
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2016 

Service adaptation with probabilistic partial models Service adaptation with probabilistic partial models 

Manman CHEN 

Tian Huat TAN 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Jingyi WANG 

Yang LIU 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Citation Citation 
CHEN, Manman; TAN, Tian Huat; SUN, Jun; WANG, Jingyi; LIU, Yang; SUN, Jing; and DONG, Jin Song. 
Service adaptation with probabilistic partial models. (2016). Proceedings of the 18th International 
Conference on Formal Engineering Methods, ICFEM 2016, Tokyo, Japan, November 14-18. 10009, 
122-140. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4943 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Manman CHEN, Tian Huat TAN, Jun SUN, Jingyi WANG, Yang LIU, Jing SUN, and Jin Song DONG 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/4943 

https://ink.library.smu.edu.sg/sis_research/4943


Service Adaptation with Probabilistic Partial
Models

Manman Chen1(B), Tian Huat Tan1, Jun Sun1, Jingyi Wang1, Yang Liu2,
Jing Sun3, and Jin Song Dong4

1 Singapore University of Technology and Design, Singapore, Singapore
2 Nanyang Technological University, Singapore, Singapore

manman chen@sutd.edu.sg
3 The University of Auckland, Auckland, New Zealand

4 National University of Singapore, Singapore, Singapore

Abstract. Web service composition makes use of existing Web services
to build complex business processes. Non-functional requirements are
crucial for the Web service composition. In order to satisfy non-functional
requirements when composing a Web service, one needs to rely on the
estimated quality of the component services. However, estimation is sel-
dom accurate especially in the dynamic environment. Hence, we propose
a framework, ADFlow, to monitor and adapt the workflow of the Web
service composition when necessary to maximize its ability to satisfy
the non-functional requirements automatically. To reduce the monitor-
ing overhead, ADFlow relies on asynchronous monitoring. ADFlow has
been implemented and the evaluation has shown the effectiveness and
efficiency of our approach. Given a composite service, ADFlow achieves
25%–32 % of average improvement in the conformance of non-functional
requirements, and only incurs 1 %–3% of overhead with respect to the
execution time.

1 Introduction

Service Oriented Architecture (SOA) is emerging as a methodology for building
Web applications by using of existing Web services from different enterprises as
components. Web services provide an affordable and adaptable framework that
can produce a significantly lower cost of ownership for the enterprises over time.
Web services make use of open standards, such as WSDL [8] and SOAP [14],
which enable the interaction among heterogeneous applications.

The Web service composed by Web service composition is called a composite
service (e.g., Travel Agency service) and the Web services that constitute the
composite service are called component services (e.g., American Airline booking
service). Non-functional requirements are an important class of requirements for
Web services. They are concerned with quality of service (QoS) (e.g., response
time, availability, cost) of Web services. The non-functional requirements are

This work is supported by research project T2MOE1303.

c© Springer International Publishing AG 2016
K. Ogata et al. (Eds.): ICFEM 2016, LNCS 10009, pp. 122–140, 2016.
DOI: 10.1007/978-3-319-47846-3 9



Service Adaptation with Probabilistic Partial Models 123

often an important clause in service-level agreements (SLAs), which is the con-
tractual basis between service consumers and service providers on the expected
QoS level. For example, nowadays, many big players in the market (e.g., Netflix,
Amazon, and Microsoft Azure) have adopted microservice architecture [2]. It
works by decomposing their existing monolithic applications into smaller, and
highly decoupled services (also known as microservices). These microservices
are then composed to fulfill their business requirements. For example, Netflix
decomposed their monolithic DVD rental application into microservices that
work together, and then stream digital entertainment to millions of Netflix cus-
tomers every day.

In this work, the requirements of QoS for the composite service can be spec-
ified as global constraints. For example, an example of the global constraint is
that the response time of the Web service composition must be less than 8 ms.
To guarantee the SLAs between the Web service composition and its users, the
design of Web service composition involves the estimation of QoS of component
services. The QoS of component services could be solicited from the providers
of component services either in the form of SLAs or based on past history of
executions by making use of existing approaches (e.g., KAMI [9]).

However, due to the highly evolving and dynamic environment that the Web
service composition is running, the design time assumptions for Web service com-
position, even if they are initially accurate, may later change during runtime. For
example, the execution time of a component service may increase unexpectedly
due to reasons such as network congestion, which could affect the response time
of the composite service. Furthermore, at runtime, the non-functional proper-
ties of a composite service rely on the behaviors of component services offered
by third-party partners. The distributed ownership makes the non-functional
properties of Web service composition subject to changes. For instance, compo-
nent service providers could modify existing component Web services, and usage
profiles of the component Web services may change over time. These behaviors
may result in potential violations of SLA of the composite Web service. Since
estimations are seldom accurate, it is desirable that Web service compositions
could dynamically adapt themselves to their environment with little or no human
intervention in order to meet the guaranteed QoS levels. The loose coupling and
binding features of SOA systems make them particularly suitable for runtime
adaptation.

Existing works [5,15,17,18] address this problem by replacing component ser-
vices or invoke component services adaptively, which we denote it as point adap-
tation strategy. Point adaptation strategy suffers several disadvantages. First,
there are cases where such a strategy does not work. For example, there is no
alternate service that can satisfy the non-functional requirements. In addition,
there might not exist an alternating service that could be switched directly.
Secondly, there maybe incur much cost as they may invoke another service to
compensate it.

In this work, we propose the usage of workflow adaptation strategy to
address this issue. A workflow adaptation strategy involves modifying the work-



124 M. Chen et al.

flow to find a path for execution that can maximize the ability to satisfy the
non-functional requirements. Therefore, we present runtime ADaptation frame-
work based on workFlow (ADFlow), a framework to alleviate the management
problem of complex Web compositions that operate in rapidly changing environ-
ments. We propose the notion of probabilistic partial model, which is extended
from the previous notion of partial model [11], to capture the uncertainties of
system execution with probabilistic. The global constraints of the composite
service are decomposed into local requirements for each state of a probabilistic
partial model. When a possible violation of the global constraints is detected,
adaptive actions are taken preemptively based on the probabilistic partial model,
to avoid unsatisfactory behaviors or failures. In particular, the adaptive action
chooses the execution that could maximize the likelihood of conformance of the
global constraints.

Our contributions are summarized as follows.

1. We propose the probabilistic partial model to capture the runtime uncertain-
ties of Web service composition.

2. We propose a runtime adaptation framework, ADFlow for Web service com-
position. ADFlow monitors the execution of Web service composition based
on local requirements of the probabilistic partial model. If a possible violation
of the global constraints of the composite service is detected, adaptive actions
would be taken preemptively to prevent the violation.

3. To reduce the monitoring overhead, we propose to use asynchronous mon-
itoring where the execution status is monitored asynchronously whenever
possible. We show that this approach reduces the overhead significantly.

4. We have evaluated our method on real-world case studies, and we show that
it significantly improves the chance of the composite service to conform to
the global constraints.

Outline. The rest of paper is structured as follows. Section 2 describes a moti-
vating example. Section 3 introduces the probabilistic partial model used for Web
service compositions. Section 4 presents our ADFlow adaptation framework for
runtime adaptation. Section 5 evaluates the performance of our approach in sev-
eral scenarios with the increasing complexity. Section 6 discusses related work.
Section 7 concludes the paper and describes future work.

2 Motivating Example

In this work, we introduce four elementary compositional structures for compos-
ing the component services, i.e., the sequential (〈sequence〉), parallel (〈flow〉),
loop (〈while〉) and conditional (〈if〉) compositions, which are all the essential
structures of many programming languages; therefore, our work can be applied
to other languages potentially. In addition, there are three basic activities to
communicate with component services, i.e., receive (〈receive〉), reply (〈reply〉),
and invocation (〈invoke〉) activities. The 〈receive〉 and 〈reply〉 activities are
used to receive requests from and reply results to the users of the composite



Service Adaptation with Probabilistic Partial Models 125

service respectively. The 〈invoke〉 activity is used to invoke component services
for their functionalities. There are two kinds of 〈invoke〉 activities, i.e., synchro-
nous and asynchronous 〈invoke〉 activities. The synchronous 〈invoke〉 activity
invokes the component service and wait for the reply, while the asynchronous
〈invoke〉 activity moves on after the invocation without waiting for the reply.

2.1 Running Example – Travel Booking Service

In this section, we introduce the Travel Booking Service (TBS) as a running
example in this work. TBS is designed for providing a combined budget flight
and hotel booking composite service by incorporating with several existing com-
ponent services. The workflow of TBS is sketched in Fig. 1a.

TBS has five component Web services, namely a flight searching service (FS ),
three budget flight booking services (BF1, BF2 and BF3), and a hotel booking
service (HB). Upon receiving the request from the customer (Receive User),
a 〈flow〉 activity (denoted as ) is triggered, and Invoke FS and Invoke HB
are executed concurrently; Invoke HB invokes the HB service to book the hotel
(All invocation activities in this work are assumed to be synchronous, unless
otherwise stated). Invoke FS invokes the FS service to search for budget flights.
Upon receiving the reply from the FS service, a conditional activity (denoted as

) is followed. If the ticket price of BF1 is the lowest (represented by the guard
condition g1), BF1 is invoked (Invoke BF1) to book the flight ticket. If the ticket
price of BF2 is the lowest (represented by the guard condition g2), then BF2 is
invoked (Invoke BF2) to book the ticket. Otherwise, BF3 is invoked to book the
ticket (Invoke BF3). Upon completion of the concurrent activities, TBS replies
the user with a booking confirmation message (Reply User).

TBS provides an SLA for their service consumers such that it must respond
within 600 ms upon any request with at least 95 % availability. The cost per
invocation of TBS is 8 dollars – therefore TBS service provider needs to ensure
it does not spend more than 8 dollars for its component services.

Receive User

Invoke HB

Invoke FS

Invoke BF3Invoke BF1 Invoke BF2

Reply User

g1 g2

(a) Travel Booking Service (TBS)

QoS Attribute FS HB BF1 BF2 BF3

Response Time (ms) 300 200 300 200 100

Availability 1 1 0.95 0.9 0.95

Cost ($) 2 1 2 2 1

(b) QoS for component services of TBS

Fig. 1.



126 M. Chen et al.

Now, let us consider a scenario where the flight searching service takes 500 ms.
Classic point adaptation strategy may switch some service to an alternating
service [5,15,17,18], which has been mentioned in the introduction, as it involves
retrying or switching of a particular service. There are cases where such a strat-
egy does not work. For example, there is no alternate service that can satisfy the
non-functional requirements. In addition, there might not exist an alternating
service that could be switched directly. In such a case, our workflow adaptation
strategy, could be used.

2.2 Service Composition Notations

We use the syntax below to specify the workflow of a service composition suc-
cinctly.

– P1;P2 and P1|||P2 are used to denote sequential and concurrent executions of
the activities P1 and P2 respectively.

– C([g1]P1, [g2]P2, · · · , [gn]Pn, P0) is used to denote the conditional activity,
where gi is a guard with i ∈ {1, 2, · · · , n}. The guards are evaluated sequen-
tially from g0 to gn, and activity Pi is executed for the first gi that is evaluated
to true. If all the guards are evaluated to false, the activity P0 is executed.

– sInv(P ) and aInv(P ) are used to denote the synchronous and asynchronous
invocations respectively of the activity P .

– pick(S1⇒P1, S2⇒P2) is used to denote the pick activity, which contains two
branches of onMessage activities where exactly one branch would be executed.

PTBS = {({[sInv(FS)]64;C([g1][sInv(BF1)]
3
3, [g2][sInv(BF2)]

2
2, [sInv(BF3)]

1
1)

3
1}6

4|||[sInv(HB)]22)
6
4; [reply]

0
0}6

4

(a) Process Description of TBS
s0:(S,< (64), (

0.9
0.95), (

5
4) >)

s1:(P1, < (22), (
0.9
0.95), (

3
2) >) s2:(P2, < (64), (

0.9
0.95), (

4
3) >)

s3:(P3, < (33), (
0.95
0.95), (

3
3) >)s4:(P4, < (22), (

0.9
0.9), (

3
3) >)s5:(P5, < (11), (

0.95
0.95), (

2
2) >) s6:(P6, < (31), (

0.9
0.95), (

2
1) >)

s7:(P7, < (22), (
1
1), (

1
1) >) s8:(P8, < (33), (

0.95
0.95), (

2
2) >) s9:(P9, < (22), (

0.9
0.9), (

2
2) >) s10:(P10, < (11), (

0.95
0.95), (

1
1) >)

s11:(reply,< (00), (
1
1), (

0
0) >)

s12:(stop,< (00), (
1
1), (

0
0) >)

sInv(FS) sInv(HB)

sInv(HB)if [g1 ], p1 elseif [g2 ], p2 else, p3 sInv(FS)

if [g1 ], p1 elseif [g2 ], p2 else, p3sInv(BF1 ) sInv(BF2 ) sInv(BF3 )

sInv(HB) sInv(BF1 ) sInv(BF2 ) sInv(BF3 )

reply

where S=(sInv(FS);A)|||(sInv(HB)); reply, P1=A|||sInv(HB); reply, P2=sInv(FS);A; reply, P3=P7|||sInv(BF1); reply,
P4=P7|||sInv(BF2); reply, P5=P7|||sInv(BF3); reply, P6=A; reply, P8=sInv(BF1); reply, P9=sInv(BF2); reply, P10=sInv(BF3);
reply, A=C([g1]sInv(BF1), [g2]sInv(BF2), sInv(BF3)))

(b) Probabilistic Partial Model of TBS

Fig. 2. TBS example



Service Adaptation with Probabilistic Partial Models 127

Activity P1 is activated when the message from the component service S1 is
received, while activity P2 is activated if the message from the component
service S2 is received.

The process description of TBS, PTBS is shown in Fig. 2a. The numbers anno-
tated to each activity will be introduced in our technical report [3].

3 Preliminaries

In this section, we introduce various notions used in this work. A composite
service CS is constructed using a finite number of component services. We use
SCS = 〈s1, s2, . . . , sn〉 to denote the set of all component services used in CS.

Table 1. Aggregation function

QoS attribute Sequential Parallel Loop Conditional

Response time
n∑

i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n∑

i=1

pi ∗ q(si)

Availability
n∏

i=1

q(si)
n∏

i=1

q(si) (q(s1))
k

n∑

i=1

pi ∗ q(si)

Cost
n∑

i=1

q(si)
n∑

i=1

q(si) k ∗ (q(s1))
n∑

i=1

pi ∗ q(si)

3.1 QoS Attributes

In this work, we use three QoS attributes, i.e., response time, availability and
cost as examples to demonstrate our approach. The response time r ∈ R≥0 of
a service is defined as the delay between sending the request to the service and
receiving the response from it. The availability a ∈ R ∩ [0, 1] of a service is
the probability of the service being available. The cost of a service is the price
that incurs by invoking the service. We use R(a), A(a) and C (a) to denote the
response time, availability and cost of the activity a respectively. Table 1 lists
QoS values for component services of TBS, that will be used in the subsequent
sections. There are two kinds of QoS attributes, positive and negative ones.
Positive attributes, e.g., availability, provide good effect on the QoS; therefore,
they need to be maximized. While negative attributes, e.g., response time and
cost, need to be minimized. Our QoS attributes could be addressed similarly as
these three QoS attributes. For example, reliability could be handled in the same
way as availability.



128 M. Chen et al.

3.2 QoS for Composite Services

The values of QoS attributes for composite service CS are aggregated from
each component service based on internal compositional structures. There are
four types of compositional structures: sequential, parallel, loop and conditional
compositional structures. Table 1 shows the aggregation function for each com-
positional structure. In the parallel composition, the response time is the maxi-
mum one among response times of all participating component services since all
participating component services execute concurrently. In the loop composition,
it is aggregated by summing up the response time of the involved component
service for k times where k is the number of maximum iteration of the loop
and it could be inferred by using loop bound analysis tools (e.g., [10]). In the
conditional composition, we use the expected value as the evaluation of guards
is not known at the design time, where qi is the probability for executing the
service si.

3.3 Probabilistic Partial Models

Our approach is grounded on probabilistic partial models, which extend partial
models introduced in [11]. In the following, we define various related notions
before introducing the probabilistic partial model.

Definition 1 (State). A state s is a tuple (P, V,Q), where P is a service
process, V is a (partial) variable valuation that maps variables to their values,
and Q is a vector which represents the local estimation of the state s, which will
be discussed in Sect. 4.3. We introduce the details of local estimation in Sect. 4.3.

Given a state s = (P, V,Q), we use the notation P (s), V (s), and Q(s) to
denote the process, valuation, and local estimation of the state s respectively.
Two states are said to be equal if and only if they have the same process P , the
same valuation V and the same QoS attribute vector Q.

Definition 2 (Transition System). A transition system is a tuple
〈S, s0,Σ, R〉, where
– S is a set of states; s0 ∈ S is the initial state; Σ is a set of actions
– R ⊆ S × Σ × S is a transition relation

For convenience, we use s
a→ s′ to denote (s, a, s′) ∈ R. Given a state s ∈ S,

Enable(s) denotes the set of states reachable from s by one transition, formally,
Enable(s) = {s′|(s′ ∈ S)∧(a ∈ Σ)∧(s a→ s′ ∈ R)}. An action a is enabled by s if
there exists a state s′ such that s

a→ s′. Act(s) is denoted as the set of actions that
can be triggered from s, formally, Act(s) = {a|(a ∈ Σ)∧(s′ ∈ S)∧(s a→ s′ ∈ R)}.
An execution π is a finite alternating sequence of states and actions 〈s0, a1,
s1, . . . , sn−1, an, sn〉, where {s0, . . . , sn} ∈ S and si

ai+1→ si+1 for all 0 ≤ i < n.
We denote the execution π by s0

a1→ s1
...→ sn−1

an→ sn. A state s is reachable if
there exists an execution that starts from the initial state s0 and ends in the



Service Adaptation with Probabilistic Partial Models 129

state s. A state s is called a terminal state if Act(s) is empty. Given an action
a ∈ Σ, A(a), R(a) and C(a) denote the availability, response time and cost of
the action a. The transition system is generated based on the formal semantics
of service process described in [12]. Given a composite service CS, we use T (CS )
to denote the transition system of CS.

Definition 3 (Probabilistic Partial Models). A probabilistic partial model
is a tuple 〈M,F , Cg,P〉, where M = 〈S, s0,Σ, R〉 is a transition system, F is
a function: S × Σ → B, where B is the set {True,False,Maybe}, and Cg =
〈CR

g , CA
g , CC

g 〉 is the global constraints for the model where CR
g (resp., CA

g , CC
g )

is the global response time (resp., availability, cost) constraint. P is a function:
S × Σ → p where p ∈ R ∩ [0, 1].

For convenience, given a composite service CS, we use P(CS ) to denote the
probabilistic partial model of CS. P(CS ) is extended from T (CS ) by mapping
values (e.g., True, or Maybe, 0.5) for transitions on T (CS ). We illustrate how
the value on transitions of P(CS ) are decided. Given an action a ∈ Act(s),
F (s, a) denotes whether action a ∈ Σ could be executed from state s, P (s, a)
provides the probability of executing the action a ∈ Σ at the state s. Clearly,
F (s, a) = False and P (s, a) = 0 if a �∈ Act(s). F (s, a) = True and P (s, a) =
1 if action a ∈ Act(s) and could always be executed regardless the valuation
of the variables. Otherwise, F (s, a) = Maybe and

∑

a∈MAct(s)

P (s, a) = 1 where

MAct(s) = {a|a ∈ Act(s) ∧ (F(s, a) = Maybe)}. MAct(s) represents a set of
Maybe actions from s, where exactly one of actions a ∈ MAct(s) would be
executed. The execution of a Maybe action depends on the evaluation of the
guard (e.g., 〈if〉 activity), or dependent on the response from other component
services (e.g., 〈pick〉 activity). We also use TAct(s) to denote the set of True
actions enabled by s; formally, TAct(s) = {a|a ∈ Act(s)∧ (F(s, a) = True)}. For
example, actions if [g1 ], elseif [g2 ], and else (with p1, p2 and p3 as their respective
probabilities) are Maybe actions, since the execution of these actions dependent
on the evaluation of the guard conditions. In contrast, actions FS and HB are
True actions, since both actions are triggered concurrently at state s0.

Consider the probabilistic partial model of TBS, P(TBS ), as shown in
Fig. 2b. Recall that a state is represented as (P, V,Q). Since V = ∅ for all states
in P(TBS ), we represent states in P(TBS ) as (P,Q) for simplicity. An edge is
shown using solid (resp., dotted) arrow if the triggered action is a True (resp.,
Maybe) action, and an edge is labelled with probability if the triggered action is
a Maybe action. Since the probability is 1 if the action is a True action, we omit
the 1 in the P(TBS ).

4 ADFlow Framework

In the following, we introduce a framework for supporting self-adaptation based
on runtime information. The goal is to satisfy the system’s global constraints
with best efforts. We first introduce the architecture of the ADFlow framework



130 M. Chen et al.

based on asynchronous monitoring. After that, we focus on the local estimation
of probabilistic partial model and demonstrate how it can be used for the runtime
adaptation.

In the following, Sect. 4.1 describes the architecture of ADFlow, Sect. 4.2
introduces the notion of controllability for activities. Section 4.3 introduces cal-
culations for pessimistic and probabilistic estimation, and then Sect. 4.4 shows
how the framework adaptively chooses an action based on the probabilistic esti-
mation. Section 4.5 presents the asynchronous monitoring technique used in our
approach.

4.1 Architecture of ADFlow

The architecture of ADFlow is shown in Fig. 3b. ADFlow consists of two
essential components: the Runtime Monitor and Adapter (Adapter) and the
Runtime Execution Engine (Executor). The Adapter monitors and keeps
track of the execution of the programs using the probabilistic partial model, and
provides adaptation if needed based on the local estimation of the probabilistic
partial model. On the other hand, the Executor provides the environment for
the execution of the service programs.

During the deployment of a composite service CS on Executor, the corre-
sponding probabilistic partial model of CS, P(CS ), will be automatically gener-
ated (before the execution of CS ), stored and maintained by Adapter. As for
each action execution of CS, Adapter will update the active state pointer that
points to the current execution state sa ∈ S of P(CS ). We call sa the active
state of P(CS ). During the execution of CS, for every action performs by the
Executor (e.g., invocation of a component service), a timer is used to record
the duration of the action. Upon completion of the action, a state update mes-
sage containing the information of the completed action and the duration is sent
by the Executor to the Adapter, so that Adapter could update the current
active state of the probabilistic partial model.

4.2 Controllability of Activity

Controllable activities are the activities that could be controlled by Adapter.
They must be the activities that use Maybe actions (i.e., activities 〈if〉 and
〈pick〉). The reason for not controlling activities using True actions is that,
True actions of an active state would definitely be executed at some point of
the execution. Therefore, it will not provide any improvement for QoS of the
composite service by controlling True actions. For example, consider TBS at
the initial state s0 in Fig. 2b, the enabled True actions sInv(FS ) and sInv(HB),
must be executed at some points for all executions that start from the initial
state s0 and end at the terminal state s12. On the other hand, for Maybe actions
(e.g., if [g1 ]), they may or may not be executed (e.g., depends on the evaluation
of their guards). Suppose Adapter detects the possible violation of the global
constraints, and if the action to be executed next is controllable by Adapter,



Service Adaptation with Probabilistic Partial Models 131

then Adapter could choose an action, that maximizes the chance of satisfying
the global constraints, to be executed by Executor.

Consider TBS with active state at state s1 in Fig. 2b, which has three Maybe
actions, i.e., if [g1 ], elseif [g2 ], and else. For an 〈if〉 activity, it is the evalua-
tion of guard conditions that decides which branch to execute. It is a violation
of the semantics of the 〈if〉 activity if Executor, simply follows a different
action (e.g., elseif [g2 ]) chosen by Adapter, without checking the evaluation
of the guard condition. For this purpose, we extend the 〈if〉 activity with an
attribute ctr, so that users are allowed to specify whether the 〈if〉 activity is
controllable by Adapter. If ctr is set to true, then Executor would send an
Adaptation Query message to Adapter to consult which action to be executed
next. Adapter would either select an action to be executed or decide not to
control if there is no potential violation of the global constraints detected, and
then replies to Executor. If Adapter chooses an action, Executor would
disregard the valuation of guard condition and execute the action that is chosen
by Adapter.

Given an activity P , Ctrl(P ) ∈ {true, false} denotes the controllability of
P , which is defined recursively with Eq. (1). If P is a sequential activity P1;P2,
the controllability of P is decided on the controllability of process P1. For a
concurrent activity P = P1|||P2, P is controllable if either activity P1 or activity
P2 is controllable, since activities P1 and P2 are triggered at the same time. For
conditional activity P = C([g1]P1, [g2]P2, . . .), the controllability is decided by
the user-specified controllability of the conditional activity C.

Ctrl(P )=

⎧
⎪⎨

⎪⎩

Ctrl(P1) if P (s) = P1;P2

Ctrl(P1) ∨ Ctrl(P2) if P (s) = P1|||P2

Ctrl(C) if P (s) = C([g1]P1, [g2]P2, . . .)

(1)

4.3 Local Estimation

In this section, we introduce the local estimation and the method to calculate it.
The local estimation of a state s provides an estimation of QoS from two perspec-
tives, pessimistic and probabilistic, for all executions starting from state s.

Pessimistic Estimation. The pessimistic estimation of a QoS attribute a pro-
vides a conservative estimation of the attribute a for all executions starting from
the state s. For example, the pessimistic estimation of state s for the response
time attribute is the maximum response time that is required for all executions
starting from state s. The pessimistic estimation is used to help Adapter to
decide whether to take over the composite service at the active state sa. For
example shown in Fig. 3a, suppose the total response time from the initial state
s0 to state sa takes 1 s, and the global constraints for the response time is
2 s. If the pessimistic estimation of the response time at state sa is r seconds,
where r > 1, then the runtime adaptation is required. The reason is that since
1+r > 2 s, there exists an execution path that could violate the global constraint
of the response time.



132 M. Chen et al.

s0 sa sn. . .

r1
r2

rn

rn-1

...

1 second

Global response time requirement: 2 
seconds

(a) ADFLOW Example

Runtime Monitor and Adapter
 (Adapter)

State Update Message
(Asynchronous)

messsage 
queue

Runtime Execution Engine 
(Executor)

Adaptation Query
Message (Synchronous)

<BPEL>

< />
....
</BPEL>

(b) ADFLOW Architecture

Fig. 3. ADFlow

Probabilistic Estimation. The probabilistic estimation of the QoS attribute
a provides the expected value for the attribute a for all possible executions start-
ing from state s. The probabilistic estimation is used to guide the Adapter to
choose an action to be executed next in order to maximize the chances to satisfy
the global constraints. The local estimation Q(s) of a state s is represented by a
vector 〈LR(s), LA(s), LC(s)〉, where LR(s), LA(s) and LC(s) represent the local
estimation of response time, availability and cost for the state s respectively. The
local estimation of a QoS attribute is a vector (pepr), where pe, pr ∈ R represent the
pessimistic and probabilistic estimation of the QoS attribute respectively. Hence-
forth, we denote the pessimistic and probabilistic estimation of the response time
of a state s by Lpe

R (s) and Lpr
R (s) respectively. We define Lpe

A (s), Lpr
A (s), Lpe

C (s),
and Lpr

C (s) in a similar manner.
Different QoS attributes might have different aggregation functions for dif-

ferent compositional structures. For QoS attributes (e.g., cost, availability) that
only make use of summation and multiplication aggregation functions, we only
require backward value propagation (discussed in our technical report [3]) for
calculating the local estimation. For QoS attributes (e.g., response time) that
involve the usage of maximization or minimization aggregation functions, back-
ward tagging propagation (discussed in our technical report [3]) need to be
applied, before backward value propagation.

4.4 Runtime Adaptation

Given a set of Maybe actions, Adapter needs a metric to decide the best action
for execution. The local optimality value of an action a, denoted by L(a) is
used to provide a value that represents the worthiness of choosing the action a.
In this section, we introduce the calculation of local optimality value, and the
adaptation algorithm.

Local Optimality Value. We first introduce the notion of QoS optimality
value of an action a which will be used for calculation of local optimality value
for the action a.

Given a state s, and an action a ∈ MAct(s), the QoS optimality value of
the action a, denoted by Q(a), is the expected QoS of all (finite) executions by
executing the action a at s. It is calculated using a Simple Additive Weighting
(SAW) method [24]. For the purpose of normalization, the action a compares the



Service Adaptation with Probabilistic Partial Models 133

Algorithm 1. Algorithm ChooseAction

input : s, the active state
input : ctime, current time
input : stime, execution start time
input : c, cost that has been incurred so far
output: a, the next action to execute

1 if Ctrl(P (s)) then
2 Sr ← ((ctime − stime + Lpe

R (s)) ≤ CR
g );

3 Sa ← (Lpe
A (s) ≥ CA

g ); Sc ← ((c + Lpe
C (s)) ≥ CC

g );
4 if ¬(Sr ∧ Sa ∧ Sc) then
5 return argmax

a∈MAct(s)

(0.5·Q(a) + 0.5·fb(Sr(a) ∧ Sa(a) ∧ Sc(a)));

6 return ∅;

probabilistic estimations of its QoS attributes with the maximum and minimum
probabilistic estimations of all enabled Maybe actions. The calculation of Q(a)
is provided in Eq. (2), where wi ∈ R

+ is the weight with
∑3

i=1 wi = 1. The local
optimality value of an action a, denoted by L(a), is calculated using Eq. (3),
where Sr(a), Sa(a), Sc(a) ∈ {true, false} denote whether the execution of action
a could allow potential satisfaction of global constraints of response time, avail-
ability and cost respectively. Function fb(b) takes an input b ∈ {true, false}.
When b is true, fb(b)=1, otherwise, fb(b)=0. The local optimality value of the
action a ranges from 0.5 to 1 if Sr(a)∧Sa(a)∧Sc(a), otherwise L(a) ranges from
0 to 0.5. Therefore, it could guarantee that the local optimality values of actions
that could possibly satisfy the global constraints are higher than the one that
could not.

Q(a) = w1 · U
(r)
Max(s) − a.probtag

U
(r)
Max(s) − U

(r)
Min(s)

+ w2 · A(a) · Lpr
A (s ′) − U

(a)
Min(s)

U
(a)
Max(s) − U

(a)
Min(s)

+ w3 · U
(c)
Max(s) − (C(a) + Lpr

C (s ′))

U
(c)
Max(s) − U

(c)
Min(s)

with

U
(r)
M (s) = M

a∈MAct(s)
(a.probtag)

U
(a)
M (s) = M

a∈MAct(s)
(A(a) · Lpr

A (s ′))

U
(c)
M (s) = M

a∈MAct(s)
(C(a) + Lpr

C (s ′))

M ∈ {min,max}

(2)

L(a) = 0.5·Q(a) + 0.5·fb(Sr(a) ∧ Sa(a) ∧ Sc(a)) (3)

Adaptation Algorithm. The adaptation algorithm is shown in Algorithm1,
which is used to choose the action to execute next. In Algorithm 1, the variable
s ∈ S is the active state reached by the execution, ctime and stime are the
current time and start time of the execution respectively, and c ∈ R≥0 is the
cost that has been incurred from the initial state to state s. Line 1 checks whether
Runtime Adapter could control the activity P (s). If P (s) is controllable, then the



134 M. Chen et al.

algorithm proceeds in checking the potential satisfaction of global constraints.
In line 2, it calculates the potential satisfaction of global constraint of response
time, Sr, by checking that the duration of execution so far (ctime − stime)
added with the pessimistic estimation of state s (Lpe

R (s)) is not larger than the
global constraint of response time CR

g . If the result is false, then there exists an
execution that could violate CR

g ; otherwise, any execution from state s would
allow satisfaction of CR

g . The calculation of Sa and Sc (line 3) can be described
in a similar manner.

If not all the global constraints for response time, availability and cost are
detected to be satisfiable based on the pessimistic estimation (line 4), then
the algorithm will return a best action with the highest local optimality value
(line 5). Otherwise, the algorithm will return an empty action (line 6), which
signals that an adaptation is not required.

4.5 Asynchronous Monitoring

Adapter might require to deal with multiple concurrent state update messages
due to the concurrent execution of activities in the composite service (recall that
service composition supports the parallel composition). Synchronous communi-
cation between the Adapter and the Executor for each state update message
could result in high overhead and the parallel execution in the Executor can
be “sequentialized”. To be efficient, ADFlow adopts an asynchronous moni-
toring mechanism. That is, asynchronous communication is used between the
Adapter and the Executor during normal situations, and synchronous com-
munication is used when it is necessary. In particular, all the state update mes-
sages are sent asynchronously to the message queue, and the Adapter updates
states in batches on the probabilistic partial model. Synchronous communication
is used only when the Executor encounters controllable activities. In such a
case, an adaptation query message is sent to the message queue synchronously
(i.e., the Executor waits for the reply before continuing execution) to consult
whether there is a need for adaptation before their execution. The asynchronous
monitoring of ADFlow is shown in Fig. 3b. We have shown that synchronous
monitoring has effectively reduced the overhead for monitoring (see Sect. 5 for
the evaluation).

5 Evaluation

To reduce the external noise and control the non-functional aspect of a service,
we make use of controlled experiment to evaluate our approach. We aim to
answer the following research questions:

RQ 1. What is the overhead of ADFlow?
RQ 2. What is the improvement provided by ADFlow on the conformance of

global constraints?
RQ 3. How is the scalability of ADFlow?



Service Adaptation with Probabilistic Partial Models 135

The evaluation was conducted using two different physical machines, which
are connected by a 100 Mbit LAN. One machine is running ApacheODE [1] to
host the Runtime Engine to execute the service program, configured with Intel
Core I5 2410M CPU with 4 GiB RAM. The other machine is to host the Runtime
Adapter, configured with Intel I7 3520M CPU with 8 GiB RAM.

We use two case studies in this paper to evaluate our approach: Travel Book-
ing Services and Large Service. Component services used in both services are
real-world services that are set up on the server.

Travel Booking Service (TBS). This is the running example that has been
used through out the paper.

Large Service (LS). To evaluate the scalability of our approach, we construct a
large service LS with sequential execution of k base activities. The base activity
is constructed by sequential execution of a synchronous invocation, followed by
a controllable conditional activity with three branches which one branch has a
better QoS, and subsequently followed by a concurrent activity. We denote the
composite service with sequential execution of k base activities as LS(k), which
would consult Adapter for adaptation for k times since there are k controllable
conditional activities.

5.1 Setup of Controlled Experiments

Given a composite service CS, we denote all component services that are used
by CS as SCS . Given a component service si ∈ SCS , we use Re(si), Ae(si),
and Ce(si) to denote the estimated response time, availability and cost of the
component service si, which are either recorded in SLA or predicted based on
historical data.

To test the composite service under controlled situation, we introduce the
notion of execution configuration. An execution configuration which defines a
particular execution scenario for the composite service. Formally, an execution
configuration E is a tuple (M,Q), where M decides which path to choose for
〈if〉 and 〈pick〉 activities and Q is a function that maps a component service
si ∈ SCS , to a vector 〈R(si), A(si), C(si)〉. R(si), A(si) and C(si) are QoS values
for response time, availability, and cost of si. We discuss how an execution con-
figuration E = (M,Q) is generated. M is generated based on the probabilities
of each branch of the conditional activities. Q is generated based on confor-
mance parameter pc ∈ R ∩ [0, 1] and the estimated QoS attribute values. Given
a composite service CS, we denote the estimated value of response time for a
component service si ∈ SCS as Re(si). R(si) will be assigned with a value from
[0, Re(si)] normally with the probability of pc, and assigned with a value from
[Re(si), 3 · Re(si)] normally with the probability of 1 − pc. Values A(si) and
C(si) are generated similarly.

Given a composite service CS, and an execution configuration E, we denote
a run as r(CS,A,E), where the second argument A ∈ {ADFlow, ∅} is the
adaptive mechanism where ∅ denotes no adaptation. Two runs r(CS,A,E) and
r(CS′, A′, E′), are equal, iff CS = CS′, A = A′ and E = E′. Noted that all
equal runs have the same execution paths, aggregated response times, availabili-
ties costs.



136 M. Chen et al.

5.2 Evaluation

We conduct three experiments E1, E2, and E3, to answer the research ques-
tion RQ1, RQ2, and RQ3, respectively. Each experiment is repeated for 10000
times, and a configuration generation E is randomly generated for each repeti-
tion. We show the experiments and their results in the following.

E1: The overhead of our approach mainly comes from two sources: the asyn-
chronous monitoring and synchronous adaptation. Given a composite service
CS, in order to measure the overhead, we first generate an execution config-
uration E = (M,Q) for an adaptive run r(CS,ADFlow, E). Adaptive run
may not select a branch according to M , since the selection of a branch could
also be decided by the Adapter, in the case where Adapter decides to con-
trol a controllable conditional structure. Therefore, after the adaptive run, we
modifies M to M ′, according to the actual conditional branch selected by the
Adapter. Then, using the M ′, we perform the non-adaptive run r(CS, ∅, E′),
where E′ = (M ′, Q). These ensure that both adaptive run and non-adaptive
run have the same execution, which allow effective measurement of the overhead
introduced by ADFlow. In this experiment, we set the conformance of each
component service to 0.8. We compare the overhead of the following:

No Adaptation. Execution of the service program without the adaptation,
for which we append the name of case studies with a subscript N , i.e., TBSN ,
LS (10 )N .

Synchronous Adaptation. Runtime adaptation using synchronous monitor-
ing (in contrast to our asynchronous monitoring approach) with ADFlow, for
which we append the name of case studies with a subscript S, e.g., TBSS ,
LS (10 )S .

ADFLOW Approach. Runtime adaptation using ADFlow, for which the case
studies are specified without any subscript, e.g., TBS , LS (10 ).

Results. The experiment results can be found in Fig. 4a. Note that due to the
space constraint, the result of LS (10 )S is not shown in our results. The average
running time of TAS with adaptation is 278.28 ms and the average running
time of TAS without adaptation is 271.69 ms; therefore the overhead is only
6.59 ms, 2.3 % of the running time. In contrast, the overhead for synchronous
monitoring is 179.12 ms for TAS. On the other hand, the average running time of
LS(10) is 457.65 ms and the average running time of LS(10) without adaptation
is 450.66 ms; therefore, average overhead is 6.99 ms. In contrast, the overhead
for the adaptation using synchronous monitoring is around 1100 ms. The results
show that our approach has a little overhead, and compared to the adaptation
using synchronous monitoring, our approach reduces the overhead noticeably.



Service Adaptation with Probabilistic Partial Models 137

2,000 4,000 6,000 8,000 10,000
200

300

400

500

Number of Repetition

R
un
ni
ng

T
im

e
(m

s)
TBS
TBSN

TBSS

LS(10 )

LS(10 )N

(a) Overhead

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

Number of Repetition

Im
pr
ov
em

en
t

TBS
LS(10 )

(b) Conformance

2,000 4,000 6,000 8,000 10,000
0

20

40

Number of Repetition

O
ve
rh
ea
d
(m

s)

LS(10 )

LS(20 )

LS(30 )

LS(40 )

LS(50 )

LS(60 )

LS(70 )

LS(80 )

LS(90 )

LS(100 )

(c) Scalability (Conformance)

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

Number of Repetition

Im
pr
ov
em

en
t

LS(10 )

LS(20 )

LS(30 )

LS(40 )

LS(50 )

LS(60 )

LS(70 )

LS(80 )

LS(90 )

LS(100 )

(d) Scalability (Improvement)

Fig. 4. Experiment results

E2: In this experiment, we measure the improvement for the conformance
of global constraints due to ADFlow. Given a composite service CS, a ran-
domly generated execution configuration E, two runs r(CS,ADFlow, E) and
r(CS, ∅, E) are conducted. Nse is the number of executions that satisfy global
constraints for composite service with ADFlow, and Ne is the number of execu-
tions that satisfy global constraints for composite service without ADFlow. The
improvement is calculated by the formula Improvement = (Nse − Ne)/10000.
We perform the experiment for 10000 times.

Results. The experiment results can be found in Fig. 4b. We notice that
although the improvement fluctuates at the beginning, ADFlow always pro-
vides an improvement, compared to no adaptation. We also notice that the
improvement provided by ADFlow starts to converge when the number of rep-
etition grows. Overall, our approach improves 0.283 over TBSN and improves
0.3 over LS(10)N . The experiment results show that our approach noticeably
improves the conformance of global constraints.

E3: We compare the overhead and improvement with respect to the size of LS ,
ranging from 10 to 100.



138 M. Chen et al.

Results. The experiment results can be found in Fig. 4c and d. In Fig. 4c, the
overhead increases with the size of LS , due to the reason that more synchronous
adaptations are required with the size of the composite service increases. Nev-
ertheless, we still have low overhead compared to the total running time, which
is around 1 %–3 %. In Fig. 4c, we observe that the improvement for each case
studies fluctuates between 0.2–0.42 at the beginning. The improvement starts
to converge when the number of repetition grows. On average, the improvement
for the case studies is between 25 %–32 %. This is consistent to our observations
in experiment E2. Together, these show our approach scales well.

6 Related Work

In [5], Cardellini et al. propose to use a set of service components to implement
the functionality of a component service adaptively. Their work focuses on adapt-
ing a single service for the purpose of decreasing response time and increasing
availability. In [17], Moser et al. propose a framework that uses non-intrusive
monitoring based on aspect-oriented programming (AOP), to detect failure ser-
vice and replace them at runtime. In [15], Irmert et al. present the CoBRA
framework to provide runtime adaptation, where the infeasible component ser-
vices are replaced at runtime. In [18], Mukhija and Glinz propose an approach to
adapt an application by recomposing its components dynamically, which imple-
mented by providing alternative component compositions for different states of
the execution environment. This work is orthogonal to our approach, they adopt
point adaptation strategy, while we adopt workflow adaptation strategy.

Our work is also related to the non-functional aspect of Web service compo-
sition. In [13], Fung et al. propose a message model tracking model to support
QoS end-to-end management. In [16], Koizumi and Koyama present a business
process performance model which integrates the Timed Petri model and sta-
tistical model to estimate process execution time. Epifani et al. [9] present the
KAMI approach to update model parameters by exploiting Bayesian estimators
on collected runtime data. These aforementioned works are concerned with the
prediction of QoS attributes, while our work focuses on runtime adaptation based
on QoS attributes. In [20], given the response time requirement of the composite
service, Tan et al. propose a technique to synthesize the local time requirement
for component services that are used to compose the service. In [6,7,19,23], we
focus on verification of combined functional and non-functional properties of the
web service composition based on QoS of each component service. In [21,22], we
propose to solve the optimal selection problem and recovery problem so that it
could satisfy the requirements. The aforementioned works are orthogonal to this
work.

7 Conclusion

In this paper, we have presented ADFlow, a novel approach for monitoring and
self-adapting the running of Web service composition to maximize its ability to



Service Adaptation with Probabilistic Partial Models 139

satisfy the global constraints. ADFlow uses workflow adaptation strategy, by
selecting the best path for execution when necessary. In addition, ADFlow
adopts asynchronous monitoring to reduce the overhead. The evaluation has
shown the efficiency and effectiveness of our approach. In particular, given a
composite service, we achieve 25 %–32 % of average improvement in the con-
formance of non-functional requirements, and only incur 1 %–3 % of overhead
with respect to the execution time. For future work, we plan to investigate the
applicability our approach to other domains such as sensor networks [4].

References

1. Apache ODE. http://ode.apache.org/
2. Microservices. http://microservices.io/patterns/microservices.html
3. Technical report. http://tianhuat.bitbucket.org/technicalReport.pdf
4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., et al.: A survey on

sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)
5. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F.L., Mirandola, R.:

Moses: a framework for qos driven runtime adaptation of service-oriented systems.
TSE 38(5), 1138–1159 (2012)

6. Chen, M., Tan, T.H., Sun, J., Liu, Y., Dong, J.S.: VeriWS: a tool for verification of
combined functional and non-functional requirements of web service composition.
In: ICSE, pp. 564–567 (2014)

7. Chen, M., Tan, T.H., Sun, J., Liu, Y., Pang, J., Li, X.: Verification of functional and
non-functional requirements of web service composition. In: ICFEM, pp. 313–328
(2013)

8. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web services description
language (WSDL) version 2.0. http://www.w3.org/TR/wsdl20/

9. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: ICSE, pp. 111–121 (2009)

10. Ermedahl, A., Sandberg, C., Gustafsson, J., Bygde, S., Lisper, B.: Loop bound
analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In: WCET (2007)

11. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reason-
ing with uncertainty. In: ICSE, pp. 573–583 (2012)

12. Foster, H.: A rigorous approach to engineering web service compositions. Ph.D.
thesis, Citeseer (2006)

13. Fung, C.K., Hung, P.C.K., Wang, G., Linger, R.C., Walton, G.H.: A study of
service composition with QoS management. In: ICWS, pp. 717–724 (2005)

14. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H.F.,
Karmarkar, A., Lafon. Y.: Simple object access protocol (SOAP) version 1.2.
http://www.w3.org/TR/soap12/

15. Irmert, F., Fischer, T., Meyer-Wegener, K.: Runtime adaptation in a service-
oriented component model. In: SEAMS, pp. 97–104. ACM (2008)

16. Koizumi, S., Koyama, K.: Workload-aware business process simulation with sta-
tistical service analysis and timed Petri Net. In: ICWS, pp. 70–77 (2007)

17. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adap-
tation for WS-BPEL. In: WWW, pp. 815–824 (2008)

18. Mukhija, A., Glinz, M.: Runtime adaptation of applications through dynamic
recomposition of components. In: ARCS, pp. 124–138 (2005)



140 M. Chen et al.

19. Tan, T.H.: Towards verification of a service orchestration language. In: ISSRE, pp.
36–37 (2010)

20. Tan, T.H., André, É., Sun, J., Liu, Y., Dong, J.S., Chen, M.: Dynamic synthesis
of local time requirement for service composition. In: ICSE, pp. 542–551 (2013)

21. Tan, T.H., Chen, M., André, É., Sun, J., Liu, Y., Dong, J.S.: Automated runtime
recovery for QoS-based service composition. In: 23rd International World Wide
Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11 April 2014, pp.
563–574 (2014)

22. Tan, T.H., Chen, M., Sun, J., Liu, Y., André, É., Xue, Y., Dong, J.S.: Optimizing
selection of competing services with probabilistic hierarchical refinement. In: ICSE,
pp. 85–95 (2016)

23. Tan, T.H., Liu, Y., Sun, J., Dong, J.S.: Verification of orchestration systems using
compositional partial order reduction. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 98–114. Springer, Heidelberg (2011)

24. Yoon, K., Hwang, C.: Multiple Attribute Decision Making: An Introduction. Sage
Publications, Incorporated, Thousand Oaks (1995)


	Service adaptation with probabilistic partial models
	Citation
	Author

	tmp.1582773860.pdf.2Ie7Z

