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Abstract—Network monitoring is an important way to en-
sure the security of hosts from being attacked by malicious
attackers. One challenging problem for network operators
is how to distribute the limited monitoring resources (e.g.,
intrusion detectors) among the network to detect attacks
effectively, especially when the attacking strategies can be
changing dynamically and unpredictable. To this end, we adopt
Markov game to model the interactions between the network
operator and the attacker and propose an adaptive Markov
strategy (AMS) to determine how the detectors should be
placed on the network against possible attacks to minimize the
network’s accumulated cost over time. The AMS is guaranteed
to converge to the best response strategy when the attacker’s
strategy is fixed (rationality), converge to a fixed strategy
under self-play (convergence) and obtain a payoff no less than
that under the precomputed Nash equilibrium strategy of the
Markov game (safety). The experimental results show that the
AMS can achieve better protection for the network compared
with both previous approaches based on the prediction of
attack paths and Nash equilibrium strategy.

I. Introduction
An important way of securing a network to leverage net-

work monitoring to protect hosts from being attacked from
malicious attackers [7]. Among various ways of network
monitoring, one important technique is to place malware
detectors in the network to proactively detect possible ma-
licious packages and take necessary actions accordingly.

To determine how the detectors should be placed, the
typical approach in network security is to predict all possible
attacking paths in terms of attack tree [9] or attack graph
[17], [13], and then place detectors to cover all possible
predicted paths. However, the coverage of all possible attack
paths might require too much monitoring, which would
incur significant deployment cost and significantly decrease
network performance due to the overhead of monitoring.
Thus, it is vital to identify manageably small number of
strategic points in the network to install malware detectors.
Besides, two major characteristics can be usually observed
in practical attacks. First, the way that attackers choose their
attacking targets (e.g., Distributed denial-of-service (DDoS)
attack) is usually not random, but a deliberate and calculated
process [15]. Instead of naively selecting a target node and
carelessly launching the attack, the attackers usually are
well-prepared beforehand by studying the potential target

nodes, investigating the possible vulnerabilities and evaluat-
ing the risk of being detected for different attacking options.
Second, the attacks can be “multi-stage” [3], i.e., the attacker
may penetrate node A first, and then use it as a platform to
penetrate another node B, which is in turn used to penetrate
node C.

The targeted and multi-stage nature of the attacker’s
behaviors makes it necessary for the network operator (or
defender) to determine its detector placement strategy in a
strategic way instead of taking into consideration all possible
attacking paths. One natural solution is to adopt Markov
game-theoretic framework to model and analyze the strategic
interaction between them. Both defender and attacker can
be considered as individually rational entities interested in
minimizing (or maximizing) the long-term damage to the
network. A number of work [16], [20], [8] investigated
the detector placement problem by modeling the interaction
between the attacker and defender as a Markov game and
proposed using the Nash equilibrium (NE) solution as the
deploying strategy. The rationale for adopting a NE solution
lies in the stable property of NE, e.g., neither the attacker nor
the defender can do better by choosing a different strategy
under a NE.

However, always choosing a NE strategy to deploy the
detectors is not necessarily optimal for the defender, since
it depends on the assumption that the attacker would always
choose the same NE strategy to attack the network, which
might not hold for the following reasons: (1) computing a
NE relies on a perfect knowledge of the network; however, in
reality, the attacker might not have the capability to collect
enough information to construct an accurate model of the
network or compute the NE attacking strategy beforehand;
(2) since attacking is performed by intelligent human attack-
ers, it is likely that they would choose their attacking strategy
based on their intuition or past experience, which might
deviate from the NE strategy; (3) even if the attacker follows
a NE strategy, it is unclear whether they would coordinate on
the same pair of NE strategy if multiple equilibria coexist.
Miscoordination might incur significant unnecessary cost for
the defender.

To handle these challenges, in this paper, we model the
interactions between the network operator and the attacker
as a Markov game and propose an adaptive Markov strategy



(AMS) to adaptively determine how to place the detectors
on the network to minimize the network’s cost based on the
estimation of the attacker’s behaviors. The AMS is guar-
anteed to converge to the best response strategy when the
attacker’s strategy is fixed (rationality) and always obtain a
payoff no less than that under the Nash equilibrium strategy
of the Markov game (safety) no matter how the attacker
may behave. We also empirically evaluate the performance
of AMS and the results demonstrate that it leads to better
protection for the network compared with both approaches
based on the prediction of attack paths and Nash equilibrium
strategy.

The rest of the paper is organized as follows. In Section
II, we give the problem description and the Markov game
modeling of the problem. Section III presents the AMS strat-
egy and analyzes its properties. In Section IV, we present
the experimental results of the AMS strategy and compare
it with previous approaches. Lastly Section V concludes the
paper.

II. Malware Detector Placement Problem:
Markov Game Modeling

In this work, we investigate the malware detector place-
ment problem, where an attacker, from compromised nodes
(e.g., hosts and routers), launches a strategic and multi-
stage attack to take control of target nodes of interest (e.g.,
database servers); the defender (e.g., network operator), on
the other hand, places malware detectors in strategic points
(i.e., routers in the path of attack) to prevent the attack
measures taken by the adversaries.

Formally, given a network consisting of a set G of nodes,
we assume that the set GT ⊂ G of nodes are potential target
nodes and the set GC ⊂ G (GC ∩ GT = ∅) of nodes are
compromised nodes controlled by the attacker and served
as the starting penetration points. The attacker may start
the attack by sending malicious packages from any already
compromised node to any target node. For any malicious
package traveling through any node k, it can be detected
with probability p if a detector is placed on this node
(detection success rate). If malicious packages successfully
bypass the detectors and reach a target node, we assume that
the target node is compromised with probability q (attack
success rate). Given the attacker and defender’s actions,
the actual travel paths of malicious packages through the
network vary depending on the current routing configuration.
This indirectly influences the outcome of the attack, i.e.,
whether the target nodes can be successfully compromised.
The routing configuration of the network is usually changed
in a dynamic way based on the outcome of previous stage.
The attacker’s goal is to maximize the overall damage to the
network by compromising as many target nodes as possible,
and the defender suffers equivalently from the gain of the
attacker.

We model the interactions between the attacker and the

defender as a zero-sum Markov game as follows,
• S: a finite set of system states. We abstract the routing

tables used in the network determining package de-
livering paths as the system states. Formally we have
S = {RT1, ..., RTk}, where RTi (1 ≤ i ≤ k) denotes
one routing table (one network routing configuration).

• N : a finite number of players. In our setting, there are
two players (defender and attacker), i.e., N = {d, a}.

• Aa and Ad: the set of actions for each player. An action
of the attacker corresponds to its attacking plan, i.e.,
the pairs of its attacking starting node and the targeting
node. For example, an action of the attacker can be
denoted as 〈ni, tj〉, ni ∈ GC , tj ∈ GT . An action of the
defender corresponds to the specification of the set of
nodes that the detectors are placed on. As we mentioned
previously, in real world, due to various constraints
such as deployment cost and performance overhead, it
is not feasible to apply network monitoring measure on
all possible nodes. Thus the defender’s action set only
consists of all the feasible actions subject to its resource
constraint.

• Pr: transition probability function. Given the current
state s and the joint action (d, a), Pr(d, a, s, s′) models
the probability that the network state (routing configu-
ration) transits from s to s′ when the defender and the
attacker perform actions d and a, respectively.

• Ra and Rd: payoff function of the players. Given
s ∈ S, a ∈ Aa, and d ∈ Ad, Rd(s, d, a) and Ra(s, d, a)
return the immediate expected payoff of the defender
and attacker respectively when the joint action (d, a)
is performed under state s. Intuitively, the attacker’s
payoff is determined by the cost of launching attack
plus the benefit from successfully compromising certain
nodes. The defender’s payoff Rd(s, d, a) is simply
the negation of Ra(s, d, a), since we assume that the
defender benefits equally from the attacker’s cost and
vice versa. Let us use at to denote the set of target
nodes in the attacker’s action a, and formally we have

Ra(s, d, a) =
∑
t∈at

[f(s, d, a, p, q, t)× c1(t)+

f ′(s, d, a, p, q, t)× c2(t)],

(1)

where p and q are detection success rate and attack suc-
cess rate respectively, and f(s, d, a, p, q, t) is the over-
all probability of compromising target node t, which
can be obtained through simulation; f ′(s, d, a, p, q, t) =
1−f(s, d, a, p, q, t); and c1(t) and c2(t) are the damage
to the system if node t is compromised and the attack’s
loss if an attack to node t fails, respectively.

We define a player’s strategy φ as a function that given
some state s, returns a probability distribution over the set
of actions that the player may perform in state s. The long-
term goal of the defender (or attacker) is to maximize its



overall payoff along the repeated interactions between them.
We adopt the γ-discounted criterion and define the overall
payoff V () of a player as the sum of the expected discounted
payoff of each round over an infinite number of interactions.
Formally for each starting state s, its corresponding overall
payoff is defined as follows,

Vi(s) =

∞∑
t=0

γtE[Ri(st, dt, at)|s0 = s],where i ∈ {d, a}

(2)

III. Adaptive Markov Strategy
In the previous section, we have modeled the interactions

between an attacker and a network defender (operator) as
a Markov game. The question for defender is how to place
the limited number of detectors in the network in a strategic
way to maximize its own long-term payoff. A commonly
adopted approach is employing a Nash equilibrium (NE)
strategy: that is, both the attacker and the defender play a
strategy that would maximize their individual payoffs given
none of them changes its strategy [16], [20], [8].

However, simply adopting NE strategy might not be the
optimal solution due to a number of reasons mentioned pre-
viously. An effective detector placement strategy should be
adaptive, i.e., it should be able to learn the attacker’s strategy
and dynamically compute the best response strategy to the
attacking strategy in terms of where the detectors should be
placed. However, assuming that an attacker may change its
strategy arbitrarily is neither useful nor practical. Besides,
putting too much restriction on the attacker’s behavior might
make the defending strategy not very useful in practice since
the attacker is outside of our control.

In this paper, we define the following three criteria which
are desirable for an effective detector placement strategy to
satisfy in the context of Markov game [1], [14].

Rationality - A rational detector placement strategy must
eventually learn to play the best response strategy if the
attacker eventually converges to a fixed strategy. Intuitively,
satisfying this property guarantees that the overall network
damage can be minimized as long as it is possible to achieve.

Convergence - The detector placement strategy must
always converge to a fixed strategy under self-play. This
property considers the case when the attacker might be as
intelligent as the defender and employ the same adaptive
strategy. We can see that under self-play, if both rationality
and convergence properties are satisfied, the defender and
attacker will eventually converge to a NE. This means that
the maximum cost to the network can be bounded to the
cost under a NE, even when the attacker is as intelligent as
the defender.

Safety - The average overall payoff V (s) of the defender
for each state s in the limit should have certain minimum
guarantees, no matter how the attacker may behave. We

require that it should be no less than the corresponding
payoff under the precomputed NE of the Markov game.

A number of learning strategies have been proposed
to satisfy some of the above properties in the multiagent
learning literature, however, all of them suffer from either
of the following two problems: 1) long learning periods are
required before converging to the best response strategy,
thus resulting in significant losses during learning period
and failing to make timely response [2], [14]; 2) some
strategies are designed for repeated game setting only and
also do not satisfy all the above properties [4], [6]. Thus we
cannot directly apply the existing learning strategies into
the malware detector placement problem. In this paper, we
propose an adaptive Markov strategy (AMS) for Markov
games which satisfies all the above three properties. The
AMS strategy can be considered as an extension of the
AWESOME strategy [4] from repeated games setting to
Markov game setting.

A. Overview of AMS and Action Space Reduction

The high-level idea of the AMS algorithm is explained
as follows. It begins by assigning an NE strategy as the
defending strategy, and observes the behavior of the attacker
for some fixed number of rounds (called a period). If the
estimated strategy of the attacker is consistent with its NE
strategy, then AMS keeps the original NE as the defending
strategy. Otherwise, it computes a new best response strat-
egy to play against its current estimation of the attacker’s
strategy. After playing the new strategy for another period of
rounds, AMS checks whether the attacker’s strategy remains
the same as the one from the previous period; if not, this
implies that the previous estimation of the attacker’s strategy
was incorrect, and so AMS restarts the whole process again
by retreating to the original equilibrium strategy.

The action spaces of the players have significant influ-
ence on the learning efficiency since the increase of action
space would necessarily increase the computational cost
of calculating the best-response strategy. Thus it would
be desirable to reduce unnecessary (or unrealistic) actions
from the original action space beforehand by taking into
consideration the problem domain’s characteristics to reduce
the computational cost of the AMS strategy.

Defender - The defender’s action space can be reduced
by taking into consideration the network topology charac-
teristics. For example, if a node is the only one connecting
one subnetwork consisting of one or more target nodes
with the rest of the network, we can always put a detector
on that node to detect any possible attack towards those
target nodes within that subnetwork. Thus any action con-
sisting of placing some detectors on some nodes within that
subnetwork can be removed from the action space. From
the game-theoretic perspective, those actions correspond to
(weakly) dominated actions and can be safely removed
without affecting the analytical results [18].



Attacker - In practical attacks (e.g., DDoS attack), to
successfully compromise the node, it usually requires co-
ordinated attacks from multiple nodes towards the same
target node [10]. Similar to the defender’s case, those
actions consisting of attacking target nodes from a single
node controlled by the attacker are (weakly) dominated and
thus can be safely removed without affecting the analytical
results. Thus any action violating the above constraint can
be removed from the attacker’s action space.

B. AMS: Adaptive Markov Strategy

Before introducing the AMS algorithm in details, we need
to explain a few terms first. First, to determine whether the
attacker is employing the precomputed NE or any other
stationary strategy, we define the distance between two
stationary strategies to compare whether they are the same
or not.

Definition 1. The distance Distance(φ1, φ2) between two
stationary strategy φ1 and φ2 is:

Distance(φ1, φ2) = max |φ1(s, a)− φ2(s, a)|, ∀a ∈ As, s ∈ S
(3)

where As is the action space at state s and S is the
state space, and φ1(s, a) and φ2(s, a) is the probability
that action a is played at state s for strategy φ1 and φ2
respectively.

Second, given two strategies φ1 and φ2, we define the
value V (s, φ1, φ2) of playing strategy φ1 against strategy
φ2 under state s, which is defined as the sum of the
discounted expected payoff obtained over infinite number
of interactions.

Definition 2. The value V (s, φ1, φ2) of playing strategy φ1
against strategy φ2 under state s is defined as follows,

V (s, φ1, φ2) =R(s, φ1(s), φ2(s))+

δ
∑
s∈S

Pr(φ1(s), φ2(s), s, s′)V (s′, φ1, φ2)

(4)

where δ is the discounting factor reflecting the relative
importance of future payoffs and Pr(φ1(s), φ2(s), s, s′) is
the probability that the system state transits from s to
s′ given that the players choose actions φ1(s) and φ2(s)
respectively. We can construct one equation for V-value of
each state s ∈ S following Definition 2, and thus the value
of each state can be calculated by solving a system of |S|
linear equations using techniques such as iterative methods
[5].

The AMS algorithm (Algorithm 1) takes place over
consecutive periods (where each period is some number
of rounds). Initially, the AMS begins by playing the pre-
computed NE strategy for the initial period N0 (Line 5)
(described in details later) and estimates the strategy of the
attacker based on the actions taken in this period (Line 7 to

9). If the distance between the estimated strategy hcurra and
the NE strategy π∗a of the attacker is larger than the given
threshold (line 13 - 14), the attacker is considered playing
a non-NE strategy, and the first while-loop is terminated by
setting APPE to False. After that, AMS computes the best
response strategy φ′d (described in details later) against the
current estimated strategy hcurra of the attacker based on the
last period’s interaction (Line 16). Then AMS first checks
whether the the attacker’s stately is unchanged in previous
two consecutive rounds by comparing the estimated strategy
hcurra and hpreva of the attacker (Line 17). If changed, AMS
continues adopting the precomputed NE strategy (Line 18);
otherwise, AMS checks whether for every state s ∈ S, the
difference between the V-value of φ′d against the hcurra (see
Definition 2) and that of φd is larger than the given threshold
2|A||S|εt+1

s µ (where |A||S| represents the total number of
pure strategies of the Markov game and µ is the maximum
payoff difference between the AMS player’s best and worse
outcomes among all states). If true, the current NE defending
strategy φd is replaced by a more optimal strategy φ′d (Line
19-20).

At the end of the each following period, AMS checks
whether the attacker’s stately is indeed unchanged by com-
paring the estimated strategy hcurra and hpreva of the attacker
in the current and preceding periods (Line 25 - 27). If the
distance between these two is larger than the given threshold
εts, it indicates that the opponent is not playing according
to the estimated strategy hpreva , and the AMS will restart
by breaking from the second while loop (APS = False).
Otherwise, the AMS recomputes a best response strategy
φ′d based on the last period’s interaction, and employs φ′d
as its strategy if it is more optimal than φd (Line 19-20).
This overall process repeats as indicated by the outer Repeat
loop. Note that we also check the empirical strategy of
the AMS strategy (Line 12-14 and 25-27) to ensure the
synchronization when both players adopt AMS strategy.

The remaining question is how the parameters of the AMS
algorithm should be adjusted, which is described as follows.

Definition 3. A schedule of adjusting the parameters
{εte, εts, N t} is valid if

• εte, ε
t
s and εtc are decreased monotonically and converge

to zero eventually.
• the value of N t is increased monotonically at the end

of each period t to infinity.
• Πt∈{1,2,...}(1 − AS

1
Nt(εt+1

s )2
) > 0, where AS is the

total number of actions of the defender summed over
all states.

Compute Nash Equilibrium strategy of Markov Game

Since the Markov game modeling the interaction between
attacker and defender is a zero-sum Markov game (the
sum of the attacker and defender’s payoffs is always 0),
the maxmin/minmax strategy of the Markov game for each



Algorithm 1: Description of AMS
1 Compute a NE strategy (π∗i , ∀i ∈ {d, a}), initialize t = 0 ;
2 repeat
3 Initialize hprevi , hcurri to 0, ∀i ∈ {d, a};
4 s = s0, APS = True, APPE = True;
5 Set defender strategy φd to be the NE strategy

(φd = π∗d);
6 while APPE = True do
7 for r : 0 to N t do
8 Play(φd(s));
9 Update(hcurri ), ∀i ∈ {d, a};

10 hpreva = hcurra ;
11 t := t+ 1;
12 for each player i ∈ {d, a} do
13 if Distance(hcurri , π∗i ) > εte then
14 APPE = False;

15 while APS = True do
16 φ′d := BestResponseStrategy(hcurra );
17 if Distance(hcurra , hpreva ) > εtc then
18 φd = π∗d ;

19 else if
V (s, φ′d, h

curr
a ) > V (s, φd, h

curr
a ) + 2|A||S|εt+1

s µ,
∀s ∈ S then

20 φd = φ′d;

21 for r : 0 to N t do
22 Play(φd(s));
23 Update(hcurri ), ∀i ∈ {d, a};
24 t := t+ 1;
25 for each player i ∈ {d, a} do
26 if Distance(hcurri , hprevi ) > εts then
27 APS = False;

28 hprevi = hcurri , ∀i ∈ {d, a};
29 until;

player is equivalent with its corresponding Nash equilibrium
strategy [18]. Thus we only need to compute the min-
max/maxmin strategy profile of the Markov game instead.
We first define the Q-value Qd(s, d, a) of the defender as
its expected long-term value starting at state s by choosing
action d (the attacker chooses action a) and both players
choose the minmax strategy thereafter. Formally we can
have,

Qd(s, d, a) = Rd(s, d, a) + δ
∑
s′∈S

Pr(d, a, s, s′)Vd(s
′) (5)

where Pr(s, d, a, s′) is the transition probability from state
s to state s′ under the joint action (d, a), δ is the discounting
factor, and Vd(s

′) is the long-term expected payoff of the
defender if both players always choose their corresponding
maxmin strategy. The value of Vd(s) can be defined based
on the Qd(s, a, d) as follows,

Vd(s) = max
φd(s)∈Π(Ad)

min
a∈Aa

∑
d∈Ad

Qd(s, d, a)φd(s, d) (6)

where Π(Ad) is the set of all the probability distributions
(mixed strategies) over the action set Ad of the defender.

The value of Vd and Qd can be solved based on the
generalization of the value iteration technique [19], which
is omitted due to space limitation. The defender’s maxmin
strategy is already obtained when we calculate Vd(s) for
each state. We can define Q-value and V-value for the
attacker in a similar way as Equation 5 and 6, and then
compute its corresponding Nash equilibrium strategy.

Calculate the Best-Resonse Strategy in Markov Game

Given the estimated strategy of the attacker, the AMS
strategy needs to compute its best-response strategy in the
Markov game. The way of calculating the best-response
strategy for the defender is similar to that of calculating its
maxmin strategy in Markov game, except that it is based on
the assumption that the attacker is employing the estimated
strategy instead of minimizing the defender’s payoff.

We first define the Q-value Qd(s, d, a) of the defender as
its expected long-term value starting at state s by choosing
action d (the attacker chooses action a), and the attacker
and defender choose its estimated strategy φa and the
best-response strategy against the estimated strategy of the
attacker thereafter. The Q-value function is the same as
Equation 5, except that V ′d(s′) is the long-term expected
payoff of the defender if the attacker and defender choose its
estimated strategy φa and the best-response strategy against
the attacker respectively.

Next, the value of V ′d(s) for any state s can be defined
based on Qd(s, a, d) as follows,

V ′d(s) = max
φd(s)∈Π(Ad)

∑
d∈Ad

(
∑
a∈Aa

Qd(s, d, a)φa(s, a))φd(s, d)

(7)
where Π(Ad) is the set of all the probability distributions
(mixed strategies) over the action set Ad of the defender.

Based on the generalization of the value iteration tech-
nique, we can obtain the best-response strategy for the
defender against the estimated strategy of the attacker by
repeatedly updating the V-values and Q-values in Equation
(5) and (7) respectively until convergence.

C. Properties of the AMS

It can be theoretically proved that the AMS satisfies all
these properties (i.e., rationality, convergence and safety),
which are formalized as the following three theorems:

Theorem 1. (Rationality) Given a valid schedule of adjust-
ing the parameters, if the attacker employs (or converges
to) a fixed attacking strategy, the defender adopting AMS
eventually converges to a best response to the attacker’s
strategy with probability one.

Proof: (Sketch) This theorem can be proved by dividing
it into two parts. First, we prove that with non-zero prob-
ability, the AMS will never restart based on the triangle
inequality and Chebyshev’s inequality theorem. Second, we
prove that the probability that the AMS never restarts
and does not converge to a best response strategy against



the attacker is 0 by continuity and Chebyshev’s inequality
theorem. By proving both parts, we can conclude that the
AMS will converge to a best response against the attacker
with probability 1.

Theorem 2. (Convergence) Given a valid schedule, if both
the defender and attacker employ the AMS, they eventually
converge to a fixed strategy with probability one.

Proof: (Sketch) We prove that the players converge to
a (precomputed) NE strategy (i.e., a fixed strategy) with
probability one. Similar to the proof of Theorem 1 and
using the same technique, we prove this theorem by dividing
it into two parts. First, we prove that with a positive
probability, the AMSs for both players will never restart
and are always within the first while-loop. Second, we prove
that the probability that the AMS strategy never restarts but
does not converge to equilibrium strategy is zero. We omit
the details of the proof due to space constraint.

Theorem 3. (Safety) Given a valid schedule, if the defender
employs the AMS, its average overall payoff for each state
in the limit is guaranteed to be no less than that obtained
under the precomputed NE of the Markov game.

Proof: (Sketch) If the attacker never converges to a fixed
strategy, the defender adopting AMS would restart the outer
repeat-loop for infinite number of times, and also stationary
check (Line 17) would be satisfied eventually infinitely
(N t → ∞). Thus AMS would choose the precomputed NE
strategy infinitely. Based on the definition of a NE and the
property of zero-sum game, its average overall payoff for
each state in the limit will be no less than the corresponding
payoff under the precomputed NE of the Markov game.

IV. Experimental Evaluation
In this section, we evaluate the AMS strategy using a va-

riety of testbed networks and compare with both traditional
approach based on the prediction of attack path [12] and
the approach using NE strategy [16], [20]. The traditional
approach based on attack path prediction determines the
deployment strategy to cover all possible attacking paths as
much as possible (equivalent as solving a graph coloring
problem (GCP)) for each state based on the prediction. The
NE-based approach adopts the NE strategy of the Markov
game model as the defending strategy. The Markov game
model is experimentally obtained following the definitions
in Section II1, and the NE strategy is computed following
Equation 5 and 6. We denote these two approaches as GCP
and NE respectively in the following descriptions.

The attacker’s strategy is unavailable to the defender at
the beginning of each round of attack. We assume that the
attacker may employ any feasible Markov strategy (includ-
ing any NE strategy). The attacker’s strategy is generated
randomly at the beginning of each run of the simulation

1No abstraction and action reduction technique are adopted since the
testbed is relatively simple and thus unnecessary.

Compromised node 1 

Compromised node 2 

Compromised node 3 

Compromised node 4 

    Targeting node 1 

    Targeting node 2 

    Targeting node 3 

    Targeting node 4 

Figure 1: Network with 4 attacker controlled and targeting nodes

to model the diversity and unpredictability of the attacker’s
behaviors [11]. One representative testbed network is shown
in Figure 1 inspired from the Abilene network2, in which
there are four target nodes (in green) and four compromised
nodes (in red). Note that each compromised node may
consist of a number of bots whose activities are synchro-
nized, which can be abstracted as one node. In this testbed
network, we assume that the defender can only deploy at
most two detectors simultaneously in the network to not
significantly degrade the network performance. We compare
the performance of the above three strategies against the
same attacker in two different scenarios in Section IV-A and
IV-B respectively. For each pair of comparison, the results
are obtained averaging over 20 networks with the same set
of nodes as Figure 1 but randomly generated topologies.

A. Case 1: Single pair of attack

In this case, we assume that the attacker only launches
attacks from one controlled node to any single targeting node
each round. Without loss of generality, we assume that the
damage to the network in case of successfully compromising
any target node t is the same, and set c1(t) = 1 and c2(t) =
−1. Both detection success rate p and attack success rate
q are set to 1. For the defender, we consider two different
cases: 1) it can only deploy one detector; 2) it can deploy
two detectors. Figures 2a and 2b show the dynamics of the
average overall payoff of the defender for the above two
cases when it employs the AMS strategy, GCP and NE,
respectively.

From Figures 2a and 2b, we can observe that the defender
using AMS can always obtain the highest overall payoff
with GCP defender ranking the second and the NE defender
ranking last. For NE strategy, it works best only when
the attacker actually employs the same NE strategy as it
expects, while suffers for most cases when the attacker
adopts any non-NE strategy. For GCP defender, it chooses to
deploy detectors to cover as many attacking paths as possible
based on its predication, thus its performance is better than
NE strategy. However, it does not take into consideration

2http://abilene.internet2.edu

http://abilene.internet2.edu
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(a) Case 1: 1 detector de-
ployment (p = 1, q = 1)
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(b) Case 1: 2 detectors de-
ployment (p =1, q = 1)
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(c) Case 1: 1 detector de-
ployment (p = 0.5, q = 1)
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(d) Case 1: 2 detectors de-
ployment (p = 0.5, q = 1)

Figure 2: Averaged overall payoff of the defender over rounds for different defending strategies

the multi-stage feature of the attacking strategy, thus its
defending strategy may not be optimal in the long run.
Also its strategy is fixed and not adaptive to the changes
of the attack’s strategy. Another observation is that better
protection (higher overall payoff) can be achieved when the
number of detectors available is increased from one to two
for all three defending strategies.

Next we consider a more interesting case when detection
becomes more difficult by setting detection success rate
p to 0.5, with other parameters unchanged. In this case,
the optimal selection of which nodes to place the limited
detectors become more important. The performance com-
parison results are shown in Figure 2c and 2d respectively.
Overall similar trends to previous cases (p = 1) can be
observed: AMS > GCP > NE. However, compared
with previous case (p = 1), two main differences are
observed here. First, the expected overall payoff over rounds
of the defender are decreased significantly. For the one
detector case, given the same round, the defender’s payoff is
decreased by approximately 50%. Second, the payoff differ-
ences between the AMS defender and other two strategies
are significantly increased: the AMS defender can obtain
higher payoff than GCP and NE by approximately 20%
and 40% respectively. These observations are reasonable
since reducing detection success rate essentially is equivalent
with reducing the number of effective detectors, and thus it
is expected that the defender would suffer more from the
attacks given the number of detectors unchanged. Besides,
due to the decrease of effective detectors, the selection of
strategic points becomes more critical to prevent target nodes
from being compromised. Therefore, the AMS strategy’s
advantage becomes more obvious in this kind of situations.

B. Case 2: Double pairs of attacks

In this case, we assume that the attacker may launch at-
tacks from two different compromised nodes simultaneously
to any target node(s). For the players’ payoff functions,
we set c1(t) = 1 and c2(t) = −1. We first consider the
case when both the detection success rate p and the attack
success rate q are set to 1. Two different cases are considered
for the defender where it can deploy either one detector
or two detectors, and the results compared with previous

approaches (GCP and NE) are shown in Figure 3a and 3b
respectively. From both figures, we can observe that the
AMS is able to achieve significantly higher overall payoff
for the defender than both CGP and NE approaches. Again
the GCP approach achieves second-best performance and the
NE approach comes last. This observation is similar to what
we found in Case 1 and can be explained in a similar way.

Next we further decrease the values of the detection
success rate p to 0.75 while keeping the attack success
rate unchanged. As explained in Section IV-A, the decrease
of the detection success rate is in essence equivalent with
reducing the number of effective detectors and thus makes
the detector placement problem more difficult. Again two
different cases are considered here in terms of whether the
defender can deploy either one or two detectors. Figures 3c
and 3d show the dynamics of the defender’s expected overall
payoff when it employs AMS, GCP, and NE respectively.

Similar observation as Section IV-A can be found here.
First, given all other parameters unchanged, either decreas-
ing the number of defenders or the detection success rate
would reduce the expected overall payoff of the defender,
and vice versa. Second, for the same number of detec-
tors, reducing the detection success rate would increase
the performance gap between the AMS and the other two
approaches. For example, for the 1-detector deployment case
with p = 1 and q = 1, by using the AMS, the defender’s
expected overall payoff by round 5000 is approximately 2%
and 39% higher than that of the defender using GCP and NE
respectively. In contrast, for the case of p = 0.75 while all
other parameters unchanged, the defender’s payoff using the
AMS becomes 7% and 41% higher than that of the defender
using GCP and NE.

V. Conclusion
In this paper, we tackle the intrusion detector placement

problem by modeling the strategic interaction between the
defender and the attacker as a Markov game, and then
proposed the AMS strategy to dynamically determine the
optimal detector deployment plan. Three desirable properties
can be theoretically guaranteed: rationality, convergence and
safety. Apart from its nice properties, the AMS strategy
is also empirically shown to be more effective than the
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Figure 3: Averaged overall payoff of the defender over rounds for different defending strategies

traditional attacking path prediction based approach and
game-theoretic approach using NE strategy. Besides, from
the practical deployment perspective, the AMS strategy only
needs to recompute its strategy at certain time interval
which is increased gradually, thus enables it to provide
real-time deployment plans. As future work, more extensive
evaluations on practical network testbeds will be performed
to further evaluate the performance of the AMS strategy.
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