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Automated Verification of Timed Security
Protocols with Clock Drift

Li Li1(B), Jun Sun1, and Jin Song Dong2

1 Singapore University of Technology and Design, Singapore, Singapore
li li@sutd.edu.sg

2 National University of Singapore, Singapore, Singapore

Abstract. Time is frequently used in security protocols to provide bet-
ter security. For instance, critical credentials often have limited lifetime
which improves the security against brute-force attacks. However, it is
challenging to correctly use time in protocol design, due to the existence
of clock drift in practice. In this work, we develop a systematic method
to formally specify as well as automatically verify timed security pro-
tocols with clock drift. We first extend the previously proposed timed
applied π-calculus as a formal specification language for timed protocols
with clock drift. Then, we define its formal semantics based on timed
logic rules, which facilitates efficient verification against various security
properties. Clock drift is encoded as parameters in the rules. The veri-
fication result shows the constraints associated with clock drift that are
required for the security of the protocol, e.g., the maximum drift should
be less than some constant. We evaluate our method with multiple timed
security protocols. We find a time-related security threat in the TESLA
protocol, a complex time-related broadcast protocol for lossy channels,
when the clocks used by different protocol participants do not share the
same clock rate.

1 Introduction

Time is essential in cyber-security, e.g., message transmissions and user authen-
tications are often required to be finished in a timely manner. In order to check
the relevant timing requirements, timestamps are constructed from clocks, sent
through networks and checked by participants in security protocols. For example,
in order to deliver a message m timely, the sender first attaches its current clock
reading ts to m and sends them in a secure way. Then, when the receiver obtains
ts and m, it checks ts against its own clock reading tr with tr − ts ≤ p to ensure
that m is received within a certain timing threshold p. In the above example,
the untimed security (m is not tampered, replayed nor disclosed) and the timed
security (m is delivered in time) are equally important. Given a timed proto-
col, existing literatures [12,16] focus on checking its security when the clocks
of different protocol participants are fully synchronized. However, in practice,
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timestamps are often generated and checked based on different local clocks with-
out perfect synchronization, which could compromise the security proved based
on the assumption of perfect clock synchronization. Hence, this work studies the
security of timed protocols with the present of the clock drift.

Clock drift commonly exists in practice. For instance, in sensor networks,
cheap sensors usually do not have enough resources to maintain accurate clock
rate and precise clock reading. Hence, small clock drift should be expected and
considered in their applications. Even though the local clocks can be synchro-
nized at runtime over the network, various unavoidable factors, e.g., network
delay, traffic congestion, can lead to a certain level of inaccuracy. Furthermore,
when attackers are present in the network, they may attack the clock synchro-
nization protocol [23]. In such a case, the local clocks under the attack may have
large clock drift. As a result, when the security depends on the clock reading,
the protocol should provide counter-measures for the clock drift.

Clock drift can cause insecurity of timed protocols because the protocol par-
ticipants rely on local clocks in practice, whereas the security protocol is designed
based on the global clock. For instance, in the above message transmission exam-
ple, let t′s and t′r be the readings of the global clock when ts and tr are read from
the local clocks respectively. The receiver deems the message as timely by check-
ing tr − ts ≤ p. However, the security property requires t′r − t′s ≤ p to ensure
a timely message transmission. In order to capture the inconsistency between
local clocks and the (fictional) global clock, we first extend timed applied π-
calculus [16] to formally specify clock drift in protocol models. Then, we define
the semantics of the local clocks in Sect. 4, which captures their relationship to
the global clock. By using this semantics, we can answer the following two secu-
rity questions. First, our work can check whether a protocol is secure with the
presence of clock drift. More importantly, our work can find out how much clock
drift can be tolerated in a timed security protocol. We extend SPA, a verifica-
tion tool we developed in [15,16], with the new calculus and semantics for clock
drift. In this work, we use a corrected version [12] of Wide Mouthed Frog [7]
as a running example to illustrate our specification and verification method. We
apply our method to a number of timed security protocols and successfully find a
security threat in TESLA [21,22] in Sect. 5.2, a complex time-related broadcast
protocol for lossy channels, when the clocks used by different protocol partici-
pants do not share the same clock rate.

2 Specification

In this section, we first introduce CWMF [12], a corrected version of Wide
Mouthed Frog [7] protocol, as a running example. When the local clocks of
the protocol participants in CWMF are assumed to be perfectly synchronized,
CWMF can be verified as secure [12,14] The verification proves that a secret
session key can be established among its participants within a certain time. How-
ever, it is unclear whether clock drift, which is unavoidable in practice, would
compromise the security of CWMF. In the following, we first present CWMF in
details and then demonstrate how timed applied π-calculus, extended with local
clocks, can be used to model such protocols.
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2.1 Corrected Wide Mouthed Frog

CWMF is designed to establish a timely fresh session key k from an initiator A
to a responder B through a server S. In CWMF, whenever a message is received,
the receiver checks the message freshness before accepting it. To be general, we
use a parameter pm to represent the maximum message lifetime. Additionally,
we consider the minimal network delay as a parameter pn. Since pn is a timing
parameter related to the network environment, it is not directly used in the
protocol specification. Instead, it is a compulsory delay that applies to all of the
network transmissions.

CWMF is a key exchange protocol that involves three participants: an initia-
tor A, a responder B and a server S. By assumption, A and B have registered
their secret long-term keys at the server respectively. The registered key of a
user u is written as key(u), which is used to encrypt all network communica-
tions between the user and the server. Whenever a message m is transmitted
between a user u and the server S, the message m is encrypted by the symmet-
ric encryption function encs written as encs(m, key(u)). CWMF then can be
described as the following three steps.

(1) A generates a random session key k at its local time ta
A → S : 〈A, encs(〈ta, B, k, tag1〉, key(A))〉

(2) S receives the request from A at its local time ts
S checks : ts − ta ≤ pm

S → B : encs(〈ts, A, k, tag2〉, key(B))
(3) B receives the message from S at its local time tb

B checks : tb − ts ≤ pm

B accepts the session key k

First, A generates a fresh key k at its local time ta and initiates the CWMF pro-
tocol with B by sending its name A and the request 〈ta, B, k, tag1〉 encrypted
by key(A) to S. Second, after receiving the request from A at S’s local time ts,
S ensures the message freshness by checking ts − ta ≤ pm. Then, S accepts A’s
request by forwarding the request 〈ts, A, k, tag2〉 encrypted by key(B) to B. It
informs B that S receives a request from A at its local time ts to communicate
with B using the key k. tag1 and tag2 are two constants that are used to distin-
guish these two messages. CWMF uses them to prevent the reflection attack [18]
in the original Wide Mouthed Frog protocol [7]. Third, B checks the message
freshness again and accepts the request from A if the message is received in a
timely fashion. All of the transmitted messages are encrypted under the users’
long-term keys that are pre-registered at S.

2.2 Timed Applied π-calculus

Timed applied π-calculus works as a specification language for timed protocols.
It is essentially the calculus proposed in [2,16] with the extensions of local clocks
and clock drift. Table 1 presents its syntax with the extensions highlighted in the
bold font.



516 L. Li et al.

Table 1. Syntax of timed applied π-calculus

Type Expression

Message (m) f(m1, m2, ..., mn)
A, B, C
n, k
t, t1, ti, tn
x, y, z

(function)
(name)
(nonce)
(timestamp)
(variable)

Parameter (p) p, p1, pj , pm (parameter)

Clock (c) c, c1, ck, cs (clock)

Constraint (B) CS(t1, t2, . . . , tn, p1, p2, . . . , pm) (timing constraint)

Configuration (L) CS(p1, p2, . . . , pm) (parameter relation)

Process (P, Q) 0
P |Q
!P
νn.P
μt.P
μt : c.P
if m1 = m2 then P [else Q]a

if B then P [else Q]
wait μt until B then P
wait μt : c until B then P
let x = f(m1, . . .) then P
in(x).P
out(m).P
check m in db as unique then P
init(m)@t.P
join(m)@t.P
accept(m)@t.P

(null process)
(parallel)
(replication)
(nonce generation)
(global clock reading)
(local clock reading)
(untimed condition)
(timed condition)
(global timing delay)
(local timing delay)
(function application)
(channel input)
(channel output)
(replay checking)
(initialization claim)
(participation claim)
(acceptance claim)

aThe expression with the brackets ‘[E]’ means that E can be omitted.

In timed applied π-calculus, we compose messages using functions,
names, nonces, variables and timestamps. Functions are generally defined as
f(m1,m2, . . . ,mn) ⇒ m @ D, where f is the function name, m1,m2, . . . ,mn

are the input messages, m is the output message and D is the consumed timing
range. When m is exactly the same as f(m1,m2, . . . ,mn), we call the func-
tion a constructor ; otherwise, it is a destructor. For simplicity, we add some
syntactic sugar as follows: (1) when D = [0,∞) which is the largest timing
range of functions, we omit ‘@ D’ in the function definition; (2) for construc-
tors, we omit ‘⇒ m’ in the definition. For instance, the symmetric encryp-
tion function is defined as encs(m, k), and its decryption function is defined
as decs(encs(m, k), k) ⇒ m. Names are globally shared strings. Nonces are
fresh random numbers. Variables are memory locations for holding messages.
Timestamps are clock readings. Additionally, parameters are configurable con-
stants (e.g., the maximum message lifetime pm) and persistent settings (e.g., the
minimal network latency pn).
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In this work, we extend [16] with local clocks. That is, timestamps can be
read from these local clocks rather than the shared global clock. For instance,
in CWMF, the local clocks of A, S and B can be declared as ca, cs and cb

respectively. The constraint set B = CS(t1, . . . , tn, p1, . . . , pm) represents a set
of linear constraints over timestamps and parameters, which can acts as protocol
checking conditions and environment assumptions in the protocol. For instance,
given the minimal network latency pn, when a message sent at t is received at
t′, we have t′ − t ≥ pn. Additionally, the configuration L = CS(p1, . . . , pm) is a
set of linear constraints over only parameters that should be satisfied globally.
For example, the configuration pn > 0 should be satisfied because the message
transmission delay should stay positive.

As shown in Table 1, processes are defined as follows. ‘0’ is a null process
that does nothing. ‘P |Q’ is a parallel composition of processes P and Q. The
replication ‘!P ’ stands for an infinite parallel composition of process P , which
captures an unbounded number of protocol sessions running in parallel. The
nonce generation process ‘νn.P ’ represents that a fresh nonce n is generated
and bound to process P . The global clock reading process ‘μt.P ’ means that a
timestamp t is read from the global clock and bound to process P . The local
clock reading process ‘μt : c.P ’ similarly means that a timestamp t is read
from a local clock c and bound to process P . The checking condition cond in
the ‘if cond then P else Q’ process has two forms: (1) the untimed condition
m1 = m2 is a symbolic equivalence checking between two messages; (2) the
timed condition CS(t1, t2, . . . , tn, p1, p2, . . . , pm) is a constraint over timestamps
and parameters. When cond evaluates to true, process P is executed; otherwise,
Q is executed. The global timing delay process ‘wait μt until B then P ’ means
that P is executed until the reading t from the global clock satisfies the timing
condition B. Similarly, the local timing delay process ‘wait μt : c until B then
P ’ means that P is executed until the reading t from a local clock c satisfies the
timing condition B. The function application ‘let x = f(m1, . . . ,mn) then P ’
means if the function f is applicable to a sequence of messages m1, . . . ,mn, its
result is bound to the variable x in process P . The channel input ‘in(x).P ’ means
that a message, bound to the variable x, should be received before executing P .
The channel output ‘out(m).P ’ describes that the message m shall be sent out
before executing process P . The uniqueness checking expression ‘check m in db
as unique then P ’ ensures that (1) the value of m does not exist in a database
db before this expression, and (2) m is inserted into db after this expression.
The uniqueness checking is particularly useful for preventing replay attacks in
practice.

Additionally, the init, join and accept events are introduced to specify the
security properties. They represent the initialization, participation and accep-
tance of the protocol participants respectively according to their roles, which are
elaborated in Sect. 3.

Notations and Definitions. For simplicity, tuplen(m1,m2, . . . ,mn) is simply
written as 〈m1,m2, . . . ,mn〉. A variable x is bound to a process P when x is con-
structed by the function application process ‘let x = f(m1, . . .) then P else Q’ or
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the channel input process ‘c(x).P ’ as shown in Table 1. When a variable x appears
in a process P while it is not bound to P , it is a free variable in P . A process is
closed when it does not have any free variable. Notice that all of the processes
considered in this work are closed. When x is a tuple in the function application
process or the channel input process above, we simply write x as 〈x1, x2, . . . , xn〉.
When we only want to check that a variable xi equals to a constant C, we can
replace ‘xi’ with ‘=C’ in the above tuple.

Remarks. We do not need special syntax to specify private channels in timed
applied π-calculus. Private channels can be constructed with public channels and
unbreakable encryptions. For instance, in order to model a message m transmit-
ted in a private channel, we first introduce a secret key ks. Then, we can model
a private channel as out(encs(m, ks)).P |in(x).let m′ = decs(x, ks) then Q.

2.3 CWMF Model

In order to verify CWMF in a hostile environment, we make the following
assumptions. (1) The adversary can ask any protocol participant to join the
protocol, including A, S and B. (2) The adversary controls the protocol par-
ticipation time, e.g., the initialization time of A in CWMF. (3) S provides its
session key exchange service to all of its registered users. (4) The adversary can
register as any user at the server, except for A and B. The precise attacker
model employed in our work is discussed in Sect. 3. In CWMF, because we are
interested in the protocol acceptance between legitimate users, we assume that
B only accepts requests from A. Additionally, a public channel controlled by the
adversary is used in CWMF for network communication.

Before the protocol starts, all of its participants need to register a secret
long-term key at the server. We assume that A and B have already registered
at the server using their names. Hence, the server can generate new keys for any
other user (possibly personated by the adversary), which can be modeled as the
process Pr below.

Pr � in(u).if u 	= A ∧ u 	= B then out(key(u)).0

In CWMF, A takes a role of the initiator as specified by Pa below. It
first starts the protocol by receiving a responder’s name r from c, assuming
that r is specified by the adversary. Then, A generates a session key k and
reads ta from its local clock ca. Then, A emits an init event to indicate the
protocol initialization with the arguments A, r, k at ta. Finally, the message
〈A, encs(〈ta, r, k, tag1〉, key(A))〉 is sent from A to S.

Pa � in(r).νk.μta : ca.init(A, r, k)@ta.out(〈A, encs(〈ta, r, k, tag1〉, key(A))〉).0

As specified by the process Ps, after S receives a user’s request as a tuple
〈i, x〉, it records its local time from cs as ts and decrypts x using key(i). If the
decryption is successful, it obtains the initialization time ti, the responder’s name
r and the session key k. When the freshness checking ts − ti ≤ pm is passed, S
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then believes that it is participating in a protocol run at time ts and engages
the join event. Later, a new message encrypted by the responder’s key, written
as encs(〈ts, i, k, tag2 〉, key(r)), is sent to the responder over the public channel.

Ps � in(〈i, x〉).μts : cs.let 〈ti, r, k,=tag1〉 = decs(x , key(i)) then
if ts − ti ≤ pm then join(i, r, k)@ts.out(encs(〈ts, i, k, tag2 〉, key(r))).0

Additionally, as shown in the process Pb, when B receives the message from
S, B records its local time as tb and tries to decrypt request as a tuple of the
server’s processing time ts, the initiator’s id i and the session key k. If i = A and
the freshness checking tb − ts ≤ pm is passed, B then believes that the request
is sent from A within 2 ∗ pm and engages the accept event at time tb.

Pb � c(x).μtb : cb.let 〈ts,=A, k,=tag2〉 = decs(x , key(B)) then
if tb − ts ≤ pm then check k in db as unique then accept(A,B, k)@tb.0

Finally, we have a process Pp � c(A).c(B).0 that broadcasts the names A and
B. The overall process P � (!Pr)|(!Pa)|(!Ps)|(!Pb)|(!Pp) is a parallel composition
of the infinite replications of the five processes described above.

3 Timed Security Properties

In this section, we define the timed security properties. Notice that the properties
are defined based on the global clocks, whereas the participants in the protocols
rely on local clocks in practice. In this work, we focus on the authentication
properties, as they can be largely affected by clock drift. We first introduce the
adversary model as follows.

Adversary Model. We assume that an active attacker exists in the network,
whose capabilities are extended from the Dolev-Yao model [13]. The attacker
can intercept all communications, compute new messages, generate new nonces
and send the messages he obtained. Additionally, he can use all the publicly
available functions, e.g., encryption, decryption, concatenation. He can also ask
the genuine protocol participants to take part in the protocol at any time. Com-
paring our attack model with the Dolev-Yao model, reading timestamps from
various clocks, attacking weak cryptographic functions and compromising legit-
imate protocol participants are allowed additionally. A formal definition of the
adversary model is defined as follows.

Definition 1 Adversary Process. The adversary is defined as an arbitrary
closed timed applied π-calculus process K which does not emit the init, join and
accept events.

Timed Authentication. In a protocol, we often have an initiator who starts the
protocol and a responder who accepts the protocol. For instance, in CWMF, A is
the initiator and B is the responder. Additionally, other entities called partners,
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e.g., S in CWMF, can be involved during the protocol execution. In general,
the protocol authentication aims at establishing common knowledge among the
protocol participants when the protocol successfully ends. Specifically, for timed
protocols, the common knowledge contains the information on the participants’
time.

Since different participants take different roles in the protocol, we introduce
the init, accept and join events for the initiator, the responder and the partners
respectively. Whenever a protocol participant believes that it is participating
in a protocol as a certain role, it engages the corresponding event with the
protocol parameters and the correct time. For instance, in CWMF, A engages
init(A, r, k)@ta; S engages join(i, r, k)@ts; and B engages accept(i, B, k)@tb. We
remark that ta, ts and tb in above events should be the correct readings from
the global clock, which could be different from the values used for constructing
messages in the protocol.

Based on the init, join and accept events, the protocol authentication prop-
erties then can be formally specified as event correspondences. The timed non-
injective authentication is satisfied if and only if for every acceptance of the
protocol responder, the protocol initiator indeed initiates the protocol and the
protocol partners indeed join in the protocol, agreeing on the protocol arguments
and timing requirements. We formally define the non-injective timed authenti-
cation as follows.

Definition 2 Non-injective Timed Authentication. The non-injective
timed authentication, denoted as Qn = accept ←[ B ]− init , join1 , . . . , joinn ,
is satisfied by a closed process P , if and only if, given the adversary process K,
for every occurrence of an accept event in P |K, the corresponding init event and
join events in Qn have occurred before in P |K, agreeing on the arguments and
the timing constraints B.

In CWMF, the non-injective timed authentication can be written as

Qn = accept(i, r, k)@tr ←[ ts − ti ≤ §pm

∧ tr − ts ≤ §pm ]− init(i, r, k)@ti, join(i, r, k)@ts.

The injective timed authentication additionally requires an injective corre-
spondence between the protocol initialization and acceptance comparing with
the non-injective timed authentication. Hence, the injective timed authentica-
tion, which ensures the infeasibility of replay attack, is strictly stronger than the
non-injective one.

Definition 3 Injective Timed Authentication. The injective timed authen-
tication, denoted as Qi = accept ←[ B ]→ init , join1 , . . . , joinn , is satisfied by
a closed process P , if and only if, (1) the non-injective timed authentication
Qn = accept ←[ B ]− init , join1 , . . . , joinn , is satisfied by P ; (2) given the adver-
sary process K, for every init event of Qi occurred in P |K, at most one accept
event can occur in P |K, agreeing on the arguments in the events and the con-
straints B in global time.
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For simplicity, given a non-injective authentication property Qn = accept ←[
B ]− H and its injective version Qi = accept ←[ B ]→ H, we define two functions
such that inj (Qn) = Qi and non inj (Qi) = Qn. Hence, we can write injective
timed authentication of CWMF as Qi = inj (Qn).

4 Semantics of Clock Drift

In this section, we first briefly introduce the timed logic rules [16] which are
used to capture the semantics of the timed applied π-calculus. We use CWMF to
demonstrate how timed logic rules can be used to capture the semantics of timed
applied π-calculus. Particularly, we capture the semantics of reading timestamps
from local clocks based on two different ways of modeling clock drift. We use
these two different semantics to show that our method can be adopted to handle
different scenarios in practice. We have implemented these two different clock
drift semantics in SPA [16].

Table 2. Syntax of Timed Logic Rules

Type Expression

Message (m) f(m1, m2, ..., mn)
a[], b[], c[], A[], B[], C[]
[n], [k], [N ], [K]
t, t1, ti, tn
x, y, z, X, Y, Z

(function)
(name)
(nonce)
(timestamp)
(variable)

Parameter (p) §p (parameter)

Constraint (B) C(t1, t2, . . . , tn, §p1, §p2, . . . , §pm) (timing relation)

Configuration (L) C(§p1, §p2, . . . , §pm) (parameter config)

Event (e) init(�[d], m, t)
join(�[d], m, t)
accept(�[d], m, t)
know(�m, t)
new(�[n], l [])
unique(�u, �l [], m)

(initialization)
(participation)
(acceptance)
(knowledge)
(generation)
(uniqueness)

Rule (R) [ G ] e1, . . . , en −[ B ]→ e (rule)

4.1 Timed Logic Rules

In [16], we proposed the timed logic rules to define the semantics of the timed
applied π-calculus in terms of the adversary capabilities, so timed security pro-
tocols can be verified efficiently. In this work, we show how to use them to
capture clock drift. When the semantics of calculus processes are represented
by logic rules, we need additional notations to differentiate the data types
of names, nonces, timestamps, variables and parameters as shown in Table 2.
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(1) The syntax of variables and functions are unchanged. (2) Names are appended
with a pair of square brackets from A to A[]. (3) Nonces are put inside of a pair
of square brackets from n to [n]. (4) Timestamps are written with a blackboard
bold font from t to t. (5) Parameters are prefixed from p to §p.

Generally, each timed logic rule specifies a capability of the adversary in the
form of [ G ] e1, e2, . . . , en −[ B ]→ e. G is a set of untimed guards, {e1, e2, . . . , en}
is a set of premise events, B is a set of timing constraints and e is a conclu-
sion event. It means that if the untimed guard condition G, the premise events
{e1, e2, . . . , en} and the timing constraints B are satisfied, the conclusion event
e is ready to occur. When G is empty, we simply omit ‘[G]’ in the rule.

The events represent the things that can occur in the protocol. In this work,
six types of events are essential to the timed protocols with clock drift. Similar to
the timed applied π-calculus, we have event init , join and accept that signal the
authentication claims made by the legitimate protocol participants. In particular,
the init , join events appear in the premise part whereas the accept events appear
in the conclusion part. We amend the events from init(m)@t, join(m)@t and
accept(m)@t to init([d],m, t), join([d],m, t) and accept([d],m, t) respectively.
The additional nonce [d] represents the session id, which is specifically introduced
to check the authentication properties.

Additionally, know(m, t) means that the adversary obtains message m at
time t. Because the adversary intercepts all communications over the public
channel, for every network input in(x) at time t, we add know(x, t′) satisfying
t′ ≤ t to the rule premises, meaning that the adversary need to know x before
time t so as to send it at t; for every network output out(m) at time t, we con-
struct a rule that concludes know(m, t′) and satisfies t′ − t ≥ §pn, representing
m can be intercepted by the adversary after the network delay §pn. Further-
more, given a nonce generated in νn.P , we add new([n], l []) to the rule premises,
denoting the generation of nonce [n] at the process location l [] (we use unique
labels to represent different locations in the process). Lastly, unique(u, db[],m)
means that the message u should have a unique value in a database db[] (any
constant can be a database name). Given the above unique event constructed in
a process, m is an ordered tuple of messages that can be identified by 〈u, db[]〉,
consisting of the network inputs, generated nonces and read timestamps in the
chronological order until the process ends or its sub-process is an infinite repli-
cation process. Unique events and new events are constructed in the following
two cases: (1) when ‘check u in db as unique then P ’ is present in the process,
unique(u, db[],m) is added; (2) given ‘νn.P ’ in the process at the location l ,
new(n, l []) and unique(n, l[],m) are added. The location names are generated by
a special function loc(), which returns a unique name to represent the current
process location. The semantics of timed applied π-calculus is presented in the
full paper version [1].

Since we assume that different nonces must have different values, every rule
can have at most one new event for every single nonce. When two new events
have the same nonce in a rule, we merge them into a single event. Similarly, we
need to merge other events in the following scenarios: know events of the same



Automated Verification of Timed Security Protocols with Clock Drift 523

message; unique events with the same unique value and database; init , join or
accept events with the same session id. In general, each event is associated with
a signature and premise events with the same signatures in a rule should be
merged. As shown in Table 2, event signature can be constructed by concatenat-
ing its event name with a sequence of messages prefixed by ‘�’. For instance, in
the event unique(�u, �l[],m), the unique value u and the location l[] is prefixed
by �, so its signature is ‘unique.u.l []’, where ‘.’ concatenates the strings.

To provide a better understanding of the timed logic rules, we show three
examples without clock drift. Later, we compare them with those rules with
clock drift.

Example 1. Given that the symmetric encryption function encs is public, the
adversary can use it to encrypt messages. In order to use this function, the
adversary first needs to know a message m and a key k. Then, the encryption
function returns the encrypted message encs(m, k). Hence, the encryption can
be represented as the following rule.

know(m, t1), know(k, t2) −[ t1 ≤ t ∧ t2 ≤ t ]→ know(encs(m, k), t) (1)

Notice that the timing constraints means that encs(m, k) can only be known to
the adversary after m and k are known, following the chronological order. �

Example 2. In CWMF, the server provides its key registration service to the
public as Ps. This service can be captured as follows.

[ u 	= A[] ∧ u 	= B[] ] know(u, t1) −[ t − t1 ≥ §pn ]→ know(key(u), t)

It means that anyone can register at the server using any name except A
and B. �

Example 3. In this example, we demonstrate the timed logic rule for Pb in
CWMF, when B reads the timestamps from the global clock rather than its
local clock. B receives a message encs(〈ts, A, k, tag2〉, key(B)) from S, records
its current time as tb and claims acceptance if tb − ts ≤ pm. Since the adversary
can start the protocol at anytime, we assume that tb is specified by the adver-
sary. Then, the timed logic rule of Pb is written as the following rule, where
mb = 〈encs(〈ts, A[], k, tag2[]〉, key(B[])), tb〉.

unique(k, db[],mb),new([nb], lb[]), unique([nb], lb[],mb),
know(tb, tb), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)

−[ t1 ≤ tb ∧ tb − ts ≤ §pm ]→ accept([nb], 〈A[], B[], k〉, tb) (2)

In Sect. 4.2, we will compare it with the rules explicitly modeling the clock
drift. �

4.2 Semantics of Local Clocks

In this work, we additionally introduce the operation μt : c that reads a
timestamp t from a local clock c. This operation is applicable to the local clock
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reading process and the local timing delay process shown in Table 1. In order
to capture the semantics of timestamps constructed with μt : c in the calcu-
lus, we need to record two timestamps t and tg from the local clock c and the
global clock respectively. The semantics of regular operations in protocol execu-
tion, e.g., message constructions and guard conditions, is defined based on the
local time t because they use the real values read from local clocks. However,
the semantics of the security claims, i.e., init , join and accept events, should
be defined based on the global time tg to indicate the correct timing of event
engagement. In this way, we can correctly specify and distinguish two different
types of timestamps that are (1) used in the protocol execution and (2) captured
by the security properties. Hence, the remaining task is to establish the relation
between t and tg based on the assumptions of the clock drift. In the following,
we show two different ways of modeling clock drift. Notice that, when all of the
timestamps are read from the global clock, the timed logic rules remain the same
as those in [16]. For instance, the timed logic rules in Examples 1 and 2 remain
the same, while the timed logic rule in Example 3 shall be updated to take clock
drift into account. In this work, we consider two different scenarios of clock drift:
(VR) different clocks have different clock rates but concern their maximum drift
bounds; (SR) different clocks share the same clock rate but have different read-
ings. The differences between VR and SR in the following time logic rules are
highlighted in the red font.

Variable Clock Rate (VR). In VR, we assume that the local clock rate can
vary during the protocol execution. That is, local clocks can run faster or slower
than the global clock from time to time. Additionally, we assume that their max-
imum clock drift are bounded, resulting in the following two properties. First,
the timestamps read from the same local clock should always be monotonic. For
example, given a process μt1 : c.μt2 : c.0, we have t1 ≤ t2. However, if t1 and
t2 are read from two different local clocks, e.g., μt1 : c1.μt2 : c2.0, t2 could be
smaller than t1. Second, the differences between a local clock and the global
clock are always bounded by a maximum drift parameter associated with that
local clock. For instance, given a timestamp t read from c at global time t′, we
have |t − t′| ≤ pc, where pc is the maximum drift of c, satisfying pc > 0. If VR is
assumed, the timed logic rule of Pb can be written as the following rule, where
m′

b = 〈encs(〈ts, A[], k, tag2[]〉, key(B[])), 〈tb, t′
b〉〉.

unique(k, db[],m′
b),new([nb], lb[]), unique([nb], lb[],m′

b),
know(tb, t′

b), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)
−[ t1 ≤ t′

b ∧ tb − ts ≤ §pm ∧ |t′
b − tb| ≤ §pb ]→ accept([nb], 〈A[], B[], k〉, t′

b)

Shared Clock Rate (SR). When the local clocks share the same clock rate of
the (correct) global clock, the differences of the readings from different clocks are
always the same. In this case, we introduce a clock drift parameter dc for each
clock c. Whenever a timestamp t is read from c at the global time t′, we have
t = t′ + dc. Hence, in this case, given the two timestamps extracted from the
same local clock, their difference reflects the exact duration of that time period.
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For instance, the timed logic rule of Pb can be written the following rule, where
db is the clock drift of cb and m′

b is the same as above.

unique(k, db[],m′
b),new([nb], lb[]), unique([nb], lb[],m′

b),
know(tb, t′

b), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)
−[ t1 ≤ t′

b ∧ tb − ts ≤ §pm ∧ tb − t′
b = §db ]→ accept([nb], 〈A[], B[], k〉, t′

b)

Comparing VR and SR. The difference between VR and SR can be illustrated
with the calculation of the round-trip delay (RTD) in the Network Time Protocol
(NTP). NTP is designed to synchronize the clocks between a client A and a server
B. In NTP, A first reads its clock ca as ta and then sends an authenticated signal
to B. Once B receives the signal, it reads its clock cb as tb. After B verifies the
signal successfully, B reads its clock cb as t′b and replies another authenticated
signal back to A. Once A receives the reply signal, it reads its clock ca as t′a. If the
reply signal is correctly verified, A calculates the RTD as δ = (t′a − ta)−(t′b − tb).
When SR is assumed, the calculation of δ is accurate even if clock drift exists.
However, when VR is assumed, δ is not accurate because the distance of clock
drift can vary during the protocol execution.

4.3 Verification Overview

After obtaining the initial timed logic rules from the timed applied π-calculus
as shown above, the security properties then can be verified using the method
proposed in [16]. We briefly introduce the method in the following and refer the
readers to [16] for details.

In general, the verification method works by composing all of the existing
timed logic rules into new rules, by unifying the conclusion of one rule with the
premises of other rules. For instance, we can compose Rule (1) to Rule (2) as the
following rule.

unique(k, db[],m′
b),new([nb], lb[]), unique([nb], lb[],m′

b),
know(tb, tb), know(〈ts, A[], k, tag2[]〉, t1), know(key(B[]), t2)

−[ t1 ≤ tb ∧ t2 ≤ tb ∧ tb − ts ≤ §pm ]→ accept([nb], 〈A[], B[], k〉, tb)

We repeatedly generate new rules until no new rule can be generated. Then,
we use the set of all rules to check the authentication properties, ensuring that
no violating rule exists and every authentication property is satisfied. When the
above two criteria can be met, the result of the verification is a set of configura-
tions (each configuration is a set of constraints over the parameters). We prove
that the protocol is guaranteed to satisfy the security property if its parameters
choose values from the configurations. Due to the limitation of space, we demon-
strate the full verification process of CWMF in the full paper version [1]. Notice
that the verification process is not guaranteed to terminate in general. However,
it has been shown that it often terminates for practical protocols [5,14,15]. After
obtaining the secure configurations, we need to additionally ensure that clock
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Table 3. Experiment results

Protocol �R No clock drift Shared clock rate Variable clock rate

Result Time Result Time Result Time

Corrected WMF [7,16,18] 80 Secure 47.51ms Threat 112.75ms Attack 150.09ms

TESLA [21,22] 343 Secure 3.17 s Threat 3.55 s Threat 4.37 s

Auth Range [6,8] 53 Secure 38.58ms Secure 60.73ms Attack 46.47ms

CCITT X.509 (1c) [3] 135 Secure 162.69ms Secure 231.86ms Secure 224.00ms

CCITT X.509 (3) BAN [7] 198 Secure 791.00ms Secure 1058.05ms Secure 969.97ms

NS PK Time [10,17,20] 173 Secure 170.00ms Threat 205.93ms Threat 353.20ms

drift parameters are not constrained by other protocol parameters. If any clock
drift parameter is constrained by other protocol parameters, we believe that the
protocol has security threat under the clock drift as those constraints must
be checked at runtime in the real application. For instance, given the network
latency pn and the maximum drift pc for a local clock c, if pc < pn is required for
security but it cannot be satisfied in the real application scenario, the protocol
is vulnerable.

5 Evaluations

Our method has been integrated into the tool named Security Protocol Analyzer
(SPA). SPA relies on PPL [4] to check the satisfaction of timing constraints, i.e.,
to tell whether a set of timing constraints is empty or not. We use SPA to check
multiple timed protocols as shown in Table 3. All the experiments are conducted
using a Mac OS X 10.10.5 with 2.3 GHz Intel Core i5 and 16G 1333 MHz
DDR3. In order to clearly demonstrate how clock drift can affect the security of
protocols, all of the protocols evaluated in this section are correct under perfect
synchronization. The evaluated protocols are corrected WMF [7,12], TESLA [21,
22], a distance bounding protocol [6,8], corrected CCITT [3,7,9]. and a timing
commitment version [10,15] of Needham-Schroeder [17,20]. All of the protocols
can be verified or falsified for an unbounded number of protocol sessions. SPA
and the protocol models are available at [1]. Notice that the security (secure
constraints over parameters) is proved based on the satisfaction of all of the
queries, so we do not show the results for different queries separately in the table.
Particularly, we have found a new clock drift related security threat in TESLA.
In the following, we illustrate how SPA works with our running example first
and then other protocols.

5.1 CWMF Protocol

Based on the specification of CWMF in Sect. 2.3, WMF is checked in three
different scenarios of clock drift. Let da, ds and db be the drift distances of ca,
cs and cb respectively.
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– When all clocks are perfectly synchronized, in order to finish CWMF, SPA
returns that the minimum network latency pn should be smaller than the
maximum message lifetime pm.

– (SR) When the local clocks share the same clock rate, CWMF is correct if
and only if the following constraints are met: (1) 0 ≤ ds − da; (2) 0 ≤ db − ds;
(3) ds − da ≤ pm − pn; (4) db − ds ≤ pm − pn. Constraint (1) and (2) ensure
that the injective authentication is finished within pm. Constraint (3) and (4)
are required to finish the protocol. Since da, ds and db exist in the constraints,
which might not be satisfied in practice, the verification result presents a
security threat of CWMF.

– (VR) When different local clocks have different clock rates, the constraint
returned by SPA is false. It means that SPA cannot find the right parameter
values to make CWMF secure in the case of VR. Intuitively, the authentication
property requires CWMF to be finished within 2 × pm, whereas the protocol
itself can only achieve the timing threshold 2×pm +pa +pb. In order to ensure
2 × pm + pa + pb ≤ 2 × pm, we have pa + pb ≤ 0. Since pa and pb are positives,
SPA cannot find any suitable constraint for these parameters.

5.2 TESLA Protocol

TESLA [21,22] is short for Timed, Efficient, Streaming, Loss-tolerant Authenti-
cation protocol. It can provide efficient authenticated broadcast over lossy chan-
nels. Generally, it consists of many resource constrained receivers and a relatively
powerful sender.

Protocol Description. The security goal of TESLA is to transfer a set of mes-
sages {Mj | j ∈ [0 . . . n]} from a sender S to a receiver R in an authenticated
manner, i.e., every message Mj accepted by R is sent by S previously. Since
R have limited computing power, S cannot adopt signature for authentication
purpose because of the large computing overhead. As a result, S computes hash
values for messages with hash keys and uses these keys for authentication. Specif-
ically, S divides the message transmission time into several continuous intervals.
Each interval has the same length of pd (pd > 0). Then, S sends the messages
with their hash values in different time intervals and reveals the corresponding
hash keys in later time intervals. For example, S sends 〈Mj ,mac(Mj , ki)〉 in
the i-th time interval and reveals the key ki in the next interval. Since only
S knows ki before ki is revealed, when ki is check to be a hash key from S,
〈Mj ,mac(Mj , ki)〉 should be sent from S. In order to check the authenticity of
the hash keys, TESLA requires these keys to form a chain such that ki can be
computed by ki+1 with a one-way function. Hence, when S can authenticate the
first key k0 to R, R can use k0 to authenticate newly received hash keys. Addi-
tionally, using this method, even if some hash key ki is lost, once ki+x (x > 0) is
received by R, ki can be computed from ki+x for authentication. In order to pro-
vide sound security, S in TESLA does not send the hash keys directly. Instead,
it sends the hash key generators {k′

i} and uses the generators to compute the
actual hash keys {ki}.
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Unlike WMF and many other protocols, TESLA does not assume perfect
clock synchronization. It rather requires loose time synchronization between S
and R, where R knows the upper-bound of the local clock drift δ between S and
R. In order to obtain the upper-bound, TESLA adopts the following two-step
protocol. Firstly, R reads its current time as tr, generates a nonce (a random
number) n and sends n to S. Secondly, S reads its current time as ts, sign ts
and n with its private signing key sks and sends the signature back to R. When
R receives the signature from S, R can be sure that δ has an upper-bound of
ts − tr. Thereafter, when R receives a message from S at its local time t′r, he
can claim that the current time of S is upper-bounded by t′r + ts − tr. Due to
the limited space, the modeling details of TESLA are available in the full paper
version [1].

Verification Results. When TESLA is checked with SR or no clock drift, it
is verified as correct with the requirement 2 × pn < pd, i.e., the length of every
interval pd should be larger than twice of the minimal network latency pn. To the
best of our knowledge, this configuration requirement, justified in the following,
has not be reported in any other literature before. According to the verification
result from SPA, this protocol configuration requirement is necessary because of
the over-approximation of S ’s clock at R’s side in TESLA. When a payload is
sent by S at t′s and received by R at t′r based on their local clocks respectively,
the clock synchronization ensures that t′s < tbounds = t′r + ts − tr. Additionally, in
order to receive and check the payload successfully, t′s and tbounds should belong
to the same interval. Hence, given an initial time t0 and an interval index i, we
have t0 + i × pd ≤ t′s < t′r + ts − tr < t0 + (i + 1) × pd, which implies that pd

should be larger than (t′r − tr) − (t′s − ts). That is, 2 × pn < pd.
When TESLA is checked with VR, SPA automatically reports a new security

requirement such that pr + ps ≤ pn, where pr and ps are the maximum clock
drift of R and S respectively. This configuration requirement is necessary because
the clock synchronization alone fails to guarantee the bounding t′s < t′r + ts −
tr

1. Hence, in order to prevent the adversary from using the published keys to
construct legal payloads, the sum of the clock drift values from R and S should
be smaller than the network latency. This new configuration largely limits the
application of TESLA protocol when VR is assumed, which is also unreported
in existing literatures.

6 Related Works and Conclusions

This work builds on our previous works [14,15]. In this work, we extend the
timed applied π-calculus with local clocks and clock drift. In order to verify the
protocols specified in timed applied π-calculus, we define its semantics based
on the timed logic rules [14,15]. We introduce two clock drift scenarios based
on whether the clock rate is shared or not. During the evaluation, we show
that our framework is able to verify timed security protocols with clock drift

1 2 × pn < pd in SR has been updated to 2 × pn < pd + 2 × (ps + pr) in VR.
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automatically, which is unique comparing with other existing works. The ana-
lyzing framework closest to ours was proposed by Delzanno and Ganty [12] which
applies MSR(L) to specify unbounded crypto protocols by combining first order
multiset rewriting rules and linear constraints. According to [12], the protocol
specification is modified by explicitly encoding an additional timestamp, repre-
senting the initialization time, into some messages. Thus the attack can be found
by comparing the original timestamps with the new one in the messages. How-
ever, it is unclear how to verify timed protocol in general using their approach.
Our method can be applied to verify protocols without any protocol modifica-
tion. Many tools [5,11,19] for verifying untimed security protocols are related.

In this work, we develop a systematic method to formally specify as well as
automatically verify timed security protocols with clock drift. We have integrated
our method into SPA and used it to analyze several timed protocols. In the
experiments, we have found new security threats related to clock drift in TESLA.
Since the problem of verifying security protocols is undecidable in general, we
cannot guarantee the termination of our method. However, similar to existing
works on verifying security protocols [5,14,15], it has been shown that it often
terminates for practical protocols.
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