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ABSTRACT
Normative systems (i.e., a set of rules) are an important approach to
achieving effective coordination among (often an arbitrary number
of) agents in multiagent systems. A normative system should be
effective in ensuring the satisfaction of a desirable system property,
and minimal (i.e., not containing norms that unnecessarily over-
constrain the behaviors of agents). Designing or even automatically
synthesizing minimal effective normative systems is highly non-
trivial. Previous attempts on synthesizing such systems through
simulations often fail to generate normative systems which are both
minimal and effective. In this work, we propose a framework that
facilitates designing of minimal effective normative systems using
lightweight formal methods. Given a minimal effective normative
system which coordinates many agents must be minimal and ef-
fective for a small number of agents, we start with automatically
synthesizing one such system with a few agents. We then increase
the number of agents so as to check whether the same design re-
mains minimal and effective. If it is, we manually establish an
induction proof so as to lift the design to an arbitrary number of
agents. We show the effectiveness of the framework by using it
to design road junction traffic rules and population protocols. The
protocols designed using our framework are shown to be as good
as those manually designed and published ones.

CCS Concepts
•Security and privacy → Logic and verification; •Theory of
computation→ Branch-and-bound;

Keywords
Lightweight formal methods, Minimal effective, Norm Synthesis

1. INTRODUCTION
Normative systems have garnered much attention in the multia-

gent systems (MAS) literature as an effective technique for regulat-
ing the behaviors of agents [28, 15, 24, 13]. Roughly, a normative
system is a set of rules or norms imposed on an MAS to ensure
that a desirable global property is satisfied. Each norm constrains
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the behaviors of agents by forbidding them from performing one or
more actions under certain circumstances. For example, to avoid
collision, two autonomous trains traveling through a common tun-
nel may implement a norm of “if another train is observed inside
the tunnel, the action of move should not be allowed”.

This paradigm of normative system in MAS naturally maps to
the law system implemented in our human system. The normative
system paradigm was first proposed by Shoham and Tennenholtz
[28, 29], and the problem of norm synthesis has been a major re-
search topic since then. Van der Hoek et al. [15] identified three
major computational problems related to normative systems: effec-
tiveness, feasibility and synthesis. In order to avoid over-regulate
the behaviors of agents, Morales et al. [24, 25] later proposed that a
desirable normative system should be both effective and necessary

Designing or synthesizing normative systems which are both ef-
fective and necessary are highly non-trivial. For instance, Van
der Hoek et al. [15] proposed to solve the computational prob-
lems related to normative systems, i.e., effectiveness, feasibility
and synthesis, in the context of an Alternating-time Temporal Logic
(ATL) [4] model checking problem. Their framework may, how-
ever, synthesize unnecessary norms that over-regulate the behav-
iors of agents. One particular challenge in relying on model check-
ing is that normative systems are often designed for a large or ar-
bitrary number of agents, which often result in state-space explo-
sion. Morales et al. [24, 25] developed a mechanism to automat-
ically synthesize normative systems that are “effective and neces-
sary”. However, effectiveness and necessity are determined in their
scheme using simulations, and there is thus no guarantee that the
normative system synthesized is effective or necessary.

In this work, we show that the problem can be solved, to cer-
tain extent, with techniques developed in the software engineering
community. In particular, we propose a framework which aims
to facilitate designing minimal effective normative systems based
on lightweight formal methods [17]. One simple observation is
that given a homogenous system, if a normative system is mini-
mal effective for a large or arbitrary number of agents, it is highly
likely to hold for a small number of agents as well. This observa-
tion matches the underlying principle of lightweight formal meth-
ods [17] and automated deduction philosophy [31] in software en-
gineering. Based on the observation, we propose a framework
which starts with automatically searching for candidate effective
and necessary normative systems for an MAS with as few as 2
agents. Next, we check if the candidate normative systems (or any
specialization of them) remain effective and necessary with an in-
creasing number of agents. We keep eliminating candidates until
the candidates stabilize. The effectiveness of a candidate norma-
tive system is automatically checked using an analysis engine (e.g.,
Alloy Analyzer [18] or other model checkers) that exhaustively ex-
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plores all possible behaviors of the MAS. Because we work with a
small number of agents, scalability is less an issue in our frame-
work. Once a minimal effective normative system is identified and
withstands with an increasing number of agents, we then manually
show, often with an induction proof, that the same normative sys-
tem can be applied to an arbitrary number of agents and remain
minimal effective in satisfying the property.

To demonstrate that we can design non-trivial normative systems
this way, we apply our framework to a road junction example which
is a typical example (which is often the only example [28, 29, 24,
25]) used to showcase normative system synthesis methods in MAS
literature. In addition, we apply our framework to design a number
of population protocols, which are a group of self-regulating net-
work protocols designed for agent-like network nodes. We show
that the protocols we synthesis are as good as those manually de-
signed and published ones [7, 21, 6].

The remainders of the paper is organized as follows. We start
with an overview of related work in Section 2, and then introduce
the background and problem in Section 3. Our norm synthesis
framework is described in Section 4, and then are evaluated using
three representative case studies in Section 5. Section 6 concludes
the paper and points out future directions.

2. RELATED WORK
Shoham and Tennenholtz [28, 29] first defined the problem of

synthesizing useful social laws in multi-agent systems, and investi-
gated the required properties of the synthesis process and its com-
putational complexity. They argued that a social law should not re-
strict too much of the individual agents’ freedom, and also restric-
tive enough such that the agents can cooperate towards desirable
system goals. Specifically the authors defined the notion of useful
social laws, which guarantee that each agent can come up with a
plan ensuring him to move from any one focal state to another fo-
cal state. They showed that deriving useful social laws in general
is NP-complete, and identified conditions under which the problem
of deriving useful social laws can be solved in a polynomial time.

Later this idea was generalized in [15]. It was shown that the
objective of social laws can be expressed as an Alternating-time
Temporal Logic (ATL) [5] formula, and the social law problem is
transformed to an ATL model-checking problem. In their frame-
work, the system is modeled as an Action-based Alternating Tran-
sition System (AATS) and a social law consists of two compo-
nents: the objective of the system and the behavioral constraints.
The authors identified three major computational problems related
to social laws, i.e., effectiveness, feasibility and synthesis, and in-
vestigated the corresponding computational complexities. The au-
thors showed that the complexity of the feasibility problem is no
more complex than the complexity of the corresponding problem
defined by Shoham and Tennenholtz [28], which is NP-complete.
Christelis and Rovatsos [8] proposed a novel norm synthesis ap-
proach using traditional AI planning techniques to synthesize ef-
fective norms in the planning domains. However, no notion of op-
timality of a social law is considered in both of the work and an
effective social law may over regulate the behaviors of the agents.

The problem of synthesizing effective social laws was further re-
fined in [2] which takes into consideration the fact that implement-
ing social laws may have cost, and that the system designer may
have multiple goals of varying value. In their framework, the sys-
tem is modeled using Kripke structures and the desirable objectives
are expressed using Computational Tree Logic (CTL). Social laws
are modeled as restrictions on Kripke structures, and the costs on
edges are used to model the cost of implementing different norms.
The utility of a social law is defined as the benefit of the desirable

objective brought by this law minus the cost of implementing it.
The optimal social law is the one that owns the highest utility. The
authors solved the problem of designing an optimal social law by
formulating it as an integer linear program and also investigated
possible ways of reducing the computational complexity. A com-
mon problem of the above approaches are that due to the state space
explosion problem which is often observed when model checking
techniques are employed, these methods are often limited to syn-
thesize MAS for a small number of agents.

Morales et al. [24, 25] proposed that a normative system should
not only be effective in guaranteeing the global property, but also
avoid over-regulating the behaviors of the agents. They developed a
simulation-based mechanism to synthesize both effective and nec-
essary normative systems, and applied their mechanism to the road
junction example to illustrate its effectiveness. However, their ap-
proach does not provide a theoretical guarantee that the synthesized
normative system is effective and minimal. Furthermore, their ap-
proach may result in non-effective normative systems that cannot
be detected through extensive simulation. In Section 5, we provide
a more detailed comparison of our approach against theirs using the
same benchmark system.

The work in [1] is remotely related to ours. Ågotnes et al. [1]
proposed the notion of conservative social laws, which are those
effective social laws making minimal degree of changes to the orig-
inal system based on the criterion of the distance metric. The con-
cept of conservative social laws is to model the least change princi-
ple inspired from social laws in human society, where the laws with
minimal change/effect on people’s habits would be easily accepted
by the public. While this idea of minimal social laws has been ex-
plored previously, most efforts have been focused on exploring the
theoretical boundaries of this notion and not on designing practical
algorithms for synthesizing minimal norms.

Compared to the above work, our approach is complementary
as we not only formally define minimal effective normative sys-
tems, but also provide a practical algorithm based on lightweight
formal methods to automatically synthesize them. Wamberto et
al. [30] proposed an approach using first-order constraint solving
techniques for norm conflicts detection and resolution in a nor-
mative system, however, their goal is simply to resolve conflicts
among norms, i.e., there is no global properties to be satisfied or
the notion of minimality and effectiveness of norms.

This work is also related to work using formal method based
synthesis techniques to solve goal operationalisation problem in
requirement engineering [22, 3]. In [14], Degiovanni et al. pro-
posed an approach using interpolation and SAT solving techniques
to automatically computes required preconditions and required trig-
gering conditions for operations such that the resulting operations
establish the (safety) goals. Their idea of iteratively refining opera-
tional specifications based on the counterexamples from the model
checker is similar to our iterative approach of synthesizing norms
from small-size MAS. However, our work is different from theirs
as we also consider the minimality requirement of norms. Specif-
ically, their overall idea of iteratively refining the operations based
on counter-examples is similar to the first phase (initial norm syn-
thesis) in our approach. In the second phase (norm refinement)
of our approach, we seeks to find the minimal normative system
through iterative verification and heuristic search based on the re-
sults from the first phase.

3. PROBLEM DEFINITION
In this section, We define our problem formally.
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Figure 1: Traffic Network Example

Normative Systems A multi-agent system (MAS) is composed of
a set G of interacting agents, where each agent i ∈ G can per-
form actions from a finite, non-empty set Ai of actions. Formally,
a multi-agent system M is a tuple M = 〈S,G, {Ai}, R,Ψ, π〉,
where S is a finite set of global states; G is a finite set of agents;
Ai for each i ∈ G is a finite set of actions of agent i; Ψ is a finite
set of atomic propositions; and

• R : S × JG → S is a partial system transition function,
which defines how the system state changes given the set of
actions that the agents choose to perform. Here, JG is the set
of joint actions of the set G of agents, i.e., JG = Πi∈GAi.

• π : S → 2Ψ is an interpretation function, which maps each
system state to the set of primitive propositions that hold in
that state. That is, p ∈ π(q) where q ∈ S denotes that the
atomic proposition p is true in state q.

In this work, we assume that the agents share the same set of ac-
tions, i.e., Ai = Aj for any agent i ∈ G. We do not distinguish the
identifies of agents and thus the system can be considered as being
agent-symmetric. Theoretically, this assumption can be lifted.

Example We use a traffic cross system as a running example to ex-
plain each step of our approach. As shown in Figure 1(a), a traffic
network is composed of two orthogonal, intersecting roads. Each
road has two 7-cell lanes, and the direction of each lane is indi-
cated by the arrows in the figure. Each car travels in the indicated
direction, and stays within the lane. However, once it arrives at the
junction, it is free to switch to any one of the four lanes. We assume
that cars have the same speed, and can perform one of two possi-
ble actions; move one cell in the indicated direction or stay in the
same cell (i.e., A = {Move,Stop}). At any given state, a car is
described to be in one of four orientations, depending on the direc-
tion that is is headed (east, west, north, and south). We assume that
each car can observe the orientation of cars in three of its neighbor-
ing cells, as shown in Figure 1(b): top-left, top, and top-right cells.

Given an MASM, we can define a set of desirable states in C as a
property ω, which can be represented as a propositional logic for-
mula constituted by propositions in Ψ. For example, in the traffic
cross system, one desirable property is the non-collision property:
the system never enters a state in which one or more cars collide.
One way to make sure that the system remains in a desirable state
is to regulate the actions of the agents using a set of norms. A norm
is a constraint on the actions that an agent is not allowed to perform
under certain condition. Formally,

DEFINITION 1. A norm is a tuple 〈ψ,A′〉, where ψ is the pre-
condition of the norm, and A′ ⊆ A is the subset of actions that an
agent is forbidden to perform when ψ is satisfied.

A norm is enforced on an agent only under certain circumstances,
which are characterized by the precondition of the norm. In prac-
tice, each individual agent may not observe the global state of the
system due to physical or communication constraints. Thusψ should
not refer to the global state of the system. Instead, we assume that
each agent g can observe the states of agents within its neighbor-
hood. The neighborhood of an agent is problem-specific and the
neighborhood of a car agent in the running example is illustrated in
Figure 1(b). We define the local view ρg(s) of a global state s from
the perspective of agent g as the set of predicates that are evaluated
over the neighboring agents that agent g can observe. We assume
that the local view of an agent is consistent with the global state of
the system. Thus, the norm n = 〈ψ,A′〉 is enforced on an agent g
whenever the agent’s local view satisfies the precondition ψ, which
is formally denoted as ρg(s)⇒ ψ.

In the following, we present the exact syntax for norms, as shown
in Figure 2. Without loss of generality, we restrict the set A′ to
be a singleton, which is the action that the agent is forbidden to
perform under the norm. Note that norms consisting of multiple
actions can be naturally represented as multiple norms of single
action. The precondition ψ is a conjunction of atomic predicates
that describe the characteristics of a single agent or relationship
between multiple agents. Every n-ary predicate, pn ∈ P , is ap-
plied over n terms, each of which represents a particular agent,
an integer value, or a user-defined symbol. In our running exam-
ple, consider a norm n = 〈ψ, {Move}〉, where ψ is defined as:
dirNorth(g) ∧ topLeft(h, g) ∧ dirEast(h) where g and h are vari-
ables representing agents. Enforcing this norm on all agents means
that any car g is not allowed to move if it is north-heading (i.e.,
dirNorth(g) is true), and if there is another car h which is located
diagonally left of it (i.e., topLeft(h, g) is true) and heading towards
east (i.e., dirEast(h) is true).

Following previous work [28, 24], a normative system is defined
as a set of norms. Given an MASM, the system designer may ap-
ply a normative system to regulate the behaviors of agents. When
a normative system Φ is applied to an MAS, each norm in Φ is
applied on all agents in M (a.k.a. all agents are norm-abiding).
We writeM⊕ Φ to denote the system which is the result of im-
plementing the normative system Φ on M (i.e., by ruling out all
actions forbidden by the normative system). Formally,

DEFINITION 2. Let M = 〈S,G, {Ai}, R,Ψ, π〉 be an MAS
and Φ = {〈ψk, A

′
k〉} be a normative system. The implemen-

tation of Φ over M, written as M ⊕ Φ, is a Kripke structure
(S′, S0, R

′,Ψ, L′) such that S′ ⊆ S is a set of states; S0 is the
initial state ; L′ : S′ → 2Ψ such that L′(s) = π(s) for all s ∈ S′
andR′ satisfies the following: (s, s′) ∈ R iff (s,−→a , s′) ∈ R where
−→a = Πi∈GAi and for all k, −→a i 6∈ A′k for all i if s satisfies ψk.

The problem of determining whetherM⊕ Φ satisfies the prop-
erty ω can be expressed as a Computation Tree Logic (CTL) [10]
satisfiability problem as follows.

M⊕ Φ |= A2ω (1)

where A means “along all paths" and 2 is the temporal operator
meaning “now and forever more". We skip the formal definition
of |= as it is standard [11]. Intuitively, the above is satisfied if the
systemM always remains at a desirable state if the agents behave
according to the norms. A normative system Φ (for an MASM)
that satisfies Equation 1 is called effective. For example, in the
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n ::= 〈ψ,A′〉 // norm
ψ ::= P | ψ ∧ ψ // formula
P ::= pn(t1, t2, ..., tn) // predicate
T ::= G | Int | Symbol // term
G ::= g1 | g2 | ... | gn // agent
A′ ::= a1 | a2 | ... | a|A| // action

Figure 2: Syntax for norms

traffic cross system, given the non-collision property, a normative
system is effective if it never enters a state in which cars collide.
Note that in this case, this is equivalent with the conventional safety
property in model checking. However, in general, effectiveness
may also cover any other non-safety properties.

Minimal Effective Normative System A normative system can be
effective but useless. For instance, in the traffic cross system, a
trivially effective normative system would be one which disallows
car movement altogether. Thus, in this work, we are interested in
effective normative systems which are also minimally constraining
(hereafter minimal). A normative system that is effective but not
minimal over-constrains the behavior of the agents by disallow-
ing innocuous actions, and represents a non-optimal design. We
remark due to the minimality requirement, liveness properties are
often irrelevant since actions are enabled as long as possible.

Before defining minimal effective normative systems, we first in-
troduce the notion of specialization relation to define what it means
for a norm to be a specialization of another. Intuitively, if norm n1

specializes norm n2, n1 is less restrictive than n2 (i.e., n1 puts less
restrictions on agents than n2). This is achieved by strengthening
the precondition of norm n1 to make its applicability more restric-
tive than that of norm n2. We do not need to consider relaxing the
action part in the norms, since we define that each norm contains
only one forbidden action and thus it cannot be further relaxed. For-
mally, the strict specialization relation between any pair of norms
(n1, n2) is defined as follows.

DEFINITION 3. Let n1 = 〈ψ1, Ac1〉 and n2 = 〈ψ2, Ac2〉 be a
pair of norms. Norm n1 strictly specializes norm n2 iff (1) ψ1 ⇒
ψ2 ∧ ¬(ψ2 ⇒ ψ1) and (2) Ac1 = Ac2.

For example, consider a pair of norms n = 〈ψ, {Move}〉, and n′ =
〈ψ′, {Move}〉 in the traffic cross system, where

ψ = dirNorth(g) ∧ topLeft(h, g) ∧ dirEast(h)

ψ′ = dirNorth(g) ∧ topLeft(h, g) ∧ dirEast(h) ∧ top(h′, g)

We can see norm n′ strictly specializes n, since n′ is applicable in a
more restricted set of circumstances than n is (namely, n′ requires
the presence of a third car h′ front of g). We can similarly define
the weak specialization relation.

DEFINITION 4. Let n1 = 〈ψ1, Ac1〉 and n2 = 〈ψ2, Ac2〉 be a
pair of norms. Norm n1 weakly specializes norm n2 iff the follow-
ing are satisfied: (1) ψ1⇒ ψ2, (2) Ac1 = Ac2.

If a norm n strictly specializes another norm n′, we can equiva-
lently say n′ strictly generalizes n. Similarly, if a norm n weakly
specializes another norm n′, we say n′ weakly generalizes n. Next
we define the specialization relation between two normative sys-
tems based on the specialization relation between norms. We re-
mark that we assume that there are no duplicated norms, i.e., no
multiple semantically equivalent norms coexist in the same nor-
mative system. Intuitively, if the normative system Φ1 specializes
another normative system Φ2, Φ1 puts less constraints on the be-
haviors of the agents in the system than Φ2.

DEFINITION 5. Let Φ1 and Φ2 be two normative systems. Φ1

strictly specializes Φ2 iff the following two conditions are satisfied:
(1) for each norm n1

i ∈ Φ1, there exists a corresponding norm
n2
j ∈ Φ2 such that norm n1

i (weakly) specializes norm n2
j (2) strict

specialization holds for at least one norm in Φ1 or for at least one
norm n2

k ∈ Φ2, no norm in Φ1 specializes n2
k.

We remark that the specialization relation is transitive, i.e., if Φ1

specializes Φ2 and Φ2 specializes Φ3, Φ1 also specializes Φ3. We
can also define generalization relation between normative systems
as the inverse of specialization. If Φ1 strictly specializes Φ2, we
say that Φ2 is a strict generalization of Φ1 (or we say Φ2 strictly
generalizes Φ1). Finally, we use the strict specialization relation
between pairs of normative systems to define what it means for a
normative system to be minimal effective.

DEFINITION 6. LetM be an MAS; Φ be a normative system;
ω be a property. Φ is minimal effective with respect to property ω
iff (1)M⊕ Φ |= A2ω and (2) there does not exist any Φ′ such
thatM⊕ Φ′ |= A2ω and Φ′ strictly specializes Φ.

Intuitively, Φ is minimal effective if and only if it is effective and
there does not exist any strictly specialized normative system Φ′

which is effective. Our problem in this work is defined as follows:
given an MAS M and a property Φ, how do we systematically
synthesize a normative system which is both effective and mini-
mal? We present the details of the minimal effective normative
systems for this example in Section 5.1. Note that the minimality
property is defined with respect to the way that the set of predicates
are defined and also there may be multiple minimal effective nor-
mative systems in general for a given property. In such cases, our
framework can compute all of them.

4. OUR FRAMEWORK
In this section, we present the details of our framework for de-

signing minimal effective normative systems using lightweight for-
mal methods. The particular lightweight formal method we employ
in this work is the Alloy modeling language and its associated Al-
loy Analyzer [18]. However, it is important to note that our syn-
thesis framework itself does not prescribe the use of a particular
language or tool. Any other modeling tool (e.g., NuSMV model
checker [9]) could be substituted for Alloy so long as: (1) its lan-
guage is expressive enough for specifying first-order predicates, (2)
it allows an exhaustive analysis of the system against a property,
and (3) it produces a concrete counterexample, which is used for
synthesizing and refining norms.

Alloy and Alloy Analyzer are designed based on the principle of
lightweight formal methods. That is, if a counterexample is present
in a complicated system, it is likely that some corresponding coun-
terexample exists in a scaled-down version of the system and thus
it is often important and sufficient to focus on finding (and fixing)
counterexamples within a relative small bound. We remark this as-
sumption is echoed in our setting. MAS often contain a large or
even arbitrary number of agents which are often similar or even
identical. A set of social norms which would work with a large
number of agents must work for a small number of them and fur-
thermore, as we demonstrate in our case studies later, a stable set
of social norms work for a small number of agents often apply to
a large number of agents as well. The underlying reason is that
agents in normative systems are inherently symmetric.

4.1 Norm Synthesis Process
We now outline a process for automatically synthesizing mini-

mal effective normative systems. Given an MAS, without loss of
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generality, we assume that each agent can observe the states of m
agents (except itself) within its neighborhood. For instance, in the
traffic cross system, m is set to be 3. The number of possible nor-
mative systems is exponential in the number of all possible norms,
which is exponential in the number of agents constituting the pre-
conditions. To efficiently search this huge space for a minimal ef-
fective normative system, we propose an approach in which we first
synthesize normative systems involving only the most generalized
norms for a minimal number of agents, and then incrementally re-
fine them by taking more agents into consideration. We believe that
this strategy is justified as we are deliberately searching for simple
norms (e.g., an agent would need to observe only a small number of
his/her neighbors) first, which in practice often works effectively.

The workflow of the norm synthesis framework is shown in Fig-
ure 3. The synthesis process is divided into two phases: (1) gener-
ating an initial candidate set of normative systems, and (2) refining
them until one of them qualifies as minimal effective. In the fol-
lowing, we present the details of the two phases.

Norms

Norm 

Synthesis

Alloy 

Analyzer

Norms

Violation Cases

Norm 

Interface

Constraints

Counterexamples

Norms

Multiagent 

Systems

Norm 

Refinement

Norms

Violation Cases

Models

Norm 

Generation
Apply to

Norm Refinement

Phase
 

Initial Norm Synthesis Phase

Figure 3: Norm Synthesis Framework

Initial Norm Synthesis The top three components in Figure 3 are
responsible for synthesizing an initial set of candidate normative
systems: Norm Synthesis, Norm Interface and the Alloy Analyzer.
The designer starts by modeling the behaviors of an MAS and a
desired property ω in the Alloy Analyzer1. The MAS model is pa-
rameterized with three inputs: a desired property (ω), the number of
agents (k) in the MAS, and a normative system to be enforced (Φ).
Given these inputs, the analyzer automatically checks whether the
MAS satisfies ω; if the MAS violates ω, then the analyzer returns a
counterexample that shows the sequence of states and actions that
leads to the violation.

We start the norm synthesis for MAS involving two agents only
(k = 2). Since agents are assumed to be identical, and thus there
is no need to distinguish the agents. Since Φ is initially empty, the
analyzer will generate a counterexample c that shows how ω is vio-
lated (unless ω is trivially true without norms). The norm interface
translates and passes this counterexample into the SynthInitNorms
function (Algorithm 1). Note that only the first generated coun-
terexample is considered if there are multiple counterexamples.

The algorithm works as follows. We begin by extracting from
counterexample c the set of norms that would have prevented c
(line 1). The ExtractNS function is constructed as follows. The
precondition is simply the current local view of an agent involved
in the counterexample c, and its action to be forbidden is the action
that this agent chooses right before the occurrence of c. Note that it

1The description of MAS modeling in Alloy is omitted since it is
not the focus of this paper. Refer to [19] for details.

might return multiple norms since multiple agents are involved in
the counterexample. The current normative system Φ is expanded
to include each possible Φc ∈ Φ (line 3), and is analyzed for its
effectiveness by re-running the analyzer (Verify on line 6). If the
analyzer fails to find a counterexample, Φ must be effective for
all possible scenarios in 2-agent system, and thus is included in Ω
to pass onto the refinement phase (line 8). If Φ leads to another
counterexample, c′, then we repeat the process (line 10). When the
algorithm completes, the resulting Ω contains the set of all feasible
normative systems that always guarantee property ω for the MAS
with two agents (satisfying Formula 1). In the traffic cross system,
suppose the first collision counterexample returned by Alloy An-
alyzer is that car g heads North while car h is heading East and
located at the TopLeft position of car g, this counterexample can be
mapped to either of the following two norms:

• 〈ψ1, {Move}〉, where ψ1 = dirNorth(g) ∧ topLeft(h, g) ∧
dirEast(h)

• 〈ψ2, {Move}〉, where ψ2 = dirEast(g)∧ topRight(h, g)∧
dirNorth(h)

After that, we enforce either of them on all agents’ behaviors and
rerun Alloy to generate possible counterexamples separately. This
procedure is repeated until no new counterexample is identified.
The set of normative systems returned after the initial norm synthe-
sis step are passed to the next phase: norm refinement phase.

Algorithm 1 SynthInitNorms(ω, Φ, Ω, c)
1: Ωc = ExtractNS(c) // all norms that may prevent c
2: for Φc ∈ Ωc do
3: if Φc not in Φ then
4: Φ = Φ ∪ Φc

5: end if
6: c′ = Verify(ω, 2,Φ) // analyze Φ against ω for 2 agents
7: if c′ = ∅ then
8: Ω = Ω ∪ {Φ} // no counterexample; ω satisfied
9: else

10: Ω = SynthInitNorms(ω, Φ, Ω, c′)
11: end if
12: end for
13: return Ω

Norm Refinement The normative systems in Ω are composed of
the most general and effective norms for the 2-agent MAS, i.e.,
the precondition of each norm in the normative systems in Ω are
defined as a conjunction of atomic predicates that describes the re-
lationship between two agents at most. The normative systems in
Ω may over-constrain the behaviors of the agents. The norm refine-
ment phase explores all possible specializations of each normative
system Φ ∈ Ω, in a scope in which k has been increased by one,
discarding ineffective ones. When k reaches m+ 1, the algorithm
terminates and returns a set of minimal effective normative systems
for the MAS with m+ 1 agents.

The space of specializations is exponential in the number of atomic
predicates used to describe the local state of an agent. In practice,
however, many of those specializations are ineffective, and can be
pruned away using a top-down searching approach. The key intu-
ition is as follows. Conceptually, we can order all possible norma-
tive systems in a tree structure where the root node represents the
initial normative system, and its i-th level children represent the
specializations of its i-th norm with respect to their father nodes.
With the other norms unchanged, if a normative system obtained
by specializing the i-th norm ni is ineffective, then any possible
further specialization of the rest of norms (the nodes within the
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subtree) will also be ineffective. Thus, all of its descendants can
be pruned out from the search space, and continue onto the next
specialization of ni.

Algorithm 2 RefineNorms(ω, Ω)
1: k = 3 // start with 3-agent MAS
2: repeat
3: Ω′ = ∅
4: for Φ ∈ Ω do
5: Ω∗ = SpecializeNS(ω, Φ, k, 1) // specialize Φ
6: Ω′ = Ω′ ∪ (Ω∗ − {Φ})
7: end for
8: k = k + 1
9: if Ω′ 6= ∅ then

10: Ω = Ω′ // replace Ω with specialized NSes
11: end if
12: until k > m+1 or Ω is unchanged
13: return Ω

Algorithm 3 SpecializeNS(ω, Φ, k, i)
1: Ω = ∅
2: for n ∈ Φ do
3: for n′ ∈ SpecializeNorm(n) do
4: Φ′ = (Φ− n) ∪ n′ // replace n with specialized norm
5: c = Verify(ω, k, Φ′) // check whether Φ′ is effective
6: if i = |Φ| then
7: if c = ∅ then Ω = Ω ∪ {Φ′}
8: else
9: if c 6= ∅ then continue

10: Ω = Ω ∪ SpecializeNS(ω, Φ′, k, i + 1)
11: end if
12: end for
13: end for
14: return Ω

The refinement algorithm is shown in Algorithm 2. RefineNorms
takes two arguments: a desired property (ω) and a set of candidate
normative systems from the initial phase (Ω). For each normative
system Φ in Ω, function SpecializeNS computes all minimal effec-
tive specializations of Φ for the k-agent MAS (line 5). The exist-
ing normative systems in Ω are then replaced with their specialized
counterparts from the results of SpecializeNS (line 10). The process
is repeated until k exceeds the size of the local agent view (m), or
Ω cannot be specialized further.

Given property ω, normative system Φ, the number of agents k,
and the current specialization depth i, SpecializeNS searches for
the most specialized versions of Φ that also satisfy ω (Algorithm
3). First, a candidate specialization Φ′ is constructed by replacing
n ∈ Φ with one of n’s specializations, n′ (lines 3 and 4). The
function SpecializeNorm(n) (line 3) returns the set of possible spe-
cialized norms of norm n in the current specialization context fol-
lowing Definition 3. Then, Φ′ is verified against ω using the Alloy
Analyzer (line 5); if Φ′ is effective and cannot be further special-
ized, then it is stored in Ω as a minimal effective normative system.
In theory, SpecializeNS may explore every possible combination
of all specializations of norms in Φ, which is exponential in |Φ|.
However, if the Alloy Analyzer returns a counterexample c for a
normative system Φ′, every specialization of Φ′ (the subtree of the
node corresponding to Φ′) must also be ineffective, and is omitted
from the search (line 9).

Example An example of specializing a normative system NS is
shown in Figure 4. In Figure 4, the normative system contains
only one norm NS, which has three possible specialized norms.
Each of its specialized norms can also be further specialized. When

we search for specialized effective normative system, we check the
specialized norms NS-sub2 and NS-sub3 and found that both of
them are ineffective. Then we can significantly reduce the search-
ing space by pruning away the subtrees of both norms. We only
need to further search the subtree of norm NS-sub1 which is effec-
tive, and finally obtain the most specialized one NS-sub1-sub2. If
we consider the traffic cross system example, as shown in Section
5.1 later, we found that any specialized normative system of a nor-
mative system from the initial norm synthesis stage turned out to
be ineffective, thus there is no need to further specialize any more.

NS 

NS-‐sub1 
NS-‐sub1-‐sub1 

NS-‐sub1-‐sub2 

NS-‐sub2 

NS-‐sub2-‐sub1 

 NS-‐sub2-‐sub2 
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Specialization 

Specialization 

Specialization 

Specialization 

Figure 4: Specializing Normative System Example

4.2 Theoretic Analysis
We first describe two properties which will be useful for proving

the main theorems of our synthesis framework. First, if enforcing a
normative system ensures that a property is always satisfied by an
MAS , then implementing any normative system which generalizes
the existing normative system instead also ensures that the same
property always holds in the MAS.

LEMMA 1. Let M be an MAS with an arbitrary number of
agents; ω be a property; and Φ be a normative system such that
M⊕ Φ |= A2ω. We haveM⊕ Φ′ |= A2ω for any normative
system Φ′ that generalizes Φ.

The above lemma can be easily proved based on a property of
ATL which has been proved in [15], and can be expressed intu-
itively as follows: “Implementing behavioral constraints on a mul-
tiagent system guarantees to preserve the universal properties of
the system." We omit the proof of this property and simply use the
result here. The overall formula A2ω is one kind of universial
property [15], and also based on definition of generalization re-
lation (Section 3), enforcing any generalized normative system is
equivalent with implementing additional behavioral constraints on
agents. Therefore, this lemma holds.

Another useful property is that if a normative system ensures the
satisfaction of a property in a k-agent MAS, then the same property
can also be satisfied in any MAS with fewer agents by enforcing
the same normative system. Given an MASM, we writeMk to
denote the MAS with exactly k-agents.

LEMMA 2. Let M be an MAS; ω be a property; and Φ be a
normative system such thatMk ⊕ Φ |= A2ω. Mn ⊕ Φ |= A2ω
for any n ≤ k.

We sketch the proof of this lemma using contradiction as follows.
Let us assume that the normative system Φ is not effective for a
multiagent system M′ with less than k agents. It means that the
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system must be able to evolve to certain state swhich violates prop-
erty ω under Φ. We can construct a k-agent system by letting one
agent i always be outside the neighborhood of the rest of agents
and not choose any action each round. Thus this additional agent i
does not affect the state transition of the rest of agents each round,
and the dynamics of state transitions for the rest of agents is actu-
ally the same for the system with less than k agents. Therefore, the
agents must also be able to reach a state that violates property ω.
This leads to a contradiction.

Now we are ready to establish the correctness of our approach,
i.e., every normative system synthesized from the framework is
minimal effective in always satisfying property ω for any MAS
with m+ 1 agents (Formula 1).

THEOREM 1. Let M be an MAS and ω be a property. If any
agentM can only observe the states ofm neighboring agents. Any
normative system Φ in the final set Ω synthesized from the frame-
work is minimal effective with respects to ω forMm+1.

The proof of the theorem is available in Appendix. Although the
above theorem guarantees that Φ ∈ Ω is minimal effective for the
MAS with m + 1 agents, it may not be for a larger number of
agents. In contrast, the objective of designing normative systems is
often to have a system which is minimal effective for many or arbi-
trary number of agents. Though our framework fulfills the objective
directly, as we show in our case studies, since the normative sys-
tems synthesized using our framework often could be proved to be
minima effective for an arbitrary number of agents, with a manual
induction proof. The following theorem further reduces the effort
required for manual proving by showing that as long as we prove
that Φ is effective for the MAS with more agents (i.e.,Mk where
k > m+ 1), Φ is guaranteed to be minimal as well.

THEOREM 2. Let M be an MAS. Let φ ∈ Ω be a minimal
effective normative system forMm+1 with respects to property ω
synthesized using our approach. If Φ is effective with respects to
property ω forMk where k > m + 1, it is minimal effective with
respects to property ω forMk.

PROOF. We prove this theorem by contradiction. Let us assume
that there exists another normative system Φ1 which specializes Φ
and is minimal effective for the k-agent system (k > m+1). Based
on Lemma 2, we know that Φ1 is also effective for the (m + 1)-
agent system, which also specializes Φ. This contradicts with the
fact that Φ is minimal effective for the (m+ 1)-agent system.

5. EVALUATION
In this section, we evaluate our synthesis framework with multi-

ple MASs in order to answer the following two research questions.

• RQ1: How efficient is it to use our framework to synthesize
a set of minimal effective normative systems?

• RQ2: Is our underlying assumption justified, i.e., are the nor-
mative systems we synthesized based on a small number of
agents generalizes to an arbitrary number of agents?

5.1 Traffic Junction Model
In the following, we apply our synthesis framework to a practi-

cal and well-studied multi-agent coordination problem, i.e., a traf-
fic junction network [24, 25, 20]. We present minimal effective
normative systems synthesized from our framework for ensuring a
non-collision property, and compare our results to the state-of-the-
art simulation-based synthesis approach. Note that this property

Table 1: The Norms Generated from Our Framework
Norm Precondition Actions
n1 dirNorth(g) ∧ topLeft(h, g) ∧ dirEast(h) {Move}
n2 dirNorth(g) ∧ top(h, g) {Move}
n3 dirSouth(g)∧ topLeft(h, g)∧ dirEast(h) {Move}
n4 dirSouth(g) ∧ top(h, g) {Move}
n5 dirWest(g) ∧ topLeft(h, g) ∧ dirEast(h) {Move}
n6 dirWest(g) ∧ top(h, g) {Move}
n7 dirEast(g) ∧ topLeft(h, g) ∧ dirEast(h) {Move}
n8 dirEast(g) ∧ top(h, g) {Move}

is also applicable to other similar domains such as prey-predator
problem [32] or other multi-agent coordination problems [26].

Our representation of the traffic network is based on the model
by Morales et al. [25]. We have already introduced this model in
Section 3 and the traffic network is shown in Figure 1(a). Assuming
the absence of a central controller that co-ordinates the movement
of the cars within the junction (i.e., no traffic lights), our goal is to
automatically synthesize minimal effective norms for the following
safety property: (non-collision) no two cars should ever occupy the
single cell on the traffic network anytime.

Predicates: in each local view, for the sake of modeling conve-
nience in Alloy, we define 4 predicates (e.g., dirEast()) describing
the direction of a car in each cell (i.e., 44 possibilities), along with
3 predicates (e.g., topLeft) that describe a relationship between any
two cars in their local views (i.e., 23 possibilities). Thus, we can
estimate there are 44 × 23 = 2048 possible norms, leading to po-
tentially 22048 normative systems.

Experiment Results Our framework generated a minimal effective
normative system Ω for the non-collision property withm = 3 and
k = 5. The overall synthesis process invoked the Alloy Analyzer
(i.e., Verify from the synthesis algorithm) 108 times to check the
effectiveness of candidate normative systems, which pruned away
lots of candidate normative systems. The reason is that any spe-
cialization when k > 2 (i.e., any norm with a precondition that
is expressed over more than 2 agents) turned out to be ineffective,
thus there is no need to further specialize any more. We ran our ex-
periments on a Windows 7 machine with a 2.4GHZ CPU and 4GB
RAM, and it took approximately 4 minutes to finish the synthesis.

The generated normative system Ω contains 8 norms. Many of
these norms are symmetric, and cover the equivalent scenario un-
der different orientations of the car. For example, Ω requires a car
g to stop when it is directly behind another car h; Ω covers this
scenario using four separate norms corresponding to norm n2, n4,
n6 and n8 in Table 1 respectively, depending on the direction of g.
The rest of four norms in Table 1 cover another equivalent scenario
where car g is not allowed to move and yield to another car h that
is approaching g from the left (i.e., priority to the left).

We compare the results of our experiment (ΦA) to the normative
system (ΦB) produced for the same non-collision problem using
the state-of-the-art simulation-based synthesis framework in [25].
The authors of [25] used a different set of atomic predicates to
model the traffic junction, however, the two models are equivalent
in terms of the dynamics of agent behaviors (i.e., the model size
is equivalent). Thus, we first translate their normative system into
our representation. Their normative system contains 16 norms, as
listed in Table 2. The norms can be divided into four sets of sym-
metric norms (n1 − n4, n5 − n8,n9 − n12, n13 − n16) that differ
only in the direction of car g.

First we can observe that ΦA and ΦB share one common set of
norms; namely, priority to the left norms (n1 and n′1). However,
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Table 2: The Normative System Generated in [11]
Norm Precondition Actions
n′1 dirNorth(g) ∧ topLeft(h, g) ∧ dirEast(h) {Move}
n′2 dirNorth(g)∧ top(h1, g)∧dirWest(h1)∧

topLeft(h2, g) ∧ dirWest(h2)
{Move}

n′3 dirNorth(g)∧ top(h1, g)∧ dirEast(h1)∧
topRight(h2, g) ∧ dirEast(h2)

{Move}

n′4 dirNorth(g) ∧ top(h, g) ∧ dirNorth(h) {Move}
n′5 dirSouth(g)∧ topLeft(h, g)∧dirWest(h) {Move}
n′6 dirSouth(g)∧ top(h1, g)∧dirEast(h1)∧

topLeft(h2, g) ∧ dirEast(h2)
{Move}

n′7 dirSouth(g)∧ top(h1, g)∧dirWest(h1)∧
topRight(h2, g) ∧ dirWest(h2)

{Move}

n′8 dirSouth(g) ∧ top(h, g) ∧ dirSouth(h) {Move}
n′9 dirWest(g)∧ topLeft(h, g)∧dirNorth(h) {Move}
n′10 dirWest(g)∧ top(h1, g)∧dirSouth(h1)∧

topLeft(h2, g) ∧ dirSouth(h2)
{Move}

n′11 dirWest(g)∧ top(h1, g)∧dirNorth(h1)∧
topRight(h2, g) ∧ dirNorth(h2)

{Move}

n′12 dirWest(g) ∧ top(h, g) ∧ dirWest(h) {Move}
n′13 dirEast(g)∧ topLeft(h, g)∧ dirSouth(h) {Move}
n′14 dirEash(g)∧ top(h1, g)∧dirNorth(h1)∧

topLeft(h2, g) ∧ dirNorth(h2)
{Move}

n′15 dirEast(g)∧ top(h1, g)∧ dirNorth(h1)∧
topRight(h2, g) ∧ dirNorth(h2)

{Move}

n′16 dirEast(g) ∧ top(h, g) ∧ dirEast(h) {Move}

norm n2 is more constraining than the combination of the norms
n′2, n′3, and n′4, since n2 prevents g from moving forward when
it is behind another car h, regardless of the direction of h. Thus,
ΦB is more specialized than ΦA, which might seem more desir-
able than ΦA. However, ΦB is not effective in ensuring that the
MAS satisfies the non-collision property. To demonstrate this, we
encoded ΦB in our Alloy model, and checked their effectiveness.
The Alloy Analyzer returned a counterexample that demonstrates a
collision between two cars. Consider a state in which two cars, g
and h, are described using the following predicates:

dirNorth(g) ∧ top(g, h) ∧ dirEast(h)

None of the norms in ΦB is applicable to this local view of g, and so
the MAS allows g to perform any action. When g decides to move
north and h decides to stay in the same location, the two cars end
up in a collision. It is worth noting that during our refinement al-
gorithm (Algorithm 3), n′2, n′3, and n′4 are considered as candidate
specializations of n2. They are discarded after being determined to
be ineffective. Thus it shows that the synthesis approach using a
verification tool is complementary to simulation-based approaches
and can provide strong guarantee on effectiveness or minimality.

In the following, we intuitively show that the synthesized norms
can be easily generalized to an arbitrary number of agents. That is,
the minimal effective normative system synthesized for the 7 × 7
road junction with 4 cars is also minimal effective for the general
case of n × n road junction with m cars. Based on the semantics
of the normative system we synthesized in Table 1, the normative
system is essentially equivalent with implementing the following
general rule: an arbitrary car c should stop if there is a car c′ right
in front of c or if there is another car c′ on its left-hand side and
heading towards its right-side. It can be proved that, for any n× n
road junction with m cars, if there is a collision, there must be a
violation of this rule. Thus the normative system in Table 1 always
guarantees no collision for any general case.

5.2 Two-hop Coloring Problem
In the following, we apply our approach to synthesize popula-

tion protocols. The population protocol model has become a very
important computation paradigm for modeling distributed systems
such as mobile ad hoc networks [16] and researchers are actively
designing and publishing such protocols [7, 21]. Intuitively, a pop-
ulation protocol can be considered as a set of rules specifying the
local behaviors of each agent in a population such that certain de-
sirable property can be satisfied eventually. The challenge is that a
population protocol must work with an arbitrary number of agents
and an arbitrary initial configuration of the agents. For instance, in
the two-hop coloring problem [6], a population protocol is required
for a ring of agents so that eventually always each pair of neighbor-
ing agents should have different colors. For a ring network, we can
see that three colors should be sufficient. Thus the problem is to de-
sign a protocol to regulate the behaviors of each agent such that the
goal can be eventually and always satisfied through finite local in-
teractions (computations) among each pair of neighboring agents.
Existing work [27, 23, 12] mainly investigates how to effectively
and automatically check whether a given two-hop coloring proto-
col can eventually and always satisfy the goal. Here we take a
different perspective and consider the question of how an effective
two-hop coloring protocol can be automatically synthesized.

To synthesize a two-hop coloring protocol, we observe that a
protocol corresponds to the opposite of a normative system. For
example, given a state s, if a protocol specifies that an agent should
perform an action from a subset A′ ⊆ A, then the correspond-
ing norm should specify that this agent should not perform any ac-
tion from the subset A\A′. Based on this observation, the orig-
inal question of synthesizing an effective protocol can be trans-
lated into an equivalent question of how to synthesize a minimal
effective normative system such that the desirable property is sat-
isfied. Formally we aim at synthesizing a minimal effective nor-
mative system Φ such that the following property can be satisfied:
M⊕Φ |= 32ω, where ω denotes the targeted state that no neigh-
boring agents have the same color. Note that this property is not
a universal property, however, we show that our framework is also
able to synthesize a minimal and effective normative system.

A two-hop coloring protocol specifies the allowed behavior of a
pair of neighboring agents for their local interaction. Accordingly
the synthesis of the corresponding normative system is the specifi-
cation of the forbidden behavior of each pair of neighboring agents
for their local interaction. Inspired by [6], given a population of
agents in a ring network, we assume that each agent consists of two
basic components: color c[i] and its boolean color index F [i][u] (u
denotes a color). The color of an agent can be considered as its
action and the color index can be considered as its internal state.
We represent the local state of each pair of neighboring agents i
and j using their boolean color indexes F [i][u] and F [j][u], and
thus there are two possible states: either the agents are synchro-
nized (i.e., F [i][color[j]] = F [j][color[i]]) or they are not (i.e.,
F [i][color[j]] 6= F [j][color[i]]).

For each pair of interacting agents i and j, without loss of gener-
ality, assume that agent i is the initiator and agent j is the responder.
The action set Ai of an initiator agent i consists of the combina-
tions of any possible operations on the previous two components,
i.e., updating the color so that color[i] is 0, 1 or 2; or updating the
boolean color index state so that F [i][color[j]] is ¬F [i][color[j]]
or F [j][color[i]] or ¬F [j][color[i]]. In contrast, the action set of
agent j is restricted to operations on the update of the boolean
color index only, i.e., setting F [j][color[i]] to be ¬F [j][color[i]]
or F [i][color[j]] or ¬F [i][color[j]].
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Table 3: The Norms Generated from Our Framework for a pair of neighboring agents i and j
Norm Precondition (forbidden) Operations
n1 Equal(F [i][color[j], F [j][color[i]]) {color[i]=0/1/2}
n2 Equal(F [i][color[j], F [j][color[i]]) {F[i][color[j]] = F[j][color[i]]/¬ F[j][color[i]]}
n3 Equal(F [i][color[j], F [j][color[i]]) {F[j][color[i]] = F[i][color[j]]/¬ F[i][color[j]]/F[i][color[j]]}
n4 NotEqual(F [i][color[j], F [j][color[i]]) {F[i][color[j]] = F[j][color[i]]/¬ F[j][color[i]]}
n5 NotEqual(F [i][color[j], F [j][color[i]]) {F[j][color[i]] = F[i][color[j]]/¬ F[i][color[j]]/¬ F[j][color[i]]}

Table 4: The Protocol Generated from Our Framework for a pair of neighboring agents i and j
Rules Precondition (allowed) Operations
r1 Equal(F [i][color[j], F [j][color[i]]) {F[i][color[j] = ¬ F[i][color[j]]}
r2 Equal(F [i][color[j], F [j][color[i]]) {F[j][color[i] = ¬ F[j][color[i]]}
r3 NotEqual(F [i][color[j], F [j][color[i]]) {color[i] = 0/1/2}
r4 NotEqual(F [i][color[j], F [j][color[i]]) {F[i][color[j] = F[j][color[i]]}

Experimental Results Our framework first generated a minimal
effective normative system for the two-hop coloring property with
a 3-node ring. The analysis involves 1028 times of checking to
verify the effectiveness of candidate normative systems. We ran
our experiments on the same machine and it took approximately
50 minutes to synthesize the norms. The normative system syn-
thesized from our framework is shown in Table 3, which specifies
the actions that are not allowed in different states. We then obtain
the most “general” protocol for this two-hop coloring problem by
“negating” the normative system. The two-hop coloring protocol
synthesized is shown in Table 4. Specifically, rule 1 and 2 spec-
ify how the values of F [i][color[j]] and F [j][color[i]] should be
updated if they are synchronized; rule 3 specifies that the value of
color[i] can be updated to any integer value between 0 and 2 if they
are unsynchronized; rule 4 specifies how the value of F [i][color[j]]
should be updated if they are unsynchronized.

Next, we show that the protocol synthesized above for a 3-node
ring works for a network of an arbitrary number of nodes. Formally,
we would like to show that, for any n-node ring, the protocol in
Table 4 guarantees that eventually always each pair of neighboring
agents have different colors (hereafter the property). We sketch
the proof based on mathematical induction as follows. We already
know that the protocol works for a 3-node ring. For induction, we
assume that it works for a n-node ring and proves that it works
for a (n + 1)-node ring as well. Given a (n + 1)-node ring, for
any node u connecting another two neighboring nodes v and w,
we can first reduce it into a n-node ring by connecting nodes v
and v′ and ignoring node u first. Then the reduced n-node ring
can always satisfy the two-hop coloring property. After that, we
insert node u back into its original position in the ring and apply
the same protocol again. Next we show that after a finite steps,
the (n + 1)-node ring satisfies the property. First, based on the
protocol in Table 4, we can see that if the ring satisfies the property
and all nodes are synchronized, nothing changes in the ring and
the property is satisfied. Now let us consider all possible scenarios
when node u is inserted back into the ring.

If node u violates the property, and without loss of generality, let
us assume color[u] = color[w] where nodew is the other neighbor
of node v. We consider the following three cases.

Case 1 (F [u][color[v]] 6= F [v][color[u]]): let the protocol work
on the pair of nodes (u, v). There must be one color c which can be
assigned to node u such that property is satisfied. Let color[u] = c.
This operation removes the color violation from node u. By updat-
ingF [u][color[v]]] = F [v][color[u]], nodes u, v are synchronized.

Case 2 (F [u][color[v]] = F [v][color[u]] 6= F [w][color[v]]):
Let the protocol work on the pair of nodes (v, w). Then the values

of F [w][color[v]] and F [v][color[w]] will be flipped. Node u and
v will be unsynchronized. Next, it is resolved as Case 1.

Case 3 (F [u][color[v]] = F [v][color[u]] = F [w][color[v]]):
Let the protocol work on the pair of (v,w) and (u,v) sequentially.
This will cause the values of F [v][color[w]] and F [u][color[v]]
flip once and the value of F [v][color[u]] flip twice. Thus node u
and v become unsynchronized. Next, it is resolved as Case 1.

If the original color of node u satisfies the property, we only need
to make sure it is synchronized with its neighbors v and w. Sup-
pose that they are not synchronized initially. Let the color update
operation be color[u] = color[u] (unchanged), and the update op-
eration on function F will synchronize the value of F [u][color[v]]
and F [v][color[u]]. Based on the previous result, we conclude the
protocol works for the an arbitrary number of nodes.

5.3 Orienting Undirected Rings Problem
In the following, we apply our approach to synthesize a popula-

tion protocol for orienting undirected rings and compare the result
with the one published in [6]. Given a ring that is two-hop colored
already, we are interested in reaching a state such that all nodes are
well-oriented in the sense that (1) each node has exactly one prede-
cessor and one successor and the predecessor and successor should
not be the same; (2) for each pair of nodes u and v, if u is the pre-
decessor of v, then v must be the successor of u; (3) for each pair of
neighboring nodes u and v, either u is the predecessor or successor
of v. We are interested in finding a protocol such that the previous
orientation property can be eventually satisfied in the ring as long
as all nodes (agents) follow the protocol to update their states in
a pairwise manner. Similar to the previous example, to synthesize
such a protocol, we start with synthesizing the corresponding ef-
fective normative system using our framework. Formally we aim
to synthesize a minimal effective normative system Φ such that the
following property can be satisfied: M ⊕ Φ |= 32ω, where ω
denotes the targeted state satisfying the above orientation property.

Naturally, we represent the state of a node u using the following
three components: its current color color[u], its successor node
color succolor[u] and its predecessor node color predcolor[u].
During an interaction between a pair of nodes (u, v), without loss
of generality, node u is assumed to be the initiator and node v is
the responder. By considering whether the initiator node u is the
successor or predecessor of responder node v, we distinguish the
states between a pair of nodes into the following four states,

• u is the successor but not the predecessor of v: succolor[u] =
color[v] and predcolor[u] 6= color[v]

• u is the predecessor but not the successor of v: predcolor[u] =
color[v] and succolor[u] 6= color[v]
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Table 5: The Protocol Generated from Our Framework for a Pair of Neighboring Agents i and j
Norm Precondition (allowed) Operations
n1 Equal(succolor[u], color[v]) and !Equal(predcolor[u], color[v]) {action a1}
n2 !Equal(succolor[u], color[v]) and Equal(predcolor[u], color[v]) {action a2}
n3 Equal(succolor[u], color[v]) and Equal(predcolor[u], color[v]) {action a2}
n4 !Equal(succolor[u], color[v]) and !Equal(predcolor[u], color[v]) {action a2}

• u is both the predecessor and successor of v: predcolor[u] =
color[v] and succolor[u] = color[v]

• u is neither the predecessor or successor of v: predcolor[u] 6=
color[v] and succolor[u] 6= color[v]

For each state, the nodes can update either succolor[u] or predcolor[u]
in either of the following ways.

• node u is the predecessor of node v (denoted as action a1):
predcolor[v] = color[u] and succolor[u] = color[v]

• node u is the successor of node v (denoted as action a2):
predcolor[u] = color[v] and succolor[v] = color[u]

Experimental Results Our framework first generated a minimal
effective normative system for the orienting property under a 3-
node ring. The overall synthesis process involves 124 times of
checking to validate the effectiveness of candidate normative sys-
tems. We ran our experiments on the same machine and it took
approximately 5 minutes to synthesize the norms. The synthesized
protocol for this orienting undirected ring problem can be obtained
by taking the opposite of the synthesized normative system sim-
ilarly as the previous example, which is shown in Table 5. The
protocol consists of four rules, each of which specifies the action to
be performed under each condition (state).

In the following, we generalize the protocol to any n-node ring.
We again prove it works n-node ring using mathematical induc-
tion as follows. Let us first assume that the protocol works for a
m-node ring. Next we construct the corresponding (m + 1)-node
ring by inserting another node v into an arbitrary position. Let us
denote its neighboring nodes as u and w and their neighbors are u′

and w′ respectively. Without loss of generality, let us assume that
color[u] = predcolor[u′] and color[w] = succolor[w′].

Assume that node u and v interact first. Since the (m+ 1)-node
ring also satisfies the two-hop coloring property, there is only one
possibility after this interaction, i.e., predcolor[u] = color[v] and
succolor[v] = color[u]. Next nodes v and w interact, based on
the two-hop coloring property, we know that only one possibility
happens as follows: color[v] = succolor[w] and predcolor[v] =
color[w]. After that all nodes have been well-oriented and the well-
oriented configuration remains thereafter since always action a2 is
selected following the protocol. Thus the theorem holds.

Remarks: we note that for both case studies in Section 5.2 and 5.3,
the synthesized protocols are equivalent with the ones proposed by
Angluin et al. [6]. In response to the research questions we in-
troduced at the beginning of Section 5, we have demonstrated in
the above examples that 1) we can efficiently synthesize non-trivial
normative systems; 2) the synthesized results indeed can be gener-
alized to cases with arbitrary number of agents, and are as good as
those published ones. In general, manual generalization of the syn-
thesized norms for complex problems could be challenging. How-
ever, our approach shows the potential of the lightweight formal
method: it can be useful for automatically generating candidate
norms which could be generalized. The manual induction proof

may be automatized by leveraging theorem proof techniques. Fur-
thermore, while it is true formal methods suffer from scalability
issues, it is less a concern in our framework as in all these repre-
sentative cases, we find the right norms with as few as three agents.

6. CONCLUSION AND FUTURE WORK
We proposed an approach based on lightweight formal methods

and tools to automatically synthesize minimal effective normative
systems and protocols for multi-agent systems. Complementary
to a simulation-based approach, our approach provides a theoret-
ical guarantee on the effectiveness or minimality within the given
bounds of the analysis. As future work, we plan to further autom-
atize the framework by leveraging theorem proving techniques to
help users establish the induction proof automatically.

7. APPENDIX
We prove Theorem 1 by induction as follows. For the sake of

convenience, we denote the set of normative systems returned from
SynthInitNorms and each round of norm refinement process (Re-
fineNorms) with k = 3, ...,m+1 agents as Ω2 and Ωk respectively.

Initially, when the system has only two agents (k = 2), from the
initial norm synthesis process in Section 4.1, we know that Ω2 sat-
isfied the following properties: 1) it contains all effective normative
system for 2-agent system where each norm precondition is defined
in terms of at most k = 2 agents. 2) each norm in Ω2 can not be
further specialized given that the norm precondition is defined in
terms of at most k = 2 agents.

When we increase the number of agents and synthesize special-
ized normative systems during the norm refinement process, we are
actually exploring all the possible specialized normative systems
by specializing the precondition of each norm in each normative
system obtained from the initial norm synthesis process. Next we
prove that for any case of k agents, if the set of Ωk of normative
systems satisfied the above properties, then the above two proper-
ties also hold for the set Ωk+1. Suppose that this is not true, then
there must exist another normative system Φ′ in which each norm
precondition is defined in terms of at most k+1 agents, and Φ′ is
effective for (k + 1)-agent system and also not in Ωk+1. We can
always construct a corresponding generalized normative system Φ′′

of Φ′, such that the precondition of each norm in Φ′′ is defined as
a conjunction of atomic predicates that describes the relationship
between k agents at most. Based on Lemma 1, we know that Φ′′

is also effective for (k + 1)-agent system. Further, Φ′′ is also ef-
fective for k-agent system based on Lemma 2. Thus Φ′′ must be
in Ωk, which leads to a contradiction. Therefore, there does not
exist any normative system that does not belong to Ωk+1 and also
is effective for (k + 1)-agent system.

Based on previous induction, finally we have the set Ωm+1 con-
tains all the effective normative systems in always satisfying prop-
erty ω for the (m+ 1)-agent system. Since the normative systems
in Ωm+1 are not comparable in terms of specialization relation-
ship (all generalized normative systems are excluded in Algorithm
2 (Line 6)), any normative system in Ωm+1 is minimal effective in
always satisfying property ω for (m+ 1)-agent system.
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