVS prover to automatically instantiate an interval
to the first antecedent formula.

e As the temperature changes continuously, we need to apply
special lemmas from the NASA PVS library (at lines 7 and
11) to cope with mathematical analysis. For instance, lemma
Integral_ge_0 at line 7 represents a property that if an
integrable function has nonnegative values over a closed in-
terval its integral over the interval is nonnegative.

e In each branch, the proof command grind completes the
proof (at lines 10, 11, 12, 14 and 15).

Note that during the verification, all instantiations of intervals and
time points are automatically accomplished. The only one manual
instantiation (at line 8) requires the values of the bounds of an inter-
val and the integral function. Users help the PVS prover to increase
the reasoning efficiency by assigning appropriate values rather than
letting the prover try all possible instantiations. Nevertheless the
prover still checks the validity of the values.

Proof of Length Requirement

Based on the assumption of finite variability, we apply the math-
ematical induction mechanism to show that the requirement holds
in any arbitrary interval. The finite variability restricts [24] that
within any bounded interval a discrete-valued state can change only
finitely many times. In other words, we assume that for a discrete
timed trace, an interval is classified into two groups: (1) the discrete
timed trace is constant over the whole interval; or (2) the interval
can be decomposed into a sequence of sub-intervals, and the dis-
crete timed trace has different values in any adjacent sub-intervals.
The property has been formalized in PVS and is helpful to deal with
the analysis of intervals by induction.

To prove the requirement, we decompose any interval of faw =
03 into a sequence of subintervals, of which the heater is off in the
first subinterval (by the gystem initiation) and can be off or on in
the last subinterval. As heater_out = 0 when the heater is off,
we can hence concern the analysis over special intervals in which
the starting time point is 0 and the heater is on in the end. These
intervals can be constructed by the following recursive function su-
perCon. The function receives three parameters, a counter k, a set
of interval as a base, and a set of interval as a unit. It returns a set of
intervals by repeatedly appending the unit for k times to the base.

superCon : N X PI x PI — PI

if k = O then base

‘ Vk : N; base,unit : P1 o superCon(k, base, unit) =
‘ else superCon(k — 1, base, unit) ~ unit

Hence we can represent the special intervals below by the appli-
cation superCon(k, base, unit), where base denotes the first time
when heater turns on from its initial state off, and unit expresses a
sequential behavior of the heater, specifically, from off to on.

base = [fa = 0 A s.con.heater_out = 0)) ~
[és.con.heater_out = 1J);
unit = [gs.con.heater_out = 0j ~ [ts.con.heater_out = 19

RIGHTS LI N

In the following we demonstrate how to handle an inductive
proof in our system by proving a simple lemma end_with_On, which
expresses that at the end of the special intervals the heater is on.

end_with_On == Vs : System e Vk:Ne
superCon(k, base, unit) C
[ftrue) ~ [ts.con.heater_out = 1

The verification of the above lemma is below.

1 ((skosimp)

2 (induct "k")

3 (("1" (expandsubset)

4 (expand "superCon")

5: (expandconcat -1)

6 (assignconcat 1 "il!l"™ "i2!1")
7 ("2" (skosimp)

8 (expandsubset)

(grind))

expand "superCon")
expandconcat -2 1)
assignconcat 1 "TwoTOneIvl (il!l,
grind))))

(expandconcat -1)
i1t2)m™ wi2t12")

(
(
(
(

In the above proof since the function superCon is recursive,
we need to perform the induction on the variable k. The PVS com-
mand induct invokes an inductive proof. Its application at line 2
automatically generates two sub-goals. One denotes the base case
where k = 0 (at line 3), and the other corresponds to the inductive
case (at line 7). Function TwoTOneIvl defined by us creates a
new interval from two adjacent intervals (at line 11). We remark
that the analysis of the inductive case considers two connections of
three sets of intervals (indicated by expanding function concat
twice at line 10). If the verification is manual, we have to check 16
circumstances in terms of the interval types. In contrast, the tedious
work is automatically completed in our system.

Experimental Results

Table 1 presents the lemmas of the temperature control system, the
number of the proof commands entered from users, and the PVS
system execution time (in seconds) for each lemma. We have men-
tioned some lemmas, namely, Decreasing, Safety, end_with_On,
and Length. Other lemmas also represent important properties.
For instances, lemma Off_On_Off reasons about the interval length
when the heater is on between any two consecutive off states, and
its verification involves the mathematical analysis of integral cal-
culus (for example, the calculation of the temperature); lemma in-
variant proves that the special intervals represented by superCon(k,
base, unit) fulfills the length requirement by induction.

Table 1: Verification of the temperature control system

Lemma Name Steps | Time Lemma Name Steps Time
Decreasing 21 14.45 Off_On_Off 44 20.92
Increasing 24 16.66 end_with_On 14 21.88
Safel 28 14.15 invariant 79 458.8
Safe2 27 14.68 super_and_BT 23 10.59
Safety 7 12.88 Length_Cover 98 562.32
On_Off_On 46 22.47 Length 26 59.67

Besides the experiment on the temperature control system pre-
sented, we also apply our verification system to another hybrid
application, a brake control system. The system involves discrete
logic (a controller controlling the brake), periodic behavior (a sen-
sor sampling the real speed every 1 time unit) and continuous-time
dynamics (the vehicle speed is an integration of its acceleration).

We have successfully proved three important requirements by
using our verification system. Requirement Approximation checks
that at any time the sensor measures the speed within an accuracy
range. Requirement Response guarantees that the system will react

279

on time whenever the vehicle is over dangerous speeding. Require-
ment Safety shows that a vehicle will be always within a safe speed.
Table 2 summarizes the proved lemmas, the number of proof com-
mands needed, and the execution time (in seconds).

Table 2: Verification of the brake system

Lemma Name Steps | Time Lemma Name || Steps Time
ACC_Range 11 71.73 Response_L2 68 26.26
Plant_Speed 43 73.98 Response_L3 49 26.40
Approximation 26 13.78 Response_L4 53 28.70
V_Initial 8 10.46 Response 18 15.74
Brake_Prop 27 45.75 ACC_On 16 66.66
V_at_sample 22 23.26 overlimit] 42 112.20
V_within_sample 27 21.56 overlimit2 55 185.88
Response_L1 46 24.83 Safety 48 103.45

We remark that in the proof of the Response requirement, we
adopt the proof by cases mechanism. Specifically any arbitrary in-
terval can be classified into one of the four groups by the criteria
that whether its endpoints are sample time points, and each group
is analyzed as a lemma (for example, lemma Response_L1).

6.4 Supporting Other Notations

By the highly expressive power of TIC, we can encode other no-
tations of real-time systems in TIC and hence support their machine-
assisted proof in our tool. Below we show an application of our ver-
ification system to a specific notation, Duration Calculus (DC) [24].

DC is a popular formal notation, and builds on the idea of mea-
suring the time points where a state assertion holds within an inter-
val. Note that the encoding of time intervals and integral operation
in TIC provides a theoretic base to construct the DC semantics.
Here we briefly discuss how important features of DC can be de-
noted by TIC. Detailed transformation from DC to TIC is available
online [4], where a case study of a gas burner is given as well.

Primitive state variables of DC are functions from time to a set
{0,1}. They are exactly the discrete timed traces of TIC. Hence,
the frequently used abbreviation in DC, [S7], which holds in a non-
pointer interval if state assertion S isrue almost everywhere, can
be represented by a TIC expression [¢ : S=dANd>0) InDC,
predicate values at endpoints are irrelevant. That is to say, they can
be either true or false at the endpoints of intervals. This feature is
captured by the interval brackets [(J] of TIC.

The chop operator ~ of DC can be converted to the concate-
nation operator ~ of TIC. Note that the property where two con-
nected intervals share an overlapping time point is not allowed in
TIC. The difference can be addressed by concatenating two general
types of sets of intervals. This way covers all possible cases about
the connections of any two intervals, captures the DC feature which
ignores the predicate values at the interval endpoints. Hence, a DC
model can be treated in TIC as a special case that a TIC model
involves all types of intervals.

7. CONCLUSION

In conclusion, we presented a verification system for TIC based
on the generic theorem prover PVS. TIC is highly expressive to
support modeling of complex systems and (timing) requirements.
The verification is usually nontrivial due to the analysis of continu-
ous dynamics as well as the reasoning over arbitrary (infinite) time
intervals. We have constructed the TIC semantics models in PVS
so as to fully support the TIC modeling features. In the validation
of all TIC reasoning rules, we have discovered two subtle flaws in
two frequently used original rules. After fixing the flaws we further
refined one of them to reduce the proof complexity to one quarter.
A translator has been implemented in Java to automatically trans-
form TIC models to PVS specifications.

RIGHTS LI

The resultant system supports the verification of TIC to be car-
ried out directly at the interval level by applying the reasoning rules
and supplementary rules which capture domain specific features.
We have developed 11 PVS proof strategies to facilitate the usage
of our system. In addition, these strategies ease the users from
understanding detailed encoding of TIC in PVS. Low level proof
goals are discharged automatically by the PVS powerful prover, es-
pecially the decision procedures on sets and arithmetic on real num-
bers. We have successfully applied our approach to validate hybrid
control systems with timing related safety requirements. The sup-
port of mathematical induction in PVS is useful to deal with infinite
systems. We showed that our approach could be modified to sup-
port other real-time system notations, for instance DC.

Currently our approach is limited to fully automated verify TIC
models in general. This is the price to be paid by the highly expres-
sive power of TIC. The main challenge is to instantiate appropriate
values (for example, intervals or time points) to eliminate quanti-
fied formulas in PVS. From the experiments, we find that there are
heuristics which can elevate the automation grade (for example,
when assigning a time point in an interval, usually the proof can be
completed successfully in one of three following ways of the as-
signments: two endpoints or the middle point of the interval). We
are in the process of developing more intelligent proof strategies to
implement these heuristics so as to support the mechanized proving
of TIC at a higher level. Moreover, embedding our approach into
SAL [8] is possible to improve the verification, in particular the in-
finite model checking capability of SAL providing a way to handle
infinite systems.

8. ACKNOWLEDGEMENTS

We thank Yuzhang Feng and Ian Hayes for their insightful dis-
cussion. We appreciate Anders. P. Ravn, Chaochen Zhou and
Jeremy Dawson for the help on related work.

9.
(1]

REFERENCES

R. W. Butler. Formalization of the Integral Calculus in the PVS
Theorem Prover. Technical report, NASA Langley Research Center,
Hampton, Virginia, October 2004.

A. Cerone. Axiomatisation of an Interval Calculus for Theorem

Proving. Electronic Notes Theoretical Computer Science, 42, 2001.

G. Chakravorty and P. K. Pandya. Digitizing Interval Duration

Logic. In Computer Aided Verification, pages 167-179, 2003.

C. Chen, J. S. Dong, and J. Sun. Verification System for TIC.

http://www.comp.nus.edu.sg/~chenchun/TIC2PVS, 2007.

B. H. Cheng and J. M. Atlee. Research Directions in Requirements

Engineering. Future of Software Engineering, pages 285-303, 2007.

E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and

Abstraction. ACM Transactions on Programming Languages and

Systems, 16(5):1512—1542, September 1994.

J. E. Dawson and R. Goré. Machine-checking the Timed Interval

Calculus. In Australian Joint Conference on Artificial Intelligence,

pages 95-106, 2002.

B. Dutertre and M. Sorea. Timed Systems in SAL. Technical report,

SRI International, 2004.

C. J. Fidge, 1. J. Hayes, and B. P. Mahony. Defining Differentiation

and Integration in Z. In Formal Methods and Software Engineering,

pages 64-73. 1998.

[10] C.]J.Fidge, I. J. Hayes, A. P. Martin, and A. Wabenhorst. A
Set-Theoretic Model for Real-Time Specification and Reasoning. In
Mathematics of Program Construction, pages 188-206, 1998.

[11] S. T. Heilmann. Proof Support for Duration Calculus. PhD thesis,
Department of Information Technology, Technical University of
Denmark, 1999.

[12] T. A. Henzinger and J. Sifakis. The Embedded Systems Design

Challenge. In Formal Methods, pages 1-15, 2006.

[2

—

(3]

[4

=

(5]

(71

(8]
[91

280

[13] B. P. Mahony and I. J. Hayes. A Case-study in Timed Refinement: A
Mine Pump. IEEE Transactions on Software Engineering,
18(9):817-826, 1992.

A. K. Mok, C.-G. Lee, H. Woo, and P. Konana. The Monitoring of
Timing Constraints on Time Intervals. In Real-Time Systems
Symposium, page 191-200. 2002.

C. Muiioz, V. Carreilo, and G. Dowek. Formal Analysis of the
Operational Concept for the Small Aircraft Transportation System.
In Rigorous Development of Complex Fault-Tolerant Systems, pages
306-325, 2006.

X. Nicollin, J. Sifakis, and S. Yovine. From ATP to Timed Graphs
and Hybrid Systems. In Real-Time: Theory in Practice, pages
549-572. Springer-Verlag, 1992.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Springer, 2002.

S. Owre, J. M. Rushby, , and N. Shankar. PVS: A Prototype
Verification system. In Automated Deduction, pages 748-752, 1992.
J. M. Rushby. Theorem proving for verification. In Modeling and
Verification of Parallel Processes, pages 39-57. Springer, 2000.

J. U. Skakkebzk and N. Shankar. Towards a Duration Calculus
Proof Assistant in PVS. In Formal Techniques in Real-Time and
Fault-Tolerant Systems, pages 660—-679. 1994.

A. Tiwari, N. Shankar, and J. M. Rushby. Invisible Formal Methods
for Embedded Control Systems. Proceedings of the IEEE,
91(1):29-39, 2003.

J. Woodcock and J. Davies. Using Z: Specification, Refinement and
Proof. Prentice Hall International, 1996.

Y. Yu, S. Ren, and O. Frieder. Prediction of Timing Constraint
Violation for Real-time Embedded Systems with known Transient
Hardware Failure Distribution Model. In Real-Time Systems
Symposium, pages 454-466. 2006.

C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal
Approach to Real-Time Systems. Springer Verlag, 2004.

C. C.Zhou and X. S. Li. A mean value calculus of durations. In A
classical mind: essays in honour of C. A. R. Hoare, pages 431-451.
Prentice-Hall International, 1994.

C. C. Zhou, A. P. Ravn, and M. R. Hansen. An Extended Duration
Calculus for Hybrid Real-time Systems. In Hybrid Systems, pages
36-59. Springer-Verlag, 1993.

[14]

[15]

[16]

(17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

APPENDIX
A. THE CONTROL SYSTEM IN TIC

The TIC models of plant, controller and the whole system.

— Plant
tmp_out : T © R; heater_in : T — {0, 1}

[theater_in = 03 C R
rmp_out(w) = tmp_out(a) — (1/10) x = mp_our)
[heater_in = 13 C R
rmp_out(w) = mp_out(a) + 6 x § — (1/10) * 7 tmp_our)

— Controller

tmp_in : T - R; heater_out : T — {0, 1}

[Ermp_in < 20y C [theater_out = 13
[ermp_in > 403 C [theater_out = 03

— System

con : Controller; pla : Plant

I = [con.tmp_in = pla.tmp_out)]
I = [pla.heater—_in = con.heater_out)
[fae = 03 C [pla.tmp_out(c) = 30 A con.heater—_out(c) = 03

	A verification system for timed interval calculus
	Citation

	tmp.1582772813.pdf.SUb1y

