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Towards Concolic Testing for Hybrid Systems

Pingfan Kong1(B), Yi Li2, Xiaohong Chen1,3, Jun Sun1(B), Meng Sun2,
and Jingyi Wang1

1 Singapore University of Technology and Design, Singapore, Singapore
{pingfan kong,sunjun}@sutd.edu.sg

2 LMAM & DI, School of Mathematical Sciences, Peking University, Beijing, China
3 University of Illinois at Urbana-Champaign, Champaign, USA

Abstract. Hybrid systems exhibit both continuous and discrete behav-
ior. Analyzing hybrid systems is known to be hard. Inspired by the idea
of concolic testing (of programs), we investigate whether we can com-
bine random sampling and symbolic execution in order to effectively
verify hybrid systems. We identify a sufficient condition under which
such a combination is more effective than random sampling. Further-
more, we analyze different strategies of combining random sampling and
symbolic execution and propose an algorithm which allows us to dynam-
ically switch between them so as to reduce the overall cost. Our method
has been implemented as a web-based checker named HyChecker.
HyChecker has been evaluated with benchmark hybrid systems and
a water treatment system in order to test its effectiveness.

1 Introduction

Hybrid systems are ever more relevant these days with the rapid development
of the so-called cyber-physical systems and Internet of Things. Like traditional
software, hybrid systems rely on carefully crafted software to operate correctly.
Unlike traditional software, the control software in hybrid systems must inter-
act with a continuous environment through sensing and actuating. Analyzing
hybrid systems automatically is highly nontrivial. With a reasonably precise
model of the entire system (e.g., in the form of a hybrid automaton), analyzing
its behaviors (e.g., answering the question whether the system would satisfy a
safety property) is challenging due to multiple reasons. Firstly, the dynamics
of the environment, often composed of ordinary differential equations (ODE),
is hard to reason about. For instance, there may not be closed form mathe-
matical solutions for certain ODE. Secondly, unlike in the setting of traditional
model checking problems, the variables in the hybrid models are often of real
type and the (mode) transitions are often guarded with propositional formu-
las over real variables. There have been theoretical studies on the complexity
of analyzing hybrid systems. For instance, it has been proved that non-trivial
verification and control problems on non-trivial nonlinear hybrid systems are
undecidable [19,22]. As a result, researchers have proposed to either work on
approximate models of hybrid systems [18,23], or adopt approximate methods
and tools on the hybrid system models [5,6,17].
c© Springer International Publishing AG 2016
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One line of research (which we believe is relevant) is on analyzing the
behaviors of hybrid systems through controlled sampling. One example of those
sampling-based methods is [17]. The idea is to approximate the behavior of
a hybrid system probabilistically in the form of discrete time Markov chains
(DTMC). The complex dynamics in hybrid automata model is approximated
using numeric differential equations solvers, and the mode transitions are approx-
imated by probabilistic transition distributions in Markov chains. Afterwards,
methods like hypothesis testing can be applied to the Markov chain to verify,
probabilistically, properties against the original hybrid model.

While sampling-based methods like [17] are typically more scalable, there are
limitations. Arguably, the most important one is that random sampling does not
work well when the system contains rare events, i.e., events which by definition
are unlikely to occur through random sampling. When systems get complicated,
every event becomes rarer in a way. Existing remedies for this problem include
importance sampling [6] and importance splitting [25], which work by essentially
increasing the probability of the rare events. Both approaches are however useful
only in certain limited circumstances.

One potential remedy for the problem is concolic testing, which is a tech-
nique proposed for analyzing programs [15,36]. The idea is: if random sampling
fails to fire certain transitions in certain state (i.e., a potential rare event), we
apply symbolic execution to generate the specific inputs which would trigger the
transition or to show that the transition is infeasible. In this work, we investi-
gate the possibility of applying concolic testing to hybrid systems. In particular,
we study two fundamental questions. One is under what condition combining
random sampling and symbolic execution is beneficial, i.e., given a property, is
it guaranteed to find a counterexample with a smaller number of samples? The
other is, among different strategies of combining random sampling and symbolic
execution (i.e., when and how to apply symbolic execution), how do we define
and identify the more effective strategies? We remark that the latter question is
particularly relevant to the analysis of hybrid systems as symbolic execution for
hybrid automata is often very time consuming and thus a good strategy should
perhaps be: applying symbolic execution as minimum as possible. Based on the
answers, we then design an algorithm which adopts a strategy to dynamically
switch between random sampling and symbolic execution. Intuitively, it works
by continuously estimating whether certain transition is rare or not and applying
symbolic execution only if the transition is estimated to be rarer than certain
threshold. Furthermore, the threshold is calculated according to a cost model
which estimates the cost of symbolic execution using certain constraint solver.
Our method has been implemented as a self-contained web-based checker named
HyChecker and evaluated with benchmark hybrid systems as well as a water
treatment system in order to test its effectiveness.

The remainders of the paper are organized as follows. In Sect. 2, we define
a DTMC interpretation of hybrid system models. In Sect. 3, we view symbolic
execution as a form of importance sampling and establish a sufficient condition
for importance sampling to be beneficial. In Sect. 4, we discuss strategies on
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combining random sampling and symbolic execution. In Sect. 5, we present our
implementation and evaluate its effectiveness. In Sect. 6, we conclude and review
related work.

2 A Probabilistic View

In this section, we present a probabilistic interpretation of hybrid system models,
which provides the foundation for defining and comparing the effectiveness of
random sampling, symbolic execution or their combinations. In this work, we
assume that hybrid systems are modelled as hybrid automata [20]. The basic
idea of hybrid automata is to model different discrete states in a hybrid system
as different modes and use differential equations to describe how variables in
the system evolve through time in the modes. For simplicity, we assume the
differential equations are in the form of ordinary differential equations (ODEs).

Definition 1. A hybrid automaton is a tuple H = (Q,V, q0, I, {fq}q∈Q,
{g(q,p)}{q,p}⊆Q) such that Q is a finite set of modes; V is a finite set of state
variables; q0 ∈ Q is the initial mode; I ⊆ R

n is a set of initial values of the state
variables; fq for any q ∈ Q is an ODE describing how variables in V evolve
through time at mode q; and g(q,p) for any q, p ∈ Q is a guard condition on
transiting from mode q to mode p.

For simplicity, we often write q
g−→ p to denote g(q,p). For example, the hybrid

automaton shown on the left of Fig. 1 models an underdamped oscillatory sys-
tem [16], such as a spring-mass or a simple pendulum with a detector that
raises an alarm whenever the displacement x exceeds the threshold a. The ini-
tial displacement x(0) = 0, while its tendency to deviate from the equilibrium
x′(0) ∈ [0, 2π]. An alarm is raised when the system enters mode qe, which is
reachable only through the transition q0

x>a−−−→ qe.
Next, we define the semantics of a hybrid automaton in the form of an infinite-

state labeled transition system (LTS).

q0

x(0) = 0
x′(0) ∈ [0, 2π]

qe

x > a

Initialization
0 second

1 second

2 seconds

ε

q0 qe

q0q0 q0qe

p1

1 −
p
1

p2

1 −
p
2

Fig. 1. An oscillatory system: the ODE at q0 is x′′ + x′ + 4π2x = 0 and the one at qe
is x′ = 0
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Definition 2. Let H = (Q,V, q0, I, {fq}q∈Q, {g(p,q)}{p,q}⊆Q) be a hybrid
automaton. The semantics of H, written as sem(H), is an LTS (S, S0, T,→),
where S = {(q, v) | q ∈ Q and v : V → R

n} is the set of all (concrete) states;
S0 = {(q0, v) | v ∈ I} is the set of initial states; T = R+ ∪ {ε} is the set of
transition labels, where ε is a label for all discrete jumps; and →⊆ S × T × S

contains two sets of transitions. One is time transitions, i.e., (q, v) t−→ (q, u) if
there exists a solution ξ to the differential equation dV/dt = fq(V ) such that
ξ(0) = v and ξ(t) = u. The other is jumps, i.e., (q, v) ε−→ (p, v) where there exists
a transition q

g−→ p in H such that v satisfies g.

A finite run ρ of H is a finite sequence of transitions of sem(H). Since we
are investigating random sampling and symbolic execution (both of which are
limited to finite runs), we focus on runs of bounded length. For simplicity, we
assume that all finite runs can be extended to an infinite non-Zeno run (such
that time elapses unboundedly [20]). It is straightforward to see that there always
exists a time unit Δt > 0 such that at most one jump (i.e., ε-transition) occurs
with Δt time units. In the following, we simply assume that Δt is defined as one
time unit. As a result, by observing the system mode at the end of every time
unit, we can obtain a trace of H as π = q0q1 . . . qk, i.e., the sequence of modes
observed during the run. We remark that if there is no jump during the time
unit, the same mode is observed.

In the following, we focus on reachability analysis of certain modes [17], i.e.,
certain modes in H are considered negative and we would like to check if any
of them is reachable. We remark that the verification problem of properties
expressed in BLTL formula [27] can be reduced to reachability analysis [17].
For instance, in the example shown in Fig. 1, the safety property is reduced to
whether the negative mode qe is reachable or not (within certain time). A trace is
positive if it contains no negative mode. It is negative (a.k.a. a counterexample)
if it contains at least one negative mode.

Next, we introduce a Markov chain interpretation of H, adopted from [17].
Without loss of generality, we assume a uniform probability distribution on all
initial states. This uniform distribution naturally induces a probability distrib-
ution over the traces of the system. Recall that a transition q

g−→ p of H can be
fired only when g is satisfied. Suppose the system is in the state (q, v) initially
and becomes (q, vt) after a time transition of t. If vt satisfies g, the transition
is enabled. We denote the set of all points in time within (0, 1) when the mode
transition q

g−→ p is enabled as

Tq(v, g) = {t ∈ (0, 1) | θq(v, t) satisfies g}, (1)

where θq(v, ·) is the solution of the ODE at mode q with the initial value v.
If the transition is fired at some time point t ∈ Tq(v, g), the following state is
observed after 1 time unit: (p, θp(vt, 1 − t)) = (p, θp(θq(v, t), 1 − t)). That is,
the new mode is p and the variables evolve according to the ODE at mode q
for t time unit and then according to the ODE at mode p for 1 − t time unit.
For simplicity, we write vq,p(v, t) to denote the variable state reached from state
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(q, v) by firing transition q
g−→ p at time t, i.e., vq,p(v, t) = θp(θq(v, t), 1 − t).

Furthermore, we write vq,p(v) to denote the set of all variable states reached
from state (q, v) by firing transition q

g−→ p at any time the transition is enabled,
i.e., vq,p(v) = {vq,p(v, t) | t ∈ Tq(v, g)}.

By our assumption on the uniform random sampling, there is a uniform
distribution over Tq(v, g). This uniform distribution, denoted as U(Tq(v, g)),
naturally induces the following probability distribution over vq,p(v)

P(Y ) =
∫

t∈Tq(v,g)

[vq,p(v, t) ∈ Y ]
‖Tq(v, g)‖ dt (2)

for any Y ⊆ vq,p(v), where [ · ] is the Iverson bracket [24] and ‖·‖ is the Lebesgue
measure [29]. Intuitively, if initially the system is in the state (q, v), we obtain a
probability distribution over all possible states after taking the transition.

Next, we generalize the result so as to compare the probability of taking
different transitions from different initial states. We assume a probability space
(X,P) where X ⊆ R

n, and the automaton H starts from a state (q, v) with v ∼
P. Let q

gi−→ pi where i ∈ {1, . . . , m} be the transitions from q. Given an initial
state (q, v), the time window in which the transition to pi is enabled is Tq(v, gi).
We assume that the system does not favor certain transitions and the probability
of taking a transition is proportional to the size of the time window in which
that transition is enabled. In other words, the probability of taking the transition
q

gi−→ pi from state (q, v) is defined as pq,pi
(v) = ‖Tq(v, gi)‖/

∑m
j=1 ‖Tq(v, gj)‖.

According to the law of total probability, we have

pq,pi
=

∫

v∈X

‖Tq(v, gi)‖∑m
j=1 ‖Tq(v, gj)‖dP(v). (3)

Furthermore, assume the transition q
gi−→ pi is fired. Given the condition that v

is a fixed v0, we know the conditional probability distribution over vq,p(v0), for
any Y ⊆ vq,p(v0), is defined as:

P(Y | v = v0) =
∫

t∈Tq(v0,g)

[vq,p(v0, t) ∈ Y ]
‖Tq(v0, g)‖ dt.

By the law of total probability, for any Y ⊆ vq,p(X), we have

P(Y ) =
∫

v∈X

P(Y | v)dP(v)

=
∫

v∈X

∫

t∈Tq(v,g)

[vq,p(v, t) ∈ Y ]
‖Tq(v, g)‖ dtdP(v)

=
∫

v∈X

∫ 1

0

[t ∈ Tq(v, g) ∧ vq,p(v, t) ∈ Y ]
‖Tq(v, g)‖ dtdP(v). (4)

Equations (3) and (4) effectively identify a discrete-time Markov chain (DTMC).
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Definition 3. Let H = (Q,V, q0, I, {fq}q∈Q, {g(p,q)}{p,q}⊆Q) be a hybrid
automaton, and K be a bound of trace length. The DTMC associated with H
is a tuple MH = (S, u0, P r) where a node in S is of the form (q,X,PX) where
q ∈ Q is a mode, X is the set of values for V and PX is a probability dis-
tribution of the values in X; the root u0 = (q0, I,UI) where UI is the uni-
form distribution over I; and for any (q,X,PX) ∈ S, the transition probability
Pr((q,X,PX), (p, vq,pi

(X),Pi)), where the probability distribution Pi is defined
as in Eq. (4).

We remark that MH abstracts away the complicated ODE in H and replaces
the guarded transitions with probabilistic transitions. A path of MH with non-
zero probability always corresponds to a trace of H [17]. The partition of positive
and negative traces in H naturally induces a partition of positive and negative
paths in MH. Notice that MH is by construction in the form of a tree. The
degree of the tree is bounded by the number of modes in H, and its depth is
bounded by K, i.e., the bound on trace length.

For instance, following the above discussion, we can construct the DTMC
of the oscillatory system shown on the right of Fig. 1. The root node is s0 =
(q0, I,UI) where I = {0} × [0, 2π] and UI is the uniform distribution over I.
There is one outgoing transition q0 → qe at mode q0. Thus s0 has two children
nodes s1 and s2, where s1 represents automaton taking the transition q0 → qe

in the first second, and s2 represents automaton staying in mode q0. For this
simple example, we can analytically compute the transition probability, e.g., p1
and p2 shown in Fig. 1. In general it is difficult.

3 Symbolic Execution as a Form of Importance Sampling

In this section, we analyze the effectiveness of random sampling and symbolic
execution based on the DTMC interpretation of H developed in the previous
section. In particular, we review symbolic execution as a form of importance
sampling [39], which intuitively speaking alters the probability distribution of
MH in certain way so that a negative path is more likely to be sampled. In
the following, we first define a way of measuring the effectiveness of random
sampling, symbolic execution and possibly other sampling methods.

3.1 Bayesian Inference

Recall that traces of H are partitioned into either positive trace, denoted as
Π+, or negative traces, denoted as Π−. The probability of the system exhibit-
ing a negative trace is called the error probability and is denoted as θ = P(Π−).
Intuitively, after observing some sample traces (obtained either through random
sampling or symbolic execution), we gain certain information on θ. Formally, we
investigate the following questions: (1) how do we claim that the error proba-
bility θ is bounded by certain tolerance level δ and (2) how do we measure the
confidence of the claim?
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We answer the questions based on statistical inference. Intuitively, if we see
many negative trace samples, we conclude with certain confidence that the sys-
tem is likely to have an error probability that is larger than the tolerance level δ.
If we identify few or even no negative traces, we conclude with certain confidence
that the system is likely to have an error probability within the tolerance level
δ. Formally, let random variable X denote whether a sample trace is positive or
negative, i.e., P(X = 1) is the error probability θ. Let B(N, θ) denote the bino-
mial distribution with parameters N ∈ N and θ ∈ [0, 1]. We have X ∼ B(1, θ).
Given N independent and identically distributed sample traces, the number of
negative traces is: m = X1 + X2 + . . . XN ∼ B(N, θ). Initially, before witnessing
any sample trace, we may only estimate the value of θ based on historical data.
We thus assume a prior knowledge of θ in the form of a prior distribution f(θ).
If no historical data are available, we set the prior distribution to be a non-
informative one. In the following, for simplicity, we adopt the non-informative
prior distribution f(θ) ≡ 1 where θ ∈ [0, 1].

According to the Bayesian law, the post distribution of θ after witnessing m
negative samples and n = N − m positive samples is defined as follows.

f(θ | n,m) =
f(θ)f(n,m | θ)

∫ 1

0

f(θ)f(n,m | θ)dθ

=
θm(1 − θ)n

B(m + 1, n + 1)

where B( · , · ) is the Beta function [3]. The confidence we have about the claim
that θ < δ, denoted as c(n,m, δ), can be defined naturally as the probability of
θ < δ conditioned on observing the negative and positive samples. Formally,

c(n,m, δ) =
∫ δ

0

f(θ | n,m)dθ =
B(δ;m + 1, n + 1)
B(m + 1, n + 1)

where B(δ ; · , · ) is the incomplete Beta function [3].
The following proposition shows that our definition of confidence is consistent

with our intuition, i.e., the more positive samples we observe, the more confidence
we have.

Proposition 1. For any tolerance 0 < δ < 1, c(n, 0, δ) → 1 as n → ∞; and for
any m > 0, c(n,m, δ) → 1 as n/m → ∞.

Thus, if we have dominantly sufficient positive samples, we would always be able
to reach a target confidence level. In practice, however, we are always limited
in the budget or time, we thus would like to reach a certain confidence level
at a low cost. For instance, instead of random sampling, we can apply idea
like importance sampling [39] so as to increase the probability of sampling a
negative sample and hope to gain the same confidence level with fewer samples.
Recall that we can view symbolic execution as a particular way of importance
sampling. Compared with random sampling, it essentially alters the probabilistic
distribution of the traces so that more probability is associated with those traces
following a given path. In the following, we investigate the idea of importance
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sampling in our setting and establish a condition which must be satisfied so that
importance sampling (including symbolic execution) must satisfy in order to be
more effective in achieving the same confidence level.

3.2 Importance Sampling

Importance sampling is a widely-used technique in Monte Carlo method in order
to approximate the expectation of a probability distribution. The intuition is
after observing many positive samples, we should have more confidence in the
system’s correctness, if the samples are generated by a method that is more likely
to sample a negative one. We remark that the notion of importance sampling
we adopt here has nothing to do with the expectation approximation [39], but
rather shares the same idea with the importance sampling in the Monte Carlo
method.

Recall that θ is the error probability. The probability of a specific sampling
method finding a negative trace is a function of θ, denoted as ϕ(θ). We refer to
ϕ(θ) as the effectiveness function of the sampling method. Furthermore, ϕ(θ)
is assumed to be continuous and strictly increasing on [0, 1] with ϕ(0) = 0
and ϕ(1) = 1. Given a specific sampling method (e.g., random sampling or
symbolic execution), we may be able to approximate its effectiveness through
empirical study. In certain special cases, we might identify a closed form of the
effectiveness function for a specific sampling method. For instance, in the case of
random sampling, the effectiveness function ϕ(θ) = θ. A sampling method with
effectiveness ϕ(θ) is said to be more effective than another with effectiveness
φ(θ), if ϕ(θ) > φ(θ) for all θ. Two sampling methods are called incomparable if
no one is more effective than the other.

In the following, we show that a more effective sampling method leads to
a higher confidence level. Without loss of generality, we focus on effectiveness
functions which can be expressed in the form of a power function ϕ(θ) = θα

where θ ∈ [0, 1] for 0 < α ≤ 1. The reason for the assumption is that effectiveness
functions in this form can be compared easily.

Following the discussion in Sect. 3.1, suppose that the effectiveness of a
testing method is ϕ(θ) = θα and we have witnessed m negative samples and
n = N − m positive samples. The post distribution can be calculated as follows.

f(θ | n,m) =
θαm(1 − θα)n

∫ 1

0

θαm(1 − θα)ndθ

(5)

Accordingly, the confidence is defined as follows.

cϕ(n,m, δ) =
∫ δ

0

f(θ | n,m)dθ =

∫ δ

0

θαm(1 − θα)ndθ

∫ 1

0

θαm(1 − θα)ndθ

. (6)
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The following theorem then establishes that a more effective sampling method
would always result in more confidence.

Theorem 1. Let ϕ(θ) = θα and ψ(θ) = θβ be the effectiveness function of two
testing methods. If 1 ≥ α > β > 0, then ϕ(θ) ≤ ψ(θ) for all θ ∈ [0, 1], and
cϕ(n,m, δ) ≤ cψ(n,m, δ) for all n,m ∈ N and δ ∈ (0, 1). �
The (rather involved) proof is presented in [28]. This theorem endorses our intu-
ition that we should have more confidence in the systems’ correctness when
observing many positive samples, if the samples are generated by a method like
symbolic execution (with a bias on negative samples). In general we cannot com-
pare the confidence of two incomparable sampling methods. We remark that this
result has not been formally proved before and it serves the foundation for the
approach we propose next.

Based on the theorem, in order to apply symbolic execution to achieve better
confidence than applying random sampling, we should apply it such that it is
more likely to sample a negative trace. There are multiple different strategies
on how/when to apply symbolic execution. For instance, we could symbolically
execute a path which ends with a negative mode, or a part of the path (e.g., we
solve for input values which are required to trigger the first few transitions of a
path leading to a negative mode, if we have reasons to believe that only those
transitions are unlikely to be fired through random sampling), or even simply
symbolically execute a path which has not been visited before if all existing sam-
ples are positive. In the next section, we discuss how to compare these different
strategies based on cost and propose a cost-effect algorithm.

4 Sampling Strategies

Recall that our objective is to check whether there is a trace which visits a
negative mode. Theorem 1 certainly does not imply we should abandon random
sampling. The simple reason is that it ignores the issue of time cost. In general,
the cost of obtaining a negative trace through sampling (either random sampling
or symbolic execution) is: c/pr where c is the cost of obtaining one sample and
pr is the probability of the sample being a negative trace. In the case of random
sampling, c is often low and pr is also likely low, especially so if the negative traces
all contain certain rare event. In the case of symbolic execution, c is likely high
since we need to solve a path condition to obtain a sample, whereas pr is likely
high. Thus, in order to choose between random sampling and symbolic execution,
we would like to know their time cost, i.e., c and pr. While knowing the cost
of obtaining one sample through random sampling is relatively straightforward,
knowing the cost c of symbolic execution is highly non-trivial. In this section,
we assume there is a way of estimating that and propose an algorithm based on
the assumption. In Sect. 5, we estimate c empirically and show that even a rough
estimation serves a good basis for choosing the right strategy. We can calculate
pr based on MH. However, constructing MH is infeasible and thus we propose
to approximate MH at runtime.
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4.1 Probability Estimation

Initially, since we have no idea on the probability of obtaining a negative trace,
we apply wishful thinking and start with random sampling, hoping that a neg-
ative trace will be sampled. If a negative trace is indeed sampled, we are done.
Otherwise, the traces that have been sampled effectively identify a subgraph of
MH, denoted as Msub, which contains only modes and transitions visited by the
sample traces. Without any clue on the transition probability between modes
not in Msub, it is infeasible for us to estimate pr (i.e., the probability of reaching
a negative mode). It is clear however that in order to reach a negative mode,
we must sample in a way such that Msub is expanded with unvisited modes.
Thus, in the following, we focus on finding a strategy which is cost-effective in
discovering new modes instead.

For each mode u in Msub where there is an unvisited child mode v, we have
the choice of either trying to reach v from u through more random sampling
or through symbolic execution (i.e., solving the path condition). In theory, the
choice is to be resolved as follows: random sampling if ct/q(u) < cs and symbolic
execution if ct/q(u) ≥ cs, where ct is the cost of generating a random sample;
cs is the cost of applying symbolic execution to generate a sample visiting an
unvisited child of u in Msub; and q(u) is the probability of finding a new mode
from u, i.e., q(u) =

∑
v∈V \V0

puv. Intuitively, for random sampling, the expected
number of samples to find a new mode is 1/q(u) and thus the expected cost
of using random sampling to discover a new mode is ct/q(u). Unfortunately,
knowing q(u) and Msub exactly is expensive. The former is the subject of recent
research on model counting and probabilistic symbolic execution [9,11,12,32],
and the latter has been studied in [4]. Thus, in this work, we develop techniques
to estimate their values.

In our approach, we actively estimate the probability of q(u) (for each u in
Msub) from historical observation through Bayesian inference, by recording how
many times we sampled u. Assume q = q(u) has a prior distribution f(q). Let A
denote the event that an unvisited child v remains unvisited after one sampling,
and Ā denote the event that v becomes visited afterwards. Then,

f(q | A) =
f(q)f(A | q)

∫ 1

0

f(q)f(A | q)dq

=
qf(q)

∫ 1

0

qf(q)dq

∝ qf(q),

and similarly: f(q | Ā) ∝ (1 − q)f(q).
Suppose that mode u has been sampled for N times and for m out of N

times, we end up with a child which has been visited previously. As a result,
n = N − m is the number of times we ended up with an unvisited child. We can
compute the post distribution f(q) ∝ (1− q)mqn and the expectation as follows.

E(q) =

∫ 1

0

q(1 − q)mqndq

∫ 1

0

(1 − q)mqndq

=
n + 1

m + n + 2
.
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Thus, we estimate q(u) as (n+1)/(m+n+2). Intuitively, the bigger m is, the less
likely that an unvisited mode is going to be sampled through random sampling.

Next, we discuss how to apply symbolic execution in this setting. There are
multiple strategies on how to apply symbolic execution to construct a sample
for visiting v. For instance, we could solve a path condition from an initial mode
to v so that it will surely result in a trace visiting v (if the path condition
is satisfiable). Alternatively, we could take a sample trace which visits u and
apply symbolic execution to see whether the trace can be altered to visit v after
visiting u by letting a different amount of time elapsing at mode u. That is,
assume that (u,X) is a concrete state of sem(H) visited by a sample trace,
where X is a valuation of V . We take the state (u,X) as the starting point
and apply symbolic execution to solve a one-step path condition so that v is
visited from state (u,X). This is meaningful for hybrid automata because, for
every step, by letting a different amount of time elapsing, we may result in firing
a different transition and therefore reaching a different mode. We remark that
if solving the one-step path condition has no solution, it does not necessarily
mean that v is unreachable from u. Nonetheless, we argue that this strategy is
justified as, according to Theorem 1, such a sampling strategy would be more
effective than random sampling. To distinguish these two strategies, we refer to
the former as global concolic sampling and the latter local concolic sampling.
The choice of strategy depends on cs. We estimate cs for particular solvers and
systems in Sect. 5 and choose the right strategy accordingly.

4.2 Concolic Sampling

Based on the theoretical discussion presented above, we then present our sam-
pling algorithm, which we call concolic sampling. The details are shown in
Algorithm 1. The input is a hybrid automaton modeling a hybrid system, where
some modes are identified as negative ones. The aim is to identify a trace which
visits a negative mode or otherwise report that there is certain probabilistic guar-
antee on their absence. We remark that we skip the part on how the probabilistic
guarantee is computed and refer the readers to [17] for details. We rather focus
on our contribution on combining random sampling and symbolic execution for
better counterexample identification in the following.

We maintain the set of sample traces as Π in the algorithm. Based on Π, we
can construct the above-mentioned subgraph Msub of MH systematically. Next,
for each node u in Msub which potentially has unvisited children, we maintain
two numbers m and n as discussed above, in order to estimate the probability
of q(u). If according to our strategy, there is still some u such that it might be
cheaper to discover a new child mode through random sampling, we proceed
by generating a random sample using the algorithm presented in [17], which is
shown as Algorithm 2.

We briefly introduce how Algorithm2 works in the following. In a nutshell,
the algorithm is designed to sample a run π according to an approximation of
the probability distribution of MH. The main idea is to use the Monte Carlo
method to approximate the measure of time windows ‖Tq(v, g)‖. Recall that
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Algorithm 1. Concolic Sampling
1 Let Π be the set of sampled runs, initialized to the empty set;
2 Let Msub be the subgraph of M, initialized to the root node;
3 repeat
4 Set u = arg minu min (ct/E(q(u)), cs);
5 if ct/q(u) < cs then
6 Invoke Random Sampling to generate a run π;

7 else
8 Apply symbolic execution to obtain a sample π visiting a new child of u;

9 if π visits a negative mode then
10 Present π as a counterexample and terminate;

11 if π visits an undiscovered mode then
12 nu := nu + 1;

13 else
14 mu := mu + 1;

15 Add π into Π and add u to Msub;

16 until time out ;

Algorithm 2. Random Sampling
Input: A hybrid automaton H and a state 〈q, v〉
Result: A successive state 〈p, u〉

1 Sample time points t1, · · · , tJ uniformly from [0, 1];

2 foreach outgoing transition q
gi−→ qi do

3 Set Ti := {tj | Φq(tj , v) |= gi},

4 Choose a transition q
gi−→ qi with probability ‖Ti‖/

∑
i ‖Ti‖;

5 Sample a time point t uniformly from Ti;
6 Set u := Φqi(1 − t, Φq(t, v)) and p := qi;
7 Return 〈p, u〉;

Tq(v, g) = {t ∈ (0, 1) | θq(v, t) satisfies g}. Therefore the measure ‖Tq(v, g)‖ is
the mean of [θq(v, τ) |= g], where the random variable τ ∼ U(0, 1). According to
the law of large numbers [30], the sample mean almost surely converges to the
expectation. Thus we have

∑n
i=1[θq(v, τi) |= g]

n

a.s.−−→ ‖Tq(v, gj)‖ as n → ∞,

where τ1, τ2, . . . , τn
i.i.d.∼ τ . To generate a K-step run, Algorithm2 works by

generating one random step at a time. In particular, after each time unit, at line
4, firstly a set of time points are uniformly generated. By testing how often each
transition from the current mode is enabled at these time points, we estimate
the transition probability in MH. At line 7, we sample a transition according to
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the estimated probability and generate a step. This procedure finishes when a
run which spans K time units is generated.

If random sampling is unlikely to be cost-effective in discovering a new mode
according to our strategy, symbolic execution is employed at line 7 in Algorithm1
to generate a sample to cover a new node in MH. Among all the nodes in Msub,
we identify the one which would require the minimum cost to discover a new
child according to our estimation cs, encode the corresponding path condition
and apply an existing constraint solver that supports ODE (i.e., dReal [14]) to
generate a corresponding run. Once we obtain a new run π at line 8, we check
whether it is a counterexample. If it is, we report and terminate at line 10.
Otherwise, we repeat the same procedure until it times out.

5 Evaluation

We implemented our approach in a self-contained toolkit called HyChecker,
available online at [2]. HyChecker is implemented with 1575 lines of Python
codes (excluding external libraries we used) and is built with a web interface.
HyChecker relies on the dReal constraint solver [14] for symbolic execution.
In the following, we evaluate HyChecker in order to answer the following
research question: does our strategy on combining random sampling and sym-
bolic execution (resulting from our theoretical analysis) allow us to identify rare
counterexamples more efficiently?

Our test subjects include three benchmark hybrid systems which we gather
from previous publications as well as a simplified real-world water treatment
system.

– Thermodynamic system. We first test our method on a room heating system
from [10]. The system has n rooms and m ≤ n heaters which are used to
tune the rooms’ temperature. The temperature of a room is affected by the
environment temperature and also by whether a heater is warming the room.
The system therefore aims to maintain the rooms’ temperature within certain
comfortable range by moving around and turning on and off the heaters. We
consider in the experiment such a system with three rooms and two heaters.
We verify the same property as in [17], i.e., whether the two heaters will be
moved to other rooms in the first five days.

– Navigation system. Our second test subject is the navigation system from [10].
This system contains a grid of cells, where each cell is associated with some
particular velocity. Whenever a floating object moves from one cell to the
other, it changes its acceleration rate according to the velocity in that cell. If
the object leaves the grid, the velocity is the one of the closest cell. We check
whether an object in the grid will leave its initial cell and will not enter a
dangerous cell, within six minutes.

– Traffic system. Our third model is from the long standing research on modeling
traffic and examining causes of traffic jams and car crashes. We use the ODE
in [34] to describe the dynamics of a vehicle. We consider in the experiment a
circular road with n = 5 cars on it. We are interested whether there could be
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a potential traffic accident in the closed system, and whether there could be
a potential traffic jam.

– SWaT system. Lastly, we tested our method on a simplified real-world sys-
tem model. The Secure Water Testbed (SWaT) is a raw water purification
laboratory located at SUTD [38]. SWaT is a complicated system involving a
series of water treatments like ultrafiltration, chemical dosing, dechlorination
through an ultraviolet system. We build a hybrid automaton model of SWaT
based on the control program in the programmable logic control (PLC) in the
system. The modes are defined based on the discrete states of the actuators
(e.g., motorized valves and motorized pumps). These actuators are controlled
by the PLC. There are in total 23 actuators, which results in many modes.
By focusing on the hydraulic process in the system only, we build a hybrid
automaton with 2721 modes. We skip the details of the model due to the lim-
ited space here. The readers are referred to [1] for details. The property we
verify is that the water level in the backwash tank must not be too high or too
low (otherwise, the system needs to be shut down), with some extreme initial
setting (e.g., the water level in the tank is close to be too low) to analyze the
system safety.

Estimating Cost of Symbolic Execution. In order to apply Algorithm1 with the
right strategy, we need to estimate cs. The underlying question is how efficient
a constraint solver can check the satisfiability of a given path condition. We
remark that it is a challenging research problem and perhaps deserves a separate
research project by itself. There are a dozen of various factors that determines
how a solver performs in solving a given constraint, including the number of
variables, the number of operators, the number of differential equations, the
length of witnesses (if there is any), etc. Even on the same problem, different
solvers have different performance due to different search strategies, ways of
pruning and reducing state space, etc. [26,31]. All these facts make a precise
estimation of efficiency of symbolic solvers extremely difficult.

In this work, following previous work on this topic [4], we estimate cs as
follows. First, we construct a sequence of increasingly more complicated random
constraints (composed of constraints on ODE as well as ordinary constraints,
which we obtain from examples in dReal). We then measure the time needed to
solve them using dReal one-by-one. Based on the results, we observe that the
dominant factor is the length of the formula and thus heuristically decide cs to be
a function of the length of constraints. Next, we apply a function fitting method
to obtain a function for predicting cs. The function we obtained is exp(1.73l −
1.65)−1 where l is the length of the formula, which suggests that the solving time
is exponential in the length of the formula. It implies that dReal has problem
solving path conditions containing two or more steps, which in turn means that
our choice of strategy should be the local concolic sampling. We remark that this
is unlikely a precise estimation. Nonetheless, as we show below, even a rough
estimation would be useful in guiding when and how to do symbolic execution.
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Table 1. Experiments results

Random Dynamic Global Local (our strategy)

Thermodynamic system result ct-eg found pass pass pass ct-eg found

time(s) 340.4 600 600 600 41.25

#samples 13K 22K n/a 134 551

Navigation system result ct-eg found pass pass ct-eg found

time(s) 91.7 600 600 4.33

#samples 354 n/a 4 5

Traffic system result pass pass pass ct-eg found

time(s) 600 600 600 28.86

#samples 1240 n/a 2 2

SWaT system result ct-eg found pass pass ct-eg found

time(s) 102.4 600 600 64.6

#samples 169 n/a 24 68

Experiment Results. Table 1 shows the experiment results. All experiment results
are obtained in Ubuntu Linux 14.04 on a machine with an Intel(R) Core(TM)
i5-4950, running with one 3.30 GHz CPU core (no parallel optimization), 6M
cache and 12 GB RAM. We set a timeout of 10 min for each experiment, i.e., if
no counterexample is identified after 10 min, the property has passed the test.
Each experiment is repeated for 10 times and we report the average time. All
details on the experiments are at [1].

We compare four approaches in order to show the effectiveness of our cho-
sen strategy. The first is the random sampling approach proposed in [17]. The
results are shown in column random. Note that there are two results for the
thermodynamic system. This is because due to the randomness in the approach,
the results are not always consistent (e.g., in one experiment, a counterexample
is found, whereas none is found in another). The second approach is the concolic
testing approach in [36] (i.e., applying random testing once and applying sym-
bolic execution to visit the alternative path in the last branch and so on). The
results are shown in column dynamic. The last two columns report the result
of applying global concolic sampling and local concolic sampling respectively.

We have the following observations based on the results. First, among the
four approaches, local concolic testing is able to spot counterexamples more
efficiently in all cases. Compared with random sampling, the number of samples
explored by local concolic sampling is significantly smaller. This confirms the
result of the theoretical analysis in previous sections. Second, symbolic execution
for hybrid systems are clearly constrained by the limited capability of existing
hybrid constraint solvers like dReal. For all four cases, both concolic testing and
global concolic sampling time out whilst waiting for dReal to solve the first path
condition. This is because the path condition (composed of constraints from
multiple steps) is complex and dReal takes a lot of time trying to solve it. The
only difference is that while concolic testing got stuck after the first sample,
global concolic sampling got stuck after it has randomly sampled a few traces
and switched to symbolic execution. On the contrary, local concolic sampling
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uses dReal to solve a one-step path condition each time and is able to smartly
switch between random sampling and symbolic execution, and eventually found
a counterexample. Third, the experiment results suggest that the formula that
we applied for estimating cs turned out to be an under-approximation, i.e., the
actual time cost is often much larger. If we modify the function to return a much
larger cost for solving a path composed of two or more steps, global concolic
sampling would be equivalent to random sampling as symbolic execution would
never be selected due to its high cost.

6 Conclusion and Related Works

In this work, we investigated the effectiveness of different sampling methods (i.e.,
random sampling and symbolic execution) for hybrid systems. We established
theoretical results on comparing their effectiveness and we developed an app-
roach for combining random sampling and symbolic executions in a way which
is provably cost-effective.

In the following, we discuss the related work, in addition to those discussed
already. This work is inspired by [7], which initialized the discussion on the
efficiency of random testing. Our work aims to combine random sampling and
symbolic execution to identify rare counterexamples efficiently. It is thus closely
related to work on handling rare events in the setting of statistical model check-
ing [5,6,25]. In [5], the authors set up a theoretical framework using coupling
theory and developed an efficient sampling method that guarantees a variance
reduction and provides a confidence interval. In [6] the authors proposed the first
importance sampling method for CTMC to provide a true confidence interval.
In [25] the authors motivated the use of importance splitting to estimate the
probability of a rare property. Our work is different as we complement sampling
with symbolic execution to identify rare events efficiently.

This work borrows idea from work on combining program testing with sym-
bolic execution (a.k.a. dynamic symbolic execution or concolic testing). In [15],
the authors proposed a way of combining program testing with symbolic execu-
tion to achieve better test coverage. Random testing is first applied to explore
program behaviors, after which symbolic execution is used to direct the test
towards different program branches. Similar ideas later have been developed
in [8,33,36,37]. Our work is different in two ways. One is that we target hybrid
systems in work, which has different characteristics from ordinary programs.
One of them is that symbolic execution of hybrid automata is considerable more
expensive, which motivated us to find ways of justifying the use of symbolic
execution. The other is that, based on the probabilistic abstraction of hybrid
models, we are able to formally compare the cost of random sampling against
symbolic execution to develop cost-effective sampling strategies. We remark that
the same idea can be applied to concolic testing of programs as well.

HyChecker is a tool for analyzing hybrid systems and thus it is related to
tools/systems on analyzing hybrid systems. In [35], the authors developed a the-
orem prover for hybrid systems. Users are required to use differential dynamic
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logic to model hybrid systems. Afterwards, the prover can be used interactively
to find a sound and complete proof of certain properties of the system. It has
been shown that the prover works for safety critical systems like aircrafts [35].
HyChecker is different as it is fully automatic. dReach [13] is a recent tool
developed for verifying hybrid systems. It is based on the SMT solver dReal [14]
developed by the same authors. dReach focuses on bounded δ-complete reacha-
bility analysis. It provides a relatively easy-to-use interface for modeling hybrid
systems and verifies whether a system is δ-safe under given safety demands. We
observe since dReach attempts to solve every path in a hybrid automaton, its
performance suffers when the system becomes more complicated. HyChecker
relies on dReal and tries to improve dReach by combining random sampling
to avoid solving many of the paths. HyTech [21] is one of the earliest tools on
verifying hybrid systems. It is limited to linear hybrid automata.
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