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Abstract. Quantitative timing is often explicitly used in systems for
better security, e.g., the credentials for automatic website logon often
has limited lifetime. Verifying timing relevant security protocols in these
systems is very challenging as timing adds another dimension of com-
plexity compared with the untimed protocol verification. In our previous
work, we proposed an approach to check the correctness of the timed
authentication in security protocols with fixed timing constraints. How-
ever, a more difficult question persists, i.e., given a particular protocol
design, whether the protocol has security flaws in its design or it can
be configured secure with proper parameter values? In this work, we an-
swer this question by proposing a parameterized verification framework,
where the quantitative parameters in the protocols can be intuitively
specified as well as automatically analyzed. Given a security protocol,
our verification algorithm either produces the secure constraints of the
parameters, or constructs an attack that works for any parameter values.
The correctness of our algorithm is formally proved. We implement our
method into a tool called PTAuth and evaluate it with several security
protocols. Using PTAuth, we have successfully found a timing attack in
Kerberos V which is unreported before.

1 Introduction

Time could be a powerful tool in designing security protocols. For instance, dis-
tance bounding protocols rely heavily on time; session keys with limited lifetime
are extensively used in practice to achieve better security. However, designing
timed security protocols is more challenging than designing untimed ones be-
cause timing adds a range of attacking surface, e.g., the adversary might be able
to extend the session key without proper authorization. Hence, it is important to
have a formal verification framework to analyze the timed security protocols. In
our previous work [20], we developed a verification algorithm to analyze whether
a given protocol with fixed timing constraints is secure or not. In this work, we
answer a more difficult question, i.e., given a security protocol with configurable
parameters for the timing constraints, are there any parameters which could
guarantee security and what are they? Having an approach to answer the ques-
tion is useful in a number of ways. Firstly, it can analyze, at once, all instances
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of the security protocols with different parameter values. Secondly, it allows the
protocol designer to gain precise knowledge on the secure configuration of the
parameters so as to choose the best values (e.g., in terms of minimizing the
protocol execution time).

In general, parameterized timing constraints are necessary in various scenar-
ios. First of all, they can be used to capture the general design of the protocols.
For instance, since the lifetime of credentials are often related to the runtime
information like network latency, it is best to keep them parameterized so that
we can systematically find out their secure relations. Furthermore, parameter-
ized timing constraints are necessary to model the properties of some special
cryptographic primitives. For example, weak cryptographic functions, which are
breakable by consuming extra time, may be used in the sensor networks for
higher computing performance and lower power consumption. Since breaking
different weak functions requires different the attack time, in order to guarantee
the correctness of the protocols in these sensor networks, we need to parameter-
ize the attack time and compute the secure configuration accordingly. Moreover,
agencies often give suggestions on key crypto-period for cryptographic key man-
agement [4], so parameterized timing constraints can be used to model long term
protocols.

Nevertheless, this is a highly non-trivial task. The challenges for designing
timed protocol and providing proper parameter configuration are illustrated as
follows. First, in the setting of timed authentication over the Internet, given the
network is completely exposed to the adversary, we need to formally prove that
the critical information cannot be leaked and the protocol works as intended
under arbitrary attacking behaviors from the network. Second, timestamps are
continuous values extracted from clocks to ensure the validity of messages and
credentials. Analyzing the continuous timing constraints adds another dimension
of complexity. Third, a protocol design might contain multiple timing parame-
ters, e.g., the network latency and the session key lifetime, which could affect
security of the system. Manually reasoning the least constrained and yet correct
configuration for the parameters in complex protocols is extremely hard and
error-prone. As a consequence, automatic analysis technique is needed for prov-
ing the correctness of the protocol and computing the parameter configurations.

Contributions. Our contributions in this work are summarized as follows. (1)
We propose an intuitive method to specify parameterized timed protocols in Sec-
tion 3 by extending our previous work [20] with parameterized timing constraint,
secrecy query, etc. (2) Based on the specification, protocols can be verified effi-
ciently for an unbounded number of protocol sessions in our framework as shown
in Section 4. Generally, in this work, we specify the adversary’s capabilities in
the security protocols as a set of Horn logic rules with parameterized timing con-
straints. Then, we compose these rules repeatedly until a fixed-point is reached,
so that we can check the intended security properties against them and compute
the largest parameter configurations. The parameter configuration is represented
by succinct constraints of the parameters. When the protocol could be secure
with the right parameter values, our approach outputs a set of constraints on
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Table 1. Syntax Hierarchy Structure

Type Expression
Message(m) f(m1,m2, ...,mn) (function)

a[] (name)
[n] (nonce)
v (variable)
t (timestamp)

Parameter(p) §p (parameter)
Constraint(B) C(t1 , t2 , . . . , tn , §p1, §p2, . . . , §pm) (timing constraint)
Configuration(L) C(§p1, §p2, . . . , §pm) (parameter configuration)
Event(e) know (m, t) (knowledge)

new([n], op[], 〈m1,m2, . . . ,mn〉) (nonce generation)
init(m1,m2, . . . ,mn) (init)
accept(m1,m2, . . . ,mn) (accept)
leak (m) (leak)

Rule(R) [G] e1, e2, . . . , en −[ B ]→ e (rule)
e ←[ B ]− e1, e2, . . . , en (query)

the parameters that are necessary for security. Otherwise, an attack is generated,
which would work for any parameter values. We formally prove the correctness of
our algorithm. (3) We implement our method as a tool named PTAuth. In order
to handle the parameters in the timing constraints, we utilize the Parma Polyhe-
dra Library (PPL) [3] in our tool to represent the relations between timestamps
and parameters. We evaluate our approach with several security protocols in Sec-
tion 5. During the experiment, we found a timing attack in the official document
of Kerberos V [27] that has never been reported before.

Structure of the Paper. In Section 2, we introduce the Wide Mouthed Frog
(WMF) [8] protocol and use it as a motivating example in the following paper.
In Section 3, an intuitive specification method is illustrated with WMF. The
detailed verification algorithms are given in Section 4. Due to the limitation of
space, the complete proofs for our verification methods can be found in [1]. The
experiment results are shown in Section 5, where a new attack of Kerberos V is
found in RFC 4120 [27]. The related works are described in Section 6. Finally,
we draw conclusions in Section 7.

2 Running Example

We use the Wide Mouthed Frog (WMF) [8] protocol as a running example to
illustrate how our approach works. WMF is designed for exchanging timely fresh
session keys, ensuring that the key is generated by the protocol initiator within
a short time when the protocol responder accepts it.
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Syntax Hierarchy. Before describing the WMF protocol, we introduce the syn-
tax for representing the messages first as shown in Table 1. Messages could be
defined as functions, names, nonces, variables or timestamps. Functions can be
applied to a sequence of messages ; names are globally shared constants; nonces
are freshly generated random values in sessions; variables are memory spaces for
holding messages ; and timestamps are clock readings extracted during the pro-
tocol execution. In addition, we introduce parameters to parameterize the tim-
ing constraints. The constraint function C(X) applies succinct constraints to X,
where X is a set of timestamps and parameters. Each succinct constraint can be
written in a general form of l(t1 , . . . , tn , §p1, . . . , §pm) ∼ 0, where ∼∈ {<,≤} and
l is a linear function. In the following paper, the symmetric encryption function
is denoted as encs(m, k), where m is the encrypted message and k is the encryp-
tion key. Furthermore, all the messages transmitted in WMF is encrypted by the
shared key represented as sk(u), which is only known between the user u and
the server. For simplicity, the concatenation function tuplen(m1,m2, . . . ,mn) is
written as 〈m1,m2, . . . ,mn〉 (or simply m1,m2, . . . ,mn when no ambiguity is
introduced).

Events are constructed by attaching predicates to the message sequences.
In our framework, we have five different predicates: (1) the knowledge event
know(m, t) means that the adversary knows the message m at the time t ; (2)
the nonce generation event new([n], op[], 〈m1, . . . ,mn〉) means that a nonce [n] is
generated in the operation op[] by a legitimate protocol participant with knowl-
edge of 〈m1, . . . ,mn〉; (3) the event init(m1, . . . ,mn) stands for the protocol ini-
tialization by a legitimate protocol participant with knowledge of m1, . . . ,mn;
(4) similarly, the event accept(m1, . . . ,mn) stands for the protocol acceptance
by a legitimate protocol participant with knowledge of m1, . . . ,mn; (5) the event
leak (m) is introduced to check the leakage of the secret message m that violates
the secrecy property, as shown in the example later.

WideMouthed Frog. TheWMF protocol is a key exchange protocol consisting
of three participants, i.e., the initiator Alice, the responder Bob and the server.
It has the following five steps.

(1) Alice engages : new([k], alice gen[], 〈A[], B[], tA〉)
, initA(A[], B[], [k], tA)

(2) Alice → Server : 〈A[], encs(〈tA, B[], [k]〉, sk(A[]))〉
(3) Server checks : tS − tA ≤ §pa

Server engages : initS (A[], B[], [k], tS )
(4) Server → Bob : encs(〈tS , A[], [k]〉, sk(B[]))
(5) Bob checks : tB − tS ≤ §pa

Bob engages : accept(A[], B[], [k], tB )

First, Alice generates a fresh key [k] at time tA with the new event and
engages an initA event to initiate the key exchange protocol with Bob. Second,
Alice sends the fresh key with the current time tA and Bob’s name to the server.
Third, after receiving the request from Alice, the server checks the freshness of
the timestamp tA and accepts Alice’s request by engaging an initS event. Fourth,
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the server sends a new message to Bob, informing him that the server receives a
request from Alice at time tS to communicate with him using the key [k]. Fifth,
Bob checks the timestamp and accepts the request from Alice if it is timely. The
transmitted messages are encrypted under the users’ shared keys.

Parameters.Whether or not WMF works relies on two crucial time parameters.
The first parameter is the real network latency §pd of the network, and the second
one is the message delay §pa allowed in the message freshness checking. §pd is
initially configured as §pd > 0 because the network latency should be positive.
However, the exact value of §pd depends on the network itself and thus cannot be
fixed in the protocol design. Parameter §pa on the other hand might be related
to §pd’s value, which should be answered by the verification. That is to say, the
values of the parameters are better modeled as unknown parameters and we
must be able to analyze the protocol without the concrete values of them. By
introducing these two parameters, we want to make sure that the WMF protocol
exchanges the secret session key successfully, and the correspondence between
the request from Alice and the acceptance from Bob is timely. Hence, ideally
a tool would automatically show us the secure configuration of §pd and §pa.
Because WMF has two message transmissions, we need to check whether tB −
tA ≤ 2 ∗ §pa is always satisfied.

3 Parameterized Timed Security Protocol Specification

In this section, we introduce how to model the parameterized timed security pro-
tocols. Generally, protocols as well as their underlying cryptography foundation
are represented by a set of Horn logic rule variants [6] as shown in Table 1. They,
denoted as Rinit , represent the capabilities of the adversary in the protocol.

Adversary Model. We assume that an active attacker exists in the network,
extending from the Dolev-Yao model [15]. The attacker can intercept all commu-
nications, compute new messages, generate new nonces and send any message he
obtained. For computation, he can use all the publicly available functions, e.g.,
encryption, decryption, concatenation. He can also ask the genuine protocol par-
ticipants to take part in the protocol based on his needs. Comparing our attack
model with the Dolev-Yao model, attacking the weak cryptographic functions
and compromising legitimate protocol participant are allowed by consuming ex-
tra time, as shown later in this section.

Rule Construction. Based on the adversary model described above, the inter-
actions available to the adversary in the protocol can be represented by Horn
logic rule variants guarded by timed checking conditions. Generally, every rule
consists of a set of untimed guard conditions, several premise events, some tim-
ing constraints and one conclusion event as shown in Table 1. When the guard
conditions, the premise events and the timing constraints in a rule are fulfilled,
its conclusion event becomes available to the adversary. We remove the brackets
if the rule has no guard condition. For instance, since the symmetric encryption
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and decryption functions are publicly available in WMF, these capabilities of
the adversary can be represented by the following two rules.

know(m, t1 ), know (k, t2 ) −[ t1 , t2 ≤ t ]→ know(encs(m, k), t) (1)

know(encs(m, k), t1 ), know(k, t2 ) −[ t1 , t2 ≤ t ]→ know(m, t) (2)

The rule (1) means that given a message m and a key k, the adversary can
compute its encryption encs(m, k), and the encryption can only be known after
the message and the key are obtained. Similarly, the rule (2) shows the decryption
capability of the adversary.

Furthermore, the adversary can register new accounts at the server, except
for the existing ones of Alice and Bob. So, we have the following rule.

[c 
= A[] ∧ c 
= B[]] know (c, t1 ) −[ t1 ≤ t ]→ know(sk (c), t) (3)

For rules related to the protocol itself, they can be extracted from the protocol
readily. For instance, the adversary can actively ask Alice to initiate the first step
of the WMF protocol, so the messages in the second step can be intercepted from
the network, which is shown by the rule (4). As Alice can initiate this protocol
with any user at any time based on the adversary’s needs, the constant B[] is
replaced with a variable R and know(〈R, tA〉, t) is added to the premises of the
rule, comparing with protocol description in Section 2.

know (〈R, tA〉,t), new([k], alice gen [], 〈A[], R, tA〉), initA(A[], R, [k], tA)

−[ t ≤ tA ]→ know (〈A[], encs(〈tA, R, [k]〉, sk(A[]))〉, tA) (4)

Similarly, based on the server’s behavior (the third and fourth steps in WMF),
we can construct the rule (5) shown below. Since the server provides its service
to all of its users, Alice and Bob’s names are replaced by variables. The network
latency and the message delay are captured by the parameterized constraints.

know(〈I, encs(〈tI , R, k〉, sk(I))〉, t), initS (I, R, k, tS)

−[ tS − t ≥ §pd ∧ tS − tI ≤ §pa ]→ know(encs(〈tS , I, k〉, sk(R)), tS ) (5)

Finally, Bob accepts the protocol when he receives the message from the
server, indicating that the initiator is Alice and the request is fresh.

know(encs (〈tS , A[], k〉, sk(B[])), t)

−[ tB − t ≥ §pd ∧ tB − tS ≤ §pa ]→ accept(A[], B[], k, tB) (6)

Additional Attack Rule. In addition to the attacker capabilities in the Dolev-
Yao model, the attacker can compromise cryptographic primitives and legitimate
protocol participants. For instance, we can model the brute-force attack on a
weak encryption function. Given the name of the encryption function as Crypto
and the least time of cracking Crypto as §d, the attacking behavior can be
modeled by the following rule.

know(Crypto(m, k), t1) −[ t− t1 > §d ]→ know(m, t)
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Additionally, some ciphers like RC4 which is used by WEP, key compromise on a
busy network can be conducted after a short time. Given an application scenario
where such attack is possible and the attacking time has a lower bound §d, we
can model it as follows.

know(RC4 (m, k), t1)〉 −[ t− t1 > §d ]→ know (k, t)

Authentication Query. Similar to our previous work [20], verifying the timely
authentication is allowed in our framework. The timely authentication not only
asks for the proper correspondence between the init and accept events but also
requires the satisfaction of the timing constraints, formalized as follows.

Definition 1. Timed Authentication. In a timed protocol, timed authentica-
tion holds for an event accept with some events {init1, init2, . . . , initn} agreed on
the event arguments and the timing constraints B, if and only if for every occur-
rence of the event accept , all of the corresponding events {init1, init2, . . . , initn}
are engaged before, and their timestamps should always satisfy the timing con-
straints B. We denote the timed authentication query as accept ←[ B ]− init1,
init2, . . . , initn. In order to ensure the general timed authentication, the argu-
ments encoded in the query events should only be variables and timestamps.

In WMF, the authentication should be accepted by the responder R only if the
request is made by the initiator I within 2 ∗ §pa. Thus, we have the following
authentication query.

accept(I, R, k, kR) ←[ kR − kI ≤ 2 ∗ §pa ]− initA(I, R, k, tI ) (7)

Secrecy Query. In this work, we extend the verification algorithm developed
in our previous work [20] with secrecy checking that can be relevant to timing.
Secrecy checking is introduced with additional rules that lead to the leak events,
representing the leakage of the secret information.

Definition 2. Secrecy. In a security protocol, secrecy holds for a message m if
the event leak (m) is unreachable when ”new1, new2, . . . ,newn, know (m, t) −[]→
leak (m)” is added to Rinit , where new1, new2, . . . ,newn are the nonce generation
events for all of nonces in m. Notice that all of the nonce generation events
should have unique operation names so that they can be correctly identified.

For instance, according to the WMF protocol, a secret session key [k] is sent over
the network. In order to check the secrecy property of [k], we add the following
rule to Rinit and then check the reachability of the leak event.

new([k], alice gen[], 〈A[], B[], tA〉), know ([k], t) −[]→ leak ([k]) (8)

It means that if the session key [k] generated by Alice for Bob can be known to
the adversary, the secrecy property of the session key is invalid in WMF.
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4 Verification Algorithm

Given a set of rules R and a parameter configuration L, we define α(R, L) =
{[G] H −[ B ∩ L ]→ f |[G] H −[ B ]→ f ∈ R}, representing the rules under the
parameter configuration L. Since the initial rules Rinit can be extracted from the
protocol as shown in Section 3, the satisfaction of an authentication queryQ then
depends on whether the adversary can actively guide the protocol to reach the
accept event based on α(Rinit , L) without engaging the corresponding init events
in Q or satisfying the timing constraints. Similarly, the verification of the secrecy
query needs to check that the leak event is unreachable based on α(Rinit , L). In
this section, we focus on computing the largest parameter configuration that
ensures the correctness of the desired authentication and secrecy properties.

Given any parameter configuration L, in order to determine whether a queryQ
is satisfied by α(Rinit , L), we can adapt the verification algorithm in [20]. How-
ever, there might be infinitely many possible parameter configurations. Thus,
in this work, we develop an approach to handle the parameters symbolically.
Specifically, the verification is divided into two sequential phases: the rule basis
construction phase and the query searching phase. In the rule base construc-
tion phase, we generate new rules by composing two rules (through unifying the
conclusion of the first rule and the premise of the second rule). Our verification
algorithm uses this method repeatedly to generate new rules until a fixed-point
is reached. This fixed-point is called the rule basis if it exists. Subsequently, in
the query searching phase, the query is checked against the rule basis to find
counter examples. Generally, we need to check the event correspondence as well
as the parameterized timing constraints, the verification either proves the cor-
rectness of the protocol by providing the secure configuration of the parameters
(represented as succinct constraints), or reports attacks because no parameter
configuration can be found. Since the verification for security protocol is gener-
ally undecidable [12], our algorithm cannot guarantee termination. However, as
shown in Section 5, our algorithm can terminate on most of the evaluated secu-
rity protocols. Additionally, limiting the number of protocol sessions is allowed
in our framework which would guarantee the termination of our algorithm.

Rule Basis Construction. Before constructing the rule basis, we need to in-
troduce some basic concepts first:

– If σ is a substitution for both events e1 and e2 such that σe1 = σe2, we say
e1 and e2 are unifiable and σ is an unifier for e1 and e2. If e1 and e2 are
unifiable, the most general unifier for e1 and e2 is an unifier σ such that for
all unifiers σ′ of e1 and e2 there exists a substitution σ′′ such that σ′ = σ′′σ.

– Given two rules R = [G] H −[ B ]→ e and R′ = [G′] H ′ −[ B′ ]→ e′, if e and
e0 ∈ H ′ can be unified with the most general unifier σ such that σG ∧ σG′

can be valid, their composition is denoted as R◦e0 R′ = σ([G∧G′] H∪ (H ′−
{e0})) −[ σ(B ∩B′) ]→ σe′.

– Additionally, given the above two rules R and R′, we define R implies R′

denoted as R ⇒ R′ when ∃σ, σe = e′ ∧G′ ⇒ σG ∧ σH ⊆ H ′ ∧B′ ⊆ σB.
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We construct the rule basis β(Rinit ) based on the initial rules Rinit. Firstly, we
define Rv as follows, representing the minimal closure of the initial rules Rinit.
(1) ∀R ∈ Rinit, ∃R′ ∈ Rv, R

′ ⇒ R, which means that every initial rule is implied
by a rule in Rv. (2) ∀R,R′ ∈ Rv, R 
⇒ R′, which means that no duplicated rule
exists in Rv. (3) ∀R,R′ ∈ Rv and R = [G] H −[ B ]→ e, if ∀e′ ∈ H, e′ ∈ V
and ∃e0 
∈ V, S ◦e0 S′ is defined, then ∃S′′ ∈ Rv, S

′′ ⇒ R ◦e0 R′, where V is a
set of events that can be provided by the adversary. In this work, V is the init
events, the new events and the know (x, t) event where x is a variable. The third
rule means that for any two rules in Rv, if all premises of one rule are trivially
satisfiable and their composition exists, their composition is implied by a rule in
Rv. Based on Rv, we can calculate the rule basis as follows.

β(Rinit) = {R | R = [G] H −[ B ]→ e ∈ Rv ∧ ∀e′ ∈ H : e′ ∈ V}

Theorem 1. For any rule R in the form of [G] H −[ B ]→ e where ∀e′ ∈
H : e′ ∈ V, R is derivable from α(Rinit, L) if and only if R is derivable from
α(β(Rinit), L).

Proof Sketch. Firstly, we need to prove that R is derivable from Rinit if and only
if R is derivable from β(Rinit). Then, there should exist two rule composition
methods for R from Rinit and β(Rinit) respectively. Then, we apply configuration
L to both of the composition methods with function π. Given a rule R = [G]H −[
B ]→ e, we define π(R,L) = [G] H −[ B ∩L ]→ e. As L does not affect the terms
but the timing constraints, we can prove that either π(R,L) is derivable from
both of α(Rinit, L) and α(β(Rinit), L), or it is underivable from both of them.
Due to the limitation of space, the proof is presented in [1].

Query Searching. A rule is a contradiction to the authentication query if and
only if its conclusion event is an accept event, while it does not require all the
init events or it has looser timing constraints comparing with those in the query.
Otherwise, if the rule’s conclusion event is an accept event while this rule is not
a contradiction to the authentication query, then it is an obedience. Similarly, a
rule is a contradiction to the secrecy query when the leak event is reachable.

Definition 3. Authentication Contradiction and Obedience. A rule R =
[G] H −[ B ]→ e is a contradiction to the authentication query Qa = e′ ←[ B′ ]−
H ′ denoted as Qa � R if and only if B 
= ∅, e and e′ are unifiable with the most
general unifier σ such that σG can be valid and ∀σ′, (σ′σH ′ 
⊆ σH) ∨ (σB 
⊆
σ′σB′). On the other hand, it is an obedience denoted as Qa � R if and only if
B 
= ∅, e and e′ are unifiable with the most general unifier σ such that σG can
be valid and ∃σ′, (σ′σH ′ ⊆ σH) ∧ (σB ⊆ σ′σB′).

Definition 4. Secrecy Contradiction. A rule R = [G] H −[ B ]→ e is a
contradiction to the secrecy query Qs of message m denoted as Qs � R if and
only if G can be valid, B 
= ∅, e = leak (m) and ∀e′ ∈ H : e′ ∈ V.

During the verification, our goal is to ensure that (1) no contradiction rule
exists for all queries while (2) at least one obedience rule exists for every au-
thentication query. Hence, given the authentication queries QA and the secrecy
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Algorithm 1: Parameter Configuration Computation

Input : β(Rinit), L0 - the rule basis and the initial configuration
Input : QA,QS - the authentication and secrecy queries
Output: L - the set of parameter configurations

1 Algorithm
2 L = {L0};
3 for Q ∈ QA ∪QS , L ∈ L, R = [G] H −[ B ]→ f ∈ α(β(Rinit), L), Q � R

do
4 L = L− {L};
5 for L′ : B ∩L′ = ∅∨Q � [G] H −[ B∩L′ ]→ f do L = L∪{L∩L′};
6 for L ∈ L, Q ∈ QA do
7 if cannot find R ∈ α(β(Rinit), L), Q � R then L = L− {L} ;

8 return L;

queries QS , our goal is to compute the largest L that satisfies the following
two conditions: (1) ∀Q ∈ QA ∪ QS, {R|R ∈ α(β(Rinit), L) ∧ Q � R} = ∅; (2)
∀Q ∈ QA, {R|R ∈ α(β(Rinit), L)∧Q � R} 
= ∅. Algorithm 1 illustrates the com-
puting process of the largest L. From line 3 to line 5, we compute the parameter
configurations that remove the contradictions. From line 6 to line 7, we ensure
that every authentication query has at least one obedience. In order to prove
the correctness of our algorithm, we need to show that for any configuration L,
a contradiction exists in α(β(Rinit), L) if and only if it exists in α(Rinit, L).

Theorem 2. Partial Correctness. Let Q be the query and Rinit be the initial
rule set. There exists R derivable from α(Rinit, L) such that Q � R if and only
if there exists R′ ∈ α(β(Rinit), L) such that Q � R′.

Proof Sketch. Partial Soundness. Given Theorem 1, R′ is derivable from
α(Rinit, L). Hence, there exists R′ derivable from α(Rinit, L) such that Q �
R′. Partial Completeness. Given a rule R derivable from α(Rinit, L) such
that Q � R, according to Theorem 1, there exists a rule R0 derivable from
α(β(Rinit), L) such that Q � R0. So there exists a rule composition method for
R0 with rules in α(β(Rinit), L). Then, there should exist a rule Rt in the com-
position method with an accept or a leak event. We further prove that Q � Rt.
Due to the limitation of space, the proof is available in [1].

Checking WMF. After checking the specification of WMF using the above-
mentioned algorithm, PTAuth claims an attack. The two key rules in β(Rinit)
are shown below. The rule (9) represents the execution trace that the server
transmits the key once from Alice to Bob. It is obedient to the query (7). How-
ever, the rule (10) is a contradiction to the query (7), because it has a weaker
timing range (tB ≤ tA+4 ∗ §pa) than that in the query (tB ≤ tA+2 ∗ §pa). This
rule stands for the execution trace that the adversary sends the message from
the server back to server twice and then forwards it to Alice. According to the
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rule (5), the timestamp in the message can be updated in this method. Hence,
Bob would not notice that the message is actually delayed when he receives it.
In order to remove the contradiction, we need to configure the parameters as
either §pa < §pd or §pa ≤ 0. However, applying any one of these constraints to
the initial configuration 0 < §pd leads to the removal of the rule (9), the only
obedience rule in α(β(Rinit), L). Hence, PTAuth claims that an attack is found,
which means that no parameter configuration would make the protocol work.

know(tA, t),new([k], alice gen[], 〈A[], B[], tA〉)
, initA(A[],B[], [k], tA), initS(A[], B[], [k], tS)

−[ t ≤ tA,tB ≤ tS + §pa ≤ tA + 2 ∗ §pa,
tA + 2 ∗ §pd ≤ tS + §pd ≤ tB, ]→

accept(A[], B[], [k], tB) (9)

know(tA, t),new([k], alice gen[], 〈A[], B[], tA〉)
, initA(A[],B[], [k], tA), initS(A[], B[], [k], tS1)

, initS(B[],A[], [k], tS2), initS(A[], B[], [k], tS3)

−[ t ≤ tA,tB ≤ tS3 + §pa ≤ tS2 + 2 ∗ §pa ≤ tS1 + 3 ∗ §pa ≤ tA + 4 ∗ §pa,
tA + 4 ∗ §pd ≤ tS1 + 3 ∗ §pd ≤ tS2 + 2 ∗ §pd ≤ tS3 + §pd ≤ tB ]→

accept(A[], B[], [k], tB) (10)

Corrected WMF. The WMF protocol can be fixed by inserting two different
constants to the messages sent to and received from the server respectively, which
breaks their symmetric structure. Using this method, the server can distinguish
the messages that it sent out previously, and refuse to process them again. Our
algorithm proves the correctness of this modified WMF protocol, and produces
the timing constraints 0 < §pd ≤ §pa.

5 Evaluations

Based on our verification framework, we have implemented a tool named PTAuth.
We encode PPL [3] in our tool to analyze the satisfaction of timing constraints.
Meanwhile, in order to improve the performance, we implement an on-the-fly
verification algorithm that updates the parameter configuration whenever a rule
is generated. Hence, the verification process can terminate early if an attack
can be found. We use PTAuth to check many security protocols as shown in
Table 2. All the experiments shown in this section are conducted under Mac OS
X 10.10.1 with 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3. In the experi-
ments, we have checked several timed protocols i.e., the WMF protocols [8,14],
the Kerberos protocols [27], the distance bounding protocolse [7,10,28] and the
CCITT protocols [11,2,8]. Additionally, we analyze the untimed protocols like
the Needham-Schroeder series [26,21] and SKEME [18]. As can be seen, most of
the protocols can be verified or falsified by PTAuth quickly for an unbounded
number of protocol sessions. Notice that the secure configuration is given based
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Table 2. Experiment Results

Protocol Parameterized Bounded �R1 Result Time
Wide Mouthed Frog [8] Yes No 40 Attack [22] 39ms
Wide Mouthed Frog (c) [14] Yes No 35 Secure 13ms
Kerberos V [27] Yes No 19370 Attack 23m5s
Kerberos V (c) Yes Yes 438664 Secure 2h41m
Auth Range [7,10] Yes No 21 Secure 10ms
Ultrasound Dist Bound [28] Yes No 50 Attack [29] 18ms
CCITT X.509 (1) [11] No No 45 Attack [2] 14ms
CCITT X.509 (1c) [2] No No 62 Secure 37ms
CCITT X.509 (3) [11] No No 127 Attack [8] 84ms
CCITT X.509 (3) BAN [8] No No 148 Secure 131ms
NS PK [26] No No 68 Attack [21] 30ms
NS PK Lowe [21] No No 61 Secure 28ms
SKEME [18] No No 127 Secure 466ms

on the satisfaction of all of the queries, so we do not show the results for different
queries separately in the table. The justification for the bounded verification of
the corrected version of Kerberos V is presented later in this section. The PTAuth
tool and the models shown in this section are available in [1]. Particularly, we
have successfully found a new attack in Kerberos V [27] using PTAuth. In the
following, we present the detailed findings in Kerberos V. Since Kerberos V is
the latest version, we denote it as Kerberos for short unless otherwise indicated.

Kerberos Overview. Kerberos is a widely used security protocol for accessing
services. For instance, Microsoft Window uses Kerberos as its default authenti-
cation method; many UNIX and UNIX-like operating systems include software
for Kerberos authentication. Kerberos has a salient property such that its user
can obtain accesses to a network service within a period of time using a single
request. In general, this is achieved by granting an access ticket to the user,
so that the user can subsequently use this ticket to authenticate himself to the
server. Kerberos is complex because multiple ticket operations are supported
simultaneously and many fields are optional, which are heavily relying on time.
So, configuring Kerberos is hard and error-prone.

Kerberos consists of five types of entities: User, Client, Kerberos Authen-
tication Server (KAS), Ticket Granting Server (TGS) and Application Server
(AP). KAS and TGS together are also known as Key Distribution Centre (KDC).
Specifically, Users usually are humans, and Clients represent their identities in
the Kerberos network. KAS is the place where a User can initiate a logon session
to the Kerberos network with a pre-registered Client. In return, KAS provides
the User with (1) a Ticket Granting Ticket (TGT) and (2) an encrypted session
key as the authorization proof to access TGS. After TGS checks the authoriza-
tion from KAS, TGS issues two similar credentials (1) a Service Ticket (ST) and
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(2) a new encrypted session key to the User as authorization proof to access AP.
Then, the User can finally use them to retrieve the Service from AP. Addition-
ally, both of the TGT and the ST can be postdated, validated and renewed by
KDC when these operations are permitted in the Kerberos network.

Specification Highlights. Generally, by following the method described in
Section 3, the specification for Kerberos itself can be extracted easily. In order to
verify Kerberos comprehensively, we model several keys and timestamps (which
could be optional) by following precisely its official document RFC 4120 [27].

– The user and the server are allowed to specify sub-session keys in the mes-
sages. When a sub-session key is specified, the message receiver must use it
to transmit the next message rather than using the default session-key.

– Optional timestamps are allowed in the user requests and the tickets. In the
following paper, fq , tq and rq denote the start-time, the end-time and the
maximum renewable end-time requested by the users. Similarly, sp, ep and
rp denote the start-time, the end-time and the maximum renewable end-time
agreed by the servers. sp, ep and rp are encoded in the tickets, corresponding
to fq , tq and rq respectively. An additional timestamp ap is encoded in the
ticket to represent the initial authentication time of the ticket. Furthermore,
cq represents the current-time when the request is made by the user, and
cp stands for the current-time when the ticket is issued by the server. In
Kerberos, fq , rq, sp and rp are optional. So the servers need to check their
presence and construct replies accordingly.

In this work, two parameters are considered in Kerberos, i.e., the maximum
lifetime §l and the maximum renewable lifetime §r of the tickets. Based on these
parameters, the servers can only issue tickets whose lifetime and renewable life-
time are shorter than §l and §r respectively. Furthermore, five operations are
modeled for the Kerberos servers as follows. (1) Postdated tickets can be gen-
erated for future usage. They are marked as invalid initially and they must be
validated later. (2) Postdated tickets must be validated before usage. (3) Renew-
able tickets can be renewed before they expire. (4) Initial tickets are generated
at KAS using user’s client. (5) Sub-tickets are generated at TGS using existing
tickets. Notice that the end-time ep of the sub-ticket should be no larger than the
end-time of the existing ticket. Due to the space limit, we provide the complete
model of Kerberos in [1].

Queries. In order to specify the queries, we define three events as follows.

– When an initial ticket is generated at KAS, an initauth(k, C, S, t) event is
engaged, where k is the fresh session key, C is the client’s name, S is the
target server’s name, and t is the beginning of the ticket’s lifetime.

– Whenever an new ticket is generated at KAS or TGS, an initgen(k, C, S, t)
event is engaged. Its arguments have the same meaning as those in initauth .

– Whenever an ticket is accepted by the server, an accept(k, C, S, t) event is
engaged, where k is the agreed session key, C is the client’s name, S is the
current server’s name, and t is the acceptance time.
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Ticket (TGT)
– ap1 = 0
– ep1 = 3
– rp1 = 5

with Authentication Event

– initauth([k1], A[], TGS[], 0)
– initgen([k1], A[], TGS[], 0)

Ticket (ST)
– ap2 = 0
– ep2 = 3
– rp2 = 7

with Authentication Event

– accept([k1], A[], TGS[], 2)
– initgen([k2], A[], AP [], 2)

Ticket (ST)
– ap3 = 0
– ep3 = 6
– rp3 = 7

with Authentication Event

– accept([k2], A[], AP [], 3)
– initgen([k3], A[], AP [], 3)

Service

with Authentication Event

– accept([k3], A[], AP [], 6)

KDC

– §l = 3
– §r = 5

Sub-ticket Request for AP
– cp1 = 2
– eq1 = 3
– rq1 = 7

Renew Request
– cp2 = 3
– eq2 = 6

Service Request
– cp3 = 6

Fig. 1. Attack Found in Kerberos V

In Kerberos, we need to ensure the correctness of two timed authentications.
First, whenever a server accepts a ticket, the ticket should be indeed generated
within §l time units using the same session key. Second, whenever a server accepts
a ticket, the initial ticket should be indeed generated within §r time units.

accept(k, C, S, t) ←[ t − t ′ ≤ §l ]− initgen(k, C, S, t
′) (11)

accept(k, C, S, t) ←[ t − t ′ ≤ §r ]− initauth(k
′, C, S′, t ′) (12)

Verification Results. For the termination of the verification, we need to ini-
tially configure the parameters as §r < n ∗ §l, where n can be any integer larger
than 1. The requirement for this constraint is justified as follows. Algorithm 1
updates parameter configuration at line 5 to eliminate the contradiction rules.
Suppose we have a rule initauth (k, C, S, t

′) −[ t − t ′ ≤ c ∗ §l ]→ accept(k, C, S, t)
in the rule basis, where c > 1. This rule is a contradiction to the query (12)
because §r is not necessarily larger than c ∗ §l. However, Algorithm 1 can add a
new constraint c∗§l ≤ §r to the existing configuration and then continue search-
ing. Since we have infinitely many such rules in β(Rinit) with different values
of c, the verification cannot terminate. Hence, in this work, we set the initial
configuration as §r < 2 ∗ §l to avoid the non-termination. Notice that this initial
configuration does not prevent us from finding attacks because it does not limit
the number of sequential operations allowed in the Kerberos protocol.

After analyzing Kerberos using PTAuth, we have successfully found a security
flaw in its specification document RFC 4120 [27]. The attack trace is depicted in
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Figure 1. Suppose the Kerberos is configured with §l = 3 and §r = 52, and a user
Alice has already obtained a renewable ticket at time 0. Then, she can request
for a sub-ticket of AP at time 2 that is renewable until time 7, satisfying rq1 −
cp1 ≤ §r. Notice the new sub-ticket’s end-time ep2 cannot be larger than the
end-time ep1 of the existing ticket. Later, she renews the new sub-ticket before
it expires and gets a ticket valid until time 6. Finally, she requests the service at
time 6 and engages an event accept([k3], A[], AP [], 6). However, this accept event
does not correspond to any initauth event satisfying Query (12), which leads to an
attack. In fact, Alice can use this method to request sub-ticket for AP repeatedly
so that she can have access to the service forever. Obviously, the server who
made the authentication initially does not intend to do so. Fortunately, after
checking the source code of Kerberos, we find that this flaw is prevented in its
implementations [24,19]. An additional checking condition3 has been inserted to
regulate that the renewable lifetime in the sub-ticket should be smaller than the
renewable lifetime in the existing ticket. We later confirmed with Kerberos team
that this is an error in its specification document, which could have led to a
security issue but has not done so in its current implementation.

Corrected Version. After adding the timing constraints on renewable lifetime
between the base-ticket and the sub-ticket, the verification cannot terminate.
This is caused by an infinite dependency trace formed by tickets, as we do not
limit its length. Hence, we bound the number of tickets that can be generated
during the verification, which in turn bounds the number of initgen events in
the rule. In this work, we bound the ticket number to five. This is justified as
we have five different methods to generate tickets in Kerberos: the servers can
postdate, validate, renew tickets, generate initial tickets and issue sub-tickets.
After bounding the ticket number that can be generated, our tool proves the
correctness of Kerberos and produces the configuration 0 ≤ §l ≤ §r < 2 ∗ §l.

6 Related Works

As mentioned, this work is related to our previous work [20]. In this work, we
additionally introduce timing parameters, secrecy queries, etc. and enhance the
computation capability of the timing constraint with PPL. Furthermore, we
provide the algorithm to compute the least constrained secure configuration of
parameters in this work. We successfully analyze several protocols including Ker-
beros V and find an attack in the Kerberos V specification [27] that is unreported
before. The analyzing framework closest to ours was proposed by Delzanno and
Ganty [14] which applies MSR(L) to specify unbounded crypto protocols by
combining first order multiset rewriting rules and linear constraints. According
to [14], the protocol specification is modified by explicitly encoding an additional
timestamp, representing the initialization time, into some messages. Thus the

2 §l and §r are represented by symbols during the verification.
3 For krb5-1.13 from MIT, the checking is located in the file src/kdc/kdc util.c at line
1740 - 1741. We also checked other implementations, like heimdal-1.5.2.
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attack can be found by comparing the original timestamps with the new one in
the messages. However, it is unclear how to verify timed protocol in general us-
ing their approach. On the other hand, our approach can be applied to protocols
without any protocol modification. Many tools for verifying protocols [6,13,23]
are related. However, they are not designed for timed protocols.

Kerberos has been scrutinized over years using formal methods. In [5], Bella
et al. analyzed Kerberos IV using the Isabelle theorem prover. They checked
various secrecy and authentication properties and took time into consideration.
However, Kerberos is largely simplified in their analysis and the specification
method in their work is not as intuitive as ours. Later, Kerberos V has been
analyzed by Mitchell et al. [25] using state exploration tool Murϕ. They claimed
that an attack is found in [17] when two servers exists. However, this attack is
actually prevented in Kerberos’s official specification document RFC 1510 [16],
which is later superseded by RFC 4120 [27] analyzed in this paper. The biggest
advantages of our method is that the verification is given for an unbounded
number of sessions, which is not achievable previously with the state exploration
approach. For the above literatures, they did not consider alternative options
supported in the protocol that may accidentally introduce attacks as we do in
this work. Similar to our work, Kerberos V has been analyzed in a theorem
proving context by Butler et al. [9]. They took many features into consideration,
i.e., the error messages, the encryption types and the cross-realm support. These
features are not cover in this work since we focus on the timestamps and timing
constraint checking. Meanwhile, our framework can provide intuitive modeling
and automatic verifying, while Kerberos V is analyzed manually in [9].

7 Conclusions

In this work, we developed an automatic verification framework for timed pa-
rameterized security protocols. It can verify authentication properties as well
as secrecy properties for an unbounded number of protocol sessions. We have
implemented our approach into a tool named PTAuth and used it to analyze a
wide range of protocols shown in Section 5. In the experiments, we have found
a timed attack in Kerberos V document that has never been reported before.

Since the problem of verifying security protocols is undecidable in general, we
cannot guarantee the termination of our verification algorithm. When we use
PTAuth to analyze the corrected version of Kerberos, PTAuth cannot terminate
because of the infinite dependency chain of tickets. Hence, we have to bound the
number of tickets generated in the protocol. However, in Kerberos, generating
more tickets may not be helpful to break its security. Based on this observation,
we want to detect and prune the non-terminable verification branches heuristi-
cally without affecting the final results in our future work. This could help us to
verify large-sized and complex protocols that we cannot verify currently, as our
verification algorithm only considers the general approach at present.
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