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Improving Quality of Use Case Documents through
Learning and User Interaction

Shuang Liu∗, Jun Sun†, Hao Xiao‡, Bimlesh Wadhwa§, Jin Song Dong§ and Xinyu Wang¶
∗Singapore Institute of Technology †Singapore University of Technology and Design ‡Nanyang Technological

University §National University of Singapore ¶ZheJiang University, China

Abstract—Use cases are widely used to capture user require-
ments based on interactions between different roles in the
system. They are mostly documented in natural language and
sometimes aided with graphical illustrations in the form of
use case diagrams. Use cases serve as an important means to
communicate among stakeholders, requirement engineers and
system engineers as they are easy to understand and are
produced early in the software development process. Having high
quality use cases are beneficial in many ways, e.g., in avoiding
inconsistency/incompleteness in requirements, in guiding system
design, in generating test cases. In this work, we propose an
approach to improve the quality of use cases using techniques
including natural language processing and machine learning. The
central idea is to discover potential problems in use cases through
active learning and human interaction and provide feedbacks in
natural language. We conduct user studies with a real-world use
case document. The results show that our method is helpful in
improving use cases with a reasonable amount of user interaction.

I. INTRODUCTION

Use cases are one of the primary ways to capture user

requirements. It is like the hub of a wheel [13] which binds

together many software development activities throughout the

system development lifecycle, including requirement analysis,

system design, development, testing and maintenance. Having

high quality use cases are beneficial in many ways, e.g.,

in avoiding inconsistency/incompleteness in requirements, in

guiding the system design, in helping generating test cases.

Validating and maintaining a high quality use case document is

thus crucial, which unfortunately is also subjective and labor-

intensive. One of the reasons why it is hard to have high

quality use cases is that stakeholders usually do not describe

the requirements clearly, consistently or completely. Common

problems with use cases include ambiguity and inconsistency

in the requirements [12], [21] and, perhaps more importantly,

missing information (e.g., precondition, scenario) [4].

Given the importance of high quality use cases, in this

work we aim to develop techniques and tools which focus

on improving the quality of use cases in practice. The design

of our method and tool is guided by three observations. Our

first observation is that user interactions are crucial to improve

the quality of use cases. Given that many problems of the use

cases are caused by incomplete or inconsistent user require-

ments [12], and there is no better way to obtain the information

than interacting with the stakeholders, our method/tool shall

try to make the best use of user interactions. We should require

information from the stakeholder or requirement engineer in

a way which is easy to understand so that they are not

overwhelmed or confused. The second observation is that due

to the continuous communication request with stakeholders,

use cases are mainly documented in natural language [21],

and thus inevitably informal. Therefore our methods must

be able to handle use cases written in natural language,

live with certain level of ambiguity, and help to reduce the

ambiguity through automatic analysis and user interaction. The

last observation is that problems in use cases, if manifest later

in the system design or implementation stages, will cause more

efforts (up to 100 times more expensive [6]) to correct than

to find and correct them in the early stages.

Based on the above observations, we propose to improve

the quality of use cases using techniques including natural

language processing (NLP) and machine learning. Central

to our idea is to discover potential problems which could

manifest during implementation and report the problems at the

level of use cases so as to improve the quality of use cases.

Figure 1 shows the high-level workflow of our approach.

Firstly, we adopt advanced natural language parsing tech-

niques [30] to extract structured format from individual use

case written in English, from which we obtain information on

behaviors of each actor in the system in a particular scenario.

Next we attempt to answer the question on whether there

would be a concise implementation of the system such that

the requirements are satisfied. To do that, we need to, for

each actor in the system, not only figure out the relationship

between its behavior in different use cases, but also check

whether the behaviors in different use cases can be grouped

into a meaningful and succinct implementation. For the former,

we extract predicates from preconditions and postconditions of

each use case and use those predicates as guidance to construct

a use case relation graph. For the latter, we adopt active

learning techniques from the machine learning community

to incrementally learn a Deterministic Finite-state Automaton

(DFA) from the behaviors in individual use cases. The use case

relation graph is then used to compose the learned automata

for every actor to obtain a plausible implementation for the

actor. We remark that the requirement engineers are involved

throughout the process. For instance, we would automatically

infer relationships between preconditions and postconditions

of different use cases as much as possible. When ambigu-

ity arises, we generate questions in English to consult the

requirement engineers, e.g., whether a certain precondition

is satisfied by certain postconditions; or whether a behavior

anticipated through learning (for instance, an implementation
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Fig. 1. Overview of our approach

with a small number of states would probably allow this

additional behavior) is indeed allowed but is missing from

the current set of use cases.
In this way, we are able to elaborate the use cases in-

crementally and interactively with requirement engineers to

improve their quality, for instance, by reducing ambiguity in

precondition and postcondition descriptions, or by identifying

missing use cases. We remark while we attempt to synthesize

a plausible DFA implementation for each actor in the system,

it is not the goal of this work. Rather it is a way of identifying

problems in use cases, which is more realistic from our point

of view. Nonetheless, some of the artifacts generated in our

method could be useful on its own. For instance, the use

case relation graph shares the same utility as the use case

charts or high-level Message Scequence Charts and could

be used by existing scenario based requirement validation

approaches [25], [27]. Therefore, our approach can be used

in combination with those approaches. We conduct a case

study with a real industry use case document (of a financial

system actively used by a financial institute in Boston), which

contains more than 100 use cases. We identified more than

a dozen missing scenarios and dozens of other problems.

The evaluation results show that our approach is effective

in improving the quality of use cases. A user study with 15

software engineers show that the amount of user interactions

required by our tool is acceptable.

II. A RUNNING EXAMPLE

In this section, we illustrate the overall process of our

approach through an example. The example is adopted from

our industry collaborator. For confidentiality, the use cases

presented in this paper have been slightly modified, e.g., the

sensitive words have been replaced. Nonetheless, the use cases

remain largely faithful. Figure 2 shows four sample use cases

of the system, written in English. All these use cases describe

the valid behaviors of the actor “Ticker Monitor” and serve as

input to our method.

There are four major steps in our approach. The first step is

to “understand” the description of the use cases. We adopt NLP

techniques to parse the use case documents and obtain formal

structures of the use case. In the second step, we formalize the

behaviors of each actor in the use cases using DFA and make

reasonable guesses on how the behaviors can be realized. In

particular, we adopt an active learning algorithm L* [5] to learn

an Extended Deterministic Finite Automaton (EDFA) based

on the actor’s behaviors in the use cases. Different use cases

might have very different preconditions and postconditions, in

order to understand the relations between different use cases,

we construct a use case relation graph for each actor based on

the preconditions and postconditions of each EDFA and then

compose the EDFAs to obtain an overall EDFA for each actor.

This step allows us to reduce ambiguity as well as identify

missing scenarios in the use cases.

Step 1 : Natural Language Parsing We first adopt natural

language processing techniques, i.e., dependency parsing and

phrase structure parsing [30], to parse the sentences in a

use case description into parse trees. Then we conduct rule

matching based on general grammar rules (proposed in [16]),

which are extracted from the documents, on the parse trees. We

identify all the actions which are related to the actor of concern

based on the parsed action tuples. For example, in use case

2 of Figure 2, the action tuples for the main flow sentences

are selects(Ticker monitor, symbol information), sends(Ticker
monitor, message to delete symbol information). Both action

tuples have actor “ticker monitor” as subject. We thus consider

both of them as actions related to the actor.
Then the structured sentences are linked based on the

control flow information (e.g., predecessor/successor relation

or the “go to” statement) described in the flow steps to obtain

a raw Nondeterministic Finite State Automaton (NFA), which

captures the actions of one actor described in the use case. For

example the NFAs1 shown in Figure 3 (a) and Figure 3 (b)

are constructed from use case 2 and use case 3 in Figure 2,

respectively. We merge all those NFAs which share the same

preconditions and describe the actions of the same actor to

obtain one NFA. The NFAs in Figure 3 (a) and Figure 3 (b)

are merged to obtain the NFA shown in Figure 3 (c). Then we

determinize the NFA in Figure 3 (c) to obtain a DFA2 shown

in Figure 3 (d), which serves as a part of the knowledge base

during the active learning process. In our approach, we learn

the DFA which is prefix-closed with the assumption that the

system can stay in any of the state after conducting an action.

Therefore, we set all states in the DFA to be accepting states.

Step 2 : Learn Local EDFA We group those structured use

cases based on their preconditions and postconditions. For

all the use cases which describe the actions of one actor, if

they have the same preconditions, they are put together as

one group (e.g., use case 2 and use case 3 in Figure 2). All

the actions appear in those use cases in the same group are

fed to the L* algorithm as the alphabet to learn one local

DFA. For example, in Figure 2, use case 1 and use case 4

correspond to DFAs shown in Figure 4 (a) and Figure 4 (c)

respectively. The DFA in Figure 4 (b) is generated based on

the traces from use case 2, use case 3 and some other use

cases (refer to [2] for the full list of use cases) within the

same group. One goal of the learning is to gradually discover

1We simplify the action tuple representation to save space.
2We only show the transitions which lead to accepting states in the DFAs

for clarity. The same applies to Figure 4 and Figure 6.
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Fig. 2. Sample use cases

d0

d1

d2

select s

delete s

(a)

u0

u1

u2

u3

select s

update s

send us

(b)

0

d0

d1

d2

u0

u1

u2

u3

ε ε

select s

update s

send us

select s

delete s

(c)

0

1

d2

u2

select s

delete s

update s

send us

(d)

Fig. 3. The NFA for use case 2 (a) and use case 3(b) in Figure 2, the merged
NFA (c) and the corresponding DFA (d)

s0 s1 s2 s3
connect receive display

(a)

p0

p1 p2

p3

p4 p5

p6

p7

select s

select e

create s create e

cancel

cancel

update s

delete s

update e

delete e

send us

cancel

send s send e

send ue

cancel

(b)

q0 q1

q2

notd

undo s
send ds

(c)

r0 r1

r2

notd

undo e send de

(d)

Fig. 4. The partial DFAs for Ticket Monitor

missing scenarios by generating questions to users. Using an

active learning algorithm allows us to ‘control’ the number of

questions required. For instance, the dashed lines in the DFA

shown in Figure 4 (b) represent the traces that are added during

the interactive learning process. These traces are generated

by our learning algorithm and are confirmed to be valid by

stakeholders.

We then assign each DFA with preconditions and post-

conditions of the use cases that compose it. The DFA with

dfa1

dfa2

dfa3 dfa4

connected(TM,GSYS)

del SI

del EI

Fig. 5. Relation graph of Ticket Monitor EDFAs

preconditions and postconditions is called an Extended DFA

(EDFA). The postconditions of an accepting state are set

on a trace basis, i.e., only the accepting states, e.g., p7
in Figure 4 (b), which correspond to ending of the traces

have postconditions. For the trace 〈select s, delete s〉, the

postcondition is set to be deleted(symbol informtion). The

trace-based preconditions and postconditions are used for use

case relation graph generation and EDFA composition, when

we decide how to split the traces.

Step 3 : Construct Use Case Relation Graphs We observe

that there are often “happen before” or “in parallel” relations

between use cases. Those relations can be inferred from the

precondition and postcondition sections in the use case docu-

mentation. At the same time, analyzing those relations between

use cases can identify ambiguity in precondition/postcondition

descriptions as well. Recall that in step 2, we learn one

EDFA for the use cases with the same precondition. Therefore

usually multiple EDFAs are learned for one actor. In order

to show the overall view of all behaviors of an actor, we

build a usage relation graph for those EDFAs based on their

corresponding preconditions and postconditions. The usage

relation graph for the EDFAs in Figure 4 is shown in Figure 5.

The nodes represent the EDFAs and directed edges represent

the precedence of usage relations between two EDFAs. The

labels on the edges are the conditions based on which we

infer the relation between two EDFAs. For example, dfa3
“happens after” dfa2 based on the common condition the
symbol information is deleted (del SI in Figure 5), which is

the postcondition of dfa2 and the precondition of dfa3.

We construct one usage relation graph for each actor.

For those use cases with trivial linking conditions, we link

them directly. For example dfa2 and dfa3 can be linked

directly based on the predicate del SI. For those use cases

which do not have clear linking references, or miss precon-

ditions/postconditions, we raise questions to query the users
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s0start s1 s2

p0

p1 p2

p3

p4 p5

p6

p7

p′
7 p′′

7

q2 r2

connect receive

display

select s select e

create s
create e

cancel
cancel

update s

delete s

cancel

update e

delete e

cancelsend us

send s send e

send ue

notd

undo s

send ds

notd

undo e

send de

Fig. 6. The overall DFA for Ticket Monitor

about the relations between those use cases. For example,

the EDFA in Figure 4 (a) (corresponds to use case 1 in

Figure 2) does not have postconditions specified. Our method

raises questions based on the preconditions of existing use

cases for users’ confirmation. In this example, the precondition

connected(TM, GSYS) (“The ticker monitor has connected to
GSYS”), from all the existing use cases, is confirmed to be a

legal postcondition for use case 1.

Step 4 : Orchestrate Local EDFAs Afterwards, we orches-

trate all the EDFAs based on the usage relation graph obtained

in step 3. We traverse the usage relation graph in a breadth-

first manner and link a node with all its child nodes on the

common conditions labeled on the corresponding edges. For

example, according to the relation graph shown in Figure 5,

dfa1 (Figure 4 (a)) and dfa2 (Figure 4 (b)) are linked based

on the common condition connected(TM, GSYS), which is the

precondition of dfa2 and the postcondition of dfa1.

There are cases where we need to split a final state during

the orchestration. Since each trace has a set of corresponding

postconditions, those traces which have matched postcondi-

tions with the preconditions of a given EDFA are split to link

with the initial state of that EDFA. For example, according

to the graph shown in Figure 5, dfa2 links with dfa3 on the

common condition del SI and link with dfa4 on the common

condition del EI. The result of the orchestration is shown in

Figure 6. Traces 〈select s, delete s〉 is split to link with dfa3
based on the common condition del SI. Similarly traces 〈select
e, delete e〉 is split to link with dfa4.

III. PRELIMINARY ON ACTIVE LEARNING

Active learning refers to a model of instruction in which a

student interacts with a teacher by actively asking questions

in order to learn the knowledge. Angluin proposed the L* al-

gorithm [5] to learn an unknown DFA U (i.e., the knowledge)

from the teacher, who knows the DFA, by asking membership
queries and candidate queries. For a membership query, L*

asks the teacher whether a string s is a member of the accepted

languages of the DFA, i.e., whether s is accepted by U .

The teacher answers yes(1)/no(0) accordingly. After a set of

membership queries, L* conjectures a candidate DFA C from

his current knowledge and asks the teacher a candidate query

whether the candidate DFA is equivalent to the DFA, i.e.,

C ≡ U . If the teacher answers yes, L* successfully learned the

λ
λ 1

d 1
n 1
s 0

(a)

λ
λ 1
s 0

d 1
n 1
sd 0
sn 0
ss 0

(b)

0 1d,n
s

n,d,s

(c)

Fig. 7. The observation tables (a) and (b) in the first learning round and the
first candidate DFA (c)

λ s
λ 1 0
s 0 0

d 1 1
n 0 0
sd 0 0
sn 0 0
ss 0 0

(a)

λ s
λ 1 0
s 0 0
d 1 1

n 1 0
sd 0 0
sn 0 0
ss 0 0
dd 0 0
dn 0 0
ds 1 0

(b)

0 1

2

n d

s

d,n,s

n,d

s

(c)

Fig. 8. The observation tables (a) and (b) in the second learning round and
the second candidate DFA (c)

DFA, which is equivalent to the current candidate DFA. If the

teacher answers no, it provides a counterexample trace which

is either accepted by C or U but not both. L* then extracts

knowledge contained in the counterexample and starts asking

membership queries. L* is guaranteed to terminate and the

student always learns U within polynomial time [5].

We illustrate how L* works to learn the DFA in Figure 4 (c).

To simplify the presentation, we use the symbol d, s, n
to represent the alphabet symbol undo s, send ds and notd,

respectively. Initially, the observation table is shown in Fig-

ure 7 (a). This table is not closed because the row indexed

by string s appears only once in the table. L* moves this row

to the upper part and extends the table with each alphabet

symbol by asking membership queries for strings sd, sn and

ss. The extended table is shown in Figure 7 (b) which is

closed. The first candidate DFA constructed from the table is

shown in Figure 7 (c). Then L* asks a candidate query with the

candidate DFA, for which the teacher returns a counterexample

string ds. The table contains string d which is the maximum

prefix of ds. Thus the suffixes of string s are {λ, s}. Only

string s is added to the table column because λ already exists

in the column.

Then L* asks several membership queries to fill up the cells

due to the addition of the column s. The observation table is

shown in Figure 8 (a). This table is not closed because the

row with valuation 11 appears only once. L* moves the row

indexed by string d (the first row corresponding to row 11)

to the upper part and extends the table with rows indexed by

string dd, dn and ds by membership queries. The extended

table is shown in Figure 8 (b), which is closed. Then L*

constructs the second candidate DFA shown in Figure 8 (c).

For this candidate query, the teacher returns a counterexample

string nn. Then the string n is added to the table column. L*

repeats the previous steps to obtain the third candidate DFA

shown in Figure 9 (c) and asks a candidate query. The teacher

finds that the candidate DFA is equivalent to the DFA to be

leaned. Thus L* successfully learns the DFA.
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λ s n
λ 1 0 1
s 0 0 0
d 1 1 0

n 1 0 0
sd 0 0 0
sn 0 0 0
ss 0 0 0
dd 0 0 0
dn 0 0 0
ds 1 0 0

(a)

λ s n
λ 1 0 1
s 0 0 0
d 1 1 0
n 1 0 0

sd 0 0 0
sn 0 0 0
ss 0 0 0
dd 0 0 0
dn 0 0 0
ds 1 0 0
nd 0 0 0
nn 0 0 0
ns 0 0 0

(b)

0 3 1

2

n

d

s

d,n
s

n,d,s

n,d,s

(c)

Fig. 9. The observation tables (a) and (b) in third learning round and the
third candidate DFA (c)

IV. DETAILED APPROACH

A. Natural Language Parsing and Analysis

There is no standard template for writing use case docu-

ments as concluded by Fowler [10]. We thus focus on one

of the widely used writing styles in the literature and in

practice, which is “the single-column, numbered, plain text,

full sentence form” [7]. Since the input of our approach is a

use case specification document written in English, we adopt

advanced NLP techniques, i.e., dependency parsing and phrase

structure parsing [30] to parse the document.

We first conduct pre-processing on the input use case

document to filter noises so as to improve the accuracy of the

dependency parser. The pre-processing step contains standard

operations such as truncating, segmenting, and removing the

irrelevant information and formatting symbols, such as paren-

thesized comments and bullets, which may affect the parsing

accuracy. The pre-processed use case document is passed to

ZPar [30], a statistical natural language parser, for dependency

parsing. Then we analyze the parse trees by rule matching to

extract action tuples and predicates from the flow steps and

precondition/postcondition sections. We adopt the approach

proposed in [16] for action tuples/predicates extraction. We

skip the details and refer interesting readers to [16] for details.

The formal definition of an action tuple and a predicate is

defined in Definition 1 and Definition 2, respectively.

Definition 1 (Action): An action is defined as a tuple A �
(vb, sub, obj), where vb, sub, obj are natural language phrases

representing the main verb, subject and object of the sentence.

Definition 2 (Predicate): A predicate is defined as a tuple

P � (ar,R, a1, a2), where ar ∈ {1, 2} is the arity of the

predicate; R is the relation symbol of the predicate; a1 and

a2 are the arguments of the relation symbol.

After analyzing the parse trees, each sentence in the use

case description is mapped to the formal structure defined in

Definition 3. The use case is organized based on the sections

to which those sentences belong, as is defined in Definition 4.

Definition 3 (Sentence): A sentence is defined as a tuple

S � (s#, α, c, ns, nj), where s# is the sentence number in

the corresponding section of the use case; α ∈ A is the action

of the sentence; c ∈ P is the guard condition for executing the

sentence; ns ∈ N and nj ∈ N represent the logical previous

and succeeding sentence of the current sentence, respectively.

Definition 4 (Use Case): A use case is defined as a tuple

UC � (UCName, Prec, Post,MF,AF ), UCName is the

name of the use case; Prec ⊂ P and Post ⊂ P are the

predicates extracted from sentences in the precondition and

postcondition sections; MF and AF are the list of sentences

S in the main flow/alternative flow sections of the use case.

Definition 5 (NFA): An NFA is defined as NFA� {S, Σ, δ,

init, AS}, in which S is a non-empty finite set of states; Σ
is a non-empty finite set of alphabet; δ = S × Σ → PS is a

transition relation; init ∈ S is the initial state and AS ⊆ S is

the set of accepting states.

A Deterministic Finite Automaton (DFA) is a special NFA

where there is no ε in the alphabet and there is at most one

outgoing transition labeled with any one of the actions in

the alphabet from any state. Formally, the transition relation

of a DFA is a function δ = S × Σ → S. For exam-

ple, in Figure 4, the DFA on the top can be represented

as {{s0, s1, s2, s3},{connect, receive,display},{s0 connect−−−−−→
s1, s1

receive−−−−−→ s2, s2
display−−−−−→ s3},s0, {s0, s1, s2, s3}}.

There are two kinds of control flow information in a use case

description as is exemplified in use case 4 in Figure 2. The first

kind is captured by the sequential ordering of sentences in each

section, i.e., the s# field in a sentence S. The second kind

is enrolled in the conditional statements, which are usually

indicated by the keywords such as “if”, “whether”, “else”, in

a sentence. The control flow information is extracted during

analyzing the parse trees. We adopt the approach proposed

in [16] to parse the sentences. Since parsing use cases is not

the focus of this work, we refer the readers to the work [16]

for details on how to extract the control flow information.

We then compose an NFA from a use case defined in

Definition 4 following the steps shown in Algorithm 1. We

first create a state for each sentence (line 1-3) and then link

the states based on the previous (ns) and succeeding fields

(nj) of the corresponding sentences (line 4-11). If we find the

sentence step number sti.s# is the same with the succeeding

node step number stk.nj of another sentence; or the sentence

step number stk.s# is the same with the previous node step

number of another sentence (sti.ns), then we add a transition

between the corresponding nodes accordingly ( line 6-7)).

All the actions labeled with the transitions are added into

the NFA alphabet (line 8)). If the action field is empty, we

label the transition with ε. Lastly, we set the initial state

and accepting states based on the sequence of the sentences

in the UC.MF section. The state corresponding to the first

sentence in UC.MF is set as the initial state, and the states

corresponding to the last sentences in UC.MF and UC.AF
are set as the accepting states.

After obtaining an NFA for each use case, we construct an

NFA for all the use cases sharing common preconditions, by

adding one unique initial state and an ε transition from it to

each initial state of all the NFAs for those use cases. Then

we convert the NFA to an equivalent DFA with the anti-chain

improved powerset construction algorithm [28], which is often

efficient despite its worst-case exponential complexity.

After this step, we obtain a set of DFAs for each actor. Each

DFA corresponds to a set of use cases which have the same

precondition and compatible postconditions. Those DFAs are

part of the knowledge base in our learning process.
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Algorithm 1: Generate an NFA from a Structured Use

Case
Input : UC: a use case
Output: nfa: an NFA

1 for each st ∈ UC.MF ∪ UC.AF do
2 s :=create a state for st
3 nfa.S.add(s)

4 for each pair of states (si,sk) from nfa.S do
5 Let sti and stk be the corresponding sentences
6 if sti.s# = stk.nj or stk.s# = sti.ns then
7 nfa.δ.add(sk ,si,stk.α)
8 nfa.Σ.add(stk.α)

9 else if stk.s# = sti.nj or sti.s# = stk.ns then
10 nfa.δ.add(si,sk ,sti.α)
11 nfa.Σ.add(sti.α)

12 nfa.Σ.add(ε)
13 set nfa.init and nfa.AS
14 return nfa

B. Learn the DFAs

In the second step, we adopt the L* algorithm to learn a

DFA representation of the actor’s behavior. In our setting,

the teacher is composed of the structured use cases (i.e., the

DFA we obtained in step 1) and the user interacting with our

tool. The alphabet is set as all the actions extracted from the

structured use cases. The membership query is answered based

on traces from the use cases and suggestions from the users.

The candidate query is decided by checking the equivalence

of two DFAs, i.e., the DFA learned with L* algorithm and the

DFA generated from the knowledge base (in step 1).

1) Membership Query: The membership query checks

whether a trace generated by L* is a valid trace. To answer

the query, we first check whether the given trace is a valid

trace in the DFA obtained from step 1 by a depth-first search.

If it is not, we raise a question to the requirement engineer to

ask whether the trace should be accepted or not. If the user

answers “no”, we reject the trace. Otherwise, we accept the

trace and add the trace to the DFA generated in step 1.

The number of membership queries generated by L* is

linear to the size of alphabet, states in the DFA as well as

the length of the returned counterexample, and thus may be

rather large. We propose five filtering techniques to filter out

those traces which are unlikely to be valid so as to reduce the

amount of user interactions required.

(1) We only allow the traces that start with actions which

are initial actions of some known valid traces. The justification

is these initial actions are often ‘special’ and it is unlikely

that the user would completely forget certain functionality of

the system. (2) Recall that we assume the learned DFA to be

prefix closed. Therefore we can conclude that if a prefix of

a trace is not accepted, the trace is not accepted. Thus we

record all the traces that are denied by users to avoid asking

questions regarding traces whose prefix have been denied. (3)

Actions or predicates with conflicting semantics are unlikely to

reside in the same trace. We extract conflicting action/predicate

pairs automatically from the use cases to filter unlikely traces.

(4) Traces must not violate the precedence order (defined in

Definition 7).

Definition 6 (Trace): A trace is defined as T �{ < A >,

Post}. Post is the postconditions of the trace and < A > is a

list of actions.

Definition 7 (Precedence Order): Two actions α1 and α2

have a precedence order relation α1 ≺ α2 iff ∃t ∈ T : α1 ∈
t. < A > ∧α2 ∈ t. < A > ∧index(α1) < index(α2). The

function index(α) returns the index of an action in the trace.

The precedence order is a partial order relation, which satisfies

the transitive property, i.e., if we have two pairs of actions

α1 ≺ α2 and α2 ≺ α3, then we can infer that the precedence

order α1 ≺ α3 holds. In practice, events in a systems are

often ordered, for instance, login often precedes authenticate.

Knowing the ordering between different events would help to

greatly reduce the number of user interactions needed. In our

work, we infer likely ordering based on the given use cases

and only in the presence of conflicts, we would consult the

requirement engineer.

(5) During the process of membership query, we raise

questions (in the form of a sequence of actions) to users

and they response with “yes” or “no”. From the sequences

that are rejected by users, we mine frequent patterns with the

Apriori algorithm [3]. We present the mined patterns to users

for confirmations so as to check whether such sequences which

contain those patterns are always not accepted. Those patterns

that are confirmed by users are used in the membership queries

for filtering.

All these filtering techniques are proposed based on the

assumption that the valid traces in the use cases should share

common features, such as the partial ordering between actions,

common prefix, etc., which can be mined from the existing

knowledge. With all these filtering techniques, the number of

questions generated is controlled in a reasonable amount.

If a trace generated in a membership query is confirmed to

be valid by users, we merge the valid trace with the existing

DFA. To do so, we find the state which shares the longest

prefix with the given trace t from the initial state of the DFA

by a depth-first search on the DFA. Then we add a sequence

of transitions which captures the suffix of t from this state

of DFA. The obtained DFA is not guaranteed to be minimal,

but is guaranteed to be deterministic. By interacting with the

users, we are able to find missing scenarios which are not

captured by the use case documents.

2) Candidate Query: To conduct candidate query, we check

the equivalence of two DFAs, i.e, the DFA which is learned

by the L* algorithm and the DFA that is constructed from

the knowledge base (in step 1). To check the equivalence of

two DFAs, we construct a product P×of the two DFAs and

check whether the accepting states of the product DFA are

composed of pairs of accepting states from the two DFAs.

Since the algorithm to check the equivalence of two DFAs is

quite standard. We skip the details due to space limitations

and refer readers to our website [2] for details.

3) Set Precondition and Postcondition for EDFA: To en-

able further orchestration of DFAs, we set preconditions and

postconditions for those DFAs learned by the L* algorithm to

obtain an Extended DFA (EDFA), which contains precondition

and postconditions, as is formally defined in Definition 8.

Definition 8 (Extended DFA): An Extended DFA is defined

as EDFA� {DFA, Prec, PostM}, where DFA is a DFA;

Prec ⊂ P is the set of precondition of the DFA; PostM is
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a mapping from each final state in DFA to their trace based

postconditions T̂ ⊂ T that compose this DFA.

The precondition of a DFA is set as the union of the

precondition sets of all the traces which are used to generate

the DFA. (Recall that in our approach, all the use cases which

have the same preconditions are grouped to learn one DFA.)

The postconditions of accepting states in the DFA are set to be

the set of postconditions of the traces reaching the accepting

state. Note that the postconditions are set on a trace basis,

meaning each trace ending in the same accepting state has

its own postconditions. For example, in Figure 4 (b), only

state p7 has postconditions and it is set as the set {〈〈select
s, update s, send us〉,update(GSYS, symbol information)〉,
〈〈select s, delete us〉,deleted(symbol information)〉,. . .}. The

first two elements in the set represent the left-most two traces

in Figure 4 (b). We omit the postconditions for the other traces

for confidentiality. This is critical for the splitting of traces

during the orchestration of DFAs.

C. Construct Relation Graphs

We first construct a usage relation graph based on the

preconditions and postconditions of EDFAs learned for an

actor. The relation graph is formally defined in Definition 9.

Definition 9 (Relation Graph): A relation graph is defined

as G � {N,ni}. where ni ∈ N is the initial node of the graph

and N is the set of nodes in the graph. Each node in the graph

is defined as n� {Prec, PostM , EDFA, cc, ch}, where

Prec and PostM are the precondition and postconditions of

the EDFA the node represents. EDFA is the EDFA that the

current node represents. cc is the common condition that the

current node shares with its parent node. ch is the list of child

nodes of the current node. A node in a usage relation graph

represents an EDFA which is learned with the L* algorithm.

Initially, we have a set of nodes which represent the EDFAs

learned for a set of use cases describing the usage scenarios

of one actor. We link two EDFAs if the postconditions of an

accepting state of an EDFA match the preconditions of the

other EDFA. This case represents a succession in behavior.

The necessary condition for the orchestration of two EDFAs

with succession behaviors is defined as follows:

Definition 10 (Link Condition): Let dfaa, dfab∈ EDFA
be two extended DFA, they can be linked if and only if ∃
accs∈ dfaa.AS: ∃t ends in accs∧ t.Post⊂dfab.Prec∨ ∃ accs∈
dfab.AS: ∃t ends in accs∧ t.Post⊂dfaa.Prec.

We decide whether two predicates are compatable based

on a direct comparison on the corresponding fields of the

predicates (Definition 2). We also rely on the semantic dic-

tionary to decide whether two words are semantically equal.

If the postcondition of one EDFA is equal to or is a subset

of the precondition of another EDFA, then they can be linked

directly. Given an EDFA, if we cannot find any other EDFA

for the same actor that satisfies the link condition, we raise

questions for user suggestions. This case usually implies there

is some missing precondition/postcondition.
Algorithm 2 describes the procedure to construct a relation

graph for a set of EDFAs. We first construct a single-node

graph for each input EDFA and add them to the set of

graphs (line 1-3). When the graph set has more than one

Algorithm 2: Build Relation graph

Input : a set of extended DFA ̂DFA ={D1. . .Dn}
Output: an usage relation graph g for DFAs in ̂DFA

1 for Di in ̂DFA do
2 gi:=construct a single-node graph for Di

3 Ĝ.add(gi)

4 while true do
5 while |Ĝ| > 1&& !stabilized do
6 for (gi,gj ) in Ĝ do
7 stabilized:=true
8 if Comp(gi.Prec, gj ) then
9 gj .ch.Add(gi, cc)

10 Ĝ-{gi}
11 stabilized:=false

12 else if Comp(gj .Prec, gi) then
13 gi.ch.Add(gj , cc)

14 Ĝ-{gj}
15 stabilized:=false

16 if |Ĝ| > 1 then
17 ret:=RaiseQuestion()
18 if ret=false then
19 modify the conditions based on answers from users
20 if find compatable graph pair then
21 stabilized:=false
22 continue

23 break

24 else
25 g:=Merge(∀gi ∈ Ĝ)
26 break

27 else
28 break

29 return g

graphs and the graph set is not stabilized (line 5-15), we

try to find a pair of graphs which can be linked based on

the link conditions defined in Definition 10. The function

Comp(condition, graph) checks whether the given predicates

“condition” are compatible with any node in the given “graph”

based on Definition 10. If such a pair of compatible graphs

(line 8, 12) is found, we set one graph as the child of another

(line 9, 13) and remove the child graph from the graph set (line

10, 14). As long as the graph set is changed, it is said to be

not stabilized. If there are more than one graph in the graph

set after it is stabilized, which indicates the preconditions

and postconditions of those EDFAs are loosely coupled, we

raise questions (line 17) to query whether we can merge those

graphs by adding a single root node. If the reply is negative,

the user can modify the preconditions/postconditions of the

graphs, which can be traced back to the use case documents.

If the modifications from the user enable new parent-child

relation between those graphs, we continue to link those

graphs (line 20-22). Otherwise we merge all the graphs in

the graph set Ĝ to obtain a final relation graph (line 24, 25).

D. Orchestrate EDFAs

Given a set of EDFAs and the relation graph for those

EDFAs, we conduct a breadth-first traverse on the relation

graph and link the EDFA represented by a graph node with

the EDFAs represented by all its child nodes. The procedure

is intuitive. What should be noted is that we need to split

an accepting state when the preconditions of the child EDFA
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match a subset of the postconditions of its parent EDFA

(Recall that the postcondition of an EDFA is stored based on

traces). For example in Figure 4 (b), the accepting state p7 is

split twice (into p′7 and p′′7 ) when orchestrating with the EDFA

in Figure 4 (c) and the EDFA in Figure 4 (d), respectively. The

final EDFA is a visualization of the overall dynamic behaviors

of an actor. It can serve as an initial behavior model for its

corresponding actor, which can aid the system design.

V. EVALUATION AND DISCUSSIONS

We have implemented our method in a prototype tool in

Python and Java3. We adopt ZPar [30] to analyze syntactic

information. To evaluate our approach, we conduct an experi-

ment with a use case document for a real world stock trading

system. This use case document contains 106 use cases, which

is considerably big. The use cases were written following the

Cockburn template [7]. The document contains many grammar

errors and is inconsistent in writing style (due to multiple

authors), which is not uncommon in practice. These problems

also cause difficulties in natural language parsing. Nevertheless

our method achieved good accuracy in parsing the document.

In this work, we focus on the part of active learning and user

interaction. We refer interesting readers to the work [16] on

the results and discussions of accuracy in natural language

parsing. In this evaluation, we try to answer the following

questions:

1) Is our method helpful in improving the quality of use

case specifications?

2) How is the user experience with our tool?

Question 1: Improvement on Use Case Quality To answer

the first question, we conduct an experiment with the use

cases. Since the document is confidential (i.e., one has to get

clearance before accessing it) and requires quite some effort

to understand, this experiment is conducted with 2 researchers

(who have the clearance). The 2 researchers were asked to use

our tool to analyze the use cases. During the experiment, if

a question is raised by the tool, we first screen the question

to see whether it has an obvious answer which is missed by

the parser or it indeed requires an answer from the author of

the system. If it is the latter, the question is directed to the

requirement engineer for clarification. The experiment results

are summarized in Table I. The first column shows the actors

in the system. Columns 2-4 are the number of use cases for the

corresponding actor, the number of nodes of the generated use

case relation graph, and the number of states in the final DFA

obtained for each actor. Columns 5-7 show the total number

of membership queries, the total number of pattern queries

raised to users during the learning process, and the total

number of queries raised to users during generating of use case

relation graphs. Column 8 and 9 show the number of missing

scenarios and missing/redundant preconditions/postconditions

that we identified during the process. We identifies a total of 17

missing use cases as well as more than 50 other problems. All

identified issues are confirmed by our industrial collaborator.

3The source code is available on [2]

TABLE I
RESULTS OF THE CASE STUDY

Actor UC node state Q(L*) Q(P) Q(G) miss s problem

Broker 3 3 8 0 0 2 0 0
C Monitor 3 2 6 2 1 2 0 0
Exchanger 3 3 12 5 5 1 0 0
T Monitor 10 5 17 34 23 1 2 1
E Monitor 16 4 15 28 15 2 0 14

Trader 36 15 73 75 46 7 5 14
Server 35 24 132 136 125 3 10 23
Total 106 56 263 280 215 18 17 52

TABLE II
STATISTICS OF VOLUNTEERS

Occupation Year of Experience # of person
Postdoc (software engineering) ≥ 10 5

Industry software engineer ≥ 10 5
PhD (software engineering) ≥ 7 5

There are two common oversights which lead to missing

scenarios. The first one is that different ordering of some ac-

tions in a use case can lead to different results, however not all

possible orderings are considered. For example, for one certain

trading strategy, the ordering of “set timer” and “price order”

may result in different pricing, and thus different matching on

orders. However this kind of ordering-sensitive scenarios are

often inadequately specified and the reason, as confirmed with

the authors of the use case document, is that they simply did

not consider all those situations. Four of the missing scenarios

found by our approach belong to this category. The second one

is missing some actions in a trace, such as the dashed lines

shown in Figure 4. We have found 13 such kind of missing

scenarios in the use case document. Those missing scenarios

may cause barrier in understanding the system functionality

throughout the software development life cycle. The authors

of the use cases usually assume background knowledge, which

results in those missing scenarios.

Relying only on the preconditions and postconditions to

obtain usage relations is inadequate, especially when the use

cases are loosely coupled (which is usually the case). But we

can still find some cases where the conditions are missing

or redundantly stated. Missing preconditions/postconditions

affects the integrity of use case documents. Redundant pre-

conditions/postconditions, meaning we can infer the remain-

ing preconditions/postconditions from the given precondi-

tions/postconditions, may cause confusions and understanding

barriers. The reason is that not all repeated conditions are

redundant. For example, in one use case, the precondition

is login(trader)∧create(server, match)∧ receive(server, order)
and we can infer create(server, match)→login(trader) and cre-
ate(server, match)→receive(server, order) from some existing

use cases. In this case, receive(server, order) is redundant

for the use case while login(trader) is not since login(trader)
is the precondition for any operation the trader can conduct

in the system. In our method, we find this situation during

the generation of relation graphs and raise questions for user

confirmation. Among all the 52 use cases which have the stated

problems, 50 use cases have missing preconditions, and, 2 use

cases have redundant preconditions.
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TABLE III
RESULT OF USER STUDY

Find Manually Find by Tool #Q Acceptable Q Meaningful Tool Useful

2 12 13 10 14

Question 2: User Experience with our tool To answer the

second question, we first conduct a user study to test the

usability of our tool. We find 15 volunteers for our user study

and their statistics are shown in Table II. The volunteers all

major in software engineering and have coding experience in

related areas for more than 7 years.

We selected 9 use cases (available in [2]) of one actor (i.e.,

Ticker Monitor) from the industry use case document. The 9

use cases are selected because they capture common system

behaviors, such as record creation, update and deletion, and

thus it is easier for those volunteers to understand. In the

user study, we first ask the participators to read through 9

use cases. Then we ask them to answer 2 questions: (1). Do

you understand the functionalities that the use cases describe?

(2). Can you find any missing steps or use cases, i.e., actions

that you think should have appeared, in any of the use cases?

Then we ask them to use our tool to analyze the use cases

they have just read and answer the questions that is generated

by our tool. Then they are required to answer the following

questions: (1). What do you think of the number of questions

asked for each use case, too many or acceptable? (2). Do you

think the traces recommended by our tool reasonable? (3). Do

you find the tool useful for understanding the use cases or for

finding the potential missing actions/traces?

Each volunteer is given 30 minutes to finish the tasks and

all of them finished within the time limit. As is shown in

Table III, 2 of the 15 volunteers find the potential missing

scenarios after reading the use cases. However, 12 of them

are able to find the missing traces with the help of our tool.

The reason is because our tool recommends the missing traces

to the user and it is easier to say yes/no to a trace when it

is present to them, than trying to find the missing ones on

their own. 13 of them consider the number of questions raised

by the tool to be acceptable with respect to the information

gained. The other two volunteers recommend that more traces

should be filtered. 10 of them rate the generated questions as

reasonable. The others find some of the traces recommended

are a little redundant or confusing. 14 of them regard the tool

as useful for them to elicitate/understand use cases and to find

potential missing scenarios.

The manual efforts required in our approach is to answer

three kinds of queries. (1) When the active learning algorithm

reports some likely missing scenarios, the user need to man-

ually check whether the scenario is a real missing scenario

or a false negative. In general, the number of such questions

is polynomial to the number of states in the learned DFA

and the length of the counterexample in answering candidate

queries [5]. Thus, it can be very large, especially when the

set of use cases do not share similar alphabets. To reduce

the number of membership queries raised to stakeholders, we

proposed filtering techniques to filter the traces returned by

L* before raising it to the users, which dramatically reduce

the manual checking efforts. (2) Users are required to check

the patterns mined from the negative counterexamples as

answered by users. (3) During the DFA orchestration, users

may be consulted when we find potential missing or redundant

preconditions/postconditions.

As we can see from Table I, the average number of all three

kinds of questions raised for each use case is less than 5.

According to our user study, the majority of volunteers regard

this as a reasonable amount of manual effort (with respect to

the information gained).

VI. RELATED WORK

Generate behavior models from scenarios Whittle et al. [27]

proposed to map a use case charts [26] to a hierarchical state

machine. A set of mapping rules are defined from the notation

of each level of the use case charts to state machine features.

One potential problems with this approach is that the state

machine may have many levels, which affect its readability.

In [24], Uchitel et al. proposed to synthesis behavior models

represented by Model Transition Systems (MTS) [15] from

both safety properties, which specify the upper bound of

system behaviors, and scenarios, which describe the lower

bound of the system behaviors. MTS can properly capture the

lower and upper bound of system behaviors simultaneously,

which provide guidance for requirement elicitation. Mäkinen

et al. [18] adopted the L* algorithm to learn statecharts from

MSC. However the desired language is expressed as a set of

traces, which is insufficient to express loops. Moreover, their

approach does not consider to reduce the number of mem-

bership queries. Our approach captures the desired language

with an automaton, which naturally captures loops. We also

propose filtering techniques to safely reduce the number of

membership queries raised to users. The above approaches

all take scenarios captured by MSC as input. However, MSC

is a formal structure and is not easy to obtain at first.

Usually strong knowledge and experience on UML modeling

are required to construct MSC from raw natural language

descriptions, which is the initial form of scenarios. Moreover,

it is hard for stakeholders to get involved with such a formal

structure, which causes difficulties of specification validation.

Our approach works directly on scenarios captured by natural

language, which facilitates the involvement of stakeholders.

Another kind of work [14], [20], [22], [29], [21] generates

UML behavior diagrams [1], e.g., statecharts and activity dia-

grams, from natural language use case descriptions. However,

these approaches only process a single use case and do not

consider relations between use cases. Moreover, they rely

either on manual rewritten from use cases in natural language

to some structured format [20], [29], or on heuristics to process

natural language sentences [14].

Find potential problems in scenarios Gervasi and

Zowghi [12] proposed to uncover inconsistencies in natural

language use case descriptions with formal reasoning tech-

niques. Propositional logic formulas are adopted to repre-

sent facts, hypotheses and constrains, which are extracted

from natural language descriptions. Then inconsistencies are

checked by reasoning on the propositional formulas. This
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work relies on a domain-specific natural language parser

CICO [11], which requires the MAS (Model, Action and

Substitution) parsing rules to provide domain specific patterns.

It also assumes the writing style of the sentences to be

consistent with the provided MAS rules. Damas et al. [8]

proposed to synthesize LTS from MSCs. They synthesis a

global LTS and then project it into local LTS based on

different agents. The method modified an existing learning

algorithm RPNI [19] to add interactions with users. The

learning algorithm does not conduct candidate query and thus

suffers from over-generalization problems. To overcome this

problem, Damas et al. [9] proposed to inject goals in the form

of fluent-based assertions into the synthesize process. Sharing

the similar idea with the work by Uchitel et al. [24], the

goals/constraints extracted from the domain knowledge help

to control the scale of the synthesized model and reduce the

number of membership queries. Uchitel et al. [25] proposed

an approach which took scenarios in MSC and relations

between scenarios described in hMSC as input, then behavior

models are synthesized and are used to find implied scenarios.

There have been approaches that adopt logic-based learning

for the extraction of LTS from scenarios [4]. Different from

our approach which process directly on natural language

use cases, those approaches take requirement specifications

represented by LTL as input and adopt logical reasoning to find

missing event/trigger preconditions. Rather than generating

models/prototype implementations, which is the main purpose

of the above revealed approaches, our work aims at improving

the quality of use case scenarios captured in natural language.

We value the involvement of stakeholders, which is critical to

the integrity of use case documents. Our work is also related

to approaches [17], [23] in terms of techniques used. However

our work focuses on the early development stages.

VII. CONCLUSION

We proposed an approach to improve use case documents

written in natural language interactively with the guidance of

requirement engineers. Our approach adopts natural language

processing techniques and an active learning algorithm L*. We

conduct evaluations with an industry case study and results

show that our method is able to find missing scenarios and

redundant conditions. A user study with 15 software engineers

show that the user interactions required by our method is

acceptable with respect to the information gained.
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