
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2016

Towards using concurrent Java API correctly Towards using concurrent Java API correctly

Shuang LIU

Guangdong BAI

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
LIU, Shuang; BAI, Guangdong; SUN, Jun; and DONG, Jin Song. Towards using concurrent Java API
correctly. (2016). Proceedings if the 21st International Conference on Engineering of Complex Computer
Systems, Dubai, United Arab Emirates, November 6-8. 219-222.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4942

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4942&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Towards Using Concurrent Java API Correctly
Shuang Liu∗,Guangdong Bai∗, Jun Sun‡,and Jin Song Dong†

∗Singapore Institute of Technology †National University of Singapore
‡Singapore University of Technology and Design

Abstract—Concurrent Programs are hard to analyze or debug
due to the complex program logic and unpredictable execution
environment. In practice, ordinary programmers often adopt
existing well-designed concurrency related API (e.g., those in
java.util.concurrent) so as to avoid dealing with these issues. These
API can however often be used incorrectly, which results in hard-
to-debug concurrent bugs. In this work, we propose an approach
for enforcing the correct usage of concurrency-related Java
API. Our idea is to annotate concurrency-related Java classes
with annotations related to misuse of these API and develop
lightweight type checker to detect concurrent API misuse based
on the annotations. To automate this process, we need to solve
two problems: (1) how do we obtain annotations of the relevant
API; and (2) how do we systematically detect concurrent API
misuse based on the annotations? We solve the first problem by
extracting annotations from the API documentation using natural
language processing techniques. We solve the second problem by
implementing our type checkers in the Checker Framework to
detect concurrent API misuse. We apply our approach to extract
annotations for all classes in the Java standard library and use
them to detect concurrent API misuse in open source projects
on GitHub. We confirm that concurrent API misuse is common
and often results in bugs or inefficiency.

I. INTRODUCTION

Concurrent programs are becoming prevalent not only in

large programs which run on servers, but also in programs

which run on laptops or even mobile phones due to the

rapid advancement and wide adoption of multi-core hardware.

Concurrency related issues like bugs or inefficiency are dif-

ficult to analyze due to the complex program logic and non-

deterministic interleaving orders.

As discovered by Lu et al. [14], wrong assumptions on

synchronization/ordering intentions are usually responsible for

many concurrency bugs. Furthermore, we often observe that

even when programmers have correct intentions of synchro-

nization, they may still write programs with concurrency issues

due to the lack of understanding of certain concurrency-related

API. The Java API specification [2] is the official specification

for Java standard edition maintained by Oracle. The Java

API specification is written mainly in natural language. It

provides detailed descriptions on how to use existing Java API,

including usage rules that should be obeyed and properties that

should be preserved, for correct usage of the API. However,

programmers usually do not read the specifications carefully

or misinterpret some of the concepts described in the specifi-

cation. As a result, they may use those APIs incorrectly, which

may potentially cause bugs or inefficiency in their programs.

Java provides a concurrency-related library which provides

commonly used utilities and data structures. The library con-

tains thread-safe implementations for many data structures.

For instance, the ConcurrentHashMap class implements a hash

table which supports full concurrency for retrieval operations

and high concurrency for update operations. It allows multiple

threads accessing concurrently but does not entail exclusive

access. Therefore, when exclusive access is required on Con-
currentHashMap , properly designed additional locking policy

should be in place.

The code snippet in Figure 1 is taken from the Indic
Keyboard project [1], which is a versatile keyboard for

Android users. The sLangUserHistoryDictCache field is an

instance of ConcurrentHashMap . There are two methods, i.e.,

getUserHistoryDictionary and runGCOnAllDictionariesIfRe-
quired, accessing this field. However, in method runGCOnAll-
DictionariesIfRequired, there is no explicit synchronization

on sLangUserHistoryDictCache when it is updated (line 25).

As a result, there is a potential data race. Suppose Thread1
is created to execute method getUserHistoryDictionary and

Thread2 is created to execute method RunCOnAllOpenedUser-
HistoryDictionaries. Thread1 is scheduled to execute first

and it checks that the ConcurrentHashMap contains the key

localeStr (line 9), then Thread2 is scheduled to run and

it invokes the runGCOnAllDictionariesIfRequired with the

shared variable sLangUserHistoryDictCache. Since the code

run by Thread2 does not synchronize on the sLangUserHis-
toryDictCache object, it can access (in this case remove) an

entry from the object. Suppose the entry is exactly the one

indicated by localeStr. When Thread1 resumes and runs to

line 10, a null value is returned which violates the program

logic and results in NullPointerException later.

This result is due to the lack of proper synchronization on

the shared variable sLangUserHistoryDictCache when exclu-

sive access is required (line 20-25). This may be because of

the misunderstanding of the ConcurrentHashMap class, which

enables concurrent access but does not guarantee exclusive

access. ConcurrentHashMap uses private locks internally and

therefore line 10 and line 25 would lock on different objects

and as a result it is as good as no locking at all. A fix

of this issue would be to guard line 25 with the same lock

(i.e., sLangUserHistoryDictCache) as line 10. This bug may

be hard to find also because the shared variable sLangUser-
HistoryDictCache is passed to the method runGCOnAllDic-
tionariesIfRequired as a parameter, which has a different

name, i.e., dictionaryMap. Thus it is easier for programmers

to ignore the concurrent access to the shared variable. The

trouble with synchronizing on ConcurrentHashMap is that it

would result in inefficiency, as in such a case, all “smart”

locking mechanism done inside ConcurrentHashMap (called

lock stripping) is wasted and it would lead to lock contention

on object sLangUserHistoryDictCache.

Misunderstanding of API specification can cause issues

2016 21st International Conference on Engineering of Complex Computer Systems

978-1-5090-5527-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ICECCS.2016.32

221

2016 21st International Conference on Engineering of Complex Computer Systems

978-1-5090-5527-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ICECCS.2016.32

219

1 public class PersonalizationHelper {
2 final String localeStr = locale.toString();
3 private static final ConcurrentHashMap<String, SoftReference<UserHistoryDictionary>>
4 sLangUserHistoryDictCache = new ConcurrentHashMap<>();
5 ...
6 public static UserHistoryDictionary getUserHistoryDictionary(final Context context, final Locale locale) {
7 ...
8 synchronized (sLangUserHistoryDictCache) {
9 if (sLangUserHistoryDictCache.containsKey(localeStr)) {

10 final SoftReference<UserHistoryDictionary> ref = sLangUserHistoryDictCache.get(localeStr);
11 ...
12 }
13 }//end synchronized
14 ...
15 } //end method
16 public static void runGCOnAllOpenedUserHistoryDictionaries() {
17 runGCOnAllDictionariesIfRequired(sLangUserHistoryDictCache);
18 }
19 private static <T extends DecayingExpandableBinaryDictionaryBase> void runGCOnAllDictionariesIfRequired(final

ConcurrentHashMap<String, SoftReference<T>> dictionaryMap) {
20 for (final ConcurrentHashMap.Entry<String, SoftReference<T>> entry: dictionaryMap.entrySet()) {
21 final DecayingExpandableBinaryDictionaryBase dict = entry.getValue().get();
22 if (dict != null) {
23 dict.runGCIfRequired();
24 } else {
25 dictionaryMap.remove(entry.getKey());
26 }
27 } } }

Fig. 1. Code Snippet from the Indic Keyboard Project Illustrating Misuse of Clientside Locking

which are hard to detect since it is assumed to be correct

by the programmers. In this work, we propose an approach

for enforcing the correct usage of concurrency-related Java

API. Our idea is to annotate concurrency-related Java classes

with annotations which are related to misuse of these APIs and

then develop lightweight type checkers to automatically detect

concurrent API misuse based on the annotations. To automate

this process, we must solve two problems: (1) how to obtain

annotations of the relevant API; and (2) how to systemati-

cally detect concurrent API misuse based on the annotations?

We solve the first problem by extracting annotations from

the informal natural language Java API documentation using

natural language processing techniques. We solve the second

problem by developing and implementing our type checkers,

based on the annotations, in the Checker Framework [16] to

detect concurrent API misuse automatically.

Related Work There have been many approaches which focus

on finding concurrency related issues, including deadlock [9],

[12], [15], [19], data race [7], [9], [20] and atomicity viola-

tion [10], [11], [13], [18], etc. A variety of techniques such as

type systems [17], static analysis [9] and dynamic analysis [20]

have been explored. All the above surveyed approaches try

to check either violation of certain disciplines, such as the

locking discipline, the happen-before discipline, etc; or the

violation of existing templates. Our work differs from them as

we focus on enforcing the correct usage (misuse of which

may lead to concurrency bugs) of Java API in concurrent

context based on its specifications. Rather than focusing on

a particular kind of buggy template, we focus on finding

misuse of certain API/class due to misunderstanding of the

corresponding API/class.

II. GENERATING ANNOTATIONS

In this section, we discuss how to obtain concurrency-

related annotations automatically.

Extracting Relevant Sentences We first conduct keyword

matching on Java API descriptions to gather all parts of

the Java API specification which may be relevant to the

concurrency API specification, while filtering out those that

are irrelevant. In particular, we are interested in descriptive

sentences, e.g., descriptions of packages and classes in the

Java API specification. We conduct standard pre-processing

steps, including truncation and tokenization, to automatically

regularize the sentences. We use splitta [4] to tokenize and

identify sentence boundaries.

To extract the sentences which may be useful in generating

the annotations, we first provide a set of seed keywords, which

are semantically synonymous with the annotations that we

are interested in, i.e., “reentrancy”, “thread-safe”, “immutable”

and “locking”. We obtained 530 sentences containing the

keywords and they are used to extract annotations next.

Extract Annotations The second step is to extract annotations

from those annotation-containing sentences. We adopt the

format of typed annotation [3] to represent rules since it is a

well-defined meta-data type in Java and can be used for both

manual inspection and detecting errors during compiling time.

Since the Java API specification is written mainly in natural

language, we adopt NLP techniques, i.e., dependency parsing,

to parse the sentences and extract annotations.

(1) Natural Language Parsing In this work, we adopt the

Stanford Parser [5] for dependency parsing [8]. In dependency

parsing, a dependency relation is associated to each pair of

words in a sentence. The parsing result is usually a dependency

tree, which captures the grammatical relation between words

in the sentence. For example, in Figure 2, the labels on

the directed arcs are Stanford dependency labels. The label

nsubj from the word safe to the word Instances captures the

grammatical relation that the word Instances is the nominal

subject of the word safe. We parse the sentences from the

Java API specification and obtain one dependency tree for

222220

Instances of StringBuilder are not safe for use by multiple threads

ROOT

nsubj

prep of

cop

neg prep for amod

prep by

Fig. 2. Example of a dependency tree

each sentence.

(2) Extracting Annotations We provide a set of rules to extract

annotations from the dependency trees based mainly on the de-

pendency relations. The format of our extracted annotation is

“@AnnotationType(ObjectName)”, where “AnnotationType”

indicates the type of the annotation and an “ObjectName”

indicates the class/object the annotation keyword restricts on.

To extract annotations in the above-mentioned format, we

focus on two kinds of information, i.e., the subject and the

main verb of a sentence, when analyzing the parse trees. The

main verb of a sentence potentially identifies the annotation

keyword and the subject of a sentence maps to the class, object

or method that the corresponding annotation keyword restricts

on. In this work, we are interested in four annotations, i.e.,

@threadsafe, @immutable, @entailLocking and @reentrant,

and also their negations like @!threadsafe, which means that

the class is not thread-safe. Therefore the corresponding key-

words “thread safe”, “immutable”, “reentrant” and “exclusive,

lock” as well as their synonyms are used in our rules as

keywords to identify annotations from the sentences. The

rules are proposed based on general English grammar and the

heuristics that we discovered during the manual inspection of

the sentences extracted in the previous step. The general idea

is that the main verb should map to one of the annotation

keywords. The subject of the sentence should correspond to

the object/class/method names that the annotation keywords

restrict on. Due to space limitations, please refer to our

website [6] for details of the rules to extract annotations.

Evaluation We apply the above method to the sentences we

obtained from Java specification. In the following, we eval-

uate the accuracy of the automatically extracted annotations

through manual inspection. We obtained in total 530 sentences

through keyword matching, 447 of which are confirmed to be

annotation-containing. We extracted in total 410 annotations

(340 are distinct) from the sentences. Note that One sentence

may contain multiple annotations. Different sentences may

also contain the same annotation. In 101 cases, we fail to

extract the correct annotations. The reasons for not being

able to extract correct annotations include: (1) Parsing error
due to the Stanford Parser: The POS tags of the ROOT are

incorrectly labeled, and thus leads to the incorrect results.

(2) Keywords appeared in a subclause: Because our matching

rules are based on dependency labels, which concentrate on

the main clause. The annotation containing clauses which

appear as subclauses are not captured. (3) Sentences which
have very complex structure/logic: For example, “If a thread-
safe implementation is not needed, it is recommended to use
ArrayList in place of Vector.”. Complex semantic information

is needed in order to understand the sentence and extract the

annotation “@!threadsafe(ArrayList)” from it.

The full list of classes with annotations can be found at [6].

We remark that we observe that the Java specification is

not complete. For instance, it is never mentioned anywhere

that Boolean is immutable. As a result, our annotations are

incomplete as well. Nonetheless, we believe that our automat-

ically generated annotations would provide a good start to sys-

tematically document important concurrency related semantic

information. Furthermore, our technique is not restricted to the

Java specification only.

III. USING ANNOTATIONS

In this section, we show how the annotations can be used

to to detect potential concurrency related issues automatically.

Client-side Locking Recall that if instead private locks are

used to guard the state of an (thread-safe) object, the object

does not entail client side locking. We have shown misuse of

those classes in Figure 1. Our approach is to develop a dedi-

cated type checker called locker-checker based on the Checker

Framework [16], which supports pluggable type checking for

Java programs. It provides type inference utilities which enable

user-defined types to be checked. To develop the type checker,

we first define a type hierarchy of locker-checker, as shown

below.

����������	�
��

����
���	�
�� �����
���	�
��

The top of the type hierarchy is type @unknownLock-

ing, which is the default type for non-annotated objects.

@entailLocking and @!entailLocking are subtypes of @un-

knownLocking. Objects annotated with @entailLocking are

objects which guarantee exclusive access. Objects annotated

with @!entailLocking are thread-safe objects which do not

guarantee exclusive access.

Based on the above type hierarchy, locker-checker is de-

signed to check for API misuse associated with types which

are annotated with @!entailLocking. In particular, locker-
checker is based on the following hypothesis. When a com-

pound operation on an object annotated with @!entailLocking

is contained in a synchronized block, e.g., line 8 to 13 in

Figure 1, we assume that the requirement is that the compound

action must be carried out atomically and thus any operation

in other executing threads which may modify the object in

between must be synchronized with the same lock. According

to the assumption, line 25 in Figure 1 must be put in a

synchronized block on sLangUserHistoryDictCache. Due to

space limitation, we put the algorithm encoded in our locker-

checker on our website [6].

Checking Locking on Immutable Objects There are po-

tentially subtle concurrency bugs if we synchronize on an

immutable object and then modify the object in certain way.

To check such kind of issues, we modify the Javari [17]

type checker, which is a built-in type checker in the Checker

Framework, and encode rules to detect locking-on-immutable-
object errors. We add an annotation @Immutable to the

existing type hierarchy of Javari Checker and make it a

223221

subtype of @ReadOnly. To check whether the case of lock-
on-immutable-object may happen, we add a checking rule for

the @Immutable annotation to monitor whether the annotated

object may be modified within a synchronized block.

Evaluation We answer two questions in the evaluation.

(1) Are there concurrent API misuses in real-world projects?
The question can be answered only if we can check a large

number of real-world projects. We downloaded the top 1K

most popular projects from GitHub, among which 344 projects

used the concurrent collection API. Among the 344 projects,

193 projects try to use the synchronized keywords on those

concurrent API for exclusive access. Our method detected that

30 of those projects contain concurrency issues, meaning that

15% of the time when developers want to guarantee exclusive

access on the concurrent collections, they use it wrongly.

We detected 87 misuses from 30 different projects. We

manually inspect each one of them and confirm that most of

them are highly likely actual bugs (e.g., there are data races).

The result evidences that this kind of concurrency issues are

not uncommon in those projects. The issue-containing projects

vary from large platforms or servers (e.g., alibaba/dubbo,

Openfire), android apps (e.g., Indic-Keyboard, MozStumbler),

to popular open source libraries like GeoServer.

(2) Is our issue detection method relatively sound? To answer

this question, we manually inspected all the issues reported

by our method and decide whether they are real issues (bugs

or inefficiency) or false alarms.

We detected 12 immutability related data races, among

which 8 are manually confirmed to be potential bugs. The

reason for the false alarms is that even though there is a

data race, the only race is on the shared immutable variable

which is assigned to a constant value (e.g., true). These false

alarms can be avoided by improving our method to take into

account special constants. We found 75 issues related to the

@!entaillocking annotation, 66 of the detected problems are

manually confirmed to be potential bugs.

Obviously, we would not know for sure whether a misuse

is a bug as we do not know the specification of those projects.

We thus contacted the authors of the relevant projects (30
of them) and reported the issues we found in their GitHub
project forums to confirm whether our findings are indeed
bugs. We got feedback from 12 of projects, which is reasonable

considering not all projects are active. Among the 12, 8 of

them confirmed that indeed what we found are concurrency

related issues in their code. The bugs are subsequently fixed.

The rest explained those are not considered bugs either because

the race is considered benign; or there are other constraints in

the system which makes it impossible for multiple threads to

execute the two racing parts of the program at the same time.

The full list of issues can be found on our website [6].

IV. CONCLUSION

We propose to enforce correct usage of Java concurrent

API through natural language processing and type checking.

We first extract concurrency related annotations from Java

API document. Then we use those annotations to detect

violations of API usage through type checking. We show how

to detect concurrency bugs related to two types of under-

explored annotations, i.e., @Immutable and @!entailLocking.

We detected potential concurrency issues from 30 GitHub

projects. We reported those issues to the developers and got

responses from developers of 12 projects, in which 8 of them

confirm to have our reported concurrency issues.

REFERENCES

[1] The Indic Keyboard Project, https://github.com/smc/Indic-Keyboard.

[2] Java Platform, Standard Edition 8 API Specification, https://docs.oracle.
com/ javase/8/docs/api/ .

[3] Java Typed Annotation and Pluggable Type Systems Specification, https:
//docs.oracle.com/ javase/ tutorial/ java/annotations.

[4] Splitta: a statistical sentence boundary detection tool, https://code.
google.com/p/splitta/ .

[5] The Stanford Parser, http://nlp.stanford.edu/software/ lex-parser.shtml.
[6] http://sav.sutd.edu.sg/?page id=2845.

[7] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: proportional
detection of data races. ACM Sigplan Notices, 45(6):255–268, 2010.

[8] M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al. Generating
typed dependency parses from phrase structure parses. In Proceedings
of LREC, volume 6, pages 449–454, 2006.

[9] D. Engler and K. Ashcraft. Racerx: Effective, static detection of race
conditions and deadlocks. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP ’03, pages 237–
252, New York, USA, 2003. ACM.

[10] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker
for multithreaded programs. In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’04, pages 256–267, New York, USA, 2004. ACM.

[11] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifications
for concurrent object-oriented software using model-checking. In In
Proceedings of the International Conference on Verification, Model
Checking and Abstract Interpretation, pages 175–190. Springer, 2003.

[12] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock immunity:
Enabling systems to defend against deadlocks. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’08, pages 295–308, Berkeley, CA, USA, 2008. USENIX
Association.

[13] Z. Lai, S. C. Cheung, and W. K. Chan. Detecting atomic-set serializ-
ability violations in multithreaded programs through active randomized
testing. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 235–244, New
York, USA, 2010. ACM.

[14] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
XIII, pages 329–339, New York, USA, 2008. ACM.

[15] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock
detection. In Proceedings of the 31st International Conference on
Software Engineering, pages 386–396. IEEE Computer Society, 2009.

[16] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for java. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08,
pages 201–212, New York, USA, 2008. ACM.

[17] M. S. Tschantz and M. D. Ernst. Javari: Adding reference immutability
to java. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’05, pages 211–230, New York, USA, 2005. ACM.

[18] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints
with data in an object-oriented language. In Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’06, pages 334–345, New York, USA, 2006.
ACM.

[19] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:
Dynamic deadlock avoidance for multithreaded programs. In Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 281–294, Berkeley, CA, USA, 2008.
USENIX Association.

[20] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient detection of data
race conditions via adaptive tracking. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05, pages

221–234, New York, USA, 2005. ACM.

224222

	Towards using concurrent Java API correctly
	Citation

	Towards Using Concurrent Java API Correctly

