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Abstract. A major obstacle for using partial order reduction in the context of
real time verification is that the presence of clocks and clock constraints breaks
the usual diamond structure of otherwise independent transitions. This is espe-
cially true when information of the relative values of clocks is preserved in the
form of diagonal constraints. However, when diagonal constraints are relaxed by
a suitable abstraction, some diamond structure is re-introduced in the zone graph.
In this article, we introduce a variant of the stubborn set method for reducing an
abstracted zone graph. Our method works with all abstractions, but especially tar-
gets situations where one abstract execution can simulate several permutations of
the corresponding concrete execution, even though it might not be able to simu-
late the permutations of the abstract execution. We define independence relations
that capture this “hidden” diamond structure, and define stubborn sets using these
relations. We provide a reference implementation for verifying timed language
inclusion, to demonstrate the effectiveness of our method.

1 Introduction

State space methods for timed systems have to deal with not only state explosion but
also clock explosion, i.e., complexity resulting from time constraints of the runs of the
system. In a non-timed system, state explosion caused by concurrency and interleav-
ing semantics can often be alleviated by commutativity based reductions, a.k.a. partial
order reductions, that work by eliminating unnecessary interleaving of sequences.

Fig. 1 shows a simple example of how partial order reduction works. Two processes
P1 and P2 can perform events a and b, respectively, as shown in Figs. 1 (a) and (b). The
concurrent behaviors, ab and ba, of P1 and P2 constitute a diamond structure as shown
in Fig. 1 (c). If the property checks for the reachability of state l2m2, it is sufficient to
only explore the representative path ba marked in solid arrows.

The presence of clocks interferes with partial order reduction, because the relative
order of events is preserved in time stamps. Consider a simple timed system of two
concurrent events, a and b, and two clocks xa and xb, which record the time elapsed
since the previous occurrence of the events. If both events occur, but a takes place before
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Fig. 2. Broken Diamond Structure

b, then the time constraint xa ≥ xb will hold, and if the order is reversed, then xb ≥ xa

will hold. Fig. 2 shows the broken diamond structure that results from time constraints.
Abstraction in this article refers to relaxing of some constraints of a system so that

we will lose the ability to distinguish between some configurations. We deal exclu-
sively with time abstraction and safety in this article. When verifying safety properties,
abstractions give over-approximations, so that all errors are preserved, and some new
errors may be introduced. Abstraction refinement means that verification starts with a
coarse over-approximation which is then refined until either the property is verified or
a concrete counterexample is found.

The objectives of this article are the following. Firstly, we define novel relations
called weak and strong independence for an abstract transition system. They guarantee
that one order of executing two independent abstract events can simulate the other order.
Strong independence is symmetric, but weak independence is not. Fig. 2 serves as an
example. Observing the bottom left configuration, if we relax the constraint xb−xa ≤ 0
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and replace it with a constraint xb − xa ≤ n for any sufficiently large n, the resulting
abstract configuration can simulate the configuration on the bottom right of the same
figure. The independence relations preserve their validity when an abstraction is made
coarser, which is summarized in Theorem 1.

Secondly, we modify the stubborn set method to make use of these relations and
reduce an abstract state graph. Our reduction works so that if the original state graph
contains a counterexample, then the reduced version of the abstract state graph contains
one as well, and this is proven in Theorem 2. Due to the two theorems, our theory is
general enough, so that it could be combined with any form of abstraction, as long as
one can analyse the independence relations for some finer grained abstraction.

We chose to experiment with the approach in combination with an abstraction re-
finement loop. The abstraction in our implementation combines a simple family of ab-
stractions that omit some diagonal constraints, with LU-simulation check. Even this
rudimentary implementation provides excellent improvement in scalability.

Organization. In the following we discuss how our work relates to previous work in the
literature. In Section 2, we define timed automata, timed languages, and the composition
of a system from component automata, and their semantics over transition systems. Sec-
tion 3 defines the stubborn set reduction for an abstract transition system, and explains a
state exploration algorithm for checking non-emptiness under reduction. In Section 3.3,
we discuss one possible implementation. Section 4 discusses some experiments, while
the final section concludes.

Related Work. The seminal work on stubborn sets are [16] and [17]. In particular, [17]
explores the use of stubborn sets in a synchronous model. Both deal with strong stub-
born sets, although earlier work does identify weak sets as well. Dependency and reduc-
tion of the control structures for weak stubborn sets have been presented in [9], along
with an algorithm for calculating stubborn sets. This article generalizes weak and strong
(in)dependence to time constraints. Weak sets have the potential (at least in theory) to
reduce more than strong sets.

The theory of timed automata is mostly from [1]. We use the original timed au-
tomata definition that does not include invariants. Invariants can be taken into account
in our theory as additional guards for transition entering or leaving locations that have
them, without compromising safety. Earlier work on partial order reduction for timed
automata includes [4] and [12], which identify the problems related to commutativity.
Both consider a concept of local time, where delays are either global or local to compo-
nent automata, but provide no empirical evidence. The problematic nature of time zones
is also discussed in [5], where a concept called covering is applied. Weak independence
is a generalization of covering, and localized time can be viewed as an abstraction
technique compatible with our method. Event zones that record the time elapsed be-
tween given events, have been used in [11] and [13] to implement Mazurkiewicz-trace-
reduction, which is based on a symmetric concept of independence. Various abstraction
techniques for zones exist [6,3,10], we combined our method with the latter two. The
idea behind our timed abstraction refinement loop originates from [2].

An alternative approach to using commutativity is discussed in [14]. The method is
a search where the zones resulting from different permutations of a set of events are
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merged. The exact relationship to our method is unknown to us, but we conjecture that
the two methods can be combined to increase the effectiveness of both; we leave this
for future work.

2 Preliminaries

Let Σ be a finite alphabet and R
+ be the set of non-negative real numbers. A timed

word over Σ is a finite sequence wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ (Σ × R
+)∗, such

that the sequence t1t2 . . . tn of time-stamps is non-decreasing.
Let C be a set of clocks where a clock is a variable over non-negative real numbers

R
+. We assume that all clocks progress at the same rate. Let ∼∈ {<,≤,≥, >} and

≺∈ {<,≤}. An atomic clock constraint η is defined as η = xa ∼ n | xa − xb ≺ n
for xa, xb ∈ C, and n ∈ Z. A clock constraint φ is a conjunction of atomic clock
constraints.

A clock constraintφ identifies a convex |C|-dimensional polyhedron �φ� ⊆ (R+)|C|.
An atomic clock guard is an inequality of the form xa ∼ n for xa ∈ C, ∼∈ {<,≤, >
,≥}, and n ∈ N. A clock guard g is a conjunction of atomic clock guards. A clock
guard g identifies a |C|-dimensional cuboid �g� ⊆ (R+)|C|. We use GC to denote the
set of clock guards over C, and GA

C ⊆ GC to denote the set of atomic clock guards.
A clock valuation γ : C �→ R

+ assigns a non-negative real number to a clock. For
a clock valuation γ, clock resetting c ⊆ C, denoted by γ[c �→ 0], is the clock valuation
γ′ such that γ′(x) = 0 for all x ∈ c and γ′(y) = γ(y) for all y ∈ C \ c. Given a
constant d ∈ R

+ and a clock valuation γ, we use γ + d to denote the valuation such
that (γ + d)(x) = γ(x) + d for all x ∈ C. The set of clock valuations is denoted ΓC .

Definition 1. Let C be a set of clocks. A timed automaton (TA) over C is a tuple T =
(Σ,L, L0, δ, Lf), where Σ is a finite input alphabet, L is a finite set of locations, L0 ⊆
L is a set of initial locations, Lf ⊆ L is a set of accepting locations, and δ : L ×Σ ×
GC × 2C �→ 2L is a partial transition function.

In a transition δ(l, a, g, c), l is the starting control location, a is the event, g is a guard
and c is the set of reset clocks, while the result is a set of control locations. It is common
to think of transitions as edges between two control locations that are decorated with

a, g and c. For convenience, sometimes we write l
a[g],c−−−→ l′ or even l

a−→ l′ when
l′ ∈ δ(l, a, g, c) for some l, l′ ∈ L, a ∈ Σ, g ∈ GC , and c ⊆ C. When such l′ exists,

we write l
a−→. l

ab−→ l′ means there is some l∗ ∈ L such that l
a−→ l∗ and l∗ b−→ l′. We

generalise this to longer sequences in the natural way.
We write R(a) as the union of all c such that δ(l, a, g, c) is defined for some l and g,

i.e., R(a) is the set of clocks that could be reset by executing a. Likewise G(a) is the
set of clocks that appear in some g such that δ(l, a, g, c) is defined for some l and c.

Definition 2. A run σ of a TA M = (Σ,L, L0, δ, Lf) over a timed word
wt = (a1, t1)(a2, t2) · · · (an, tn) is a finite sequence of the form

(l0, γ0)
a1−→
t1

(l1, γ1)
a2−→
t2

(l2, γ2)
a3−→
t3

· · · an−→
tn

(ln, γn)

with li ∈ L and γi ∈ ΓC for all 0 ≤ i ≤ n, satisfying the following requirements:
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– l0 ∈ L0 and γ0(x) = 0 for all x ∈ C

– there is a transition li−1
ai[gi],ci−−−−−→ li such that (γi−1 + ti − ti−1) |= gi and γi =

(γi−1 + ti − ti−1)[ci �→ 0] for all 1 ≤ i ≤ n

A run σ is an accepting run if ln ∈ Lf . A timed word wt is accepted by M if M has an
accepting run over wt. The timed language accepted by M , denoted by L(M), is the
set of all the timed words accepted by M .

We call the set V = {a ∈ Σ | ∃l ∈ L \ Lf : ∃l′ ∈ Lf : l
a−→ l′ ∨ l′ a−→ l} visible

events. Visible events are the events whose occurrence may change the control location
from accepting to non-accepting or vice versa. For future reference, V does not need to
be exact, approximating with a larger set will be sufficient.

Given a set of timed automata Mi = (Σi, Li, L
0
i , δi, L

f
i ) for i ∈ {1, 2, . . . , n},

their parallel composition is the timed automaton M1 ‖ · · · ‖ Mn = (Σ,L, L0, δ, Lf)

where Σ =
⋃

1≤i≤n Σi, L = L1×· · ·×Ln, L0 = (L0
1, . . . , L

0
n), L

f = Lf
1 ×· · ·×Lf

n,
and the transition relation δ is defined as follows. Let Σ(a) = {i | a ∈ Σi}. Then

(l1, . . . , ln)
a[
∧

i∈Σ(a) gi],∪i∈Σ(a)ci−−−−−−−−−−−−−−−→ (l′1, . . . l
′
n), if (1) li

a[gi],ci−−−−−→ l′i, whenever i ∈ Σ(a),
and (2) li = l′i, whenever i /∈ Σ(a).

If a clock constraint φ is satisfiable, there is a unique canonical clock constraint,
denoted by Can(φ), among all the clock constraints identifying the polyhedron �φ�,
obtained by closing φ under all consequences of pairs of conjuncts in φ. Let C0 =
C ∪ {x0} where x0 is the dummy clock. We assume x0 = 0 at all times. Can(φ) can
always be expressed as

∧
x,y∈C0

x−y ≺xy nxy . A common canonical representation is
the difference bound matrix or DBM. A DBM represents Can(φ) in the following way.
Given a numbering {0, 1, . . . , |C|} for the set of clocks, we represent any satisfiable
constraint as a matrix D = 〈nij ,≺ij〉, where i, j ∈ {0, 1, . . . , |C|}. The conjunct
xi − xj ≺ij nij is represented by the entry 〈nij ,≺ij〉. The index 0 corresponds to the
dummy clock, so that a lower bound xi ≺ ni0 is represented by 〈ni0,≺〉, and an upper
bound −xi ≺ n0i is represented by 〈n0i,≺〉.

Given a clock constraint φ, we define the reset of a set of clocks c in φ, denoted
by φ[c �→ 0], as Can(φ[c �→ 0]). This set of constraints is obtained from Can(φ) by
removing all conjunctions where some x ∈ c is included, adding the conjunct x = 0,
and closing w.r.t. the remaining conjuncts. We define the time elapsing of φ, denoted by
φ ↑, as Can(φ ↑) where φ ↑ is obtained from Can(φ) by removing all upper bounds on
clocks. For example, given a constraint φ : 0 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2, its canonical form
is Can(φ) : 0 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2 ∧ −3 ≤ y − x ≤ 2, φ[{x} �→ 0] : x = 0 ∧ 0 ≤
y ≤ 2 ∧ 0 ≤ y − x ≤ 2, and time elapsing φ ↑: 0 ≤ x ∧ 0 ≤ y ∧ −3 ≤ y − x ≤ 2.

Given a precondition φ, and an event a with guard ga and reset clocks ca, we define
the strongest postcondition of a as sp(φ, (a, ga, ca)) = ((φ ∧ ga)[ca �→ 0]) ↑. We
define a abstract postcondition POSTα as a mapping that satisfies sp(φ, (a, ga, ca)) ⊆
POSTα(φ, (a, g, c)). If POSTα1 and POSTα2 are two abstract postconditions such
that for every a, g and c, POSTα1(φ, (a, g, c)) ⊆ POSTα2(φ, (a, g, c)), we write
α1 � α2, and we say that α2 is a coarser abstraction.
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Definition 3. The semantics of a timed automaton M = (Σ,L, L0, δ, L
f) is defined

by an abstract transition system (S, S0,=⇒α), where S ⊆ L× P((R+)|C|), and S0 =
{(l0, Z0) | l0 ∈ L0}. Z0 is called the initial zone. “=⇒α” ⊆ S × Σ × S is defined as
follows:

– (l, Z)
a

=⇒α (l′, Z ′), if and only if a ∈ Σ and l′ ∈ δ(l, a, g, c) for some g and c,
and Z ′ = POSTα(Z, (a, g, c)) �= ∅.

where POSTα(Z, (a, g, c)) is an abstract postcondition operation. When such (l′, Z ′)
exists, we write (l, Z)

a
=⇒α.

Given (l, Z) ∈ S, we write enα((l, Z)) = {a | ∃(l′, Z ′) : (l, Z)
a

=⇒α (l′, Z ′)}, for the
set of enabled events at state (l, Z). The abstraction is determined by the postcondition
POSTα(Z, (a, g, c)). We leave that open for now, as well as what Z0 really is. We
write POSTα(Z, a) and omit the guard g and the set of clocks c if they do not matter
or are clear from the context. We abuse the notations to write (l, Z)

a
=⇒sp (l′, Z ′),

when Z ′ = sp(Z, (a, g, c)) for some g, c and l
a−→ l′, even if (l, Z) is not an actual state

of the transition system we are discussing. When Z ⊆ Z ′ we say that the state (l, Z ′)
simulates the state (l, Z), and write (l, Z) ≺ (l, Z ′).

Definition 4. Given an abstract transition system (S, S0,=⇒α), a sequence 〈(l0, Z0),

a1, (l1, Z1), . . . , an, (ln, Zn)〉 such that (li−1, Zi−1)
ai=⇒α (li, Zi) and ln ∈ Lf is

called a counterexample of the transition system.

The following proposition is the basis of timed verification using transition systems,
and it is a standard result [1].

Proposition 1. If (S, S0,=⇒sp) is the transition system of the timed automaton M =
(Σ,L, L0, δ, L

f) under strongest postcondition, then L(M) = ∅ if and only if the tran-
sition system does not have a counterexample.

A corollary to Proposition 1 follows immediately from the assumption that sp(Z, a) ⊆
POSTα(Z, a): If an abstract transition system of M under α has no counterexamples,
then L(M) = ∅.

3 Reduction of Abstract Transition Systems

We define reduction functions for abstract transition systems without specifying the
abstraction function. The reduction preserves the existence of counterexamples of the
concrete system, of which the abstract system is an over-approximation; the existence
of spurious counterexamples may not be preserved.

3.1 Stubborn Sets

Definition 5. Given a timed automaton M = (Σ,L, L0, δ, Lf) and its abstract tran-
sition system (S, S0,=⇒α), we define a reduction function as T : S → 2Σ . Given
a reduction T , we define the reduced abstract transition system (ST , S0,=⇒T

α) as the
minimal transition system such that,
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– S0 ⊆ ST

– if s ∈ ST , a ∈ T (s), and s
a

=⇒α s′, then s′ ∈ ST and s
a

=⇒T

α s′.

Definition 6. Given a timed automaton M = (Σ,L, L0, δ, Lf), IS ⊆ Σ ×Σ is a

– strong structural independence relation if for all (a, b) ∈ IS and all locations l, l′ ∈
L such that l

a−→ ∧l b−→ we have l
ab−→ l′ if and only if l

ba−→ l′, and
– a weak structural independence relation if for all (a, b) ∈ IS locations l, l′ ∈ L,

l
ba−→ l′ implies l

ab−→ l′.

When checking whether an event a is enabled, we consider a to have a set of structural
guards, all of which need to be satisfied before a is enabled.

Definition 7. Given a timed automaton M = (Σ,L, L0, δ, Lf), a structural guard is
a mapping g : L → {true, false}. We denote the set of structural guards by GS . The
relation RS ⊆ Σ×GS is called a structural guard relation, if and only if 1) (a, g) ∈ RS

and l
a−→ imply g(l) = true, and 2) l � a−→ implies ∃(a, g) ∈ RS : g(l) = false .

In a parallel composition of automata M1 ‖ · · · ‖ Mn, fix an event a. This a is struc-
turally enabled in a location l = (l1, . . . , ln), if and only if for every i such that a ∈ Σi,
li

a−→ in Mi. These conditions (one for each such i) can serve as structural guards. We
can denote them gai , i.e., gai (l) ⇔ li

a−→.
The guard relation can be under-approximated, as long as for every disabled action

we can find at least one unsatisfied guard.
We say that the event b structurally enables the guard g, if there is some l and l′ such

that l
b−→ l′ and g(l′) = true and g(l) = false . A relation ES ⊆ GS × Σ is called a

structural enabling relation if (g, b) ∈ ES whenever b structurally enables g.
In the context of a parallel composition we can look at the locations of component

Mi. Let li, l′i be locations such that li
b−→ l′i and l′i

a−→, then we would have (gi, b) ∈ ES .
The safe direction of approximating enabling relations is over-approximation. For

instance if g is a guard of a then (g, b) holds for at least all those events that can locally
lead to a state where a is enabled, but possibly others.

In Fig. 2, for instance, a would have a structural guard g1, and any event that moves
control on M1 to l1, would enable g1. The events a and b are structurally independent,
but the figure demonstrates that this is not sufficient for reducing timed automata, as
a and b are dependent in terms of time: After the event a, we have the zone indicated
by φa ⇔ xb − xa ≤ 2 ∧ xa − xb ≤ 0. After the event b, we have φb ⇔ xb − xa ≤
0 ∧ xa − xb ≤ 3. If we have no reason to know in which order a and b took place, we
could merge the two zones into φ = φa ∨ φb ⇔ xb − xa ≤ 2 ∧ xa − xb ≤ 3.

Ideally we would like to have an abstraction that exactly removes such information.
To achieve a more general theory, we will define independence relations for events, with
respect to a given abstraction. The question of abstraction is deliberately left open, as it
is relevant only with respect to a particular implementation.

Definition 8. Given a timed automaton M = (Σ,L, L0, δ, Lf) and an abstract transi-
tion relation =⇒α. IT ⊆ Σ ×Σ is a
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– strong temporal independence relation under α , if for all (a, b) ∈ IT , all clock
constraints Z and for all transitions δ(la, a, ga, ca) and δ(lb, b, gb, cb), Z |= ga and
Z |= gb together imply that
1. sp(sp(Z, (a, ga, ca)), (b, gb, cb)) ⊆ POSTα(POSTα(Z, (b, gb, cb)),

(a, ga, ca)), and
2. sp(sp(Z, (b, gb, cb)), (a, ga, ca)) ⊆ POSTα(POSTα(Z, (a, ga, ca)),

(b, gb, cb)).
– weak temporal independence relation under α, if for all (a, b) ∈ IT and all clock

constraints Z , Z |= gb and sp(Z, (b, gb, cb)) |= ga imply that

sp(sp(Z, (b, gb, cb)), (a, ga, ca)) ⊆ POSTα(POSTα(Z, (a, ga, ca)), (b, gb, cb))

Strong temporal independence says that in any configuration, a and b can be executed in
either order, and the resulting configuration can simulate all executions of the transition
system under sp-semantics. Weak temporal independence promises that if a could be
executed after b in the concrete system, the abstract system can execute a first and then
b, and still simulate all the executions that were possible in the concrete system. For
instance, if the constraint xb − xa ≤ 0 in location (l2,m2) of Fig. 2(c) is replaced by
xb − xa ≤ ∞ then a is weakly temporally independent of b. Unless xa − xb is not
similarly relaxed, the converse does not hold, i.e., b is not weakly independent of a.

Theorem 1. Let α1 and α2 be abstractions, such that α1 � α2. If IT is a strong
(weak) temporal independence relation under α1, then IT is a strong (weak) temporal
independence relation under α2.

Events have clock guards GC , and these need to be taken into account in the reduc-
tion. We make no assumptions about the guards other than when an event is disabled
due to time constraints, it has at least one (atomic) guard that is false.

Definition 9. A relation RT ⊆ Σ × GC is a time guard relation if 1) (b, g) ∈ RT

and (l, Z)
b

=⇒sp imply that Z |= g, and 2) if l
b−→ and (l, Z) � b

=⇒sp then ∃g : (b, g) ∈
RT ∧Z �|= g. We say that the event a ∈ Σ is time enabling for a guard g under α if there
exists (l, Z)

a
=⇒α (l′, Z ′) such that Z �|= g and Z ′ |= g. A relation ET ⊆ GC × Σ, is

a time enabling relation under α, if (a, g) ∈ ET if a is time enabling for g.

In Fig. 2, a has the guard xb ≤ 2. If control is locally at l1, but xb > 2, then this
guard is false. b is enabling for xb ≤ 2, because it resets xb.

As with structural guards, the conservative approximation for a guard relation is an
under approximation as long as the relation is non-empty. The conservative approxima-
tion for enabling is an over approximation. This is reflected in the definition by the fact
that the time guard relation is defined in terms of sp-semantics and the enabling relation
is defined in terms of abstract semantics.

In the following, let G = GS ∪GC , the set of all structural and clock guards.

Definition 10. A relation IS ⊆ Σ × Σ is a strong independence relation, if there ex-
ist a strong structural independence relation IS and a strong temporal independence
relation IT such that IS = IS ∩ IT . A weak independence relation IW is defined anal-
ogously. A relation R ⊆ Σ × G is a guard relation if there exist structural and time
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guard relations RS and RT such that R = RS ∪ RT . A relation E ⊆ G × Σ is an
enabling relation, if there exist structural and time enabling relations ES and ET such
that E = ES ∪ ET .

Definition 11. Let (S, S0,=⇒α) be the abstract transition system for the timed au-
tomaton M = (Σ,L, S0, δ, Lf), and let IS , IW , E and R be the strong and weak
independence, enabling, and guard relations under α, respectively, and let (l, Z) ∈ S,
and let G(l,Z) = {g | g ∈ G ∧ (l, Z) �|= g}. let U ⊆ Σ ∪G(l,Z). Then U is a Stubborn
set at (l, Z) if the following conditions hold:

1. ∀a ∈ en(l, Z) ∩ U : (∀b ∈ Σ \ U : (a, b) ∈ IS) ∨ (∀b ∈ Σ \ U : (a, b) ∈ IW ),
2. Either en(l, Z) = ∅ or ∃a ∈ en(l, Z) ∩ U : ∀b ∈ Σ \ U : (a, b) ∈ IS . When this

condition holds for a, then a is called a key event.
3. ∀a ∈ (Σ \ en(l, Z)) ∩ U : ∃g ∈ G(l,Z) : (g, a) ∈ R ∧ g ∈ U .
4. ∀g ∈ G(l,Z) ∩ U : ∀a : (a, g) ∈ E ⇒ a ∈ U .

Intuitively, a stubborn set contains events, and for computational convenience, also
guards. Condition 1 states that each enabled stubborn event is either weakly independent
of all non-stubborn events or strongly independent of all non-stubborn events. Condi-
tion 2 states that unless the current configuration is a deadlock, a stubborn set contains
an enabled key event, which is strongly independent of all non-stubborn events, and as
a consequence, non-stubborn events can never disable a key event. Condition 3 states
that if a stubborn event is disabled, it has a guard that is inside the set, preventing it
from becoming enabled. Condition 4 states that a guard of the set cannot be enabled
by a non-stubborn event. In other words, conditions 3 and 4 work to guarantee that
non-stubborn events alone cannot enable disabled stubborn events.

Stubborn sets can be easily calculated, for instance, using the modified deletion algo-
rithm presented in [8]. We do not reproduce any algorithm here, as there are numerous
algorithms in the literature.

Definition 12. Let M = (Σ,L, L0, δ, Lf) be a timed automaton, let V ⊆ Σ be the
set of visible events, and let (S, S0,=⇒α) be the abstract transition system for M . The
reduction function T : S → 2Σ is a Stubborn set reduction function if

1. T (l, Z) is a stubborn set at every (l, Z) ∈ S.

2. If a ∈ enα(l, Z), then there exists a sequence (l0, Z0)
b1=⇒α (l1, Z1)

b2=⇒α · · · bk=⇒α

(lk, Zk) such that (l0, Z0) = (l, Z), bi is a key event for (li−1, Zi−1), and a ∈
T (lk, Zk).

3. If V ∩ T (l, Z) ∩ enα(l, Z) �= ∅, then V ⊆ T (l, Z).

The conditions say: 1) the reduction function must produce a stubborn set, 2) if an action
is ignored in a given state, it will be executed in some future state that is reachable using
key events, and 3) if one of the enabled events in the stubborn set is visible, then all
visible events must be included in the stubborn set. We reduce the abstract transition
system, but unlike the usual reductions, our version of stubborn sets does not guarantee
that non-emptiness of the abstract transition system is preserved. Instead, we prove only
that if the original system contains counterexamples, then the reduced abstract transition
system contains one.
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Theorem 2. Let M = (Σ,L, L0, δ, Lf) be a timed automaton, Let (S, S0,=⇒α) be
the abstract transition system for M . If T is a stubborn set reduction function for
(S, S0,=⇒α), and L(M) is not empty, then the reduced abstract transition system
(ST , S0,=⇒T

α) has a counterexample.

Proof. We prove a slightly stronger result, i.e., that if an arbitrary abstract configuration
could reach an accepting location under strongest postcondition semantics, then the
reduced system will reach one under the abstract semantics.

Let (l, Z) ∈ ST be arbitrary. Let β be a sequence of events such that (l, Z)
β

=⇒sp

(l0, Z0) is a minimal length execution to an accepting location l0 under strongest post-
condition semantics, with |β| = n. We show that there exists a state (l′, Z ′) ∈ ST , a
location l1 ∈ Lf Z1 �= ∅, and a sequence of events ρ such that (l′, Z ′)

ρ
=⇒sp (l1, Z1),

and |ρ| < n, which proves the claim by induction.

Let β = b1 · · · bn, and let us denote (l, Z) = (l0, Z0) and (l0, Z0)
b1···bi=⇒ sp (li, Zi) for

the ith state in the sequence. Due to the minimality of n, no intermediate li is accepting,
other than ln = l0. This means, that bn ∈ V , by definition, as it leads from a non-
accepting to an accepting location. The proof branches to two cases based on whether
∃i : 1 ≤ i ≤ n ∧ bi ∈ T (l, Z) holds or not.

As “case A”, let us assume bi ∈ T (l, Z) for some i. Let 1 ≤ i ≤ n be minimal such
that bi ∈ T (l, Z). Firstly, we prove bi ∈ enα(l, Z): If bi is disabled, then there is some,
either time or structural guard, that makes bi disabled at (l, Z), say g, by point 3 of the
definition of stubborn sets, and g ∈ T (l, Z). Then, point 4 would guarantee, that any
event that can cause g to become enabled would be in T (l, Z), meaning, none of the bj
with 1 ≤ j < i could enable it, as they are not in T (l, Z), leading to a contradiction.
To prove that bi is also enabled in all the intermediate states before its appearance in
the accepting sequence, notice that if bi is strongly independent of all the bj with j < i,
none of them can disable bi. If bi is weakly independent of all bj with j < i, then none
of them can enable bi. If bi were disabled in some intermediate state, this would lead to
a contradiction. We call this case A0.

When i = 1, A0 suffices as such. When i > 1, bi, by property 1 of stubborn
sets, is independent of bj for 1 ≤ j < i, either weakly or strongly. By assump-

tion, (li−2, Zi−2)
bi−1bi
=⇒ sp (li, Zi) holds and independence guarantees that (li−2, Zi−2)

bibi−1
=⇒ α (li, Z

∗
i ) where Zi ⊆ Z∗

i , which then implies (li, Z
∗
i )

bi+1···bn
=⇒ sp (l0, Z∗) so

that Z0 ⊆ Z∗. Doing the same step i times, we permute bi to (l0, Z0), and we get

(l, Z)
bib1=⇒α (l′1, Z

′
1), and (l′1, Z

′
1)

b2···bi−1
=⇒ sp (li, Z

∗∗
i )

bi+1···bn
=⇒ sp (l0, Z∗∗) so that

Z0 ⊆ Z∗∗.
Let us mark the sequence b2 · · · bi−1bi+1 · · · bn with β′. Therefore, we have (l, Z)

bi=⇒α (l′, Z ′) so that (l′, Z ′) ∈ ST , and we have (l′, Z ′) b1=⇒α (l′1, Z
′
1), with (l′1, Z

′
1)

β′
=⇒sp (l0, Z ′0). We again have a branch, but with three cases. A1) If b1 ∈ T (l′, Z ′) the
claim is proven, as (l′1, Z ′

1) ∈ ST , and |β′| < n. A2) If bj ∈ T (l′, Z ′), with a similar de-
duction as before, we can find bj that is, again, weakly (or strongly) independent of the

events that precede it in β′, and commute it, like before, so that (l′, Z ′)
bj
=⇒α (l′′, Z ′′)

so that (l′′, Z ′′) b1=⇒α (l′′1 , Z
′′
1 ) and (l′′1 , Z

′′
1 )

β′′
=⇒sp (l0, Z ′′0), thereby shortening the
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distance by one, but otherwise like before: one abstract step, and then an actual coun-
terexample. A2) can only repeat itself until the accepting state is just one abstract step
away, otherwise it reduces to A0 or A3; we call case A3) the situation when none of the
bis of β′ are in T (l′, Z ′′).

We merge cases B and A3, because they are similar. Let (l, Z)
b1=⇒x

b2···bn=⇒ sp (l0, Z0)

so that x is either sp or α, and bi /∈ T (l, Z), for 1 ≤ i ≤ n. Note that (l, Z)
bi=⇒sp

implies that (l, Z)
bi=⇒α, so that at the least b1 ∈ enα(l, Z) holds. We mark the inter-

mediate states on this path with superscripts indicating the number of steps remaining
to (l0, Z0), so that (l, Z) = (ln, Zn).

Stubborn set reduction function property 2 guarantees the existence of sequence of
key events a1, . . . , ak with k ≥ 0, such that (l, Z) = (l0, Z0) and (l0, Z0)

a1···ak=⇒ α

(lk, Zk). These subscripts are not to be confused with the notation in the A-case. We
mark the intermediate states (li, Zi). On this path – which in its entirety is in ST – there
is a state (li, Zi) for which one of bjs is in T (li, Zi). At the very least, (lk, Zk) is such
a state, as per property 2 of stubborn set reduction functions.

Let us choose the minimum such i. We must then show that (li, Zi)
b1=⇒x

b2···bn=⇒ sp

(l0i , Z
0
i ), so that l0i is an accepting location; once this is proven, again, the property

reduces to one of the cases A0 to A2.
Suppose this property holds for (lj , Zj) with j < i. It then holds for j = 0, as

assumed in this case. (li−1, Zi−1)
ai=⇒α (li, Zi) is a key event, and (li−1, Zi−1)

b1=⇒x

(ln−1
i−1 , Z

n−1
i−1 )

b2···bn=⇒ sp (l0i−1, Z
0
i−1). Because ai is a key event, it is strongly independent

of all bi, which (almost) gives us the result, so that x = α at (li, Zi).
To show that l0i ∈ Lf , inductive hypothesis gives us l0i−1 ∈ Lf . Structural strong

independence gives us l0i−1
ai−→ l0i , and if l0i /∈ Lf , then ai ∈ V must hold. Bearing

in mind that bn ∈ V , this would contradict either point 3 of stubborn set reduction
function or the assumption that none of the bi is in T (lj, Zj) for j < i. ��

3.2 Ignoring Problem and Key Events

Property 2 of the stubborn set reduction function in Definition 12 is intended to solve the
ignoring problem [16]. Previously suggested solutions for the ignoring problem include
techniques based on strongly connected components [16] and complex conditions that
deal with on-stack states [7].

The fact that key events and other events need to be considered separately further
complicates the matter. One solution for this problem was given in [8], in the context of
the Tarjan algorithm, but here we discuss implementation details for algorithms that do
not need to detect strong components.

Let us re-iterate Property 2 from the point of view of a search algorithm that explores
the reduced state space: given a state s, with en(s) as the set of enabled events, and T (s)
as the set of stubborn events, property 2 says that for every a ∈ en(s)\T (s), there must
be some state s∗, reachable from s using key events, so that a ∈ T (s∗).

Consider a usual depth-first search, which maintains a stack of states Q (along with
other necessary information). Let us assume the top state of the stack is currently s.
We can store a bitset of satisfied events, denoted sat(s) for every state in the stack.
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a ∈ sat(s) means that we know there is a sequence of key events from s to some state
s′ such that a ∈ T (s′). Obviously sat(s) = T (s) when state s is initially put on the
stack and T (s) calculated.

When we are about to backtrack from s, we check that en(s) ⊆ sat(s); if not, then
more events need to be explored. In out test implementation we fully expand the state s,
which satisfies the condition trivially, but extending the stubborn set so that at least one
new key event gets added would also be correct and potentially result in more reduction.

On the other hand, when we backtrack from s to some state s′, this means that s′ a−→ s
for some a ∈ T (s′). If a is a key event, then all the events that were satisfied in s, are
also satisfied in s′, so we can set sat(s′) = sat(s′) ∪ sat(s); we say that s is a key-
successor of s′.

This concept points to alternatives that work for searches other than depth-first search.
In a state s, with T (s) as the stubborn set, we propagate information forward to one of
the key-successors of the current state. The events in en(s) \ T (s) need to be satisfied
by one key-successor. If in a given state s, the key-successors are all old states, one
calculates a larger T (s) until either T (s) = en(s) or an unexplored key-successor is
generated. We did not experiment with this solution, as dept-first search makes is easier
to extract counterexamples. We leave exploring such solutions for future work.

3.3 Abstraction-Refinement and Independence

An abstraction refinement loop in general works by successively refining abstraction
until non-emptiness has been decided by either finding a concrete counterexample or
an empty abstract transition system. The loop starts with the loosest abstraction, which
in our implementation means omitting diagonal timing constraints altogether. In every
iteration, we calculate the dependency relations with respect to the current abstractionα.

The abstract transition system is then checked for counterexamples; because we need
counterexamples, we used depth-first search in our implementation, with the ignoring
conditions as described in the previous subsection.

If no counterexample is found, the system is correct, due to Proposition 1 and Theo-
rems 1 and 2. If we find a counterexample, it is a guarded word that leads to an accept-
ing location in the abstract transition system. We then try to simulate the word using
strongest postcondition semantics. If a simulation leads to an accepting location, we
have found an actual counterexample.

If the counterexample cannot be replicated, all simulations (the system may be non-
deterministic) lead to non-accepting locations or end in empty zones before they end. In
this case we tighten the abstraction by considering more timing constraints. The exact
details depend on the family of abstractions used, and we will discuss only one example
in this section.

The particular abstraction is merely an example. Any abstraction or family of ab-
stractions will work as long as we can calculate independence relations that satisfy
Definition 8. Also, any abstraction technique that makes each abstraction more coarse,
can be combined with our method, due to Theorem 1.

The example implementation uses an abstraction which we call pairwise dependence
of clocks (PDC), in combination with LU-simulation [3,10]. The abstraction is imple-
mented by partitioning the clocks into dependency classes. The diagonal constraints
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between clocks of different classes are omitted. Let Dα ⊆ C×C be an equivalence re-
lation for clocks. When calculating the post-condition of an event, diagonal constraints
of the form x−y ≺ n are only considered when (x, y) ∈ Dα, otherwise n is considered
to be ∞.

The POSTα-operation with respect to Dα is defined as follows. Time zones in the
abstract transition system are given by the canonical constraints where Canα(Z) is of
the form

∧
(x,y)∈D0

α
x− y ≺xy nxy, where (x, y) ∈ D0

α if (x, y) ∈ Dα or if either a of
b is the dummy clock x0 which is always 0.

Any independence relation for the events must meet the criteria of Definition 8 under
POSTα to be valid. We propose the following: Let C(a) = R(a) ∪ G(a), and define
temporal dependency relations using the following checklist:

1. If there are clocks x, y such that x ∈ R(a) and y ∈ R(b) and (x, y) ∈ Dα then a
and b are dependent (both weakly and strongly).

2. If for all clocks x, y: x ∈ C(a) and y ∈ C(b) implies that (x, y) /∈ Dα, then
(a, b) ∈ ITS , and symmetrically for (b, a). Intuitively, if the events do not share any
dependent clocks, they are strongly (and weakly) independent under Dα.

3. If for every x ∈ C(a) and y ∈ C(b) such that (x, y) ∈ Dα, the guard of a contains
no lower bounds for x, then a is weakly independent of b.

4. If also in the previous case the guard of b contains no lower bounds for y, then a is
strongly independent of b.

Lemma 1. The relations described above are valid temporal independence relations
for the abstract transition system under PDC-abstraction.

4 Experiments

We created an implementation1 of our method in the PAT framework [15]. The main
question to answer is whether and how much the method is able to reduce, and whether
the benefits (in reduced states) outweight the cost (in overhead in calculating the sets).
Our implementation was an iterative version of the deletion algorithm [8], with opti-
mizations that aim at faster calculation.

We measured the performance of a direct verification of the zone graph, using LU-
simulation alone (with BFS), LU simulation and abstraction refinement that uses our
stubborn sets, and for comparison, LU- simulation with abstraction refinement but with-
out reduction. Our implementation of abstraction was the PDC-abstraction explained in
Section 3.3, and LU-simulation was calculated on top of that. Structural relations were
analyzed by examining the control structure of component automata and using sim-
ple heuristics for shared variable access, such as write/write and read/write of a shared
variable. The algorithm for state exploration for the two AR implementations was a
depth-first search, due to the need for counterexamples.

For reference, we did the tests also with UPPAAL on the same models; the models
may not produce exactly the same number of states, as it is possible that there are small

1 See https://sites.google.com/site/shangweilin/timedpor for additional
updates on performance.
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Table 1. Verification results

model PAT/BFS+LU PAT/AR+LU+POR PAT/AR+LU UPPAAL BFS
|S| time |S| time |S| time |S| time

CSMACD 5 2705 0,18 1131 0,17 2942 0,19 2156 0.03
CSMACD 6 12355 0,25 3488 0,21 11585 0,79 8976 0.08
CSMACD 7 54522 1 10146 0,7 44349 3 35739 0.36
CSMACD 8 234600 7 28272 2 164257 17 137678 1
CSMACD 9 991483 40 76185 7 592113 78 516751 6
CSMACD 10 4139285 232 199804 21 O/M 1899028 28
CSMACD 11 O/M 512344 62 O/M 6857723 117
FDDI 5 459 0,02 41 0 41 0,35 286 0
FDDI 10 10637 1 81 0,02 81 0,04 6043 0.19
FDDI 15 O/M 121 0,04 121 0,06 105990 34
FDDI 20 O/M 161 0,1 161 0,1 O/M
Fischer 5 3277 0,04 807 0,07 5785 0,38 2958 0.02
Fischer 6 15229 0,19 2570 0,27 20470 1 12777 0.08
Fischer 7 69602 1 8185 1 115633 7 54372 0.42
Fischer 8 313421 6 26104 3 578311 47 229559 2
Fischer 9 1393599 37 83339 14 O/M 965466 12
Fischer 10 6131109 242 266118 56 O/M 4053445 62
Fischer 11 O/M 849213 220 O/M 17005200 315
Railways 5 34197 0,7 1587 0,16 19217 1 16726 0.09
Railways 6 465634 10 9572 0,96 230714 14 200821 1
Railways 7 7250443 302 67069 7 O/M 2811642 22

differences in the models, and also, because the optimizations of UPPAAL are different
from our implementation. The idea is to give some indication of scalability issues.

Our experiment set consisted of some well-known safe examples, CSMA/CD net-
working, Fiber distributed data interface (FDDI), the famous Fischer protocol, and a
railway controller protocol. We measured the total number of generated configurations
and time in seconds. We ran the experiments on a PC with an Intel Core-i7, 3.4GHz and
8GB of RAM. Running times should be taken only to indicate order of magnitude and
scalability, because during the tests computer load and similar factors cause substantial
variation in running times.

The results of our experiments are given in Table 1. The best performances in terms
of number of states generated and execution time are indicated with boldface characters.
The results under reduction are given in the second column, and in all the cases, no other
approach generated fewer states.

The effects of reduction on scalability mean that eventually it is superior to every
other solution in our tests. Comparing execution times, we notice that our method slows
state generation down by a significant factor. However, this is more than compensated
by the effect on scalability of larger models. Another observation from the first and third
columns is that the abstraction refinement implementation without partial order reduc-
tion also slows down state generation significantly; It is plausible that our implementa-
tion of the PDC-abstraction is far from optimal and the time of actually calculating the
abstract successors dominates the execution times.
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Some of the reduction in the number of states comes from abstraction itself, (in
FDDI, all of it) but for instance, in the Fischer model PDC abstraction actually makes
the state space bigger, but when reduction is used, the state space is greatly reduced.
UPPAAL was chosen as a reference, as it can be viewed as the gold-standard for timed
verification. It performs significantly better than PAT when reduction is not used. UP-
PAAL also clearly has the advantage that it seems to generate states much faster. How-
ever, despite this handicap, our partial order reduction eventually beats even UPPAAL,
not only in terms of states, but also in verification time, when the models get large
enough.

5 Conclusion

We defined a variant of the stubborn set method for timed verification, which makes use
of abstraction. The method uses dependence and independence defined in terms of con-
crete behaviors that the abstract system must preserve instead of directly defining them
on the abstract zone graph. We believe the method overcomes a fundamental hurdle for
commutativity based reduction in real time verification, that of clocks causing superflu-
ous dependency. To the best of our knowledge, this is the first successful application of
the “standard” partial order reduction methods on timed automata.

In our measurements, our method was able to provide outstanding reduction, but
naturally, it can only reduce models that exhibit a high degree of concurrency and in-
terleaving. The theory is general and works with any abstract semantics as long as suf-
ficient conditions for weak and strong (temporal) independence can be extracted. Even
the simple heuristics in our reference implementation turned out to be very efficient in
reducing the number of states explored during verification of some models.
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