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We investigate the management of a merchant wind energy farm co-located with a grid-level storage facility

and connected to a market through a transmission line. We formulate this problem as a Markov decision

process (MDP) with stochastic wind speed and electricity prices. Consistent with most deregulated electricity

markets, our model allows these prices to be negative. As this feature makes it difficult to characterize

any optimal policy of our MDP, we show the optimality of a stage- and partial-state-dependent-threshold

policy when prices can only be positive. We extend this structure when prices can also be negative to

develop heuristic one (H1) that approximately solves a stochastic dynamic program. We then simplify H1 to

obtain heuristic two (H2) that relies on a price-dependent-threshold policy and derivative-free deterministic

optimization embedded within a Monte Carlo simulation of the random processes of our MDP. We conduct

an extensive and data-calibrated numerical study to assess the performance of these heuristics and variants

of known ones against the optimal policy, as well as to quantify the effect of negative prices on the value

added by and environmental benefit of storage. We find that (i) H1 computes an optimal policy and on

average is about 17 times faster to execute than directly obtaining an optimal policy; (ii) H2 has a near

optimal policy (with a 2.86% average optimality gap), exhibits a two orders of magnitude average speed

advantage over H1, and outperforms the remaining considered heuristics; (iii) storage brings in more value

but its environmental benefit falls as negative electricity prices occur more frequently in our model.

Key words : Wind-based electricity generation; energy storage; negative electricity prices; Markov decision

process; real options

1. Introduction

The last fifteen years have seen a boom in global wind-based electricity production—in the United

States (US) alone wind generation capacity has grown more than eightyfold from 2000 to 2015

(Wiser and Bolinger 2015). This global trend will probably continue, as many countries have

enacted policies to promote wind energy (REN21 2010). For example, the US recently renewed

its Federal Renewable Energy Production Tax Credit through 2019 (DOE 2017). To support this
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projected growth, wind farm merchants have been considering co-locating electricity generation

and grid-scale storage facilities, such as industrial batteries. An example of such a system is the

demonstration project developed by the AES Corporation in West Virginia, where a 32 megawatt

(MW) lithium-ion battery supports a wind farm of 98 MW (Sustainable Business News 2014).

Co-location of grid-level storage with a merchant wind energy farm can create value by (i)

stockpiling production that exceeds the capacity of the transmission lines that connect (typically

remote) such farms to electricity markets; (ii) time-shifting sales when electricity prices are low or

even negative (a unique feature of many electricity markets, discussed below); and (iii) enabling

the purchase of electricity for future resale. Storage may also benefit the environment by reducing

the curtailment of wind energy, which is a significant issue; e.g., the lack of transmission capac-

ity decreased the generation of wind energy by 17% in the Electric Reliability Council of Texas

(ERCOT) in 2009 (Wiser and Bolinger 2015) and by more than 10% in China during the 2014-15

time span (The Economist 2015).

Claiming the potential value created by grid-level storage for wind farms requires developing

effective operating policies. Unfortunately, the presence of negative electricity prices complicates the

management of wind-energy-production, storage, and transmission (WST) systems. For example,

even in the absence of generation, when negative prices are possible the optimal policy for the

merchant management of electricity storage is known only in the restricted case of fast storage

with abundant transmission capacity (Zhou et al. 2016). Though still infrequent in most power

markets, negative prices have been observed in the markets run by the New York Independent

System Operator (NYISO 2013) and ERCOT (ERCOT 2012, Huntowski et al. 2012), as well as the

Nordic Power Exchange (Sewalt and De Jong 2003) and the European Energy Exchange (Genoese

et al. 2010, Fanone et al. 2013). One potential cause of such prices is the high costs of ramping

conventional power plants up or down: Plant operators may try to avoid these expenses by paying

others to consume their excess power (Knittel and Roberts 2005, Sewalt and De Jong 2003, Genoese

et al. 2010).

In this paper we develop and evaluate heuristics for operating a WST system in the presence

of negative prices and examine the effect of such prices on the value added by and environmental

benefit of storage. Specifically, we model a WST system as a finite-horizon Markov decision process

(MDP) with stochastic wind availability and electricity prices. In contrast to the difficulty of

characterizing any optimal policy of our MDP when prices can be negative, which forces us to rely

on stochastic dynamic programming for computing it, we establish the optimality of a stage- and

partial-state-dependent-threshold policy when prices can only be positive. We develop heuristic one
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(H1) based on an extension of this structure when prices can also be negative and approximate

stochastic dynamic programming. Seeking a simpler heuristic, we modify H1 to obtain heuristic two

(H2) that uses a price-dependent-threshold policy and a derivative-free deterministic optimization

technique (the Nelder-Mead simplex method; Lagarias et al. 1998) embedded within a Monte Carlo

simulation of the stochastic processes of our MDP.

We conduct an extensive numerical study by choosing wind speed and electricity price models

that allow us to compute an optimal policy and execute H1. The former model is similar to the

ones employed by Kim and Powell (2011) and Wu and Kapuscinski (2013). The latter model

combines variants of the ones in Lucia and Schwartz (2002), Seifert and Uhrig-Homburg (2007),

and Schneider (2012). We calibrate these models to wind data for Buffalo, NY, and price data for

NYISO. Our instances involve making decisions every five minutes during one week. We find that:

(i) H1 computes an optimal policy, even when negative prices occur as frequently as 20% of

the time. (Although we exhibit an example in which H1 does not obtain an optimal policy, this

instance is pathological.) This observed optimality suggests that H1 may yield an optimal policy in

most practical settings. On average, H1 can be executed in about 33 minutes, whereas computing

an optimal policy explicitly takes approximately ten hours.

(ii) H2 has a close to optimal policy—with average and maximal optimality gaps equal to 2.86%

and 6.49%, respectively—and is two orders of magnitude faster to execute than H1, with an average

running time of under 15 seconds. Hence, despite the suboptimality of its policy, H2 is potentially

more practical than H1. In addition, H2 outperforms, in terms of both optimality gaps of their

policies and execution times, versions of heuristics from the literature that use policies based on

knowledge of only price, rather than also inventory.

(iii) The value and environmental benefit of storage are fairly sensitive to changes in the param-

eters that determine the frequency of occurrence of negative prices in our model. Specifically, as

we make negative prices occur more frequently, the value grows—due to buying negatively priced

electricity—and the environmental benefit shrinks—as a result of the drop in the amount of reduced

curtailment.

We review the literature in §2. We present our MDP in §3. In §4 we determine the structure of an

optimal policy for this MDP for the special case when prices are always positive. In §5 we extend

this structure—as an approximation—to the case when prices can also be negative to obtain H1,

and present H2 and other heuristics. We discuss our numerical study in §6 and conclude in §7.

Appendix A details the computation of the policies we analyze. An online appendix includes all

the proofs of the results stated in the main text of this paper and an example in which H1 does

not give an optimal policy.
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2. Literature review

Denholm and Sioshansi (2009) and Fertig and Apt (2011) consider the interplay of generation,

storage, and transmission capacity in electricity systems: The former studies how to best locate

storage when transmission capacity is scarce; the latter investigates the optimal sizing of storage

and transmission capacity. In contrast, we study how to manage a given WST system. However,

our numerical study includes a variant of a heuristic available in Fertig and Apt (2011).

Other authors examine the use of storage for wind farms. Brown et al. (2008) focus on how to

satisfy the demand of an isolated system using wind generators and pump-hydro storage to mini-

mize daily operating cost. Castronuovo and Lopes (2004) maximize the daily profit of a merchant

wind-hydro system. Korpaas et al. (2003) and Harsha and Dahleh (2015) consider a wind-storage

system that serves load as well as trades in a wholesale electricity market. The models of these

papers ignore transmission capacity constraints, unlike our model.

Wu and Kapuscinski (2013) investigate how to curtail wind energy to minimize the total balanc-

ing cost of an electricity market (possibly in the presence of storage) from the point of view of an

electricity market operator. We instead take the perspective of a merchant wind farm generator,

considering the use of co-located storage. Xi et al. (2014) optimize the use of an electricity storage

facility to trade in both electricity energy and ancillary markets. In contrast, we consider how

storage can be used to support wind energy production. Hu et al. (2015), Kök et al. (2018), and

Aflaki and Netessine (2017) examine capacity investment decisions in renewable energy technologies

without storage, whereas we study operating policies to manage WST systems.

Another stream of work centers on how wind farm managers can use storage to make better

bidding decisions in a market (e.g., Bathurst and Strbac 2003, Costa et al. 2008, Gonzalez et al.

2008, Löhndorf and Minner 2010, Kim and Powell 2011, and Jiang and Powell 2015). We do not

consider bidding, assuming that any electricity offered to the market is accepted. This assumption

is realistic: Many electricity markets in the US treat wind generators as “must-run” in normal

conditions (Wiser and Bolinger 2013) and 38% of the wind capacity developed in the US in 2009

was sold through merchant/quasi-merchant agreements that do not involve bidding (Wiser and

Bolinger 2013).

Our paper is also related to the literature on commodity and energy storage. Cahn (1948)

introduces the classic warehouse problem, for which Charnes et al. (1966) show the optimality of

a simple basestock (threshold) policy. Rempala (1994) and Secomandi (2010) extend this work

to incorporate limits on the rates at which the commodity inventory can be adjusted. (See also

Secomandi and Seppi 2014, chapter 5.) Other related work includes Mokrian and Stephen (2006),
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Chen and Forsyth (2007), Boogert and de Jong (2008), Thompson et al. (2009), Lai et al. (2010),

Devalkar et al. (2011), Wu et al. (2012), Nadarajah et al. (2015), Secomandi (2015), and Secomandi

et al. (2015). Different from those studied by these authors, our model has a random inflow (wind).

Related settings with such intake include hydropower generation (Nasakkala and Keppo 2008) and

liquified natural gas (LNG) regasification (Lai et al. 2011). These systems differ from ours, which

stores its output (electricity), in that they store their input (water or LNG). Thus, the operating

policies in these papers feature only sell-down thresholds, whereas the policies associated with our

heuristics have additional buy-and-store-up-to and generate-and-store-up-to thresholds. Boyabatlı

et al. (2017) consider agricultural commodity processing with output storage. The primary focus

of their work is on capacity investment, so their operating model and resulting policy are simpler

than ours.

Zhou et al. (2016) is, to the best of our knowledge, the only other paper that studies the

implication of negative prices on the management and value of energy storage. However, whereas

it compares electricity storage and disposal strategies, the main focus of this research is to develop

and evaluate heuristics to manage a WST system. Further, the work of Zhou et al. (2016) uses the

electricity price model calibrated here, which was presented in an earlier version of our paper. This

model modifies the one in Schneider (2012) to more realistically generate prices for markets with

both negative prices and price spikes (short-lived price jumps).

Under the H1 policy the end-of-period inventory level can be a non-monotonic function of the

beginning-of-period inventory availability. This feature of this policy appears to be unique in the

literature on energy storage. The H2 policy differs from suitable variants of the policies presented

in Graves et al. (1999), Fertig and Apt (2011), and Powell and Meisel (2016b) because its decision

rules depend on both the electricity price and the inventory level, instead of only this price. The

use of approximate stochastic dynamic programming to compute the H1 policy resembles the use of

this technique to obtain energy storage policies in Lai et al. (2010), Lai et al. (2011), and Nadarajah

et al. (2015). H2 is an example of a heuristic that applies direct search methods to tune the values

of the parameters that define its policy (Powell and Meisel 2016b).

3. Model

We consider the operation of a WST system: A remote wind farm is co-located with a storage

facility, both of which are connected to an electricity market via a transmission line (Figure 1). The

merchant managing this system can thus buy and sell electricity in the market. We assume that

the WST system is small relative to the market, so the merchant decisions do not affect market
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Figure 1 System overview

 

prices. The merchant makes operational and trading decisions periodically over a finite horizon,

i.e., at each time t in the finite set T := {0,1, . . . , T − 1}. In particular, electricity trading occurs

at the beginning of a period. Further, simultaneously buying and selling the same quantity at the

same price, known as a “wash trade,” is illegal in commodity markets.1 Thus, the transmission

line can transmit power in only one direction in any given time period. Any electricity left in the

storage facility at the terminal time T is worthless. We neglect the deterioration of the storage

facility due to charging and discharging (see, e.g., Guo et al., 2017).

Parameters. We assume the storage facility is finite in energy capacity and power capacity.

If we think of this facility as a warehouse for electricity, the energy capacity is analogous to its

space and the power capacity represents the maximal rate at which its inventory can be modified.

For the rest of this paper, any capacity should be interpreted as power capacity unless specified

otherwise. We use the following parameters:

• CS: Energy capacity of the storage facility (in energy units); CS > 0.

• CC,CD: Charging, discharging capacity (in energy units/period); CC,CD > 0.

• CG,CT: Generation, transmission capacity (in energy units/period); CG ≥ 0, CT > 0. The

transmission capacity represents the part of the capacity of the transmission line contracted by

the wind farm. (See Duke Energy, 2017 for an example of such a contract, which is not exclusively

available to wind farms.) We realistically assume that CG +CD ≥CT: In practice, the contracted

transmission capacity is typically smaller than the sum of the wind farm generation capacity and

the storage discharging capacity, because wind energy is intermittent (if CG+CD <CT holds then

the transmission capacity is never constraining).

• α,β: Charging, discharging efficiency of the storage facility; both parameters are in (0,1]. Our

model can be easily extended to include inefficient holding of electricity over time without changing

the structural results in §4 and §5.1.

1 https://www.law.cornell.edu/cfr/text/17/38.152
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• τ : Transmission efficiency, i.e., the ratio of electricity flowing out of the transmission line to

that flowing into this line, so that 1− τ is the line loss rate; τ ∈ (0,1]. Losses are incurred at the

end of the transmission line in either direction.

• δ: One-period risk-free discount rate (we use risk-neutral valuation; Seppi 2002, Smith 2005);

this parameter is in (0,1].

State variables. Period t is defined as the time interval [t, t+1). A state variable with subscript

t is known at the beginning of period t, i.e., time t, but unknown in earlier periods (Powell 2007,

§5.2). The state at time t, St, includes the following components:

• xt: Inventory of electricity (in energy units) in the storage facility at the beginning of period

t. The domain of this variable is X := [0,CS].

• wt: Available wind energy, or electricity that can be generated given the wind speed at time t

by the wind turbines in period t (in energy units/period). This quantity is limited by the generation

capacity CG of the turbines; wt ∈W ⊆ [0,CG]. We model wind speed using a stochastic process and

convert it to wt using the production curve of turbines. We set wt to zero if the wind speed falls

below the cut-in speed or exceeds the cut-off speed (the minimal and maximal speeds at which a

given turbine can generate output; in the latter case, the issue is avoiding damage to the turbines).

• p⃗t: Price-component pair at time t, p⃗t ∈ P ⊆R2, which includes a mean-reverting component

and a spike component. The electricity price at time t, Pt ($/energy unit), is a function of time t

and these two components. In §6.2.2 we specify such a function. One could model the electricity

price as a function of more than two components without changing the structural results in §4 and

§5.1.

The state St is the vector (xt,wt, p⃗t). The given initial state S0 is (x0,w0, p⃗0). The state space in

each period is S :=X ×W ×P.

Decision variables (actions). At time t ∈ T , the merchant observes St and determines the

inventory change and generation (action) pair (at, gt) ∈R×R+. In particular, inventory reductions

and additions, respectively, correspond to negative and positive values of at. We use a single

inventory adjustment decision variable rather than separate such variables for inventory increases

and decreases because they either involve wash trades, which are illegal, or are provably suboptimal.

Transition functions. The inventory level changes from time t to time t + 1 according to

xt+1 = xt + at. The variable wt and vector p⃗t evolve to wt+1 and p⃗t+1, respectively, according to

Markovian stochastic processes (see §6.2 for examples thereof), which we assume to be independent;

relaxing this assumption does not change our structural results given in §4 and §5.1.
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Immediate payoff function and constraints. We define the immediate payoff function as

R(at, gt, p⃗t) :=


−Pt(p⃗t)(at/α− gt)/τ if at >αgt,

Pt(p⃗t)(gt− at/α)τ if 0≤ at ≤ αgt,

Pt(p⃗t)(gt−βat)τ if at < 0,

where the first case represents purchasing cost and the last two cases express selling revenue. Given

(xt,wt), we denote by Ψ(xt,wt) the set of action pairs (at, gt) in R×R+ that satisfy

[(at/α− gt)/τ −CT]1(at >αgt)≤ 0, (1)

(gt− at/α−CT)1(0≤ at ≤ αgt)≤ 0, (2)

(gt−βat−CT)1(at < 0)≤ 0, (3)

gt ≤wt, (4)

−xt ≤ at ≤CS−xt, (5)

−CD ≤ at ≤CC; (6)

here (1), (2), and (3) are the transmission capacity constraints—1(·) is the indicator function that

equals one if its argument is true and zero otherwise; (4) restricts the generation to be no more

than the wind energy availability (this constraint and wt ≤ CG imply gt ≤ CG); (5) restrains the

inventory change to lie between the (negative of the) energy available in the storage facility and

the remaining storage energy capacity; and (6) imposes on this change the limits expressed by the

(negative of the) discharging capacity and the charging capacity.

Objective function. Each stage of our MDP corresponds to a time in T . A feasible policy π is

the sequence of decision rules (Aπ
t (St))t∈T , where Aπ

t (St) maps the state St to the feasible action

pair (aπ
t (St), g

π
t (St)) in stage t. Our objective is to maximize the total discounted expected cash

flows over all feasible policies, which we include in the set Π:

max
π∈Π

∑
t∈T

δtE [R(Aπ
t (S

π
t ), p⃗t)|S0] , (7)

where the expectation E is taken with respect to the distribution of the random state Sπ
t reached

by policy π in stage t. For each stage t ∈ T and state St ∈ S, the value function of each feasible

policy π, V π
t (St), satisfies the recursion

V π
t (St) =R(aπ

t (St), g
π
t (St), p⃗t)+ δE

[
V π
t+1(xt + aπ

t (St),wt+1, p⃗t+1)|St

]
(8)

and the optimal value function, V ∗
t (St), solves

V ∗
t (St) = max

(at,gt)∈Ψ(xt,wt)

{
R(at, gt, p⃗t)+ δE

[
V ∗
t+1(xt + at,wt+1, p⃗t+1)|St

]}
x, (9)
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with both V π
T (ST ) and V ∗

t (St) set equal to zero for each ST ∈ S.

Appendix A.1 discusses the computation of an optimal policy in the context of our numeri-

cal study, in which the dynamics of the available wind energy and the price-component pair are

specified in §6.2 and the state components and the action pairs are discretized as discussed in §6.3.

4. Analysis when the electricity prices are always positive

In this section we analyze model (7). Specifically, we establish an optimal policy structure when

the electricity prices can only be positive, which forms the basis of H1 and H2, our heuristics for

the case when prices can also be negative.

To obtain a well defined model we make the benign Assumption 1.

Assumption 1. For each t∈ T , we have E[|Pt′(p⃗t′)||p⃗t]<∞ for each t′ ∈ T , t′ ≥ t, and p⃗t ∈P.

We state in Proposition 1 the concavity of the resulting optimal value function in the inventory

level given all the other state components in each stage.

Proposition 1. Suppose Pt(p⃗t) > 0 for each t ∈ T and p⃗t ∈ P. For each t ∈ T ∪ {T},

V ∗
t (xt,wt, p⃗t) is concave in xt for each given (wt, p⃗t)∈W ×P.

Based on Proposition 1, we obtain the policy structure presented in Proposition 2. We denote

by (a∗
t (St), g

∗
t (St)) an optimal action pair for the optimization on the right hand side of (9). For

notational convenience, we define the ending inventory level after modifying xt by at as yt := xt+at;

the optimal continuation function as U∗
t (·,wt, p⃗t) := δE

[
V ∗
t+1(·,wt+1, p⃗t+1)|wt, p⃗t

]
; the functions

X
(1)
t (wt, p⃗t) := argmax

yt∈X
{U∗

t (yt,wt, p⃗t)−Pt(p⃗t)yt/(ατ)} , (10)

X
(2)
t (wt, p⃗t) := argmax

yt∈X
{U∗

t (yt,wt, p⃗t)−Pt(p⃗t)τyt/α} , (11)

X
(3)
t (wt, p⃗t) := argmax

yt∈X
{U∗

t (yt,wt, p⃗t)−Pt(p⃗t)βτyt} , (12)

where we implicitly employ the largest element of each defining set; and the sets

Γ0 :=
{
(xt,wt)∈X ×W :wt ≥CT +min

{
CS−xt,C

C
}
/α

}
,

Γ1 :=
{
(xt,wt)∈X ×W :CT ≤wt <CT +min

{
CS−xt,C

C
}
/α

}
,

Γ2 :=
{
(xt,wt)∈X ×W : 0≤wt <CT

}
.

For brevity, below we write X
(ν)
t in lieu of X

(ν)
t (wt, p⃗t) for each ν ∈ {1,2,3}.
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Proposition 2. Suppose Pt(p⃗t)> 0 for each t ∈ T . For each t ∈ T we have (i) X
(1)
t ≤X

(2)
t ≤

X
(3)
t , (ii) g∗t (St) =min{wt,C

T +min{CS−xt,C
C}/α}, and (iii) a∗

t (St) =min{CS−xt,C
C} (store

excess generation) if (xt,wt)∈ Γ0;

a∗
t (St) =



min
{
X

(1)
t −xt, α (τCT +wt) ,C

C
}

(store generated and purchased electricity up to X
(1)
t ) if xt ∈

[
0,X

(1)
t −αwt

]
,

min
{
X

(2)
t −xt, αwt

}
(store generation up to X

(2)
t ) if xt ∈

(
X

(1)
t −αwt,X

(2)
t −α (wt−CT)

]
,

α (wt−CT)

(store excess generation) if xt ∈
(
X

(2)
t −α (wt−CT) ,CS

]
,

(xt,wt)∈ Γ1, and αwt <min
{
X

(1)
t ,CC

}
;

a∗
t (St) =



min
{
X

(2)
t −xt, αwt

}
(store generation up to X

(2)
t ) if xt ∈

[
0,X

(2)
t −α (wt−CT)

]
,

α (wt−CT)

(store excess generation) if xt ∈
(
X

(2)
t −α (wt−CT) ,CS

]
,

(xt,wt) ∈ Γ1, α (wt−CT)<X
(2)
t , and either X

(1)
t ≤ αwt < CC or αwt ≥ CC; a∗

t (St) = α (wt−CT)

(store excess generation) if (xt,wt)∈ Γ1, α (wt−CT)≥X
(2)
t , and either X

(1)
t ≤ αwt <CC or αwt ≥

CC;

a∗
t (St) =



min
{
X

(1)
t −xt,α (τCT +wt) ,C

C
}

(store generated and purchased electricity up to X
(1)
t ) if xt ∈

[
0,X

(1)
t −αwt

]
,

min
{
X

(2)
t −xt,αwt

}
(store generation up to X

(2)
t ) if xt ∈

(
X

(1)
t −αwt,X

(2)
t

]
,

0 (keep inventory unchanged) if xt ∈
(
X

(2)
t ,X

(3)
t

]
,

max
{
X

(3)
t −xt, (wt−CT)/β,−CD

}
(sell inventory down to X

(3)
t ) if xt ∈

(
X

(3)
t ,CS

]
,

(xt,wt)∈ Γ2, and αwt <min
{
X

(1)
t ,CC

}
; and

a∗
t (St) =



min
{
X

(2)
t −xt, αwt

}
(store generation up to X

(2)
t ) if xt ∈

[
0,X

(2)
t

]
,

0 (keep inventory unchanged) if xt ∈
(
X

(2)
t ,X

(3)
t

]
,

max
{
X

(3)
t −xt, (wt−CT)/β,−CD

}
(sell inventory down to X

(3)
t ) if xt ∈

(
X

(3)
t ,CS

]
,

(xt,wt)∈ Γ2, and either X
(1)
t ≤ αwt <CC or αwt ≥CC.
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Figure 2 Illustration of the optimal end-of-period inventory, xt + a∗
t (St), as a function of the beginning-of-

period inventory, xt, for the case (xt,wt)∈ Γ2 and αwt <min
{
X

(1)
t ,CC

}
in Proposition 2 (for ease of

illustration we assume that the thresholds can be reached from every inventory level in each of their

respective intervals)

 

Generating to the maximal extent is optimal. When wt is large, i.e., in Γ0, it is optimal to

sell as much as possible and store any leftover so that the ending inventory level is as close as

possible to CS. Otherwise, i.e., wt is in Γ1 or Γ2, the optimal inventory change depends on the

quantities X
(1)
t , X

(2)
t , and X

(3)
t . In particular, when (xt,wt) ∈ Γ2 and αwt <min

{
X

(1)
t ,CC

}
this

action can be of four distinctive types: If xt ≤X
(1)
t −αwt, store generation and purchased electricity

to bring the inventory level as close as possible to X
(1)
t ; if X

(1)
t −αwt <xt ≤X

(2)
t , store generated

electricity without buying so that the resulting inventory level is as close as possible to X
(2)
t ; if

X
(2)
t < xt ≤X

(3)
t , generate and keep the inventory level unchanged; if xt >X

(3)
t , generate and sell

to bring the inventory level as near as achievable to X
(3)
t . Thus, we refer to X

(1)
t , X

(2)
t , and X

(3)
t

as inventory threshold functions. Figure 2 illustrates the behavior of the inventory level at the end

of a period as a function of the one at the beginning of a period corresponding to the action types

just described.

The functions X
(1)
t , X

(2)
t , and X

(3)
t in general return separate values due to the presence of both

the transmission loss (τ < 1) and the charging/discharging losses (αβ < 1), which make the imme-

diate marginal values of the following three types of actions, or, equivalently, the respective slopes

of the immediate payoff function, different from each other: Storing one unit of bought electricity,

storing one unit of generation, and selling one unit of inventory. If τ = 1 then X
(1)
t =X

(2)
t , because

the marginal values of increasing the inventory using one unit of purchased or generated electric-

ity are equal (in this case the optimal structure reduces to that in Secomandi 2010). Similarly, if

αβ = 1 then X
(2)
t coincides with X

(3)
t .
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5. Heuristics

In this section we define four heuristics for model (7). We introduce H1 in §5.1, H2 in §5.2, and

heuristics three and three-plus (H3 and H3+), which are inspired by the literature and rely on

policies that use only price information, in §5.3. The H2, H3, and H3+ policies are stationary,

which is a potential limitation in a non-stationary environment, such as our numerical study.

We also considered heuristics with policies based on time-of-day (used, e.g., for managing hydro

reservoirs; see Powell and Meisel 2016a), deterministic re-optimization, and two- and three-period

lookahead (Powell and Meisel 2016b). They are not included in this paper because they perform

unsatisfactorily on our instances.

5.1. Heuristic one

The idea for H1 is as follows: (i) We extend the structure of our optimal policy for the special case

when prices can only be positive to obtain a feasible policy for the general case when prices can also

be negative and (ii) we approximately solve a stochastic dynamic program to compute it. It can

be shown that this extended structure would be optimal in the latter case if the objective function

of the optimization in (9) were jointly concave in the initial inventory level and the action pair.

Unfortunately this joint concavity is not true in general: Online Appendix D includes an example

for which the H1 policy is not optimal.

H1 partly relies on the threshold functions

X
(1),H1
t (wt, p⃗t) := argmax

yt∈X

{
UH1

t (yt,wt, p⃗t)−Pt(p⃗t)yt/(ατ)
}
, (13)

X
(2),H1
t (wt, p⃗t) := argmax

yt∈X

{
UH1

t (yt,wt, p⃗t)−Pt(p⃗t)τyt/α
}
, (14)

X
(3),H1
t (wt, p⃗t) := argmax

yt∈X

{
UH1

t (yt,wt, p⃗t)−Pt(p⃗t)βτyt
}
, (15)

X
(4),H1
t (wt, p⃗t) := argmax

yt∈X

{
UH1

t (yt,wt, p⃗t)
}
, (16)

where the largest element of each defining set is implicitly used and UH1
t (·,wt, p⃗t) :=

δE
[
V H1
t+1(·,wt+1, p⃗t+1)|wt, p⃗t

]
; V H1

t+1(St+1) satisfies (8) with π set to H1 (we describe the actions of

the H1 policy below). Proposition 3 orders these functions. We abbreviate X
(ν),H1
t (wt, p⃗t) to X

(ν),H1
t

for each ν ∈ {1,2,3,4}.

Proposition 3. In each t∈ T and (wt, p⃗t)∈W×P we have X
(1),H1
t ≤X

(2),H1
t ≤X

(3),H1
t ≤X

(4),H1
t

when Pt(p⃗t)> 0 and X
(1),H1
t ≥X

(2),H1
t ≥X

(3),H1
t ≥X

(4),H1
t when Pt(p⃗t)≤ 0.

Proposition 3 states that in each stage and partial state (i.e., excluding the inventory level) the

ordering of X
(1),H1
t through X

(4),H1
t depends only on the sign of the price Pt(p⃗t). Intuitively, this
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claim holds because the objective functions in (13)-(16) differ only by a term that is linear in Pt(p⃗t).

When Pt(p⃗t)> 0 Proposition 3 is consistent with part (i) of Proposition 2.

The H1 policy follows:

(i) Pt(p⃗t) > 0: If xt ∈
[
0,X

(4),H1
t

]
then use the decision rules specified in Proposition 2 replacing

X
(ν)
t with X

(ν),H1
t for ν ∈ {1,2,3}, CS with X

(4),H1
t , and Γ0, Γ1, and Γ2, respectively, with

Γ0,H1
t (p⃗t) :=

{
wt ∈W, xt ∈

[
0,X

(4)
t (wt, p⃗t)

]
:wt ≥CT +min{X(4)

t (wt, p⃗t)−xt,C
C}/α

}
,

Γ1,H1
t (p⃗t) :=

{
wt ∈W, xt ∈

[
0,X

(4)
t (wt, p⃗t)

]
:CT ≤wt <CT +min{X(4)

t (wt, p⃗t)−xt,C
C}/α

}
,

Γ2,H1
t (p⃗t) :=

{
wt ∈W, xt ∈

[
0,X

(4)
t (wt, p⃗t)

]
: 0≤wt <CT

}
.

If xt ∈
(
X

(4),H1
t ,CS

]
then we define aH1

t (St) := max
{
X

(3),H1
t −xt,−CT/β,−CD

}
and gH1

t (St) :=

min{wt,C
T−βaH1

t (St)}, i.e., inventory is sold to reach a level that is as close as possible to X
(3),H1
t

and as much wind energy as feasible is produced and sold taking into account the residual trans-

mission capacity.

(ii) Pt(p⃗t) ≤ 0: The threshold functions X
(ν),H1
t for ν ∈ {1,2,3,4} and Zt(wt, p⃗t), which we define

below and abbreviate to Zt for notational convenience, determine the action pair as follows:

• If ατCT <X
(4),H1
t then

aH1
t (St) :=



min
{
X

(4),H1
t −xt, α (τCT +wt) ,C

C
}

(store purchased electricity and

generated electricity up to X
(4),H1
t ) if xt ∈

[
0,X

(4),H1
t −ατCT

]
,

min
{
X

(1),H1
t −xt, ατC

T,CC
}

(store purchased electricity up to X
(1),H1
t ) if xt ∈

(
X

(4),H1
t −ατCT,Zt

]
,

max
{
X

(3),H1
t −xt,−CT/β,−CD

}
(sell inventory down to X

(3),H1
t ) if xt ∈ (Zt,C

S] ,

gH1
t (St) :=

{
(aH1

t (St)/α− τCT)
+

(store generation) if xt ∈
[
0,X

(4),H1
t −ατCT

]
,

0 (do not generate) if xt ∈ (Zt,C
S] .

• If ατCT ≥X
(4),H1
t then

aH1
t (St) :=


min

{
X

(1),H1
t −xt, ατC

T,CC
}

(store purchased electricity up to X
(1),H1
t ) if xt ∈ [0,Zt] ,

max
{
X

(3),H1
t −xt,−CT/β,−CD

}
(sell inventory down to X

(3),H1
t ) if xt ∈ (Zt,C

S] ,

gH1
t (St) := 0 if xt ∈

[
0,CS

]
(do not generate).

The function Zt is the maximal inventory level xt ∈
[
X

(3),H1
t ,X

(1),H1
t

]
such that the two action pairs(

min
{
X

(1),H1
t −xt,ατC

T,CC
}
,0
)
and

(
max

{
X

(3),H1
t −xt,−CT/β,−CD

}
,0
)
result in the same
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Figure 3 Illustration of the H1 policy end-of-period inventory, xt + aH1
t (St), as a function of the beginning-

of-period inventory, xt, when Pt(p⃗t) ≤ 0 and ατCT < X
(4),H1
t (for illustration purposes we make the

assumption that the thresholds are attainable from every inventory level in each of their corresponding

intervals)

evaluation of the right hand side of (8) with π set equal to H1. Intuitively, this level is such that

we are indifferent between storing purchased electricity up to X
(1),H1
t and selling inventory down

to X
(3),H1
t when no wind energy is produced.

When Pt(p⃗t)≤ 0 and ατCT <X
(4),H1
t , the action pair under the H1 policy can be of three separate

types (see Figure 3): When xt ≤X
(4),H1
t − ατCT buy and generate electricity so that the ending

inventory level is as close as possible to X
(4),H1
t ; when X

(4),H1
t − ατCT < xt ≤ Zt purchase energy

to bring the inventory level as near as viable to X
(1),H1
t without producing; and when xt >Zt sell

inventory so that the resulting level approaches X
(3),H1
t as much as is feasible and do not generate.

It may be desirable for the H1 policy to sell inventory when the price in the current period is

negative (e.g., if xt >Zt in Figure 3) because a larger end-of-period inventory level is not always

more appealing than a smaller one; i.e., the continuation function of this policy may fail to be

monotonic in this type of inventory level. For instance, when the expected price in the next period

is even more negative than the price in the current period, selling now at a loss to free space to

buy and store then is potentially appealing.

Under the H1 policy, the inventory level at the end of a period can fail to be monotonic in the

one at the beginning of a period. For example, in Figure 3 as the latter level increases from zero to

CS the former one first increases and then decreases. This rise occurs because (i) if the inventory

level is smaller than X
(4),H1
t − ατCT then after purchasing to the maximal extent, i.e., CT, it is

advantageous to increase it up to X
(4),H1
t by generating provided residual charging capacity is

available and (ii) if this level lies between X
(4),H1
t −ατCT and Zt then it is beneficial to purchase
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electricity to bring it as close as possible to X
(1),H1
t . This drop arises for the following reasons: (i) If

the inventory level is between X
(4),H1
t −ατCT and Zt then there is sufficient space to purchase and

store electricity up to X
(1),H1
t to take advantage of the negative price in the current period and (ii)

if this level exceeds Zt then the space available for storing purchased electricity is so limited that it

is advantageous to sell inventory down to X
(3),H1
t to create the opportunity to purchase electricity

in the event that prices will be negative in the future.

In the discretized state and action setting of §6, we obtain the H1 policy by approximately, rather

than exactly, solving a stochastic dynamic program as discussed in Appendix A.2, exploiting the

fact that its threshold functions do not depend on the inventory level. Nonetheless, H1 may not be

practical for real time use, because the value function of its policy needs to be evaluated for every

stage and state.

5.2. Heuristic two

H2 simplifies H1 both in terms of type of policy used and the approach taken to compute the values

of its policy parameters.

The H2 policy is a version of the H1 policy that employs price dependent inventory threshold

functions, X(ν),H2(p⃗t) for ν ∈ {1,2,3,4}, which we simplify by suppressing their argument. Their

definitions, which are based on the scalars P S and X(1) through X(4) with 0≤X(1) ≤X(2) ≤X(3) ≤

X(4) ≤CS, follow:

• If Pt(p⃗t)≤ 0 then X(1),H2 =X(2),H2 =X(3),H2 =X(4),H2 :=CS (purchase as much electricity as

possible and generate as much as viable);

• If 0 < Pt(p⃗t) < P S then X(1),H2 := X(1),X(2),H2 := X(2),X(3),H2 := X(3), and X(4),H2 := X(4)

(analogous to the case when Pt(p⃗t)> 0 for the H1 policy);

• If Pt(p⃗t)≥ P S then X(1),H2 =X(2),H2 =X(3),H2 := 0 and X(4),H2 :=CS (generate and sell to the

maximal extent and then bring to market as much inventory as feasible).

The H2 policy has five parameters. We compute them using a derivative-free nonlinear optimiza-

tion algorithm embedded within a wind-speed and electricity-price Monte Carlo simulation, which

we describe in Appendix A.3.

5.3. Heuristics three and three-plus

H3 and its enhanced version H3+ are two heuristics whose policies use only the current price, as is

common in the electricity storage literature (e.g., Graves et al. 1999, Fertig and Apt 2011, Powell

and Meisel 2016a, and Powell and Meisel 2016b). The H3 policy relies on two scalars, PD >PC > 0,

where the superscripted D and C stand for discharging and charging, respectively. It increases the
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inventory by first generating as much as possible and then by purchasing to the maximal extent if

the price is low, Pt(p⃗t)≤ PC; keeps the inventory level unchanged and produces and sells as much

as possible if the price is moderate, PC <Pt(p⃗t)<PD; and generates and brings to market as much

as feasible, storing any excess, if the price is high, Pt(p⃗t)≥ PD. Specifically, the action pairs of the

H3 policy follow:

• If Pt(p⃗t) ≤ PC then aH3
t (St) := min{α(wt + τCT),CS − xt,C

C} and gH3
t (St) :=

min{wt,min{CS−xt,C
C}/α};

• If PC <Pt(p⃗t)<PD then aH3
t (St) := 0 and gH3

t (St) :=min{wt,C
T};

• If Pt(p⃗t)≥ PD then

aH3
t (St) :=

{
−max{xt, (C

T−wt)/β,−CD} if wt ≤CT,

α[gH3
t (St)−CT] otherwise,

and gH3
t (St) :=min{wt,C

T +min{CS−xt,C
C}/α}.

The H3+ policy differs from the H3 policy only when prices are negative, in which case the former

policy purchases as much electricity as possible and then maximizes the amount generated. H3

and H3+ compute their respective policies based on an approach similar to that used by H2 (see

Appendix A.3).

6. Numerical study

In this section we discuss our numerical study. We present the setup of this study in §6.1. We

discuss the wind and electricity price models and their calibrations in §6.2. We explain the approach

that supports the computation of the various policies in §6.3. In §6.4 we assess the performance of

the heuristics presented in §5. We quantify the effect of changing the frequency of negative prices

on the incremental value brought about by and environmental benefit of storage in §6.5.

6.1. Setup

Electricity is traded on the New York City real time market. This market is managed by the New

York Independent System Operator (NYISO), which includes fifteen local markets (zones), and is

one of the largest and most liquid electricity markets (NYISO 2013). As real time prices are set

every five minutes, we specify our model using this frequency, i.e., each period corresponds to a five

minute interval. The per stage discount factor δ is 0.9999999, corresponding to an annual risk-free

interest rate of 1% with continuous compounding (recall that we use risk-neutral valuation). We

fix the horizon to be one week, i.e., the number of five-minute periods is 12× 24× 7 = 2,016.

We consider a hypothetical wind farm located in Buffalo, NY, which houses one of the largest

wind farms in New York State. This wind farm consists of 120 General Electric (GE) model 1.5-77
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turbines. This type of turbine is among the best selling ones in the US (Wiser and Bolinger 2013).

Its capacity is 1.5 MW (1 MW = 1 million watts and 1 watt = 1 joule/second), so the generation

capacity of the wind farm is 120× 1.5 MW = 180 MW. We scale it given the five-minute period

length to obtain CG, i.e., CG = 180 MW/(12 periods/hour) = 15 MWh/period.

Co-located with our wind farm is an industrial battery. We vary its energy capacity (CS, in

megawatt hour, or MWh; 1 MWh = 3.6 Giga joules) from 200 MWh to 1200 MWh in steps of

200 MWh. This battery can be fully charged or discharged in ten hours (EPRI 2004). Thus, its

(charging/discharging) power capacity is its energy capacity divided by ten hours, which we scale

taking into account the period length to obtain CC and CD (in MWh/period). The base values of

the battery charging/discharging efficiencies are α= 0.85 and β = 1. We varied these values over a

broad range but found that our insights remained qualitatively unchanged. Therefore, we report

results only for the base values of these parameters.

A transmission line connects our wind farm to New York City. This line has a loss of 3%, i.e.,

τ = 97% (Duke Energy 2017). We consider values for the portion of the capacity of this line leased

to the wind farm between 80 MW and 180 MW in steps of 20 MW. The parameter CT is this

rented transmission capacity scaled according to the given period length.

The relative values of the considered generation, storage, and transmission capacities are consis-

tent with those in Denholm and Sioshansi (2009) and Pattanariyankool and Lave (2010).

6.2. Wind speed and electricity price models and their calibrations

We describe the wind speed and electricity price models and their calibrations in §6.2.1 and §6.2.2,

respectively.

6.2.1. Wind speed model and its calibration. To represent wind speed evolution, we use

an autoregressive of order one, AR(1), process with deterministic seasonality (Kim and Powell 2011,

Wu and Kapuscinski 2013). We convert wind speed to available wind energy using the production

curve of the GE 1.5-77 wind turbine (displayed in Table 1; General Electric 2013), which has cut-in

and cut-off speeds of 4 and 25 meters per second (m/s), respectively.

Table 1 Production curve of the GE 1.5-77 turbine (with cut-in and cut-off speeds of 4 and 25 m/s)

Speed (m/s) 4 5 6 7 8 9 10 11 12 13 14 15-25
Power (MW) 0.043 0.131 0.25 0.416 0.64 0.924 1.181 1.359 1.436 1.481 1.494 1.5

We have available from NOAA (2010) hourly wind speed data from 2005 to 2008 for Buffalo,

NY. This wind speed data was recorded at 10 meters above ground (Buffalo), whereas the height
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Table 2 Estimated parameters of the wind speed model (MAE = 0.145 MW in the hourly case)

Seasonality function Hourly AR(1) process Five-minute AR(1) process

γ̂0 γ̂1 γ̂2 ω̂1 ω̂2 ϕ̂h σ̂h ϕ̂ σ̂
6.777 1.2558 1.4743 −27.8434 28.7040 0.8813 1.6734 0.9895 0.5112

of the GE 1.5-77 turbine is 80 meters. Based on Heier (2006), we convert this data to the height

of this turbine by multiplying the observed wind speeds by (80/10)0.2 = 80.2, where the choice of

0.2 yields a value of 33% for the ratio of the hypothetical sample output during 2005-2008 of our

wind farm and its generation capacity, which lies within the range of reported values of analogous

ratios for wind farms in NY (DOE 2017; such metrics are known as empirical capacity factors in

the wind energy engineering literature).

Let t̄ be the hourly time index, which ranges from 1 through 24×7 = 168 with unitary increments.

The wind speed in hour t̄ is the sum ξht̄ + fh(t̄), where ξht̄ evolves as the AR(1) process ξht̄ =

ϕhξht̄−1 + σhϵht̄ , with ϕh and σh scalars and ϵht̄ an independent and identically distributed (i.i.d.)

standard normal error term, and fh(t̄) is the seasonality function γ0+γ1 cos((⌈t̄/24⌉+ω1)2π/365))+

γ2 cos((t̄+ ω2)2π/24), with ⌈·⌉ the ceiling function, γ0 a constant, and γ1-and-ω1 and γ2-and-ω2,

respectively, the daily and hourly magnitude-and-phase-shift parameters.

Modifying fh(t̄) to obtain a seasonality function when the period length is five minutes entails

only replacing the hourly index t̄ with ⌈(t+1)/12⌉, with t the five-minute period index, which varies

from 0 through 2015. We denote the five-minute wind speed AR(1) process as ξt = ϕξt−1 + σϵt,

where ϕ, σ, and ϵt are analogous to ϕh, σh, and ϵht , respectively. Applying this expression recursively

yields ξt = (ϕ)12ξt−12+σ[(ϕ)
11
ϵt−11+(ϕ)

10
ϵt−10+ · · ·+ϕϵt−1+ϵt]. Matching the mean and standard

deviation of the right-hand side of this expression with those of ϕhξht̄−1 + σhϵht̄ gives ϕ = (ϕh)1/12

and σ = σh
√

[1− (ϕh)1/6]/[1− (ϕh)2].

We calibrate the hourly model using nonlinear regression. We convert the resulting values of the

parameters of its AR(1) component to obtain estimates for those of the corresponding five-minute

version. Table 2 reports all these values. We measure the fit of this calibrated hourly model by

computing the mean absolute error (MAE) in terms of wind-based electricity production of a single

GE 1.5-77 turbine. The MAE is 0.145 MW. We also experimented with an AR(2) process and

found that it did not fit the data any better than the AR(1) process.

6.2.2. Electricity price model and its calibration. Electricity prices exhibit mean rever-

sion (a tendency to revert to a given level), spikes (jumps that last for a short duration), seasonality,

and can be negative. Our price model combines a mean-reverting process from Lucia and Schwartz
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(2002), a spike process as in Seifert and Uhrig-Homburg (2007), a deterministic seasonality func-

tion similar to one used by Lucia and Schwartz (2002), and an inverse hyperbolic transformation

as in Schneider (2012) to accommodate negative prices.

We denote the time t mean-reverting and spike components as ξ′t and Jt, respectively, i.e.,

p⃗t ≡ (ξ′t, Jt). The corresponding electricity price, Pt(ξ
′
t, Jt), is defined as P ′

t (ξ
′
t)+Jt, where P ′

t (ξ
′
t) is

the despiked price. We model the dynamics of the spike component, Jt, as a compound Bernoulli

process in which a spike occurs at time t with probability λ and its size follows an empirical

distribution. We assume that the despiked price, P ′
t (ξ

′
t), satisfies sinh

−1 (P ′
t (ξ

′
t)/ℓ) = ξ′t+f ′(t), where

sinh−1 is the inverse hyperbolic sine function, ℓ is a scale parameter, and f ′(t) is the deterministic

seasonality function. The inverse hyperbolic sine function is analogous to the natural logarithm

function, a commonly used transformation of commodity prices (Lucia and Schwartz 2002), but it

can be employed with negative prices. Unlike Schneider (2012), we apply this transformation to

the despiked price rather than directly to the price to avoid unrealistically large spikes. We model

the dynamics of the mean reverting component as the AR(1) process ξ′t = (1−κ)ξ′t−1+σ′ϵ′t, where

κ is the speed of mean reversion, σ′ is the volatility, and each ϵ′t is an i.i.d. standard normal error

term. This process reverts to zero, because we include the mean of the despiked and transformed

price process, sinh−1 (P ′
t (ξ

′
t)/ℓ), in the seasonality function. We specify this function as f ′(t) =

γ3 +
∑11

i=1 γ
4iD4i

t +
∑5

j=1 γ
5jD5j

t +
∑23

h=1 γ
6hD6h

t , where γ3 is a constant, and γ4i, γ5j, and γ6h are

the respective coefficients of the dummy variables D4i
t , D

5j
t , and D6h

t that equal one if period t is

in month i, week day j, and hour h, respectively, and zero otherwise.

We calibrate our price model to the 2005-2008 NYISO New York City zone real time prices

presented in Figure 4. In addition to mean reversion and a substantial number of positive and

negative spikes, this price series exhibits 1,898 negative prices during four years (420,768 = (365×

3+366)×24×12 five-minute intervals), corresponding to a frequency of 0.45%. Albeit not apparent

in Figure 4, this data displays seasonality at various time scales. Our chosen price model includes

all these features.

In our price model, the despiked price in period t+ 1, P ′
t+1(ξ

′
t+1), conditional on the value of

the mean-reverting component in period t, ξ′t, has a Johnson SU distribution (Johnson 1949) with

mean

E[P ′
t+1(ξ

′
t+1)|ξ′t] =−ℓ exp

[
0.5(σ′)2

]
sinh [−ξ′t(1−κ)− f ′(t+1)] , (17)

where sinh is the hyperbolic sine function. Expression (17) plays an important role in our calibra-

tion.
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Figure 4 NYISO New York City zone real time prices observed during the 2005-2008 time frame
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Given a value of ℓ, we use the following iterative approach to calibrate our price model (below

the index t indicates a historical data observation period, each of which is included in set T H :=

{1,2, . . . ,420,768}).

Step 0. Initialize the time series of estimated spike sizes, {Ĵt}t∈T H, to zero.

Step 1. Remove the identified spikes from the time series of observed prices, {Pt}t∈T H, to

obtain a time series of estimated despiked prices, {P̂′
t := Pt− Ĵt}t∈T H.

Step 2. Deseasonalize the time series of transformed estimated despiked prices, {sinh−1(P̂′
t/ℓ)}t∈T H,

to obtain the time series of estimated mean-reverting components, {ξ̂′t := sinh−1(P̂′
t/ℓ)− f̂ ′(t)}t∈T H,

where the calibrated seasonality function f̂ ′(t) is obtained by applying linear regression to the former

time series.

Step 3. Calibrate the mean-reverting process parameters κ and σ′ on the {ξ̂′t}t∈T H time

series using simple linear regression (Lucia and Schwartz 2002) to obtain their estimates κ̂ and σ̂′.

Step 4. Identify spikes for each t ∈ T H \ {1}. If Ĵt+1 is zero, tag price Pt+1 as containing a

spike if |P̂′
t+1−E[P ′

t+1(ξ
′
t+1)|ξ̂′t]|, where the expectation is given by (17), is no less than a prespecified

constant (50 in our calibration). If Pt+1 contains a spike, update Ĵt+1 to P̂′
t+1 − E[P ′

t+1(ξ
′
t+1)|ξ̂′t].

Replace P̂′
t+1 with E[P ′

t+1(ξ
′
t+1)|ξ̂′t] and ξ̂′t+1 with sinh−1

(
E[P ′

t+1(ξ
′
t+1)|ξ̂′t]/ℓ

)
− f̂ ′(t+1).

Step 5. Stop if the parameter estimates for the AR(1) process and seasonality function have

converged. Otherwise return to step 1.

We obtain a value for the estimate ℓ̂ of the scale parameter ℓ by minimizing the sum of the absolute

deviations between each of the first two (unconditional) predicted and observed price moments.

Tables 3 and 4 report the estimated parameters of the AR(1) process and the transformation

function and of the seasonality function, respectively. Our estimate λ̂ of the spike probability is

0.0751, which we obtain as the ratio of the number of identified spikes and the number of periods in
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Table 3 Estimated parameters of the price AR(1) process and the transformation function

AR(1) process Transformation function

κ̂ σ̂′ ℓ̂
0.1176 0.1770 30

Table 4 Estimated parameters of the price seasonality function

γ̂3 1.3778
i

1 2 3 4 5 6 7 8 9 10 11
γ̂4i (·10−3) 9 25.9 40.1 57 −28.9 83.5 214.6 177.4 6.4 −5.3 −72.1

j
1 2 3 4 5 6

γ̂5j (·10−3) −40.2 −97.6 −5.6 14 20.9 33
h

1 2 3 4 5 6 7 8 9 10 11 12
γ̂6h (·10−3) −73.5 −118.8 −177.6 −194 −153.8 −79.2 36.6 90.6 186.1 265.7 302.6 324.8

h
13 14 15 16 17 18 19 20 21 22 23

γ̂6h (·10−3) 320.7 317.1 302.7 295.5 310.1 356 337.7 339.9 313.1 243.7 145.7

Figure 5 Empirical spike distribution (λ̂= 0.0751)
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our data set. We construct the empirical spike distribution displayed in Figure 5 based on the spikes

extracted by our calibration procedure. The MAE of our calibrated model is $7.63/MWh, whereas

the average of the observed prices is $85.12/MWh. The first two (unconditional) price moments

estimated on a set of 10,000 simulated price paths differ from their respective values computed on

our data by less than 1%. The frequency of negative prices observed on these simulated paths is

0.44%, which compares favorably with the empirical frequency of 0.45%.

We obtain a value of 0.0147 for the correlation between the residuals of the hourly wind speeds

and the averages of the residuals of the despiked electricity prices for each hour from our calibration.

Therefore, for both simplicity and consistency with our model set up, we assume the wind speed

and price AR(1) processes are independent in our analysis. However, our calibrated parameters
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of the seasonality functions capture deterministic relationships between the observed wind speeds

and electricity prices, e.g., strong wind and low electricity price at night.

6.3. Computational approach

We employ a discretized version of our MDP (7) to carry out our computations.

We discretize the calibrated five-minute wind speed AR(1) process as a period-independent grid

that includes the integers between 0 and 25 (m/s), which is the cut-off speed of the GE 1.5-77

turbine. To obtain the transition probability between any two such levels on this grid, we minimize

the squared difference between the first two moments of the discretized wind speed model and

those of its continuous counterpart. Given a wind speed value, which is the sum of the values of its

AR(1) and seasonality components, we obtain its corresponding available energy amount applying

linear interpolation to the production curve displayed in Table 1.

Based on the method in Jaillet et al. (2004), we discretize the calibrated price AR(1) process as

a trinomial lattice with five-minute time increments that specifies attainable despiked price levels

and their transition probabilities for each stage, assuming the market price of risk (Duffie 1992) is

zero. With ξ′0 = 0 the constructed lattice converges to 11 levels in the 6-th stage.

We discretize the feasible inventory set using a grid with 120CS/200 + 1 evenly spaced levels

between 0 and the storage energy capacity CS (200 MWh is the smallest value of this parameter

that we consider). We use a set of feasible action pairs that is consistent with the feasible inventory

and available wind energy sets to compute both our optimal policy and the inventory-change part

of the H1 policy. The initial state S0 ≡ (x0,w0, ξ
′
0, J0) is (0,4.69,0,0), where 4.69 MWh corresponds

to a wind speed of 7.238 m/s.

Appendix A includes the details of the computation of both the optimal policy and the H1,

H2, H3, and H3+ policies for our discretized MDP. We evaluate the H2, H3, and H3+ policies by

applying (8) to this version of our MDP (computing the optimal policy and the H1 policy also

yields their respective values).

6.4. Performance of heuristics

Our study is based on an extensive set of instances. In addition to the six values for each of the

storage energy capacity and the transmission capacity discussed in §6.1, we consider six values for

the frequency of negative price occurrence, namely, 0.05%, 1%, 5%, 10%, 15%, and 20%, which we

obtain by varying the probability of observing negative spikes. Thus, the total number of examined

instances is 63 = 216.

We assess the performance of all the heuristics based on the optimality gaps of their policies in

the initial stage and state (i.e., V ∗
0 (S0)−V π

0 (S0) with π ∈{H1, H2, H3, H3+}) and their run times.
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Table 5 Percentage optimality gaps of all the heuristics across all the instances

H1 H2 H3 H3+
Average 0 2.86 11.39 6.05
Min 0 0.95 2.95 2.53
Max 0 6.49 22.37 11.16

Table 6 CPU minutes required to compute the optimal policy and to execute all the heuristics across all the

instances

Optimal policy H1 H2 H3 H3+
Average 588.42 33.41 0.24 8.55 8.76
Min 57.68 9.30 0.03 2.12 2.22
Max 1449.65 60.33 0.90 15.88 16.57

Note. All experiments are run on a computer with Intel(R) Core(TM) i7-3770K 3.40GHz CPU and 8 GB RAM.

Tables 5 and 6 display these metrics, respectively. Table 6 excludes the time taken to evaluate the

H2, H3, and H3+ policies.

The H1 policy is optimal on each considered instance. Furthermore, it continues to be optimal

in the following two additional sets of experiments: When more negative prices are obtained by

reducing the values of the negative hourly seasonality coefficients, i.e., decreasing r̂6h, for h =

1, . . . ,23, in Table 4 if r̂6h < 0 instead of increasing the probability of negative spike occurrence,

and when we vary the estimated mean-reversion parameter, κ̂. (More precisely, the optimality gap

of the H1 policy is less than 0.006% on all these instances; we attribute the presence of such a

positive, yet very small, gap to numerical approximations in our computations.) Thus, while the

H1 policy is not optimal in general, as illustrated in Online Appendix D, our results suggest that

in practice the optimal policy may be very similar, if not identical, to the H1 policy. On average it

takes about 10 hours and 33 minutes, respectively, to compute the optimal policy and to execute

H1; i.e., running H1 is on average about 17 times faster than obtaining the optimal policy. This

difference occurs because the computation of the H1 policy avoids looping over the possible values

of one component of the state and one decision variable compared to that of the optimal policy

(see Appendices A.1 and A.2).

The H2 policy is near optimal, with average and maximal optimality gaps equal to 2.86% and

6.49%, respectively, and outperforms the H3 and H3+ policies, whose respective average-and-

maximal optimality gaps are 11.39%-and-22.37% and 6.05%-and-11.16%. (The optimality gaps of

the H2 policy are always smaller than those of the H3 policy, and exceed those of the H3+ policy

in only 1 out of the 216 instances by 0.5%.) The H2 policy outperforms the H3 policy and, overall,

the H3+ policy because whereas the latter two policies make decisions solely based on the price

information in the current period, the H2 policy also uses knowledge of the inventory level of the



24

storage facility. Our results suggest that even if it has a stationary nature, the H2 policy is a

reasonable approximation for the optimal policy, which in general is non-stationary. On average,

H2, which takes less than 15 seconds to execute, is faster than H1 by two orders of magnitude

and both the H3 and H3+ policies, which require about 9 minutes of run time, by one order of

magnitude. Even though the H2 policy depends on more parameters than the H3 and H3+ policies

do, the algorithm that we employ to compute the former policy becomes frequently trapped in

local optima when applied in the context of the latter two policies. Therefore, we must resort to

using a slower method to obtain them (see Appendix A.3).

6.5. The effect of negative prices on the value added by and environmental benefit
of storage

We define the value added by storage as the difference between the optimal value of the WST

system, V ∗
0 (S0), and the one of the wind energy production and transmission (WT) system that

has no storage (NS) and thus optimally sells as much generated energy as possible when prices

are positive and curtails otherwise, V NS
0 (S0). Figure 6 displays these values and their difference as

functions of the frequency of occurrence of negative prices for 600 MWh storage energy capacity

and 120 MW transmission capacity, which are typical when expressed as ratios of the generation

capacity (Denholm and Sioshansi 2009, Pattanariyankool and Lave 2010; other choices of these

parameters yield qualitatively similar results). When this frequency increases from 0.5% to 20%,

the optimally managed WST and WT systems, respectively, gain and lose progressively more value,

so that the value added by storage rises rapidly, from 30.4% to 102.4% of V NS
0 (S0).

To obtain some understanding for this finding, we break down the total expected optimal

amount of stored electricity,
∑

t∈T E [(a∗
t (St)/α)

+|S0], into the total expected optimally (i) pur-

chased energy net of the transmission loss,
∑

t∈T E [(a∗
t (St)/α− g∗t (St))

+|S0], and (ii) stored gener-

ation,
∑

t∈T E [(a∗
t (St)/α)

+|S0] minus the previous quantity (all these metrics are expressed before

applying the charging loss). The left panel of Figure 7 presents the values of these two components

for the same configuration that underlies Figure 6: The first one increases whereas the second

one decreases when negative prices become more frequent. Intuitively, it is more valuable to store

electricity purchased at a negative price than wind energy generated for free. This analysis sug-

gests that the increase in the incremental value brought about by storage stems from the increased

amount of purchased energy when negative prices occur more frequently.

We also examine how the frequency of negative prices affects the environmental benefit of storage,

measured as the total expected reduction of the amount of curtailed wind energy that storage

enables:
∑

t∈T E[(wt− gNS
t (St))− (wt− g∗t (St))|S0] =

∑
t∈T E[g∗t (St)− gNS

t (St)|S0], where gNS
t (St) is
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Figure 6 The optimal WST and WT system values (left panel) and their difference (right panel) for 600 MWh

storage energy capacity and 120 MW transmission capacity
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Figure 7 The two components of the total expected optimal stored electricity (left) and the reduced curtailment

(right) for the setup of Figure 6

0.5% 1.0% 5.0% 10.0% 15.0% 20.0%
0

500

1000

1500

2000

2500

3000

3500

Frequency of negative price occurrence

M
W

h

 

 

0.5% 1.0% 5.0% 10.0% 15.0% 20.0%
0

500

1000

1500

2000

2500

3000

3500

Frequency of negative price occurrence

M
W

h

 

 
Purchased electricity
Stored generation

Reduced curtailment

the optimal generation in stage t and state St of the WT system. The right panel of Figure 7

shows that reduced curtailment decreases when negative prices become more numerous, because

energy acquired in the market increasingly displaces from storage energy generated by the wind

farm. Transportation inefficiencies render this use of storage environmentally unappealing even

if the purchased energy were as “clean” as wind energy. This issue would be more acute if this

replacement involved “dirty” energy obtained from sources such as coal or natural gas. Thus, the

environmental benefit of storage erodes as negative electricity prices occur more frequently in our
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model.

7. Conclusions

We examine the merchant management of a WST system modeled as an MDP with stochastic wind

energy availability and electricity prices. Characterizing any optimal policy structure in the general

case when these prices can be negative is difficult. However, we establish that a stage- and partial-

state-dependent-threshold policy is optimal in the special case when they are always positive. We

extend it as an approximation to the general case and further simplify it to a price-dependent-

threshold policy. H1 and H2 use these policies, respectively. Whereas H1 requires approximately

solving a stochastic dynamic program, H2 relies on a derivative-free optimization algorithm embed-

ded in Monte Carlo simulation of the stochastic processes of our MDP. We analyze the performance

of these and other known heuristics. We also investigate the value added by and the environmental

benefit of storage.

Using data-calibrated models of wind speed and electricity prices that allow us to compute an

optimal policy and execute H1, we find that the H1 policy is optimal, even when these prices are

negative 20% of the time. This observation suggests that this policy may be optimal for most, if not

all, practical instances, even though we present a pathological counter example. Executing H1 is

much faster than computing an optimal policy explicitly: Their respective average computational

requirements are 33 minutes and 10 hours. On average, the optimality gap of the H2 policy equals

2.86% and H2 has a run time of 15 seconds. Hence, despite the suboptimality of its policy, H2

is more practical than H1. Further, the H2 policy generally outperforms two variants of simple

and known policies that rely exclusively on the electricity price, because it depends on inventory

availability too. It is also faster to compute than these policies. When we amplify the frequency of

negative price occurrence, the optimal amount of purchased electricity rises and the curtailment

reduction drops, so that storage increases the value of the WST system but its own environmental

benefit shrinks.
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A. Details about the computation of the considered policies

We describe the computation of the optimal policy in §A.1, the H1 policy in §A.2, and the H2, H3, and H3+

policies in §A.3, based on the discretization of our MDP (7) discussed in §6.3.

A.1. Computation of the optimal policy

We denote by XD, WD, and J D the discretized inventory, available wind energy, and spike price component

sets, respectively, and by Nx, Nw, and NJ their respective cardinalities. We let the discretized set of values

of the mean-reverting price component and its cardinality in stage t be Ξ′D
t and Nξ′,t. We define Nξ′ as

the maximum of all the Nξ′,t’s. For each inventory and available wind energy pair (xt,wt) ∈ XD ×WD, to

reduce the effect of the approximation induced by the discretization, we include in the discretized action set

ΨD(xt,wt) all the action pairs from set Ψ(xt,wt) that satisfy at = xt+1−xt for some xt+1 ∈XD and gt ∈WD,

as well as the extreme points of set Ψ(xt,wt).

We compute the optimal policy and value function by standard backward dynamic programming on the

discretized state space ∪t∈TXD×WD×Ξ′D
t ×J D. To speed up computation and save memory, we exploit the

state independence of the spike price component by evaluating for each partial state (xt+1,wt+1, ξ
′
t+1) in stage

t+1 the function V
∗
t+1(xt+1,wt+1, ξ

′
t+1) := E

[
V ∗
t+1(xt+1,wt+1, ξ

′
t+1, Jt+1)

]
, where expectation is with respect

to the discrete distribution of the random variable Jt+1. With a slight abuse of notation, we then evaluate

the version U∗
t (xt+1,wt, ξ

′
t) of the stage t optimal continuation function as δE

[
V

∗
t+1(xt+1,wt+1, ξ

′
t+1) |wt, ξ

′
t

]
,

where expectation is with respect to the discrete joint distribution of the random variables wt+1 and ξ′t+1

conditional on the known pair (wt, ξ
′
t). Given how we model the evolution of Jt, U

∗
t (xt+1,wt, ξ

′
t, Jt) is identical

to U∗
t (xt+1,wt, ξ

′
t). We thus equivalently express (9) as

max
(at,gt)∈ΨD(xt,wt)

{R(at, gt, ξ
′
t, Jt)+U∗

t (xt + at,wt, ξ
′
t)}. (18)

When solving (18), a next-stage inventory level xt + at may not belong to the set XD due to the inclusion

in set ΨD(xt,wt) of the extreme points of set Ψ(xt,wt). In this case, we linearly interpolate the values of

the considered version of the optimal continuation function for the two inventory levels in set XD that are

adjacent to this next-stage inventory level. When multiple action pairs are optimal, we select the one that

results in the largest next-stage inventory level.

The number of stages and states in the backward recursion that computes the optimal policy and value

function is of order O(TNxNwNξ′NJ). The number of feasible action pairs in each stage and state is of

order O(NxNw). The total number of operations taken to execute this backward recursion is thus of order

O(TNxNwNξ′NJ) + O(TNxN
2
wNξ′) + O(TN2

xN
2
wNξ′NJ) = O(TN2

xN
2
wNξ′NJ), where the first, second, and

third terms in this sum correspond to computing V
∗
t+1, obtaining U∗

t from V
∗
t+1 (given that ξ′t transitions to

only three possible values of ξ′t+1 on the trinomial lattice), and exhaustively searching for the optimal action

pair, respectively.

From stage 6 onward, when the mean-reverting price lattice converges to 11 levels, the number of states

per stage for the largest value of the storage energy capacity that we consider is (120×9+1)×26×11×68 =
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21,023,288. We thus keep in memory the values of the optimal next-stage value function only when evaluating

the optimal value function in the current stage; i.e., we discard them when this computation is complete.

Likewise, we do not keep in memory the optimal actions that we compute.

A.2. Computation of the H1 policy

We determine the threshold functions of the H1 policy using Algorithm 1, a backward recursion that exploits

the structure of this policy discussed in §5.1. We perform this recursion based on the same discretized state

and inventory action spaces used to compute the optimal policy, but directly use the generation decision

rules of this policy to determine the energy production action.

Algorithm 1 Computation of the H1 policy

1: V
H1

T (xT ,wT , ξ
′
T )← 0, ∀(xT ,wT , ξ

′
T )∈XD×WD×Ξ′D

T

2: for each t= T − 1, · · · ,0 do

3: for each (wt, ξ
′
t)∈WD×Ξ′D

t do

4: for each xt+1 ∈XD do

5: UH1
t (xt+1,wt, ξ

′
t)← δE

[
V

H1

t+1(xt+1,wt+1, ξ
′
t+1) |wt, ξ

′
t

]
.

6: end for

7: end for

8: for each (wt, ξ
′
t, Jt)∈WD×Ξ′D

t ×J D do

9: Compute X
(ν),H1
t (wt, ξ

′
t, Jt) for ν ∈ {1,2,3,4} by applying exhaustive search to (13)-(16) with

UH1
t (yt,wt, p⃗t) replaced by UH1

t (yt,wt, ξ
′
t).

10: end for

11: for each (xt,wt, ξ
′
t, Jt)∈XD×WD×Ξ′D

t ×J D do

12: Determine (aH1
t (xt,wt, ξ

′
t, Jt), g

H1
t (xt,wt, ξ

′
t, Jt)) as explained in §5.1.

13: V H1
t (xt,wt, ξ

′
t, Jt) ← R(aH1

t (xt,wt, ξ
′
t, Jt), g

H1
t (xt,wt, ξ

′
t, Jt), ξ

′
t, Jt) + UH1

t (xt +

aH1
t (xt,wt, ξ

′
t, Jt),wt, ξ

′
t).

14: end for

15: for each (xt,wt, ξ
′
t)∈XD×WD×Ξ′D

t do

16: V
H1

t (xt,wt, ξ
′
t)←E

[
V H1
t (xt,wt, ξ

′
t, Jt)

]
.

17: end for

18: end for

We define the functions UH1
t (xt+1,wt, ξ

′
t) and V

H1

t+1(xt+1,wt+1, ξ
′
t+1) for the H1 policy analogously to how

we specify the versions of these functions for the optimal policy. Specifically, for each stage t we evaluate

the function UH1
t (xt+1,wt, ξ

′
t) as δE

[
V

H1

t+1(xt+1,wt+1, ξ
′
t+1) |wt, ξ

′
t

]
and the function V

H1

t+1(xt+1,wt+1, ξ
′
t+1)

as E
[
V H1
t+1(xt+1,wt+1, ξ

′
t+1, Jt+1)|wt+1, ξ

′
t+1

]
in lines 3-7 and 15-17, respectively, of Algorithm 1. We compute

each function X
(ν),H1
t (wt, ξ

′
t, Jt), with ν ∈ {1,2,3,4}, via an exhaustive search in lines 8-10 of this algorithm.
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We determine the action pair (aH1
t (xt,wt, ξ

′
t, Jt), g

H1
t (xt,wt, ξ

′
t, Jt)) in stage t and state (xt,wt, ξ

′
t, Jt) based

on the structure of the H1 policy discussed in §5.1 and evaluate the value function V H1
t (xt,wt, ξ

′
t, Jt) in this

stage and state in lines 11-14 of Algorithm 1. We use linear interpolation when needed.

The total number of operations of Algorithm 1 is of order O(TNxNwNξ′NJ) + O(TNxN
2
wNξ′) =

O(TNxNwNξ′(NJ +Nw)), which amounts to a reduction of order O(NxNwNJ/(NJ +Nw)) compared to the

computation of the optimal policy.

A.3. Computation of the H2, H3, and H3+ policies

We use the following three steps to obtain the parameters of the H2 policy:

Step 1. Generate N sample paths of the available wind energy and electricity price from stage 1 through

T − 1, starting from the stage 0 values w0 and ξ0 (recall that the price spike component random variables

are i.i.d.).

Step 2. For each sample path n, use the Nelder-Mead simplex method, a derivative-free nonlinear opti-

mization method (Lagarias et al. 1998), to choose values for the decision variables P S,n and X(ν),n for

ν ∈ {1,2,3,4} with the goal of maximizing the total discounted cash flows that result from using the deci-

sion rules of the H2 policy corresponding to these variables on this sample path. Specifically, we apply the

Nelder-Mead method to the following sample path model:

max
PS,n,(X(ν),n,ν∈{1,2,3,4})

∑
t∈T

δtR(AH2
t (SH2,n

t ;P S,n,X(ν),n, ν ∈ {1,2,3,4}), ξ′,nt , Jn
t ),

s.t.P S,n ≥ 0,0≤X(1),n ≤X(2),n ≤X(3),n ≤X(4),n ≤CS,

where SH2,n
t , ξ′,nt , and Jn

t are analogous to SH2
t , ξ′t, and Jt but are specific to sample path n; we make explicit

the dependence of the H2 policy decision rules on the decision variables; and we evaluate the objective

function using a backward recursion that relies on the discretized inventory set (see §6.3). Let P S,n,NM and

X(ν),n,NM, with ν ∈ {1,2,3,4}, denote the solution for this model found by the Nelder-Mead algorithm (we

employ the one available in the GNU Scientific Library2).

Step 3. Set P S and X(ν), with ν ∈ {1,2,3,4}, equal to the averages of the values P S,n,NM’s and

X(ν),n,NM’s for ν ∈ {1,2,3,4} obtained across the N sample paths, i.e., P S =
∑N

n=1P
S,n,NM/N and X(ν) =∑N

n=1X
(ν),n,NM/N, with ν ∈ {1,2,3,4}.

In our numerical study we let N be equal to 5, because using larger values for N yields marginally smaller

average optimality gaps (given the strong seasonality in the calibrated wind speed and electricity price

models) but much longer execution times. It is impossible to perform a computational complexity analysis of

our approach to determine the parameters of the H2 policy because a convergence proof for the Nelder-Meld

simplex method is not available for a general function of two or more variables (Lagarias et al. 1998).

We use steps analogous to Steps 1-3 above to determine the values of the parameters of the H3 and

H3+ policies, except that we rely on exhaustive search based on a grid of possible values rather than the

Nelder-Mead algorithm, because it frequently becomes trapped in local minima for these policies.

2 https://www.gnu.org/software/gsl/
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Online Appendix
Appendix A: Proof of Proposition 1

We use Lemma 1 in the proof of Proposition 1.

Lemma 1. For each t∈ T ∪{T} and St ∈ S, it holds that |V ∗
t (St)|<∞.

Proof: When t = T the claimed property is true as V ∗
T (ST ) ≡ 0. For each stage t ∈ T the quan-

tity sold or bought cannot exceed CT/τ . Thus, it holds that |V ∗
t (St)| ≤

∑T−1
k=t
|E[Pk(p⃗k)|p⃗t]|CT/τ ≤∑T−1

k=t
E[|Pk(p⃗k)||p⃗t]C

T/τ <∞, where the last inequality follows from Assumption 1. �
We convert model (9) to an equivalent one with linear constraints. We define the following new decision

variables:

• aIGt : Amount of inventory injection from energy generated;

• aIBt : Amount of inventory injection from energy bought;

• aWt : Amount of inventory withdrawal;

• gIt : Amount of energy generated and injected into the storage facility; and

• gSt : Amount of energy generated for sale;

We define Ψ1(xt,wt) as the set of decision variable tuples (aIGt , aIBt , aWt , gIt , g
S
t ) in R5

+ that satisfy

gSt +βaWt ≤CT, (19)

aIBt /(ατ)≤CT, (20)

aIGt = αgIt , (21)

gIt + gSt ≤wt, (22)

aWt ≤ xt, (23)

aIGt + aIBt ≤CS−xt, (24)

aWt ≤CD, (25)

aIGt + aIBt ≤CC, (26)

gIt , g
S
t , a

IG
t , aIBt , aWt ≥ 0, (27)

where (19) and (20) are the transmission capacity constraints; (21) expresses the relationship between the two

decision variables aIGt and gIt ; (22) is the wind energy availability constraint; (23) is the available inventory

constraint; (24) is the storage space constraint; (25) and (26) are the discharging and charging capacity

constraints, respectively; and (27) imposes the nonnegativity of all the decision variables.

Consider the model

max
(aIG

t ,a IB
t ,a W

t ,g It,g
S
t )∈Ψ 1 (xt,wt)

{
Pt(p⃗t)(g

S
t +βaWt )τ −Pt(p⃗t)a

IB
t /(ατ)

+ δE
[
V ∗
t+1(xt + aIGt + aIBt − aWt ,wt+1, p⃗t+1)|St

]}
. (28)

We show that this model is equivalent to the one on the right hand side of (9). To do so we only need to

establish that a feasible solution for model (28) that has both aWt and aIGt + aIBt strictly positive cannot

be optimal. Suppose there exists an optimal solution (aIG
t , aIB

t , aW
t , gI

t , g
S
t ) to (28) such that aW

t > 0 and

aIG
t + aIB

t > 0. Consider the following cases:

1



2

• Case 1: If aIB
t > 0, let ǎIG

t := aIG
t , ǎIB

t := aIB
t − ∆(1), ǎW

t := aW
t − ∆(1), ǧI

t := gI
t , and ǧS

t = gS
t , where

∆(1) ∈ (0,min{aIB
t , aW

t }].

• Case 2: If aIB
t = 0 and aIG

t > 0, let ǎIG
t := aIG

t −∆(2), ǎIB
t := aIB

t , ǎW
t := aW

t −∆(2), ǧI
t := gI

t −∆(2)/α, and

ǧS
t := gS

t +∆(2)β, where ∆(2) ∈ (0,min{aIG
t , aW

t }].

It is easy to verify that (ǎIG
t , ǎIB

t , ǎW
t , ǧI

t , ǧ
S
t ) belongs to Ψ1(xt,wt) and yields a value of the objec-

tive function in (28) that in Case 1 is larger than and in Case 2 is equal to the one corresponding to

(aIG
t , aIB

t , aW
t , gI

t , g
S
t ), which contradicts the assumed optimality of (aIG

t , aIB
t , aW

t , gI
t , g

S
t ). Therefore, the quan-

tity V ∗
t (xt,wt, p⃗t) equals the optimal objective function value of model (28).

We establish the claimed property using induction. This property holds trivially when t = T , given

that V ∗
T (xT ,wT , p⃗T ) ≡ 0. Make the induction hypothesis that it is also true for each stage k + 1

through T − 1. Consider stage k. Fix (wk, p⃗k) ∈ W × P. The set C := {(xk, a
IG
k , aIBk , aWk , gIk, g

S
k )|xk ∈

X , (aIGk , aIBk , aWk , gIk, g
S
k ) ∈ Ψ1(xk,wk)} is convex, because X ≡ [0,CS] is convex and Ψ1(xk,wk) is polyhe-

dral and, hence, convex. The first two terms of the objective function of model (28) are linear in (gSk , a
W
k )

and aIBk , respectively, and they do not depend on xk, a
IG
k , and gIk. The induction hypothesis implies that

V ∗
k+1

(
xk + aIGk + aIBk − aWk ,wk+1, p⃗k+1

)
is jointly concave in (xk, a

IG
k , aIBk , aWk ) for each given wk+1 and p⃗k+1.

It follows that δE
[
V ∗
k+1

(
xk + aIGk + aIBk − aWk ,wk+1, p⃗k+1

)
|wk, p⃗k

]
is jointly concave in (xk, a

IG
k , aIBk , aWk ).

Further, this function is independent of gIk and gSk . Thus, the objective function of model (28) is jointly

concave on C. The set Ψ1(xk,wk) is nonempty for every xk ∈X . We have V ∗
k (Sk)<∞ by Lemma 1. Theorem

A.4 in Porteus (2002) implies that V ∗
k (Sk) is concave on X . By the principle of mathematical induction, the

claimed property holds for each stage 0 through T .

Appendix B: Proof of Proposition 2

We use Lemma 2 in the proof of Proposition 2.

Lemma 2. Suppose Pt(p⃗t)> 0 for each t ∈ T and p⃗t ∈ P. For each t ∈ T ∪ {T}, wt ∈W, and p⃗t ∈ P, the

function V ∗
t (xt,wt, p⃗t) is non-decreasing in xt on X .

Proof: We use an induction argument. The claim holds trivially for t= T as V ∗
T (xT ,wT , p⃗T )≡ 0. Make the

induction hypothesis that the claimed property is also true for stages k+1 through T −1. Consider stage k.

Fix (wk, p⃗k)∈W×P. Pick x
(1)
k and x

(2)
k ∈X such that x

(1)
k <x

(2)
k . We show that for every action (a

(1)
k , g

(1)
k )

in Ψ(x
(1)
k ,wk), we can find an action (a

(2)
k , g

(2)
k ) in Ψ(x

(2)
k ,wk) such that the value of the objective function in

(9) corresponding to (x
(2)
k ,wk, p⃗k, a

(2)
k , g

(2)
k ) is no lower than the one associated with (x

(1)
k ,wk, p⃗k, a

(1)
k , g

(1)
k ),

from which it follows that V ∗
k (x

(1)
k ,wk, p⃗k)≤ V ∗

k (x
(2)
k ,wk, p⃗k). We consider the following cases:

1) If a
(1)
k < 0, let (a

(2)
k , g

(2)
k ) be equal to (a

(1)
k , g

(1)
k ). This pair belongs to Ψ(x

(2)
k ,wk) given that the solution

(a
(1)
k , g

(1)
k ) satisfies constraints (1)-(4) and (6), which do not depend on xk, as well as (5), because a

(1)
k is

negative, and x
(2)
k is no smaller than x

(1)
k . The equivalence R(a

(1)
k , g

(1)
k , p⃗k)≡R(a

(2)
k , g

(2)
k , p⃗k), the inequality

x
(2)
k + a

(2)
k >x

(1)
k + a

(1)
k , and the induction hypothesis applied to stage k+1 imply that the evaluation of

the objective function in (9) at (x
(2)
k ,wk, p⃗k, a

(2)
k , g

(2)
k ) is no lower than the one at (x

(1)
k ,wk, p⃗k, a

(1)
k , g

(1)
k ).
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2) If 0≤ a
(1)
k ≤ x

(2)
k −x

(1)
k , let (a

(2)
k , g

(2)
k ) be equal to (0, (g

(1)
k −a

(1)
k /α)+). Given (a

(1)
k , g

(1)
k )∈Ψ(x

(1)
k ,wk), the

pair (a
(2)
k , g

(2)
k ) belongs to Ψ(x

(2)
k ,wk): (1), (3), (5), and (6) hold given that a

(2)
k = 0; (4) is satisfied since

g
(2)
k = (g

(1)
k −a

(1)
k /α)+ ≤ g

(1)
k ≤wt; (2) is true both if g

(2)
k = (g

(1)
k −a

(1)
k /α)+ = 0 and if g

(2)
k = g

(1)
k −a

(1)
k /α>

0 (because g
(2)
k − a

(2)
k /α= g

(2)
k = g

(1)
k − a

(1)
k /α≤CT , where the inequality is due to the fact (a

(1)
k , g

(1)
k ) ∈

Ψ(x
(1)
k ,wk)). The inequalities R(a

(2)
k , g

(2)
k , p⃗k)≥R(a

(1)
k , g

(1)
k , p⃗k) and x

(2)
k +a

(2)
k ≡ x

(2)
k ≥ x

(1)
k +a

(1)
k and the

induction hypothesis applied to stage k+1 imply that the evaluation of the objective function in (9) at

(x
(2)
k ,wk, p⃗k, a

(2)
k , g

(2)
k ) is no lower than the one at (x

(1)
k ,wk, p⃗k, a

(1)
k , g

(1)
k ).

3) If x
(2)
k −x

(1)
k <a

(1)
k , we consider the following two possibilities:

• If g
(1)
k > (x

(2)
k − x

(1)
k )/α, let (a

(2)
k , g

(2)
k ) be equal to (a

(1)
k − (x

(2)
k − x

(1)
k ), g

(1)
k − (x

(2)
k − x

(1)
k )/α). Given

(a
(1)
k , g

(1)
k ) ∈ Ψ(x

(1)
k ,wk), the pair (a

(2)
k , g

(2)
k ) belongs to Ψ(x

(2)
k ,wk): (1) and (2) are true because g

(2)
k −

a
(2)
k /α= g

(1)
k −a

(1)
k /α; (3) holds since a

(2)
k > 0; (4) is satisfied given that g

(2)
k = g

(1)
k − (x

(2)
k −x

(1)
k )/α≤ g

(1)
k ;

(5) is fulfilled as a result of 0<a
(2)
k = a

(1)
k − (x

(2)
k −x

(1)
k )≤CS−x

(1)
k − (x

(2)
k −x

(1)
k ) =CS−x

(2)
k ; and (6) is

valid by virtue of 0< a
(2)
k < a

(1)
k . The equivalences R(a

(1)
k , g

(1)
k , p⃗k)≡R(a

(2)
k , g

(2)
k , p⃗k), which follows from

the conditions g
(2)
k −a

(2)
k /α= g

(1)
k −a

(1)
k /α, a

(1)
k > 0, a

(2)
k > 0, and x

(2)
k +a

(2)
k ≡ x

(2)
k +a

(1)
k − (x

(2)
k −x

(1)
k )≡

x
(1)
k + a

(1)
k imply that the evaluation of the objective function in (9) at (x

(2)
k ,wk, p⃗k, a

(2)
k , g

(2)
k ) equals the

one at (x
(1)
k ,wk, p⃗k, a

(1)
k , g

(1)
k ).

• If g
(1)
k ≤ (x

(2)
k − x

(1)
k )/α, let (a

(2)
k , g

(2)
k ) be equal to (a

(1)
k − (x

(2)
k − x

(1)
k ),0). Given (a

(1)
k , g

(1)
k ) ∈

Ψ(x
(1)
k ,wk), the pair (a

(2)
k , g

(2)
k ) belongs to Ψ(x

(2)
k ,wk): (2) is satisfied since a

(2)
k > 0 and g

(2)
k = 0; (3) holds

because a
(2)
k > 0; (4) is valid given that g

(2)
k = 0; (5) is true as a consequence of 0< a

(2)
k = a

(1)
k − (x

(2)
k −

x
(1)
k )≤ CS − x

(1)
k − (x

(2)
k − x

(1)
k ) = CS − x

(2)
k ; (6) is fulfilled as a result of 0< a

(2)
k < a

(1)
k ; and (1) stands

by virtue of (a
(2)
k /α − g

(2)
k )/τ = a

(2)
k /α/τ = (a

(1)
k − (x

(2)
k − x

(1)
k ))/α/τ = a

(1)
k /α/τ − (x

(2)
k − x

(1)
k )/α/τ ≤

a
(1)
k /α/τ − g

(1)
k /τ ≤ CT (where the last inequality follows from (a

(1)
k , g

(1)
k ) ∈ Ψ(x

(1)
k ,wk)). The inequal-

ity R(a
(2)
k , g

(2)
k , p⃗k) ≥ R(a

(1)
k , g

(1)
k , p⃗k), which results from (a

(2)
k /α− g

(2)
k )/τ ≤ a

(1)
k /α/τ − g

(1)
k /τ , a

(1)
k > 0,

a
(2)
k > 0, and the equivalence x

(2)
k +a

(2)
k ≡ x

(2)
k +a

(1)
k − (x

(2)
k −x

(1)
k )≡ x

(1)
k +a

(1)
k imply that the evaluation

of the objective function in (9) at (x
(2)
k ,wk, p⃗k, a

(2)
k , g

(2)
k ) is no lower than the one at (x

(1)
k ,wk, p⃗k, a

(1)
k , g

(1)
k ).

By the principle of mathematical induction, the claimed property holds for each stage t∈ T ∪{T}. �
Part (i). Fix (wt, p⃗t) ∈W ×P. If τ = 1 then X

(1)
t =X

(2)
t , because the objective functions in (10) and (11)

are identical. Similarly, if αβτ = 1 then X
(2)
t =X

(3)
t . Suppose τ ̸= 1 and αβ ̸= 1. The inequalities

−Pt(p⃗t)X
(1)
t /(ατ)+U∗

t (X
(1)
t )≥−X(2)

t Pt(p⃗t)/(ατ)+U∗
t (X

(2)
t ),

−Pt(p⃗t)X
(2)
t τ/α+U∗

t (X
(2)
t )≥−X(1)

t Pt(p⃗t)τ/α+U∗
t (X

(1)
t ),

where U∗
t (·) is used in lieu of U∗

t (·,wt, p⃗t), hold given the definitions of X
(1)
t and X

(2)
t , respectively. It follows

that

Pt(p⃗t)[τ/α− 1/(ατ)]X
(1)
t ≥ Pt(p⃗t)[τ/α− 1/(ατ)]X

(2)
t ,

which implies X
(1)
t ≤X

(2)
t because Pt(p⃗t)[τ/α− 1/(ατ)]< 0. The inequalities

−Pt(p⃗t)τX
(2)
t /α+U∗

t (X
(2)
t )≥−Pt(p⃗t)τX

(3)
t /α+U∗

t (X
(3)
t ),
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−Pt(p⃗t)βτX
(3)
t +U∗

t (X
(3)
t )≥−Pt(p⃗t)βτX

(2)
t +U∗

t (X
(2)
t ),

which are true due to the definitions of X
(2)
t and X

(3)
t , respectively, lead to

Pt(p⃗t) [βτ − τ/α]X
(2)
t ≥ Pt(p⃗t) [βτ − τ/α]X

(3)
t ,

which yields X
(2)
t ≤X

(3)
t since Pt(p⃗t) [βτ − τ/α]< 0.

Part (ii). Fix (wt, p⃗t)∈W×P. We denote the maximal quantity that one can generate by ḡt :=min{wt,C
T+

min{CS − xt,C
C}/α}. We establish that g∗

t (St) = ḡt by showing that for every feasible action (at, gt) with

gt < ḡt we can find a feasible pair (a′
t, g

′
t) with g′

t > gt that yields a value for the objective function in (9) no

smaller than the one associated with (at, gt). We define

q(at, gt) :=


−(at/α− gt)/τ, if at >αgt,

τ(gt− at/α), if 0≤ at ≤ αgt,

τ(gt−βat), if at < 0,

which expresses the negative of the amount bought in the first case and the quantity sold in the other two

cases associated with the feasible action (at, gt). We consider the following cases:

1) If q(at, gt) < 0, we define ∆ := min{wt − gt,−q(at, gt)} and (a′
t, g

′
t) := (at, gt + ∆). This action pair is

feasible. Because it buys less than (at, gt) does, the valuation at (a′
t, g

′
t) of the objective function in (9) is

larger than the one at (at, gt).

2) If 0≤ q(at, gt)< CT, we define ∆ := min{wt − gt,C
T − q(at, gt)} and (a′

t, g
′
t) := (at, gt +∆). This action

pair is feasible. Given that it sells more than (at, gt) does, it results in a value of the objective function

in (9) that exceeds the one corresponding to (at, gt).

3) If q(at, gt) =CT, we consider the following cases:

• If at ≥ 0, we define ∆ :=min{wt− gt,min{CS−xt−at,C
C−at}/α}, a′

t := at +α∆, and g′
t := gt +∆.

• If at < 0, we define ∆ :=min{wt− gt,−βat}, a′
t := at +∆/β, and g′

t := gt +∆.

In both cases, the action (a′
t, g

′
t) is feasible. Further, it satisfies both q(a′

t, g
′
t) = q(at, gt) and a′

t >at, so by

Lemma 2 it results in a larger value of the objective function in (9) than (at, gt) does.

Part (iii). Fix p⃗t ∈P. We characterize a∗
t (St) for each of the regions Γ0, Γ1, and Γ2, which partition X ×W.

Region Γ0. Recall that Γ0 ≡
{
(xt,wt)∈X ×W :wt ≥CT +min

{
CS−xt,C

C
}
/α

}
. The quantity g∗

t (St)≡

min
{
wt,C

T +min
{
CS−xt,C

C
}
/α

}
simplifies to CT+min

{
CS−xt,C

C
}
/α and the only feasible inventory

change action is to store the amount by which the optimal generation exceeds the transmission capacity;

that is, a∗
t (St) equals min

{
CS−xt,C

C
}
.

To perform the analysis for regions Γ1 and Γ2, for each pair (xt,wt) ∈X ×W we include in set Y(xt,wt)

the feasible inventory levels yt’s that satisfy (1)-(3) and (5)-(6) with at and gt replaced by yt−xt and g∗
t (St),

respectively (constraint (4) is redundant). We equivalently express the optimization model in (9) as

max
yt∈Y(xt,wt)

{R(yt−xt, g
∗
t (St), p⃗t)+U∗

t (yt,wt, p⃗t)} . (29)

We denote an optimal solution to this model as y∗
t (St). In the ensuing analysis we characterize this quantity.

The difference y∗
t (St)−xt gives a

∗
t (St).
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Region Γ1. Because Γ1 ≡
{
(xt,wt)∈X ×W :CT ≤wt <CT +min

{
CS−xt,C

C
}
/α

}
, the quantity g∗

t (St)

simplifies from min
{
wt,C

T +min
{
CS−xt,C

C
}
/α

}
to wt and at least the excess generation wt−CT must

be injected into storage, so that selling inventory is impossible; that is, the inventory level xt increases by at

least α
(
wt−CT

)
. We consider the model

max
yt∈[xt,min{xt+g ∗t (St),CS}]

{R (yt−xt, g
∗
t (St), p⃗t)+U∗

t (yt,wt, p⃗t)} ,

which ignores both the ability to purchase or sell and the constraints posed by the transmission and charging

capacity limits when the generation action in stage t and state St equals g
∗
t (St). We denote by y⋄,Γ1

t (St) an

optimal solution to this model. Proposition 1 and arguments analogous to the ones that lead to Theorem 1

in Secomandi (2010) imply

y⋄,Γ1

t (St) =

{
min

{
xt +αwt,X

(2)
t

}
if xt ∈

[
0,X

(2)
t −α

(
wt−CT

)]
and α

(
wt−CT

)
≤X

(2)
t ,

xt +α
(
wt−CT

)
otherwise.

It follows from Proposition 1 that if we ignore the buying decision then an optimal solution to model (29)

corresponds to xt modified to attain an inventory level that is as close as possible to y⋄,Γ1

t (St) when considering

the constraints associated with the transmission and charging capacity limits. We express this solution as

y∗,Γ1
t (St). Further taking into account the ability to purchase allows us to obtain y∗

t (St) from y∗,Γ1
t (St). In

particular, if energy can be and is purchased then the optimally generated amount, wt, must be used to

increase the inventory level by αwt. Consequently, we consider the following exhaustive cases:

• If αwt <CC then buying electricity is feasible. We examine the following situations:

—αwt <X
(1)
t , which implies α

(
wt−CT

)
<X

(2)
t :

∗ If xt ∈
[
0,X

(1)
t −αwt

]
then y∗,Γ1

t (St) equals xt + αwt. Proposition 1 implies that optimizing the

purchase decision at this inventory level given the residual charging capacity results in raising this level to

one that is as close as possible to X
(1)
t ; that is, y∗

t (St) is as near as feasible to X
(1)
t . The action a∗

t (St) is thus

min
{
X

(1)
t −xt, α

(
τCT +wt

)
,CC

}
.

∗ If xt ∈
(
X

(1)
t −αwt,X

(2)
t −α

(
wt−CT

)]
then y∗,Γ1

t (St) equals xt +αwt and it follows from Propo-

sition 1 that further considering the ability to buy does not add any benefit. That is, y∗
t (St) coincides with

y∗,Γ1
t (St) and a∗

t (St) is

min
{
X

(2)
t −xt, αwt,C

C
}
=min

{
X

(2)
t −xt, αwt

}
.

∗ If xt ∈
(
X

(2)
t −α

(
wt−CT

)
,CS

]
then y∗,Γ1

t (St) is equal to xt + α
(
wt−CT

)
. By Proposition 1,

y∗
t (St) is identical to y∗,Γ1

t (St) so that a∗
t (St) is α

(
wt−CT

)
.

—αwt ≥X
(1)
t : Purchasing electricity does not add any value so that y∗

t (St) = y∗,Γ1
t (St). The cases to

consider are

∗ If α
(
wt−CT

)
<X

(2)
t and

· xt ∈
[
0,X

(2)
t −α

(
wt−CT

)]
then a∗

t (St) equals

min
{
X

(2)
t −xt, αwt,C

C
}
=min

{
X

(2)
t −xt, αwt

}
;
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· xt ∈
(
X

(2)
t −α

(
wt−CT

)
,CS

]
then a∗

t (St) equals α
(
wt−CT

)
.

∗ If α
(
wt−CT

)
≥X

(2)
t then a∗

t (St) equals α
(
wt−CT

)
.

• If αwt ≥ CC then buying electricity is infeasible and, hence, y∗
t (St) = y∗,Γ1

t (St). The only situations to

analyze are

—α
(
wt−CT

)
<X

(2)
t :

∗ If xt ∈
[
0,X

(2)
t −α

(
wt−CT

)]
then a∗

t (St) equals

min
{
X

(2)
t −xt, αwt,C

C
}
=min

{
X

(2)
t −xt, αwt

}
.

∗ If xt ∈
(
X

(2)
t −α

(
wt−CT

)
,CS

]
then a∗

t (St) equals α
(
wt−CT

)
.

—α
(
wt−CT

)
≥X

(2)
t : a∗

t (St) equals α
(
wt−CT

)
.

Region Γ2. Given Γ2 ≡
{
(xt,wt)∈X ×W : 0≤wt <CT

}
, the quantity g∗

t (St) reduces from

min
{
wt,C

T +min
{
CS−xt,C

C
}
/α

}
to wt. We examine the model

max
yt∈[0,min{xt+g ∗t (St),CS}]

{R (yt−xt, g
∗
t (St), p⃗t)+U∗

t (yt,wt, p⃗t)} ,

which neglects both the decision to buy and the transmission, charging, and discharging capacity constraints

when the generation action in stage t and state St is g
∗
t (St). We let y⋄,Γ2

t (St) be an optimal solution to this

model. Applying Proposition 1 and proceeding in a manner analogous to the proof of Theorem 1 in Secomandi

(2010) yield

y⋄,Γ2

t (St) =


min

{
xt +αwt,X

(2)
t

}
if xt ∈

[
0,X

(2)
t

]
,

xt if xt ∈
(
X

(2)
t ,X

(3)
t

]
,

X
(3)
t if xt ∈

(
X

(3)
t ,CS

]
.

Proposition 1 implies that if we omit the purchase decision then an optimal solution to model (29), which we

denote as y∗,Γ2
t (St), is xt altered to reach an inventory level that is as near as feasible to y⋄,Γ2

t (St) when taking

into account the transmission, charging, and discharging capacity constraints. Given y∗,Γ2
t (St), factoring the

decision to buy into the analysis leads us to find y∗
t (St). Particularly, if energy can be and is acquired from

the market then the optimal generation, wt, must be injected into storage, which increases the inventory

level by αwt. We thus examine the following comprehensive cases:

• If αwt < CC buying electricity is possible. A logic similar to the one used in the case αwt < CC for

the region Γ1 implies that purchasing is valuable if and only if xt ∈
[
0,X

(1)
t −αwt

]
when αwt < X

(1)
t , in

which case y∗
t (St)> y∗,Γ2

t (St), and does not add any value when αwt ≥X
(1)
t , in which case y∗

t (St) = y∗,Γ2
t (St).

Hence, we consider the following possibilities:

—αwt <X
(1)
t :

∗ If xt ∈
[
0,X

(1)
t −αwt

]
then a∗

t (St) equals min
{
X

(1)
t −xt, α

(
τCT +wt

)
,CC

}
.

∗ If xt ∈
(
X

(1)
t −αwt,X

(2)
t

]
then a∗

t (St) equals

min
{
X

(2)
t −xt, αwt,C

C
}
=min

{
X

(2)
t −xt, αwt

}
.

∗ If xt ∈
(
X

(2)
t ,X

(3)
t

]
then a∗

t (St) equals 0.
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∗ If xt ∈
(
X

(3)
t ,CS

]
then a∗

t (St) equals max
{
X

(3)
t −xt,

(
wt−CT

)
/β,−CD

}
.

—αwt ≥X
(1)
t :

∗ If xt ∈
[
0,X

(2)
t

]
then a∗

t (St) equals

min
{
X

(2)
t −xt, αwt,C

C
}
=min

{
X

(2)
t −xt, αwt

}
.

∗ If xt ∈
(
X

(2)
t ,X

(3)
t

]
then a∗

t (St) equals 0.

∗ If xt ∈
(
X

(3)
t ,CS

]
then a∗

t (St) equals max
{
X

(3)
t −xt,

(
wt−CT

)
/β,−CD

}
.

• If αwt ≥CC buying electricity is not possible so that y∗
t (St) = y∗,Γ2

t (St). Hence, we analyze the following

cases:

—If xt ∈
[
0,X

(2)
t

]
then a∗

t (St) equals

min
{
X

(2)
t −xt, αwt,C

C
}
=min

{
X

(2)
t −xt, αwt

}
.

—If xt ∈
(
X

(2)
t ,X

(3)
t

]
then a∗

t (St) equals 0.

—If xt ∈
(
X

(3)
t ,CS

]
then a∗

t (St) equals max
{
X

(3)
t −xt,

(
wt−CT

)
/β,−CD

}
.

Appendix C: Proof of Proposition 3

If Pt(p⃗t)> 0 then the inequalities X
(1),H1
t ≤X

(2),H1
t ≤X

(3),H1
t can be established using the proof of part (i) of

Proposition 2 with X
(ν)
t replaced by X

(ν),H1
t for ν ∈ {1,2,3}. The inequality X

(3),H1
t ≤X

(4),H1
t follows from

the inequalities

−Pt(p⃗t)βτX
(3),H1
t +UH1

t (X
(3),H1
t )≥−Pt(p⃗t)βτX

(4),H1
t +UH1

t (X
(4),H1
t ),

UH1
t (X

(4),H1
t )≥UH1

t (X
(3),H1
t ),

which are implied by the definitions of X
(3),H1
t and X

(4),H1
t , respectively.

If Pt(p⃗t) = 0 then X
(1),H1
t =X

(2),H1
t =X

(3),H1
t =X

(4),H1
t because the objective functions are identical in

(13), (14), (15), and (16).

If Pt(p⃗t)< 0 then the validity of the claimed property can be shown using an analogous logic.

Appendix D: Suboptimality of the H1 policy

We show by example that the H1 policy can fail to be optimal. For simplicity, we assume the storage energy

capacity (space) is one (CS = 1); the charging and discharging (power) capacities are both equal to one

(i.e., they are never constraining); the generation capacity is one (CG = 1); the transmission capacity is 0.4

(CT = 0.4); and there are no charging and transmission losses (α= τ = 1) but there is a 50% discharging loss

(β = 0.5). The time horizon consists of four periods (T = 4). The price in the first period equals −0.3. The

prices in the last three periods follow two paths, labeled as A and B, respectively: (4,3,8) with probability

47% and (−3.6,−5,−2) with probability 53%. The available wind energy is deterministic in each period and

its corresponding path for the four periods is (0,0.3,0.5,0). The discount factor is one (δ= 1).

We compute optimal value functions for stages 1 through 3 for the two price paths. We include the price

path labels A and B as superscripts in our optimal value function notation, also omitting the exogenous
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Figure 7 The optimal and H1 stage 0 inventory targets for the example in Appendix D
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state components, i.e., the available wind energy and price, from this and related notation. These functions

are

V ∗,A
3 (x3) =

{
4x3 if x3 ∈ [0,0.8)
3.2 if x3 ∈ [0.8,1]

, V ∗,B
3 (x3) =

{
0.8 if x3 ∈ [0,0.6)
2− 2x3 if x3 ∈ [0.6,1]

,

V ∗,A
2 (x2) =

{
2.3+3x2 if x2 ∈ [0,0.7)
4.4 if x2 ∈ [0.7,1]

, V ∗,B
2 (x2) =


2.8 if x2 ∈ [0,0.2)
3.2− 2x2 if x2 ∈ [0.2,0.6)
5(1−x2) if x2 ∈ [0.6,1]

,

V ∗,A
1 (x1) =


3.5+3x1 if x1 ∈ [0,0.7)
4.2+2x1 if x1 ∈ [0.7,0.9)
6 if x1 ∈ [0.9,1]

, V ∗,B
1 (x1) =


3.84− 2x1 if x1 ∈ [0,0.2)
4.16− 3.6x1 if x1 ∈ [0.2,5/9)
3.16− 1.8x1 if x1 ∈ [5/9,1]

.

Thus, the optimal stage 0 continuation function is

U∗
0 (y0) = 0.47V ∗,A

1 (y0)+ 0.53V ∗,B
1 (y0) =



3.6802+0.35y0 if y0 ∈ [0,0.2)
3.8498− 0.498y0 if y0 ∈ [0.2,5/9)
3.3198+0.456y0 if y0 ∈ [5/9,0.7)
3.6488− 0.014y0 if y0 ∈ [0.7,0.9)
4.4948− 0.954y0 if y0 ∈ [0.9,1)

.

Given the initial inventory level x0, the optimal stage 0 inventory change action solves

max{−(−0.3)0.5a01(a0 ≤ 0)− (−0.3)a01(at > 0)+U∗
0 (x0 + a0)} (30)

s.t. (−0.5a0− 0.4)1(a0 ≤ 0)≤ 0, (a0− 0.4)1(a0 > 0)≤ 0,−x0 ≤ a0 ≤ 1−x0.

The left panel of Figure 7 shows the dependence on x0 of the resulting inventory target, i.e., the ending

inventory level ignoring the transmission capacity constraint: 0.2 for x0 ∈ [0,79/303) ∪ [0.84,1] and 0.9 for

x0 ∈ [79/303,0.84).

The H1 continuation function in stage 0 coincides with the optimal one, i.e., UH1
0 (y0)≡U∗

0 (y0). We use it

to compute the following thresholds (X
(2),H1
0 is not relevant as P0 < 0):

X
(1),H1
0 =argmax

y 0 ∈[0,1]

{
UH1

0 (y0)− (−0.3)y0
}
= 0.9,

X
(3),H1
0 =argmax

y 0 ∈[0,1]

{
UH1

0 (y0)− (−0.3)0.5y0
}
= 0.2,
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X
(4),H1
0 =argmax

y0 ∈[0,1]

{
UH1

0 (y0)
}
= 0.2.

The quantity Z0 is the largest inventory level x0 in [0.2, 0.9] such that the two action pairs (min{0.9 −

x0,0.4,1},0) = (min{0.9−x0,0.4},0) and (max{0.2−x0,−0.8,−1},0) = (0.2−x0,0) give the same evaluation

of the right hand side of (8) for π= H1. Depending on whether a candidate value z0 for Z0 satisfies 0.9−z0 <

0.4 or 0.9− z0 ≥ 0.4, z0 solves

−0.5(−0.3)(0.2− z0)1(0.2− z0 ≤ 0)+UH1
0 (0.2) =−(−0.3)(0.9− z0)1(0< 0.9− z0 < 0.4)+UH1

0 (0.9)

or

−0.5(−0.3)(0.2− z0)1(0.2− z0 ≤ 0)+UH1
0 (0.2) =−(−0.3)(0.4)1(0.9− z0 ≥ 0.4)+UH1

0 (z0 +0.4).

The solutions to these equalities are 0.84 and 79/303, respectively, so that Z0 equals 0.84. The right panel

of Figure 7 displays the H1 stage 0 inventory target: 0.9 for x0 ∈ [0,0.84) and 0.2 for x0 ∈ [0.84,1].

The optimal and H1 stage 0 inventory targets differ if x0 belongs to [0,79/303). The largest corresponding

H1 policy optimality gap is 1.87%. The H1 policy would be optimal if the objective function in (30) were

jointly concave in (x0, a0), whereas it is not.
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