
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2015

Reliability assessment for distributed systems via communication Reliability assessment for distributed systems via communication

abstraction and refinement abstraction and refinement

Lin GUI

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yang LIU

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
GUI, Lin; SUN, Jun; LIU, Yang; and DONG, Jin Song. Reliability assessment for distributed systems via
communication abstraction and refinement. (2015). Proceedings of the 2015 International Symposium on
Software Testing and Analysis, Baltimore, USA, July 13-17. 293-304.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4955

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4955&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Reliability Assessment for Distributed Systems via
Communication Abstraction and Refinement

Lin Gui∗, Jun Sun†, Yang Liu‡, and Jin Song Dong∗

∗National University of Singapore, Singapore
†Singapore University of Technology and Design, Singapore

‡Nanyang Technological University, Singapore

ABSTRACT
Distributed systems like cloud-based services are ever more
popular. Assessing the reliability of distributed systems
is highly non-trivial. Particularly, the order of executions
among distributed components adds a dimension of non-
determinism, which invalidates existing reliability assess-
ment methods based on Markov chains. Probabilistic model
checking based on models like Markov decision processes is
designed to deal with scenarios involving both probabilistic
behavior (e.g., reliabilities of system components) and non-
determinism. However, its application is currently limited
by state space explosion, which makes reliability assessment
of distributed system particularly difficult. In this work, we
improve the probabilistic model checking through a method
of abstraction and reduction, which controls the commu-
nications among system components and actively reduces
the size of each component. We prove the soundness and
completeness of the proposed approach. Through an imple-
mentation in a software toolkit and evaluations with several
systems, we show that our approach often reduces the size
of the state space by several orders of magnitude, while still
producing sound and accurate assessment.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking, Reliability

General Terms
Reliability, Verification

Keywords
MDPs, reliability assessment, probabilistic model checking

1. INTRODUCTION
Reliability and fault tolerance are central to many dis-

tributed systems, including cloud-based web services, in-
dustrial control systems, wireless sensor networks, etc. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

term reliability refers to the probability of failure-free soft-
ware operation within a specified period of time and envi-
ronment [41, 10]. Being reliable is the key for these systems,
as failures would damage the reputation of the system op-
erators, and potentially lead to losses in capitals or even
human.

Assessing the reliability of a distributed system can be
highly non-trivial due to non-determinism, in contrast to
that of a sequential system, which is often deterministic.
In distributed systems, the order of executions among vari-
ous system components is highly unpredictable and depen-
dent on the operating environment. Therefore, the precise
probability distribution of execution orders is hard to ob-
tain if not impossible, and it is more suitable to model
them non-deterministically. However, non-determinism in-
validates existing reliability assessment approaches based on
Markov chain models [10, 37, 30, 28, 21], which fundamen-
tally assume that there is a unique probability distribution
of event occurrences at any system state. It is thus nec-
essary to develop a method for accessing the reliability of
non-deterministic systems.

A potential candidate is probabilistic model checking [6,
13] based on Markov decision processes, which is designed to
deal with both probabilistic behavior and non-determinism.
However, its application is limited to small scale distributed
systems as it works by exhaustively exploring the global
state space, which is the product of the state spaces of all
components and often huge. Therefore, we are motivated
to develop a scalable approach to assess the reliability of
distributed systems (e.g., web services, wireless sensor net-
work) that often consist of many components (e.g., clients,
sensors).

In this work, we assume that a distributed system consists
of a set of components, each of which has its local state space
and interfaces for communications. Our key idea is to shrink
the global state space by controlling the communications
among system components and actively reducing the sizes
of their local state spaces. More specifically, we start with
an abstract system by turning a subset of communication
events into local (i.e., non-communication) events, which
can be effectively removed afterwards by re-calculating the
local probability distributions for the rest of the communica-
tion events. We then perform probabilistic model checking
to calculate the reliabilities (here referred to as ‘approxi-
mations’). If the resulting approximations are not precise
enough, refinement can be performed by incrementally en-
larging the set of communication events, which eventually
yield an actual result based on the complete model. We

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA
c© 2015 ACM. 978-1-4503-3620-8/15/07...$15.00

http://dx.doi.org/10.1145/2771783.2771794

293

s0 s1

s2s3

M1 :

detect , 0.8

detect , 0.2wwwaaarrrnnniiinnnggg

ssshhhuuutttdddooowwwnnn

ooofff fff

t0 t6 t7

t8t5t9

t4 t1

t2t3

M2 :

wwwaaarrrnnniiinnnggg

ssshhhuuutttdddooowwwnnn, 0.1
ssshhhuuutttdddooowwwnnn, 0.9

ssshhhuuutttdddooowwwnnn

ooofff ffffail

work , 0.1

work , 0.9

error

repair , 0.1repair , 0.9

stop
finish

check , 0.5

check , 0.5

p0

Spec :

Σ\{fail}

Figure 1: Markov models and an LTS specification

s0, t0

s1, t4 s2, t1 s3, t2

s2, t4 s3, t3
shutdown, 0.1

shutdown, 0.9

fail

warning shutdown
off

· · ·

Figure 2: The state space of the product M1 and M2

prove the soundness of our approach by showing that prob-
abilistic model checking on the reduced system always re-
sults in safe approximations and, more importantly, the ap-
proximations are often precise enough so that we can derive
conclusive results based on a smaller state space. We imple-
ment the proposed abstraction and refinement framework in
a toolkit RaPiD [31] to support the reliability assessment of
distributed systems. Through several evaluations on mul-
tiple systems, results show that our method improves the
performance significantly.

2. MOTIVATING EXAMPLE
A simple model of a device controlling system, which is

a variant of [40], is shown in Fig. 1. The device is mod-
eled as a Markov decision process (MDP) M2. Its shutdown
process is coordinated by a controller, modeled as a Markov
chain (MC) M1. Each probability distribution (PD) is la-
beled with an event name. For example of the PD at state
t0 in M2, the transition from t0 to t6 (labeled with work , 0.1)
means that while the device is working on a task, it has a
probability of 0.1 going to state t6. The controller and the
device communicate through synchronizing common events
as highlighted in bold. If no local transition is enabled, the
controller and the device advances to the next state when
this communication event occurs simultaneously in both the
controller and the device. Intuitively, M1 first receives a
detect signal, after which it sends a warning message and
coordinates the shutdown behavior of the device by sending
a shutdown command. However, with a probability of 0.2,
it fails to issue a warning message. If M2 receives warn-
ing, it shuts down correctly; otherwise, it only shuts down
correctly with a probability of 0.9. Events warning and shut-
down are modeled non-deterministically at state t4, as the
exact probability of each event occurrence depends on con-
trol environment in practice.

A labeled transition system, Spec in Fig. 1, specifies a
system that always shuts down properly without any occur-
rence of fail event. Here Σ is an abbreviation of the set
of all events in M1 and M2, and the transition labeled with
Σ\{fail} denotes a group of transitions that are labeled with

t0

t8

t4 t1

t2t3

M r
2 = M2 � {warning, shutdown, fail} :

warning

shutdown, 0.1
shutdown, 0.9

shutdown

τfail

τ, 0.02

τ, 0.98

τ

Figure 3: A reduced model by hiding local and off
events

s0

M r
1 = M1 � {fail} :

τ t0 t4 t3

t8 t2

M r
2 = M2 � {fail} :
τ, 0.98

τ, 0.02

τ, 0.1

τ, 0.9

τ

fail

τ

τ

s0, t0 s0, t4 s0, t3

s0, t8 s0, t2

M r
1 | [Σ2

sync

] | M r
2 :

τ, 0.98

τ, 0.02

τ, 0.1

τ, 0.9τ

τ

fail

τ

τ ττ

Figure 4: Reduced models with fail event visible

any event in Σ except fail event. The question is how reli-
able the system is for accomplishing a shutdown properly; or
equivalently what the minimum probability is for the system
to satisfy the Spec.
The standard approach works as follows. First, we com-

pute the synchronous product of M1 and M2. Notice that all
common events warning , shutdown and off are to be syn-
chronized. They are referred to as communication events,
and the rest are referred to as local events. The result is an
MC partially shown in Fig. 2. There are in total 24 states
and 47 transitions. Due to the space limit, we only show the
part that contains the communication events. Next, we ap-
ply probabilistic model checking to the computation of the
probability that the product satisfies Spec, which is reduced
to the problem of computing the minimum probability of not
reaching state (s3, t3) in the product [50]. Using standard
techniques like value iteration or solving a linear equation
system, we obtain a reliability of 0.9804.
An improved approach being proposed in this work is

based on two major observations: (1) some of the communi-
cation events are not essential in computing this probability,
and (2) in general, we can always identify lower and upper
bounds of the reliability even if we choose to ignore some of
the communications among the components. In the follow-
ing, we illustrate our improved approach through two cases.

In the first case, we show that ignoring some of the com-
munication events allows us to work with a smaller state
space without changing the result. In fact, local events do
not affect the communication among components, and com-
munication event off is likely not that relevant to overall re-
liability intuitively, as both M1 and M2 remain at the same
state after it occurs. Thus, we hide all local and off events
by replacing them with an invisible event, designated by τ
event. M1 and M2 are reduced to M r

1 , M
r
2 , respectively. M

r
1

is exactly the same as M1 except that the self-loop transition
labeled with off event previously at state s3 is hidden and
labeled with τ event instead. To further explain the reduc-
tion process, M r

2 is shown in Fig. 3. After hiding, states t0,
t5, t6, t7, and t9 are only connected by τ events and thus can

294

be collapsed into one state t0 connecting to states t4 and t8
with an equivalent PD, which can be obtained via solving a
simple linear program [48, 3]. The states t0, t1, t2, t3, t4 and
t8 are kept in M r

2 as they cannot be further reduced. As
a result, the number of states of the parallel composition is
reduced from 24 to 13. With probabilistic model checking,
the minimum probability is 0.9804 and the same as that of
the original model.

In the second case, we show that a safe approximation of
the minimum reliability can be obtained even though the
‘wrong’ events are ignored. We consider an extreme case
by ignoring all local and communication events except fail
event as fail is the only event related to Spec. The reduced
models M r

1 and M r
2 are shown in Fig. 4. As all the events in

M1 are hidden, the whole model is reduced to one state with
a self-looping τ transition M r

1 . Similar to the first case, the
states t5, t6, t7, and t9 are removed in M r

2 . The transitions
between the states t4 and t2, which are previously linked by
events shutdown and warn, are now reduced into two direct
τ transitions. The parallel composition of the two reduced
models is shown in the third model of Fig. 4. Notice that the
number of states of the parallel composition is reduced from
24 to 5. Furthermore, the product has no loops with multiple
states so that probabilistic model checking with value itera-
tion converges fast. Based on this highly abstracted model,
the minimum probability is calculated as 0.9020, which is
smaller than the actual value 0.9804, and thus a safe ap-
proximation. If the question is whether the system has a
reliability of at least 0.9 shutting down successfully, we can
conclude positively with this result. However, it should be
noted that according to the actual requirement, refinement
can always be performed to yield more accurate result.

This example provides insights on the effectiveness of our
approach in speeding up the reliability assessment as well as
potential challenges. In the following, we present details of
our approach including the heuristics on choosing the ‘right’
events to ignore.

3. PRELIMINARIES

3.1 Markov Decision Processes
We start with defining a labeled transition system (LTS).

Let Σ be a set of event names; τ denote an internal event
that is invisible from external; and Στ denote Σ ∪ {τ}. An
LTS is a tuple L = (S , init ,Act ,T) where S is a set of states;
init ∈ S is the initial state; Act ⊆ Στ is a set of events (or
called an alphabet); and T ⊆ S × Act × S is a labeled
transition relation. A simple example is the Spec shown in
Fig. 1.

Let s, s ′ ∈ S and a ∈ Στ , a transition between two states
s, s ′, is denoted as (s, a, s ′) ∈ T or written as s

a→ s ′ for sim-
plicity. In this case, we say a is enabled at s. We write u � v
to denote that v is reachable from u through τ transitions,
i.e., there exists a finite sequence of states 〈s0, s1, · · · , sn〉
such that si

τ→ si+1 for all i ∈ [0,n − 1] and u = s0 and

v = sn . We write u
a� v if u � u ′ and u ′ a→ v ′ and

v ′ � v . This means that the two states are connected via a
series of τ transitions and one a transition. A path of L is a
sequence of alternating states/events π = 〈s0, a0, s1, a1 · · ·〉
such that s0 = init and si

ai→ si+1 for all i ≥ 0. The set of
all paths of L is written as paths(L). Given a path π, we
can obtain the corresponding trace, written as trace(π), by

omitting states and τ events. The traces of L are denoted
as traces(L) = {trace(π) |π ∈ paths(L)}. An LTS is deter-

ministic iff for all s ∈ S and e ∈ Στ , if s
e→ u and s

e→ v ,
then u = v . Otherwise, it is non-deterministic. A non-
deterministic LTS can be translated into a trace-equivalent
deterministic LTS using the standard power set construc-
tion [47, 50].

Informally, an LTS can be turned into an MDP by in-
corporating probability distributions (PDs), e.g., to model
system failures probabilistically. For instance, in M1 as
shown in Fig. 1, it assumes that the event detect is not
perfectly reliable. Instead of having a simple event detect ,
we have a PD that with a probability of 0.8 the detection
is successful (and a warning is generated afterwards) and
with a probability of 0.2 that it fails. Formally, given a set
of states S , a PD is a function μ : S → [0, 1] such that
Σs∈S μ(s) = 1. Let Distr(S) be the set of all PDs over S .
An MDP is a tuple M = (S , init ,Act ,Pr) where S is a set
of states; init ∈ S is the initial state; Act is an alphabet;
and Pr : S × Act → Distr(S) is a labeled transition rela-
tion. An example is M2 shown in Fig. 1. In this work, we
assume that all MDPs are deadlock-free. It is known that
a deadlocking state in an MDP can be replaced by a state
that has a self-loop τ without affecting analysis results [6].

An MDP is non-deterministic if any state has more than
one PD. A discrete time Markov chain (DTMC) can be
viewed as a special MDP with every state having exactly
one PD, and thus is deterministic. An example of a DTMC
is M1 shown in Fig. 1. An MDP M can be viewed as a
group of DTMCs, each of which is obtained with a different
scheduler. The scheduler, denoted as δ, selects an event (and
the corresponding PD) at each state so that the result is a
DTMC, denoted as δ(M). Formally, a scheduler is a func-
tion deciding which event to choose based on the execution
history. A memoryless scheduler is a function δ : S → Act
that always chooses the same event given the same state. It
has been shown that memoryless schedulers are sufficient for
our present task [6]. Thus we focus on memoryless sched-
ulers only.

Given a DTMC δ(M), a path is a sequence 〈s1, a1, s2, a2, · · · 〉
such that ai = δ(si) is the event chosen by the scheduler δ
and Pr(si , ai)(si+1) > 0. For each path, we can calculate its
probability as ΠiPr(si , ai)(si+1). Given the path, we can ob-
tain a trace 〈a1, a2, · · · 〉 by omitting the states and τ events.
The probability of a given trace tr , written as Pr(tr , δ(M)),
is defined as the accumulated probability of all the paths in
δ(M) that exhibit tr .
A distributed system with failure behavior can often be

modeled as a network of MDPs. Given a system of multi-
ple MDPs, events to be synchronized are called communica-
tion events that are the common events among the MDPs.
Within a set of events, visible events are the ones that can
be observed from outside, and the rest are called local or in-
ternal events. A communication event can be synchronized
if and only if it is a visible event and is enabled in all MDPs.
We define the synchronization of two MDPs over a set of
visible events as follows, which can be readily extended to
multiple MDPs.

Let Mi = (Si , init i ,Acti ,Pri) where i ∈ {1, 2} be two
MDPs and Σv be a set of visible events. The synchronization
composition M1 and M2 over Σv , written as M1 |[Σv]|M2,
is an MDP M = (S1 × S2, (init1, init2),Act1 ∪ Act2,Pr),
where Pr is the probability transition satisfying:

295

• if s1
e→ μ in Pr1 and e 	∈ Σv , then (s1, s2)

e→ μ′ in Pr for
all s2 ∈ S2 such that μ′((s ′1, s2)) = μ(s ′1) for all s

′
1 ∈ S1;

• if s2
e→ μ in Pr2 and e 	∈ Σv , then (s1, s2)

e→ μ′ in Pr for
all s1 ∈ S1 such that μ′((s1, s ′2)) = μ(s ′2) for all s

′
2 ∈ S2;

• if s1
e→ μ1 in Pr1, s2

e→ μ2 in Pr2 and e ∈ Σv , then

(s1, s2)
e→ μ′ in Pr such that μ′((s ′1, s

′
2)) = μ1(s

′
1) · μ2(s

′
2)

for all s ′1 ∈ S1 and s ′2 ∈ S2.

Examples of the composition is shown in Fig. 2 and Fig. 4.
We remark that, though only synchronous communication
is allowed in the above definition, asynchronous communica-
tion, which is typical for distributed systems, can be easily
constructed by modeling the communication media explic-
itly. For instance, if M1 and M2 communicate through
radio, which is common for sensors, we can model the lossy
channel using an MDP that essentially receives messages
and later on either forgets about the messages or forwards
them. The entire system is then a composition of the three
MDPs.

3.2 Probabilistic Model Checking
A specification of correct system behavior can be modeled

in either linear temporal logic [46] or labeling transition sys-
tem (LTS). The reliability is then calculated as the probabil-
ity of a system model (which is a network of MDPs) satisfy-
ing the specification. In the simplest case, the specification
is the one that prevents the fail event from happening and
allows other events repeatedly to happen at any time, i.e.,
the LTS Spec shown in Fig. 1. Having a more general spec-
ification (which models the behavior of a perfectly reliable
system according to different service requirements) allows
more flexibility than always having the same one, Spec, as
the specification (which specifies that the system should not
fail). For instance, the specification can model a system that
fails once but successfully activates a backup service, or a
system that works correctly for important system function-
alities whereas fails and recovers only during less important
missions, etc. Furthermore, different systems may have dif-
ferent focuses with respect to the reliability. For instance,
reliability of a sensor in a wireless sensor network may be
defined as the probability of detecting certain phenomena,
whereas the reliability of a web server is associated with
the probability that it reacts to web page requests without
errors.

The task of reliability assessment is thus to calculate the
exact probability of a system satisfying the specification.
That is, reliability is the probability of the traces of the
system model being a subset of those of the specification.
Formally, let M be the system model with failure behav-
ior and S be the specification. Reliability is the accumu-
lated probability of all traces of M that are also traces of
S. Let δ be a scheduler of M, reliability with δ written as
R(δ(M),S) is defined as: R(δ(M),S) = Σ{Pr(tr , δ(M)) |
tr |= traces(S)}. Notice that with different schedulers, the
probability is often different and there are potentially in-
finitely many schedulers. Therefore the measurement of in-
terest are the minimum and maximum probabilities, which
are defined as: Rmin(M,S) = infδ R(δ(M),S); Rmax (M,S) =
supδ R(δ(M),S). Using the approach proposed in [50], the
range of reliability can be calculated using the following
steps. Taking LTS S as a specification, we first construct
a deterministic LTS, denoted as d(S), which is equivalent to
S using the standard power set construction [47]. Next, we

Initial Selection: Σv = ActS

Abstraction: Ni = Abstract(Mi ,Σv) for all i

Reduction: Mr
i = Reduct(Ni) for all ilalala

Verification: Rmin(M′,S) ≥ θlalalalalalal

conclusive?

R
e
fi
n
e
m
e
n
t:

en
la
rg
e
Σ

v

Rmin(M′,S), Rmax (M′,S)
no

yes

Figure 5: Overall workflow

compute the synchronous product of M and d(S), which is
defined as follows. Let M = (SM, initM, ActM,PrM) and
d(S) = (SS , initS ,ActS ,TS). The product, written as M×
d(S), is an MDP (SM×SS , (initM, initS),ActM∪ActS ,Pr),
where Pr is defined as follows:

• if sm
e→ μ in PrM and e 	∈ ActS , then (sm , ss)

e→ μ′ in
Pr for all ss ∈ SS such that μ′((s ′m , ss)) = μ(s ′m) for all
s ′m ∈ SM;

• if sm
e→ μ in PrM, e ∈ ActS and ss

e→ s ′s in d(S), then
(sm , ss)

e→ μ′ in Pr for all ss ∈ SS such that μ′((s ′m , s ′s)) =
μ(s ′m) for all s ′m ∈ SM.

Here, ActS is the set of specification events. Given a state
(sm , ss) ∈ SM×SS , if there exists e ∈ ActS such that sm

e→ μ
in M and e is not enabled at ss , any trace of M reaching sm
extended with e will not be a trace of S, i.e., a trace exam-
ple of M not satisfying S. Thus, we call such states witness
states. The reliability assessment problem is thus reduced
to find the probability of reaching any witness state. For
instance, if the maximum probability of reaching the wit-
ness states is q , then Rmin(M,S) is 1− q . There are known
methods for probabilistic reachability analysis like value it-
eration or solving linear programs [6]. Value iteration is an
iterative approximation method and often has better scala-
bility than other methods [39, 49]. However this approach
converges much slowly for an MDP of large loops. Further-
more when the iteration is stopped, it is hard to know how
far the approximation is from the actual result [9, 22].

4. OUR APPROACH
There are two major challenges in applying probabilistic

model checking to reliability assessment of distributed sys-
tems. One is state space explosion, as the global state space
is the product of that of all distributed components. The
other is that the result is often an approximation without
knowing the discrepancy from the actual result due to the
limitation of value iteration. In this section, we present our
approach, which aims to tackle the former and help the lat-
ter challenges by reducing states and loops. We assume that
MDP is deadlock-free1. We present our approach by adopt-
ing a deadlock-free MDP M = (SM, initM,ActM, PrM) as
the system model and an LTS S = (SS , initS ,ActS ,TS) as
the specification.

1This is a standard assumption. Nonetheless, if M is the
parallel composition of multiple components, even if the
components are deadlock-free, there is no guarantee that
the composition is. On the other hand, there are methods
that allow us to construct deadlock-free systems from given
components [29].

296

4.1 Overview
The problem of reliability assessment for distributed sys-

tems is often stated as follows. Given a distributed system
with multiple components, it is to decide whether the overall
reliability is no less than some threshold θ. Thus, without
loss of generality, we assume that we need to check whether
Rmin(M,S) ≥ θ in the following. The workflow of our ap-
proach is shown in Fig. 5. Recall that Σv denotes the set
of visible events and ActS denotes the set of specification
events. Any event not in Σv can be turned into a τ event.
During initial selection, we always initialize Σv to ActS .
Because hiding any event in the specification would invali-
date the verification results. The other four main steps are
detailed as follows.

In the abstraction step, we hide any event that is in
ActM but not in Σv . Specifically, for each component Mi in
M, if an event a is to be hidden, we label all transitions with
τ instead of a in Mi . As a result, if two MDPs communicate
by event a, then the communication is lost. This alters the
behavior of the system. Nonetheless, as we show later, this
allows us to work with a reduced global state space after the
reduction while being able to produce useful results.

In the reduction step, we minimize each component Mi

by removing transitions labeled with τ in a way such that
the verification result is not affected. We remark that, as the
global state space is the product of the local state spaces,
minimizing the local spaces would often lead to a significant
reduction in the global state space.

In the verification step, we apply probabilistic model
checking to check whether Rmin(M′,S) ≥ θ is true, where
M′ is the synchronization composition based on all compo-
nents after abstraction and reduction. In fact, Rmin(M′,S)
is always less than or equal toRmin(M,S) andRmax (M′,S)
is always larger than or equal to Rmax (M,S), as we will
prove in Theorem 1.

After the verification step, we decide whether the result
is conclusive. If Rmin(M′,S) ≥ θ is shown to be true, we
conclude that Rmin(M,S) ≥ θ is true and we are done with
the assessment. If Rmax (M′,S) ≤ θ, then we conclude that
Rmin(M,S) ≥ θ is false. Otherwise, the result is incon-
clusive, and we need to refine the abstraction so that more
precise and perhaps conclusive results will be obtained.

In the refinement step, we reduce the set of events to be
hidden by restoring some communication events. That is, we
enlarge Σv so that the resultant system model M′ is refined
towards the original model M. Afterwards, we repeat from
the abstraction step. If all communication events are in
Σv , the verification result of the last iteration is the final
conclusion.

Our approach always terminates. The worst case is that,
after a few rounds of abstraction/refinement, it terminates
when all communication events are made visible. In our
experiments, we show that our approach often produces rel-
atively accurate results and concludes in early rounds. Even
in the worst case, there can still be a reduction as we always
hide the non-communication events. In the following, we
present details of the key steps.

4.2 Abstraction and Reduction
In this part, we show how to systematically hide events

in a system component and then build a reduced MDP that
preserves the verification result on the overall system.

Given a component modeled as an MDP, denoted as Mi

and a set of visible events Σv , the abstraction is done straight-
forwardly by turning transition labels not in Σv into τ . Let
Ni denote the MDP of the component after abstraction. In
the reduction step, we build a new MDP Mr

i such that prob-
abilistic analysis results based on Ni are preserved in Mr

i

(which could be different from that based on the original
system component model obviously). The basic idea of the
reduction is to remove τ transitions and group states which
are connected by τ transitions (since they are indistinguish-
able from an external point of view).

Let Ni = (S , init ,Σv ∪ {τ},Pr). We formally define Mr
i

as an MDP (S ′, init ,Σv ,Pr
′) satisfying the following two

conditions. First, S ′ = {init} ∪ {si ∈ S | ∃ sj ∈ S , e ∈
Σv · Pr(si , e)(sj) > 0} such that it contains the initial state
of Ni and all states in S which have at least one outgoing
transition labeled with a visible event. Intuitively, all other
states in S are not in S ′ as all of their outgoing transitions
are labeled with τ , and thus can be collapsed into some state
in S ′. Second, Pr ′ satisfies the following condition: if si ∈
S ′, for all states sj ∈ S ′ such that there exists a scheduler

δ that si
e� sj in δ(Ni) where e ∈ Σv , then Pr ′(si , e)(sj) =

Pr(reach(si , sj), δ(Ni)). Here Pr(reach(si , sj), δ(Ni)) is the
probability of reaching state sj from state si in a DTMC
δ(Ni). Calculating the probability of reaching a certain state
in DTMC is a known problem with efficient solutions [6].

In the following, we discuss the complexity of the reduc-
tion defined above, especially in constructing Pr ′. If Ni

is a DTMC rather than an MDP, there is only a single
scheduler to consider and the above construction is rela-
tively inexpensive, as experimentally evidenced in [4, 3, 48,
32]. If Ni is an MDP2, in constructing Pr ′, e.g., in identify-
ing Pr ′(si , e)(sj), we must explore all memoryless schedulers
which result in DTMCs containing si and sj . In the worst
case, the number of such schedulers is exponential to the
number of non-deterministic choices. This implies that the
number of schedulers may remain the same though the state
space is reduced.

The above defines the maximum reduction that we could
achieve by eliminating all states whose outgoing transitions
are labeled with τ . It is in general expensive to obtain the
maximum reduction due to the large number of schedulers
given a complicated MDP [17]. In order to obtain a reason-
able reduction without paying the full price, our implemen-
tation for an MDP reduction focuses on two aspects. First,
we identify all strongly connected components (SCCs) in Ni

which only contain τ transitions and collapse all the states
in each SCC into one representative. Recall that slow con-
vergence in the value iteration method is often due to loops
and a loop containing only τ transitions in Ni will result in
many loops in the global space. Second, we remove states
with all non-probabilistic outgoing transitions labeled with τ
which are not part of any loop, and direct all their incoming
transitions to the respective successors.

We remark that, a component-based reduction not only
eases the state space explosion (since the number of states
in each component may be reduced) but is also helpful in
solving the slow convergence problem in probabilistic model
checking. The reduction cost is relatively small compared
to the potential saving due to the facts that (1) the size of a

2N r
i is a probabilistic automaton rather than an MDP. In

this work, the difference is irrelevant for simplicity in pre-
sentation.

297

local state space corresponding to a distributed component
is relatively small, thus requires a relatively low reduction
cost; and (2) any reduction on a local state space can pro-
duce exponential benefits when performing calculations in
the global state space as many states and loops may have
been eliminated. This is evidenced by the empirical evalua-
tion in Section 5.

4.3 Verification
After abstraction and reduction, we apply probabilistic

model checking to the analysis on whether Rmin(M′,S) ≥ θ
is true or not, where M′ is the synchronization composition
of all the system components after abstraction and reduc-
tion. In the following, we discuss the effectiveness and the
soundness of the abstraction and reduction by establishing
that the verification result obtained based on M′ is safe.

Let A be the alphabet of specification S. Let G and L
represent sets of communication and local events in M. For
each component, there are 2|A∪G∪L| states in the worst case.
Because for each event, there could be two states: either it
is enabled or not. Assume there are X components run-
ning concurrently. In the worst case, there are 2|A∪G∪L|×X

states. Given the set of visible events is Σv , the worst case
number of states in the abstract model is 2|Σv |×X , thus
2|(A∪G∪L−Σv |)×X states are reduced. In the extreme case,
Σv = A (i.e., all events not in A are hidden) and the worst

case state space is 2|A|×X , which is exponentially smaller
than the original state space. We remark that the above
state space calculation is only an estimate based on the as-
sumption that states can be distinguished by their outgoing
transitions. In the setting of an MDP, because the same
event may be associated with different PDs, the resultant
worst case state space could be even larger and so could
the reduction. Nevertheless, the above analysis can provide
some insights on how the proposed method may significantly
improve reliability assessment for distributed systems.

Theorem 1. Let M be a deadlock-free MDP and M′

be the abstract reduced MDP as described in Section 4.2.
Rmin(M′,S) ≤ Rmin(M,S) ≤ Rmax (M,S) ≤ Rmax (M′,S).
Proof It is trivial to see that Rmin(M,S) ≤ Rmax (M,S)
and thus in the following, we showRmin(M′,S) ≤ Rmin(M,S)
and Rmax (M,S) ≤ Rmax (M′,S). Furthermore, extend-
ing the proof that a DTMC after reduction is equivalent
to the original DTMC in probability measurement [48, 3],
we can show that parallel composition of all components
Ni (i.e., the component after abstraction) and that of all
components Mr

i are equivalent. That is, assuming N is
the parallel composition of Ni , Rmin(N ,S) = Rmin(M′,S)
and Rmax (N ,S) = Rmax (M′,S). Thus, we are left with
proving that the abstraction step is safe, i.e., Rmin(N ,S) ≤
Rmin(M,S) and Rmax (M,S) ≤ Rmax (N ,S).
For simplicity, M is assumed to be the parallel composi-

tion of two components M1 and M2. It should be straight-
forward to extend the proof to multiple components. Let
δ be an arbitrary memoryless scheduler for M and π =
〈(s0, t0), a0, (s1, t1), a1, · · · , an−1, (sn , tn)〉 be a path of δ(M)
where (si , ti) is a state of M. By an induction on the length
of π, we show that there is always a scheduler δ′ for N and a
path π′ = 〈(s ′0, t ′0), a ′

0, (s
′
1, t

′
1), a

′
1, · · · , a ′

n−1, (s
′
n , t

′
n)〉 of δ′(N)

such that the probability of the two paths are the same and
π and π′ share the same sequence of events in ActS and
sn = s ′n and tn = t ′n . The base case is when π is 〈(s0, t0)〉,

which is trivially true. The induction hypothesis is that the
above is true when π has n states. By assumption (that
M is deadlock-free), there must be an event an such that
((sn , tn), an , μn+1) is a transition in PrM. Here, let an be
the choice of δ at (sn , tn). We discuss different cases.
• If an ∈ Σv , by definition, an must be enabled at (s ′n , t

′
n)

and it leads to the same PD. Therefore, we set δ′((s ′n , t
′
n))

to be an and the induction holds.
• If an 	∈ Σv and an is a local event, there must be a τ transi-

tion enabled at (s ′n , t
′
n) and it leads to the same probability

distribution. Therefore, we set δ′((s ′n , t
′
n)) to be an and

the induction holds.
• If an 	∈ Σv and an is a communication event, there must

be a transition labeled with an enabled at sn leading to
μ1
n+1 and a transition labeled with an enabled at tn lead-

ing to μ2
n+1. By definition of parallel composition, let the

resultant product PD to be μn+1. There must be a τ

transition enabled at s ′n leading to the same PD μ1
n+1 and

there must be a τ transition enabled at t ′n leading to the
same distribution μ2

n+1. We set δ′ such that δ′(s ′n , t
′
n) is

the τ transition at s ′n leading to μ1
n+1. Next, for all states

(s ′n+1, t
′
n) such that μ1

n+1(s
′
n+1) > 0, we set δ′(s ′n+1, t

′
n) to

be the τ transition at t ′n leading to μ2
n+1. It can be shown

that the following two paths: where � denotes sequence
concatenation,

π�〈an , (sn+1, tn+1)〉; π′�〈τ, (s ′n+1, t
′
n), τ, (s

′
n+1, t

′
n+1)〉

have the same probability in δ(M) and δ′(N); and have
the same sequence of events in ActS (since an is not in Σv

and therefore ActS); and have sn+1 = s ′n+1 and tn+1 =
t ′n+1.

Thus, the scheduler space is enlarged after abstraction such
that every scheduler in M will be still in M′. Therefore, we
conclude the induction holds. �

Based on the theorem, if Rmin(M′,S) ≥ θ is shown to be
true, we conclude that Rmin(M,S) ≥ θ is true and we are
done with the assessment. If Rmax (M′,S) ≤ θ, we conclude
that Rmin(M,S) ≥ θ is false. On the other hand, the use-
fulness of verification results based on M′ depends on how
close the results are to the verification results based on M.
In Section 5, we empirically show that they are indeed close
and thus useful.

4.4 Refinement
In the refinement step, the set Σv is enlarged by adding

communication events. Ideally, we should add events such
that the size of the resultant system M′ is small whereas
the verification results are accurate. However, the compu-
tation of such a minimal alphabet is shown to be NP-hard.
Instead, we propose two heuristics to automatically guide
the refinement, which we demonstrate empirically to be ef-
fective.

With the first heuristic (hereafter H1), we always give
higher priority to an event that is to be synchronously en-
gaged by more components. Intuitively, if an event is to
be synchronized by multiple components, adding it into Σv

would not introduce many new states since the event is likely
to be disabled most of the time. The purpose is to keep M′

small.
With the second heuristic (hereafter H2), we evaluate and

select the best group of events at each refinement iteration.
Initially, we divide all candidate events into groups and each

298

group contains the same events in symmetrical components.
Markov chain Monte Carlo sampling can be adopted to help
group the events. This sampling method has been shown
to be effective in practice for extremely large search spaces
and is empirically known to converge well before the limit is
reached [5]. In each refinement, we evaluate the effectiveness
of the candidate groups and the events in the most effective
group are then added to Σv . We quantify the effectiveness
of every group, denoted by p, as follows,

p = w ·| R(M′,S)−R(M′
c ,S) |

R(M′,S)
︸ ︷︷ ︸

pa

+sgn(N −Nc) lg(
| N −Nc |

N
)

︸ ︷︷ ︸
ps

Here, M′ and M′
c are the abstract reduced model before

and after including the event into Σv ; N and Nc are the num-
ber of states in M′ and M′

c ; sgn() is the sign function. The
part pa measures improvement in the accuracy of a newly
added event; and the other part ps measures the changes
in the size of state space. w is a weighting factor designed
by users to control the degree of preference over the two as-
pects. We can observe that p measures the effectiveness of
the newly added group reasonably well, as p increases when
accuracy is improved and the number of states is reduced;
and vice versa.

Compared with H1, H2 tends to provide a better perfor-
mance because it is based on a more precise calculation. The
price to pay is that H2 requires more effort on calculating
the effectiveness factor p for each event group in every re-
finement step. H1 requires less as it only counts the number
of system components that synchronize each event in the
initial step.

Lastly, we argue that there are at most L + 1 refinement
steps where L is the total number of communication events,
and therefore our approach always terminates.

5. EXPERIMENTS AND EVALUATIONS
The proposed method has been implemented in RaPiD

(Reliability Prediction and Distribution) [31] to support the
reliability assessment of distributed systems, with 6.5K lines
of C# code. RaPiD is a self-contained toolkit for reliabil-
ity assessment and publicly available at [2]. It provides a
user-friendly interface to draw MDP models as well as fully
automated methods for reliability analysis. All models and
evaluation results are available online at [1].

5.1 Case Studies
We evaluate RaPiD with three systems, two benchmarks

from the literature and one real-world healthcare system de-
veloped jointly by our group and a hospital in Singapore [43].

The first system is a client-server system (CSS) [23, 19],
which is a typical distributed protocol that partitions work-
loads between a service provider (called a server) and service
requesters (called clients). The server and clients often com-
municate over a network. As the number of clients increases,
the interactions between the clients and the server become
more complicated. Performing reliability analysis of such a
system requires extensive expertise and time. We build a
CSS system model with one server and k clients, where k is
an integer of at least 2. The resource is to be shared by the
clients in a mutually exclusive way. Each client initially has
a probability of 0.1 getting failure. In addition, we consider
a variant that is slightly more complicated, denoted as CSSr.
Besides the behavior in CSS, each client can be successfully

repaired with a probability of 0.9. In both cases, the overall
reliability to be estimated is the probability that any client
can successfully access the resource and meanwhile no mul-
tiple clients are accessing the resource simultaneously. The
specification used in this case study has multiple events like
cancel and granted (instead of a single failure) which models
a system where mutual exclusion is guaranteed perfectly.

The second system is an automatic gas station system
(GSS) [34], consisting of one operator, n pumps, one queue
for each pump and m customers. The operator handles pay-
ments and schedules the use of pumps. Each customer first
goes to the operator and prepays a certain amount. Then,
the customer will be randomly allocated to a pump. There
is a queue of waiting customers at each pump. A pump must
be activated before serving customers. Once filling finishes,
the pump signals the operator with the amount of gas pro-
vided to the customer. Next, the operator calculates the
balance and then gives the change back to the customer.
We consider two kinds of failure behavior of each pump, i.e.,
in the beginning, there is a probability of 0.01 that a pump
cannot be started successfully, and during the service, there
is also a probability of 0.01 that the pump fails to deliver gas.
Whenever a failure occurs, there is a corresponding main-
tenance that has a probability of 0.99 to rectify the pump
system. We calculate the probability of providing at least
100 pumping services to the customers without any failure.
The size of the system depends on the number of pumps in
the station (n), and the number of customers simultaneously
asking for the service (m). Noted that we calculate the reli-
ability with consideration of different number of customers
simultaneously asking for the service, and pumps available
in the gas station.

The third system is a smart healthcare system (SHS). It
provides assistance to mild dementia patients. The system
has been deployed in a nursing home over half a year for a
trial [43, 42]. The system has multiple sensors, an inference
engine and reminders to monitor the patients’ behavior and
send out reminding message. The system reliability highly
depends on reliabilities of its sensors and networks. In this
case study, we model failure behavior of each sensor and net-
work according to the data collected from the project engi-
neers. In particular, RFID sensors has a probability of 0.75
not detecting the patients’ ID (relatively high due to high
sensitivity to distance); pressure sensors have a probability
of 0.02 not detecting the patients lying on the bed, and the
Bluetooth having a probability of 0.30 not transmitting mes-
sages successfully. The PDs of event occurrences are closely
related to the patients’ behavior that are hard to predict,
and thus modeled non-deterministically in this work. The
reliability to be measured is the minimum probability that
the alert is sent without any error when a patient is lying
on the wrong bed.

5.2 Evaluation Results
The underlying assumptions of our approach are as fol-

lows: (1) by reducing each component, we could significantly
reduce the state space hence assessment time, and (2) ignor-
ing some of the communication events has limited impact
on assessment results. In the following, we evaluate the as-
sumptions and the reduction efficiency by answering three
research questions.

RQ 1: How effective is our technique in terms of reducing
the size of the state space and assessment time?

299

Table 1: Results of comparison between RaPiD and RaPiDr under different levels of abstraction
RaPiD w/o reductions RaPiD with reductions (RaPiDr)

minimum abstraction maximum abstraction

Case(para.) (para.) #States Time (s)
#States Time Rmin Rmax

#States Time R′
min R′

maxRatio� Ratio� Ratio� Ratio�

GSS(n, m)

(1, 1) 1,428 0.21 1.17 0.98 0.98985 1.00000 3.52 0.96 0.98985 1.00000
(1, 4) 99,760 38.18 1.42 9.18 0.98985 1.00000 98.87 351.14 0.98985 1.00000
(1, 6) 728,100 290.68 1.39 7.80 0.98985 1.00000 516.02 1892.11 0.98985 1.00000
(2, 1) 14,218 2.28 1.40 3.62 0.98975 1.00000 1.93 2.76 0.98965 1.00000
(2, 4) 3,060,585 1202.35 1.41 4.39 0.98965 1.00000 81.76 546.69 0.98965 1.00000
(2, 6) OM OM OM OM OM OM ∞ ∞ 0.98965 1.00000
(3, 1) 100,000 23.89 1.85 9.44 0.98965 1.00000 1.83 9.96 0.98945 1.00000
(3, 4) OM OM OM OM OM OM ∞ ∞ 0.98945 1.00000

CSS(k)

(2) 32 0.02 1.00 0.33 0.81000 0.99000 1.45 0.34 0.81000 0.99000
(4) 682 0.02 1.00 0.21 0.65610 0.99990 2.07 0.14 0.65610 0.99990
(8) 158,866 9.26 1.00 0.90 0.43047 1.00000 3.39 2.86 0.43047 1.00000
(10) 2,052,094 187.12 1.00 1.13 0.34868 1.00000 4.07 5.29 0.34868 1.00000

CSSr(k)

(2) 45 0.02 1.41 0.04 0.97814 0.99988 2.05 0.04 0.97814 0.99988
(4) 1,515 0.06 2.22 0.53 0.95676 1.00000 4.59 0.30 0.95676 1.00000
(8) 1,031,735 77.58 6.49 7.69 0.91540 1.00000 22.03 24.68 0.91540 1.00000
(10) OM OM ∞ ∞ 0.89539 1.00000 ∞ ∞ 0.89539 1.00000

SHS 1,296,000 207.33 3.47 4.98 0.63274 1.00000 13.51 27.03 0 1.00000

Ratio� = RaPiD/RaPiDr

To answer this question, we compared the number of states
in a system and the total time cost for assessment (includ-
ing time spent on abstraction, reduction and verification)
with/without use of reduction technique in RaPiD (referred
to as RaPiD and RaPiDr, respectively). For cross referenc-
ing, we also compared RaPiDr with PRISM v4.0.3 [39] on
an Intel(R) Xeon(R) CPU at 2.67 GHz with 12 GB RAM.
The comparison results must be taken with a grain of salt
as PRISM and RaPiD are designed for different purposes.
We created several models with different sizes by varying
the number of system components. Specifically, for GSS, we
constructed 18 cases by adjusting the numbers of available
pumps (m =1 to 3) and customers (n = 1 to 6); for CSS
and CSSr, we constructed 9 cases by increasing the number
of clients gradually (k = 2 to 10); and for SHS, we followed
the actual system design, and did not increase its size by
adding extra components.

The results based on RaPiD and RaPiDr are compared
in Table 1. The degree of abstraction can affect reduc-
tion strength, we therefore evaluate two extreme cases in
RaPiDr: one is the minimum abstraction that does not hide
any event; the other is the maximum abstraction that hides
all events except those related to reliability specification.
The default algorithm in RaPiDr is to hide all events except
specification events in the initial round and refine from there
if the result is not satisfactory. Thus, we can often achieve a
reduction closer to the maximum one and the minimum ab-
straction marks the ‘worst’ case of our method. The (para.)
column contains the parameters for different systems, i.e.,
the numbers of pumps and customers for GSS and clients
for CSS and CSSr. States number and time cost for RaPiD
without reductions are shown by exact values. To compare
the effect of reduction, the results for RaPiDr are shown in
terms of ratios in the table, i.e., the ratios of the results
from RaPiD to that of RaPiDr. A higher ratio indicates a
higher degree of reduction. In the case that RaPiD runs out
of memory (OM) and RaPiDr does not, then the ratio is
presented as infinity (∞).

We have three main observations from Table 1. First,
there is a general trend that the efficiency of reduction in
state space and time increases as the system becomes larger.
Moreover, there are some cases, e.g., GSS(2, 6), GSS(3, 4)

and CSSr(10), that RaPiD runs out of memory and RaPiDr
can still handle with relatively small number of states gen-
erated. Second, we observe that the time is reduced con-
siderably in RaPiDr. This is because many states and re-
dundant loops are removed in RaPiDr, and the convergence
rate based on the value iteration is improved. The reduction
in the total time implies that the time cost for the reduc-
tion is much less than its savings. Third, different levels of
abstractions can save the state space and time to different
extents because the more events are hidden, the greater re-
duction can be achieved. We also find that without hiding
any events, our reduction method can still reduce the state
spaces for GSS, CSSr and SHS, this is because our method
can also remove internal τ transitions.
In addition, we notice that RaPiDr provides significantly

better reductions on CSSr compared to the ones on CSS.
Because CSS has few internal events, the state space is not
reduced via the minimum abstraction, thus more time is
spent. In contrast, the failure-repair loops in individual com-
ponents of CSSr result in a dramatically large global space
in RaPiD. However, they are effectively removed in RaPiDr
even via the minimum abstraction. Therefore, the number
of states and the time are reduced significantly. We remark
that, by hiding communication events, we can still achieve
a reduction ratio of more than 5 in some CSS cases. More-
over, it should be noticed that accuracy of abstraction is
not affected by the difference between Rmin and Rmax , as
demonstrated by CSS cases.

The comparisons on PRISM and RaPiDr are presented
in Fig. 6. Exactly the same models are taken as inputs
to PRISM and RaPiDr. Similarly, we show the best/worst
possible reduction in RaPiDr. In Fig. 6 (a), x- and y-axis of
the plot are the number of states generated by PRISM and
RaPiDr, respectively. Thus, the region below the diagonal
line (i.e., slope = 1) indicates fewer states are generated by
RaPiDr than by PRISM. The lower the point is, the higher
degree of reduction RaPiDr provides. Note that the number
of states is plotted in a logarithmic scale to focus on the
comparison in terms of the order of magnitude. ‘OM’ stands
for ‘out of memory’ and is only indicated qualitatively in the
plot. We observe that RaPiDr is much more scalable than
PRISM as all the scatters are within the lower-half region,

300

(a) (b)

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11
 CSS

 CSSr

 GSS

 SHS

R
aP

iD
r,

 l
o

g
1

0
(#

S
ta

te
s)

PRISM, log
10

(#States)

Slope = 1

OM -2 -1 0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

6
 CSS

 CSSr

 GSS

 SHS

R
aP

iD
r,

 l
o

g
1

0
(T

im
e)

PRISM, log
10

(Time)

Slope = 1

OM

Figure 6: Comparisons between RaPiDr and
PRISM on (a) states and (b) time (unit: second)
in logarithmic scale

and it can reduce the number of states by several orders of
magnitude. There are several cases that PRISM runs out of
memory whereas RaPiDr can still keep the number of states
within 107, evidenced by the points in the vertical ‘OM’ line.

Similarly, Fig. 6 (b) is a plot of the total time cost. We
can observe that PRISM outperforms RaPiDr when the time
taken is less than 10 seconds, although time factor is less
critical for small systems. However, the benefit of adopting
RaPiDr increases tremendously as the system grows larger.
As shown in the plots, the scattered points tend to reside be-
low and shift further away from the diagonal line for systems
with larger states and longer verification time.

In summary, via comparing RaPiDr with RaPiD and PRISM,
we find that our reduction method is more scalable and can
reduce the total time significantly in many cases, especially
for moderate and large systems. As RaPiDr reduces states
and transitions in individual components, the overall states
are reduced exponentially. Together with the removal of
loops, reliability assessment can be speeded up significantly.

RQ 2: How accurate is the assessment using our technique?

This question is essentially related to the validation of
our assumption that ignoring certain events does not change
the assessment result significantly. First, we compare assess-
ment results from RaPiDr based on the maximum (hereafter
approximations) and those based on minimum abstraction
(hereafter actual results). The maximum abstraction hides
all communication events except specification events, thus it
just provides approximations; and the minimum abstraction
does not hide any communication events, thus it provides as
accurate results as RaPiD does. The results are presented
in Table 1, where Rmin ,Rmax are the actual results and
R′

min , R′
max are the approximations based on the maximum

abstraction. The reliability results are reported to an ac-
curacy up to five decimal places. It should be noted that
the accuracy of prediction (i.e. difference between the ac-
tual result and approximation) is dominated by the choice
of visible events. Further increasing the number of decimal
places during computations can improve the precision but
has been found to introduce insignificant effect on the accu-
racy. In Table 1, R′

min is always less than or equal to Rmin ,
and R′

max is always larger than or equal to Rmax , which
complies with our proof in Section 4.3. Moreover, we can
achieve an approximation of the maximum reliability that is
equal to the actual maximum for all these cases.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

50k

100k

150k

200k

250k

300k

350k

400k

#
 S

ta
te

s

Events added

 States (��)

 States (��)

0.98940

0.98945

0.98950

0.98955

0.98960

0.98965

0.98970

�
m
in

 �
min

 (��)

 �
min

 (��)

Figure 7: Refinement analysis results for GSS(3, 1)

Comparing the minimum reliabilities (Rmin and R′
min),

we can observe that: (1) for CSS and CSSr, results are not
affected by the abstraction, and thus we can achieve the
maximum reduction. (2) for GSS system, the results are
accurate except for some cases whenm is less than n. This is
because the details for the customers and queues have been
hidden after abstraction. For example of GSS(3, 1), the
discrepancy between the approximation (0.98945) and the
actual result (0.98965) is 0.2%. If the reliability requirement
is to ensure a reliability above 0.989, the result is conclusive
and the verification can stop with the maximum reduction;
otherwise, the refinement process will be carried out. (3)
for the SHS system, the minimum reliability calculated is
0. This means there is no useful information obtained in
the first round of abstraction and reduction, and some more
events should be added back in the subsequent refinement
step. In the following, we experimentally show that actual
results can be obtained after several rounds of refinements.

We refine the abstract model by adding communication
events back to improve the approximations. To have a quan-
titative evaluation, we keep track of the number of states
and the assessment results during iterations of abstraction-
refinement, and discuss the effect of the two refinement heuris-
tics. In order to obtain a complete picture on how the state
space and the assessment result change through refinements,
instead of verifying against a given reliability requirement in
which case our approach may terminate early, we continue
until all of the communication events have been added into
Σv . In the following part, we take GSS(3, 1) for an example.
There are 25 communication events for GSS(3, 1), apart

from the events in the specification. We compare the above-
mentioned two heuristics in each refinement step, and the
results are shown in Fig. 7. The numbers of states are de-
scribed in two bar charts and values can be read off via the
y-axis on the left; and the resulting minimum probabilities
are described in two sets of marked scatters and their values
can be read off via the y-axis on the right. According to H1,
25 events are ranked according to the number of components
synchronizing on the event. During each refinement, Σv is
enlarged by adding one new event. Therefore, there are 25
bars and 25 points for H1. The event selection completes
within one step and the time cost is negligible. For H2, we
set the weighting factor w to 100 and divide the events into
10 groups according to the symmetry. We add the events
by groups into Σv so there are 10 bars and points for H2 in
Fig. 7. The total time spent on selecting events based on
H2 is 610 seconds.
We have the following observations. First, the calculated

minimum reliabilities converge to the actual result, regard-
less of the heuristics. Second, by comparing two heuristics,

301

Table 2: Reliability assessment against reliability re-
quirements
requirement GSS(3, 1) CSS(8) CSSr(8) SHS

result valid valid valid valid

Rmin ≥ 0.40 time (s) 10.06 3.18 3.22 3,039

#iteration 4 1 1 34

result valid invalid valid invalid

Rmin ≥ 0.90 time (s) 12.14 100.00 3.00 3,037

#iteration 4 19 1 34

result invalid invalid invalid invalid

Rmin ≥ 0.99 time (s) 649.48 98.99 95.58 3,040

#iteration 26 19 19 34

Rmin result 0.98965 0.43047 0.91540 0.63274

Rmax result 1.00000 1.00000 1.0000 1.00000

we can findH2 outperformsH1. The number of states gener-
ated by H2 is much less than that by H1; and the resulting
probability converges to the actual result (0.98965) much
faster for H2. At a particular point based on H2, when
16 events are added, the approximation reaches the actual
result while the state space remains relatively small. This
information can be used to guide reliability assessment for
even larger GSS systems, i.e., the similar set of events can
always be selected first. We remark that although H2 can
provide relatively better performance than H1, it requires
extra knowledge in dividing events into groups and more ef-
forts in evaluating the effectiveness of each candidate group
at each refinement iteration. Last, although the size of the
state space may increase after refinement, it remains man-
ageable along the way, i.e., much less than that generated
by RaPiD (without the reductions) and PRISM.

Similar refinements have been conducted on SHS. As a
result, we have identified a group of 24 (out of 33) events
based on which the approximated minimum reliability con-
verges to the actual result. The number of states is 73, 054
and verification time is 9.4s.

In summary, starting from hiding all events not in the
specification, we can obtain safe approximations on the ver-
ification result. Refinement can incrementally help to im-
prove accuracy. Comparing two heuristics, the results show
that H2 often guides the refinement better than H1 while
time cost of using H1 is much lower.

RQ 3: How efficient is our method given a requirement?

The efficiency of our approach is directly related to the re-
liability requirement. Intuitively, our approach terminates
quicker given a less restrictive requirement. The question
is then how sensitive our approach is regarding different re-
liability requirements. Table 2 shows the reliability assess-
ment against different levels of reliability requirements, i.e.,
0.40, 0.90, and 0.99. If the system’s minimum reliability is
above or equal to a requirement, RaPiDr is expected to re-
port ‘valid’; and otherwise ‘invalid’. Besides the assessment
results, we also record the time and the number of abstrac-
tion/refinement iterations needed. If ‘invalid’ is reported,
RaPiDr still reports the actual assessment results, i.e., Rmin

andRmax , shown in the last two rows of the table. As shown,
if the reliability requirement is 0.40, all results are ‘valid’ and
RaPiDr terminates quickly with only a few iterations. If the
requirement is Rmin ≥ 0.90, results from CSS(8) and SHS
become ‘invalid’ (as expected) and more time and more it-
erations are needed. If the requirement is Rmin ≥ 0.99, all
results become ‘invalid’. We remark that, the refinement

here is based on H1, which is fully automatic without any
domain information. If there is some information to guide
the refinement, fewer iterations can be expected.

We conclude that RaPiDr can terminate early when the
requirement is low or the system is relatively reliable. For a
less reliable system and relatively high requirement, RaPiDr
may indeed take more iterations and time. In the worst case,
it will run all the model versions between the maximum ab-
straction and minimum abstraction, thus take more time
than that required to verify the minimum abstraction. This
is similar to other approaches on alleviating the state explo-
sion problem [20, 18, 40, 38, 36]. In practice, distributed sys-
tems can easily have many components such that the state
space is too large and reliability assessment based on the
concrete model is impossible. RaPiDr can always deliver
a safe reliability approximation based on abstract models;
and with more time and computing resources, RaPiDr can
produce increasingly more accurate approximations.

6. RELATED WORK AND CONCLUSION
We proposed an abstraction and refinement framework

to improve the performance of reliability assessment for dis-
tributed systems by controlling communication events among
distributed components. We also proposed two heuristics to
guide refinement step automatically. Our empirical studies
showed that our method could reduce the state space by
several orders of magnitude and speed up the assessment.

In reliability assessment, some works have considered each
component as a single node and composed all the nodes in
one Markov chain according to the system architectures or
service usage scenarios [10, 37, 30, 28, 21, 7, 15, 27, 52, 25].
Some works have modeled multi-agent systems as Markov
chains [16] or MDPs [51] and verified over LTL properties.
In our work, we perform reliability analysis for distributed
systems based on a set of MDPs. We further apply abstrac-
tion and refinement on the communication events to reduce
state spaces.

There are two main approaches on alleviating state space
explosion via the compositional verification. One is coun-
terexample guided abstraction refinement (CEGAR) [11, 12],
and its extension in probabilistic system [36]. [36] works on
predicates abstraction and refinement and only calculates
upper bounds on maximum probabilities. Our approach
works on communication events among components, and can
provide both lower and upper bounds without enumerating
possibly large or even infinite set of paths. The other ap-
proach is assume-guarantee verification [44, 35, 26], with its
extensions in probabilistic systems [20, 18, 40, 38, 24, 45,
8, 33, 4, 3, 38]. The challenge is on automatically generat-
ing small assumptions. In many assume-guarantee reasoning
works, there is no guidance on how the system shall be de-
composed to achieve good performance [14]. In contrast, our
method works on MDPs and reduces every component ac-
cording to a subset of the communication events, thus there
is no need to find assumptions or suitable decomposition.
In fact, our approach is orthogonal to those compositional
verification approaches. It can be used prior to those compo-
sitional verification approaches for even larger systems that
no single method can handle alone; i.e., the individual com-
ponent is first reduced via the attraction and reduction steps
and the compositional approaches are then applied to per-
form verification on the resulting components.

302

7. REFERENCES
[1] http://www.comp.nus.edu.sg/˜pat/rel/distributed.

[2] RaPiD. http://www.comp.nus.edu.sg/˜pat/rapid.

[3] E. Ábrahám, N. Jansen, R. Wimmer, J.-P. Katoen,
and B. Becker. DTMC model checking by SCC
reduction. In International Conference on Quantitative
Evaluation of SysTems, pages 37–46, 2010.

[4] M. E. Andrés, P. R. D’Argenio, and P. van Rossum.
Significant diagnostic counterexamples in probabilistic
model checking. In Haifa Verification Conference,
pages 129–148, 2008.

[5] C. Andrieu, N. De Freitas, A. Doucet, and M. I.
Jordan. An introduction to mcmc for machine
learning. Machine learning, 50(1-2):5–43, 2003.

[6] C. Baier and J. Katoen. Principles of Model Checking.
The MIT Press, 2008.

[7] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and
R. Mirandola. Self-adaptive software needs
quantitative verification at runtime. Communications
of the ACM, 55(9):69–77, Sept. 2012.

[8] S. Chaki and O. Strichman. Optimized l*-based
assume-guarantee reasoning. In Tools and Algorithms
for the Construction and Analysis of Systems, pages
276–291. Springer, 2007.

[9] K. Chatterjee and T. A. Henzinger. Value iteration. In
25 Years of Model Checking, pages 107–138. Springer,
2008.

[10] R. C. Cheung. A user-oriented software reliability
model. IEEE Trans. Software Engineering,
SE-6(2):118–125, 1980.

[11] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In
Computer aided verification, pages 154–169. Springer,
2000.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for
symbolic model checking. Journal of the ACM,
50(5):752–794, 2003.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[14] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke.
Breaking up is hard to do: an investigation of
decomposition for assume-guarantee reasoning. In
International Symposium on Software Testing and
Analysis, pages 97–108. ACM, 2006.

[15] V. Cortellessa and V. Grassi. Reliability modeling and
analysis of service-oriented architectures. In Test and
analysis of web services, pages 339–362. Springer,
2007.

[16] M. I. Dekhtyar, A. J. Dikovsky, and M. K. Valiev.
Temporal verification of probabilistic multi-agent
systems. In Pillars of computer science, pages
256–265. Springer, 2008.

[17] C. Eisentraut, H. Hermanns, J. Schuster, A. Turrini,
and L. Zhang. The quest for minimal quotients for
probabilistic automata. In International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, pages 16–31. Springer, 2013.

[18] L. Feng, T. Han, M. Kwiatkowska, and D. Parker.
Learning-based compositional verification for
synchronous probabilistic systems. In International

Symposium on Automated Technology for Verification
and Analysis, pages 511–521. Springer, 2011.

[19] L. Feng, M. Kwiatkowska, and D. Parker.
Compositional verification of probabilistic systems
using learning. In International Conference on
Quantitative Evaluation of SysTems, pages 133–142.
IEEE CS Press, 2010.

[20] L. Feng, M. Kwiatkowska, and D. Parker. Automated
learning of probabilistic assumptions for compositional
reasoning. In International Conference on
Fundamental Approaches to Software Engineering,
pages 2–17. Springer, 2011.

[21] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time
efficient probabilistic model checking. In International
Conference on Software Engineering, pages 341–350.
ACM, 2011.

[22] V. Forejt, M. Kwiatkowska, G. Norman, and
D. Parker. Automated verification techniques for
probabilistic systems. In Formal Methods for Eternal
Networked Software Systems, Springer, 2011.

[23] M. Gheorghiu, D. Giannakopoulou, and C. S.
Păsăreanu. Refining interface alphabets for
compositional verification. In International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems, pages 292–307. Springer, 2007.

[24] M. Gheorghiu, C. S. Păsăreanu, and
D. Giannakopoulou. Automated assume-guarantee
reasoning by abstraction refinement. In International
Conference on Computer Aided Verification, pages
135–148. Springer, 2008.

[25] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli.
Mining behavior models from user-intensive web
applications. In International Conference on Software
Engineering, pages 277–287, 2014.

[26] D. Giannakopoulou, C. S. Păsăreanu, and J. M.
Cobleigh. Assume-guarantee verification of source code
with design-level assumptions. In Proceedings of the
26th international conference on software engineering,
pages 211–220. IEEE Computer Society, 2004.

[27] S. Gilmore, L. Gönczy, N. Koch, P. Mayer,
M. Tribastone, and D. Varró. Non-functional
properties in the model-driven development of
service-oriented systems. Software and System
Modeling, 10(3):287–311, 2011.

[28] S. Gokhale. Architecture-based software reliability
analysis: Overview and limitations. IEEE Trans.
Dependable and Secure Computing, 4(1):32–40, 2007.

[29] G. Gössler and J. Sifakis. Component-based
construction of deadlock-free systems: Extended
abstract. In Foundations of Software Technology and
Theoretical Computer Science, volume 2914 of Lecture
Notes in Computer Science, pages 420–433. Springer,
2003.

[30] K. Goševa-Popstojanova and K. S. Trivedi.
Architecture-based approach to reliability assessment
of software systems. Performance Evaluation,
45(2-3):179–204, 2001.

[31] L. Gui, J. Sun, Y. Liu, Y. J. Si, J. S. Dong, and X. Y.
Wang. Combining model checking and testing with an
application to reliability prediction and distribution.
In International Symposium on Software Testing and
Analysis, pages 101–111. ACM, 2013.

303

[32] L. Gui, J. Sun, S. Song, Y. Liu, and J. S. Dong.
SCC-based improved reachability analysis for markov
decision processes. In International Conference on
Formal Engineering Methods (ICFEM). Springer,
2014.

[33] T. Han and J.-P. Katoen. Counterexamples in
probabilistic model checking. In International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 4424 of
LNCS, pages 72–86. Springer Berlin Heidelberg, 2007.

[34] D. Heimbold and D. Luckham. Debugging ada tasking
programs. EEE Software, 2(2):47–57, 1985.

[35] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You
assume, we guarantee: Methodology and case studies.
In Computer Aided Verification, pages 440–451.
Springer, 1998.

[36] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic
cegar. In International Conference on Computer Aided
Verification, pages 162–175. Springer, 2008.

[37] A. Immonen and E. Niemel. Survey of reliability and
availability prediction methods from the viewpoint of
software architecture. Software and Systems Modeling,
7(1):49–65, 2008.

[38] A. Komuravelli, C. S. Păsăreanu, and E. M. Clarke.
Assume-guarantee abstraction refinement for
probabilistic systems. In International Conference on
Computer Aided Verification, pages 310–326. Springer,
2012.

[39] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
International Conference on Computer Aided
Verification, pages 585–591, 2011.

[40] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu.
Assume-guarantee verification for probabilistic
systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, pages 23–37. Springer, 2010.

[41] J. C. Laprie and K. Kanoun. Handbook of software
Reliability Enginerring, chapter Software Reliability
and System Reliability, pages 27–69. McGraw-Hill,
New York, NY, 1996.

[42] Y. Liu, L. Gui, and Y. Liu. Mdp-based reliability
analysis of an ambient assisted living system. In

Internation Symposium on Formal Methods Industry
Track, Singapore, May 2014.

[43] Y. Liu, X. Zhang, J. S. Dong, Y. Liu, J. Sun,
J. Biswas, and M. Mokhtari. Formal analysis of
pervasive computing systems. In International
Conference on Engineering of Complex Computer
Systems, pages 169–178, 2012.

[44] C. S. Păsăreanu, M. B. Dwyer, and M. Huth.
Assume-guarantee model checking of software: A
comparative case study. In Theoretical and Practical
Aspects of SPIN Model Checking, pages 168–183.
Springer, 1999.

[45] C. S. Păsăreanu, D. Giannakopoulou, M. Bobaru,
J. Cobleigh, and H. Barringer. Learning to divide and
conquer: applying the L* algorithm to automate
assume-guarantee reasoning. Formal Methods in
System Design, 32(3):175–205, 2008.

[46] A. Pnueli. The Temporal Logic of Programs. In
Annual Symposium on Foundations of Computer
Science, pages 46–57. IEEE, 1977.

[47] A. W. Roscoe. Model-checking CSP. A classical mind:
essays in honour of CAR Hoare, pages 353–378, 1994.

[48] S. Song, L. Gui, J. Sun, Y. Liu, and J. S. Dong.
Improved reachability analysis in DTMC via divide
and conquer. In International Conference on
Integrated Formal Methods, pages 162–176, 2013.

[49] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards
flexible verification under fairness. In International
Conference on Computer Aided Verification, volume
5643 of LNCS, pages 709–714. Springer, 2009.

[50] J. Sun, S. Z. Song, and Y. Liu. Model checking
hierarchical probabilistic systems. In International
Conference on Formal Engineering Methods, pages
388–403, 2010.

[51] M. Valiev and M. Dekhtyar. Complexity of verification
of nondeterministic probabilistic multiagent systems.
Automatic Control and Computer Sciences,
45(7):390–396, 2011.

[52] W.-L. Wang, D. Pan, and M.-H. Chen.
Architecture-based software reliability modeling.
Journal of Systems and Software, 79(1):132–146, 2006.

304

	Reliability assessment for distributed systems via communication abstraction and refinement
	Citation

	issta15 rel.pdf

