
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2016 

Towards learning and verifying invariants of cyber-physical Towards learning and verifying invariants of cyber-physical 

systems by code mutation systems by code mutation 

Yuqi CHEN 

Christopher M. POSKITT 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons, and the Theory and Algorithms Commons 

Citation Citation 
CHEN, Yuqi; POSKITT, Christopher M.; and SUN, Jun. Towards learning and verifying invariants of cyber-
physical systems by code mutation. (2016). Proceedings of the 21st International Symposium Limassol, 
Cyprus, 2016 November 9–11. 9995, 155-163. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4938 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4938&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Towards Learning and Verifying Invariants
of Cyber-Physical Systems by Code Mutation

Yuqi Chen(B), Christopher M. Poskitt, and Jun Sun

Singapore University of Technology and Design, Singapore, Singapore
yuqi chen@mymail.sutd.edu.sg

Abstract. Cyber-physical systems (CPS), which integrate algorithmic
control with physical processes, often consist of physically distributed
components communicating over a network. A malfunctioning or com-
promised component in such a CPS can lead to costly consequences,
especially in the context of public infrastructure. In this short paper, we
argue for the importance of constructing invariants (or models) of the
physical behaviour exhibited by CPS, motivated by their applications to
the control, monitoring, and attestation of components. To achieve this
despite the inherent complexity of CPS, we propose a new technique
for learning invariants that combines machine learning with ideas from
mutation testing. We present a preliminary study on a water treatment
system that suggests the efficacy of this approach, propose strategies for
establishing confidence in the correctness of invariants, then summarise
some research questions and the steps we are taking to investigate them.

1 Introduction

Cyber-physical systems (CPS), characterised by their tight integration of algo-
rithmic control and physical processes, are prevalent across engineering domains
as diverse as aerospace, autonomous vehicles, and medical monitoring; they are
also used to control critical public infrastructure such as smart grids and water
treatment plants [16,18]. In such contexts, CPS often consist of distributed soft-
ware components (the “cyber” part) that communicate over a network and inter-
act with their local environments via sensors and actuators (the “physical” part).
A component that exhibits faulty behaviour—or worse still, becomes compro-
mised [7]—can lead to costly and damaging consequences, motivating research
into approaches for ensuring their correctness, safety, and security.

Reasoning about a CPS as a whole, however, is very challenging, given that
models must capture both discrete behaviour in the cyber part as well as con-
tinuous behaviour in the physical part [30]. With source code for the former
and ordinary differential equations (ODEs) for the latter, it becomes possible to
model the CPS as a hybrid system and apply a variety of techniques (e.g. model
checking [11], SMT solving [12], non-standard analysis [13], concolic testing [17],
or theorem proving [23,24]). Yet CPS are inherently complex, and even with
domain-specific expertise, it can be difficult to determine ODEs that are accu-
rate enough in practice: there might always remain some discrepancy between
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 155–163, 2016.
DOI: 10.1007/978-3-319-48989-6 10



156 Y. Chen et al.

the verified model and the behaviour of the actual CPS, emphasising the impor-
tance of techniques that can be applied at runtime [20].

Our Approach. As an alternative to the endeavour of manual modelling,
we pursue in this paper a more systematic approach. We propose to apply
machine learning (ML) to the sensor data of CPS to construct models in the
form of invariants—conditions that must hold in all states amongst the phys-
ical processes controlled by the CPS—and to make those invariants checkable
at runtime. To achieve this, the learner must be trained on traces of sensor
data representing “normal” runs (the positive case, satisfying the invariant),
and also on traces representing incorrect behaviour (the negative case); the for-
mer being easy to obtain, but the latter requiring more ingenuity. We obtain our
negative traces by the novel application of code mutation (à la mutation test-
ing [14]) to the software components of CPS. Besides characterising the CPS,
the learnt invariants have some important applications in controlling, monitor-
ing, and attesting the software components [25]. It is thus important to ascertain
that the learnt invariants actually are invariants of the CPS: to address this, we
propose to verify them using statistical model checking and symbolic execution.

Our Contributions. This short paper describes a novel approach for generating
invariants (or models) of CPS, based on the application of machine learning to
traces of sensor data obtained under mutated software components. We present
the results of a preliminary experiment on (a simulator of) Secure Water Treat-
ment (SWaT) [1], a water purification testbed, which suggest the efficacy of the
approach and motivate the need for further research. Furthermore, we propose
the use of statistical model checking and symbolic execution for establishing
confidence in the correctness of the learnt invariants, and highlight some impor-
tant open research questions which we are investigating in ongoing work. For
the formal methods community, this paper represents the start of a line of work
to model and verify—“warts and all”—a complex, real-world CPS. For the CPS
community, it describes a systematic approach for constructing invariants that
can be applied in controlling, monitoring, and attesting software components.
For the ML community, it presents a new application of learning arising from a
novel combination of ideas from CPS and mutation testing.

2 SWaT Testbed and Cyber-Physical System Invariants

SWaT. We are currently investigating our approach in the context of a partic-
ular CPS: the SWaT testbed [1]. SWaT, built for cyber-security research at the
Singapore University of Technology and Design, is a scaled-down but fully oper-
ational water treatment plant, capable of producing five gallons of safe drinking
water per minute. Water is treated in six distinct, co-operating stages, under
which it undergoes chemical processes such as ultrafiltration, de-chlorination,
and reverse osmosis. Each stage is controlled by an independent programmable
logic controller (PLC), which receives sensor data such as water flow rates and
tank levels, and then computes signals to send to actuators including pumps



Towards Learning and Verifying Invariants of Cyber-Physical Systems 157

and motorised valves. This communication all takes place over a network. Sensor
data is also available to a Supervisory Control and Data Acquisition (SCADA)
system, and is recorded by a historian to facilitate offline analyses.

Control is expressed in the programs that PLCs repeatedly cycle through.
These are structurally very simple, essentially boiling down to big (nested) if-
statements. The programs use only the simplest constructs: loops, for example,
are completely absent. Furthermore, the source code can easily be viewed, modi-
fied, and re-deployed to the PLCs using Rockwell’s RSLogix 5000, an industrial-
standard software suite. While the cyber part of SWaT is thus relatively simple,
the same is not true of the physical part: runs of the system are governed by
laws concerning the dynamics of water flow, the evolution of pH values, and the
chemical processes associated with the six water treatment stages.

To complement the SWaT testbed, we also have access to a simulator imple-
mented in Python (relying on some of its scientific libraries). The cyber part is
simulated faithfully as the PLC code was translated to Python directly. Since the
actual ODEs governing the physical part of SWaT are unknown, the simulator
is not as accurate in this regard. The ODEs it does implement, however, have
been improved over time by cross-validating data from the simulator with real
SWaT data collected by the historian.

CPS Invariants. The safety of water treatment plants is of paramount impor-
tance, as breaches or malfunctioning components can lead to costly consequences.
In SWaT, for example, there is a risk of damaging the mechanics of the system
if the water levels in certain tanks become too high or too low [15]. One way
to detect when runs of a system are diverging into such territory is to mon-
itor invariants—conditions that must hold in all states amongst the physical
processes controlled by the CPS—and raise an alarm when they are no longer
satisfied. This approach has been applied to a number of CPS [9,22], including
for stages of SWaT itself [3,4]. Typically, however, the invariants are manually
derived using the laws of physics and domain-specific knowledge. Moreover, they
are derived for specific, expected physical relationships, and may not capture
other important patterns hiding in the sensor data.

Beyond providing a characterisation of CPS and their important applications
in monitoring for safety, invariants can also be seen as facilitating a form of code
attestation. That is to say, if the actual behaviour of a CPS does not satisfy
our mathematical model of the physical world under its control (i.e. the invari-
ant), then it is possible that the cyber part has been compromised and that ill-
intended manipulations are occurring. This form of attestation is known as phys-
ical attestation [25,27], and while weaker than typical software- and hardware-
based attestation schemes (e.g. [5,6,8,26]), it is much more lightweight—neither
the firmware nor the hardware of the PLCs require modification.

3 Learning with Mutants

Learning SWaT Invariants. Rather than deriving further invariants for SWaT
manually, we propose to learn them systematically by applying ML—initially,



158 Y. Chen et al.

Support Vector Machines (SVM)—to traces of SWaT sensor data, taking the
classifiers they learn as our invariants. To learn such a classifier, SVM must be
provided with traces that should be classified as positive (i.e. correct behaviour)
and traces that should be classified as negative. The data available from the
SWaT historian can be seen as representing correct (and thus positive) behaviour
of the system as a whole: the SWaT PLCs and actual (unknown) ODEs together.
In contrast, we propose to collect negative traces by running the system under
small manipulations. Since we cannot change the ODEs (we cannot yet bend the
laws of physics!), we propose to manipulate the part of SWaT that we can: the
programs running on the PLCs.

As previously discussed, it is straightforward to change the PLC programs
of SWaT and collect some negative traces, but it is more challenging to do so in
a systematic way that ensures the strength of the invariant and precision of the
classifier. The solution we propose is directly inspired by mutation testing [14],
a fault-based testing technique that deliberately seeds errors—small, syntactic
changes called mutations—into multiple copies of a program, which are executed
to assess the quality of a test suite (good ones should detect the mutants). Rather
than using mutations to improve the completeness of a test suite, we are using
them to generate a more comprehensive set of negative traces for training on.
By training on traces resulting from small syntactic changes, we hope to learn a
classifier as close to the boundary between correct and suspicious behaviour as
possible. Our rationale is that smaller changes are more likely to reveal negative
traces that are relevant in practice, corresponding, for example, to isolated PLCs
or sensors failing, or an attacker attempting to keep their changes undetected.

Using mutations for learning is also attractive because of the structural sim-
plicity of the PLC programs. Were we assessing a test suite on them, we could
do so efficiently and without redundancy by using the five basic (arithmetic,
relational, and logical) mutation operators identified by Offutt et al. [21]. We
hypothesise that (and are investigating whether) this result has an analogue
for learning that could help us in minimising the number of redundant traces.
Even if so, there remain some additional challenges to overcome. For example, if
mutations are not executed, this must be detected, and thus the traces rejected
as negative samples. Even if a mutant is executed, it may not lead to a physi-
cal effect immediately (or ever) and thus could generate traces indistinguishable
from positive ones. Other issues include how many mutations to use in each copy,
and how to handle valid modes of operation in SWaT that are rarely entered.

Preliminary Evaluation. As a very first step towards evaluating the outlined
approach, we undertook an experiment to ascertain the effectiveness of a classifier
learnt from traces produced by the SWaT simulator under a number of manually
applied mutations. Note that we used the simulator to facilitate a quick proof-of-
concept without the resource costs of the real system (e.g. water usage, human
monitoring); this ML approach can be applied to traces collected from the real
system in the same way.

First, we manually launched the SWaT simulator in three different initial
states (i.e. assignments of variables modelling sensors), collecting three traces of



Towards Learning and Verifying Invariants of Cyber-Physical Systems 159

correct behaviour each spanning 30 min. Following this, we made 20 copies of
the PLC code and manually applied a different (random) mutation to each. Of
these 20 mutants, 14 of them generated traces equivalent to correct behaviour
and were manually rejected. Seven mutants generated different traces, although
one mutant was rejected for generating a trace too similar to another. The
six remaining mutants were selected to generate our negative traces; three of
the mutations each modified an assignment, whereas the other three modified
an arithmetic expression in a conditional guard. We generated traces for each
mutant using the same three initial states as before.

We proceeded to apply SVM to learn six classifiers for the six mutants respec-
tively, each against the correct code. We selected 10 features: the first five rep-
resenting the water levels of the five tanks, and the next five representing the
same levels after 250 ms. For training the classifiers and evaluating their accu-
racy, we applied k-fold cross-validation to the traces with k = 5. On average,
the classifiers achieved an accuracy of 99 %.

Finally, we applied SVM to all the traces from all six mutants to learn a single
classifier, i.e. to determine whether a trace represents correct behaviour or the
behaviour caused by any one of the mutations. We found that this combined
classifier maintained a similar level of accuracy to the individual ones: 98.41%.
We extracted the learnt invariant from this classifier, which, albeit complicated,
expresses a linear relationship between water tank levels (mm) at one time point
(v1, . . . v5) and 250 ms after it (v′

1, . . . v
′
5). For simplicity of presentation, the

coefficients are given below to three decimal places. The full model and training
data are all available online (see [2]).

−0.349v1 + 9.789v2 − 10.192v3 + 0.803v4 − 5.561v5
−0.630v′

1 − 10.455v′
2 + 10.333v′

3 + 0.803v′
4 + 3.928v′

5 < −786.416

This experiment has shown that it is possible to apply SVM to learn an
accurate classifier for traces of sensor data, using the negative samples gener-
ated under a small number of mutated PLC programs. It is, of course, too limited
in its present scope to allow for more general conclusions; a much more extensive
evaluation of the outlined approach is needed, and is underway. It does however
suggest the feasibility of the basic idea, and has highlighted a number of impor-
tant challenges. For instance, the process should be more automatic: mutation
operators should be applied automatically, as should the detection of unexercised
mutations, as well as the comparison of the generated traces against the positive
ones. Furthermore, to ensure as strong an invariant and precise a classifier as
possible, a number of questions must be answered empirically, regarding, e.g. the
number of mutations (and the possibility of multiple mutations per copy), the
sufficiency of mutation operators, and the length of traces.

Our experiment also highlighted the role that a simulator can play in muta-
tion “screening” before applying them to the real SWaT system and collecting
negative traces that are based on the actual ODEs. This helps to avoid wasting
time and resources otherwise lost by applying the mutations to the real PLCs
first. Note that while the ML technique can be applied to SWaT data in exactly



160 Y. Chen et al.

the same way as for the simulator, a human technician must be present while
collecting the data itself to ensure that the mutations do not lead the system
into a state that causes damage. This raises another research question: whether
one can determine a class of “safe” mutations for SWaT that still facilitate a
precise classifier but avoid entirely the possibility of causing damage.

4 Correctness of Invariants

Our preliminary experiment has allowed us to learn a new invariant for SWaT
(or rather, at least to begin with, its simulator). But is it actually an invariant?
It is not particularly intuitive to reason about. And even if it were, to argue for
its correctness, we would need some expertise in the physics of water treatment
plants; a requirement we wanted to avoid in the first place. As alternatives to
manual, ad hoc proofs, we propose two contrasting approaches for establishing
confidence in the correctness of invariants, and highlight their well-suitedness to
CPS like SWaT.

First, we will apply statistical model checking (SMC) to SWaT, a standard
technique for analysing and verifying CPS [10]. In SMC, executions of the sys-
tem (i.e. traces of sensor data) are observed, and hypothesis testing or statistical
estimation techniques are applied to determine whether or not the executions
provide statistical evidence of the invariant holding. SMC estimates the proba-
bility of correctness, rather than guaranteeing it outright, but is simple to apply
to SWaT (and its simulator) since it only requires the system to be executable.
Furthermore, should the ODEs of the SWaT simulator become more accurate in
the future, then our mutation-based learning approach could take place entirely
on that; SMC could then determine whether or not the learnt invariants are also
invariants of the real system, without having to apply any mutations to it.

Second, we will investigate the use of symbolic execution for analysing SWaT
with respect to a learnt invariant. In the PLC programs, symbolic values will be
used to abstract away from concrete sensor inputs. The technique will then build,
along the different paths of the PLC code, path constraints over the symbolic
values (i.e. path conditions in conjunction with an assertion based on the learnt
invariant). The PLC programs have a simple structure that is well-suited to
this task: they are free of loops, and the paths through the programs are short
(maximal depth of three; maximal branching of 28). Our invariants, however, are
based upon sensor readings at two different time points, so we cannot analyse
them with respect to the cyber part of SWaT alone: a model of the physical
processes is needed too, for reasoning about the effects that signals will have. As
we have discussed, we cannot expect to manually derive a completely accurate
one, but we could nonetheless use approximate models (e.g. as defined in the
simulator), or even models of SWaT that were automatically constructed using
different approaches to ours (e.g. the probabilistic model of [29]).

It should be emphasised that while neither technique can fully guarantee
correctness, they differ in where precision is lost, and so should complement
each other in helping to establish confidence in the learnt invariants. SMC, for



Towards Learning and Verifying Invariants of Cyber-Physical Systems 161

example, estimates a probability of correctness based only on the executions it
is provided with (leading to challenges such as handling rare events); yet by
working with actual system executions, its results are based on the actual phys-
ical processes. Symbolic execution, in contrast, must work with an approximate
physical model, but performs an analysis on the actual source code in the cyber
part (and not just on a subset of the possible system executions).

5 Conclusion and Next Steps

This short paper has proposed a novel approach for learning invariants of CPS
that trains a ML technique such as SVM on positive and negative traces of sensor
data, with the latter obtained by applying mutation operators to copies of the
programs in the cyber part—the part of the CPS that we can most easily control.
We presented a preliminary study on SWaT, a raw water treatment plant, that
suggested the effectiveness of constructing invariants this way. We furthermore
outlined the use of SMC and symbolic execution for establishing confidence in
the correctness of learnt invariants, and discussed their use in CPS applications
such as physical attestation.

Much work remains to be done to truly ascertain the effectiveness of our app-
roach for CPS. First, we will automate—as much as possible—our experiment
on the SWaT simulator, to allow for classifiers to be trained on several addi-
tional mutants and initial states more easily, and to automatically detect those
mutants that do not cause the system to exhibit different physical behaviour.
Then, within this framework, we will begin investigating the challenges raised
in Sect. 3 and the verification approaches outlined in Sect. 4, before shifting our
experimentation to traces obtained from the real SWaT system. We will investi-
gate the use of ML systems other than SVM, and compare our supervised model
learning approach against proposed unsupervised ones for CPS (e.g. [19,28]).
Finally, we will investigate the application of learnt invariants to code attesta-
tion, by instigating cyber-attacks on the SWaT system and evaluating whether
or not our classifiers are effective in detecting them.

Acknowledgements. We thank Pingfan Kong for assisting us with the SWaT simu-
lator, and the anonymous referees for their helpful comments and criticisms. This work
was supported by NRF Award No. NRF2014NCR-NCR001-40.

References

1. Secure Water Treatment (SWaT). http://itrust.sutd.edu.sg/research/testbeds/
secure-water-treatment-swat/. Accessed Sep 2016

2. Supplementary material. http://sav.sutd.edu.sg/?page id=3258
3. Adepu, S., Mathur, A.: Distributed detection of single-stage multipoint cyber

attacks in a water treatment plant. In: Proceedings of ACM Asia Conference
on Computer and Communications Security (AsiaCCS 2016), pp. 449–460. ACM
(2016)



162 Y. Chen et al.

4. Adepu, S., Mathur, A.: Using process invariants to detect cyber attacks on a water
treatment system. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) Proceedings of
International Conference on ICT Systems Security and Privacy Protection (SEC
2016). IFIP AICT, vol. 471, pp. 91–104. Springer, New York (2016)

5. Alves, T., Felton, D.: TrustZone: integrated hardware and software security. ARM
white paper (2004)

6. Anati, I., Gueron, S., Johnson, S.P., Scarlata, V.R.: Innovative technology for CPU
based attestation and sealing. Intel white paper (2013)

7. Cárdenas, A.A., Amin, S., Sastry, S.: Research challenges for the security of control
systems. In: Proceedings of USENIX Workshop on Hot Topics in Security (HotSec
2008). USENIX Association (2008)

8. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: Proceedings of ACM Confer-
ence on Computer and Communications Security (CCS 2009), pp. 400–409. ACM
(2009)

9. Choudhari, A., Ramaprasad, H., Paul, T., Kimball, J.W., Zawodniok, M.J.,
McMillin, B.M., Chellappan, S.: Stability of a cyber-physical smart grid system
using cooperating invariants. In: Proceedings of IEEE Computer Software and
Applications Conference (COMPSAC 2013), pp. 760–769. IEEE (2013)

10. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24372-1 1

11. Frehse, G., Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 30

12. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
208–214. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 14

13. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 34

14. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

15. Kang, E., Adepu, S., Jackson, D., Mathur, A.P.: Model-based security analysis of
a water treatment system. In: Proceedings of International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS 2016), pp. 22–28. ACM
(2016)

16. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: a survey. IEEE Syst. J. 9(2), 350–365 (2015)

17. Kong, P., Li, Y., Chen, X., Sun, J., Sun, M., Wang, J.: Towards concolic testing
for hybrid systems. In: Fitzgerald, J., et al. (eds.) FM 2016. LNCS-FM, vol. 9995,
pp. 460–478. Springer, Heidelberg (2016)

18. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2008), pp. 363–369. IEEE (2008)

19. Maier, A.: Online passive learning of timed automata for cyber-physical production
systems. In: Proceedings of IEEE International Conference on Industrial Informat-
ics (INDIN 2014), pp. 60–66. IEEE (2014)



Towards Learning and Verifying Invariants of Cyber-Physical Systems 163

20. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified
cyber-physical system models. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 199–214. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11164-3 17

21. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental
determination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 5(2), 99–118 (1996)

22. Paul, T., Kimball, J.W., Zawodniok, M.J., Roth, T.P., McMillin, B.M., Chellappan,
S.: Unified invariants for cyber-physical switched system stability. IEEE Trans.
Smart Grid 5(1), 112–120 (2014)

23. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71070-7 15

24. Quesel, J., Mitsch, S., Loos, S.M., Arechiga, N., Platzer, A.: How to model and
prove hybrid systems with KeYmaera: a tutorial on safety. Int. J. Softw. Tools
Technol. Transf. 18(1), 67–91 (2016)

25. Roth, T., McMillin, B.: Physical attestation of cyber processes in the smart grid.
In: Luiijf, E., Hartel, P. (eds.) CRITIS 2013. LNCS, vol. 8328, pp. 96–107. Springer,
Heidelberg (2013). doi:10.1007/978-3-319-03964-0 9

26. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.K.: SWATT: software-based
ATTestation for embedded devices. In: Proceedings of IEEE Symposium on Secu-
rity and Privacy (S&P 2004), p. 272. IEEE (2004)

27. Valente, J., Barreto, C., Cárdenas, A.A.: Cyber-physical systems attestation. In:
Proceedings of IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS 2014), pp. 354–357. IEEE (2014)

28. Vodencarevic, A., Kleine Büning, H., Niggemann, O., Maier, A.: Identifying behav-
ior models for process plants. In: Proceedings of IEEE Conference on Emerging
Technologies & Factory Automation (ETFA 2011), pp. 1–8. IEEE (2011)

29. Wang, J., Sun, J., Yuan, Q., Pang, J.: Should we learn probabilistic models for
model checking? a new approach and an empirical study. CoRR abs/1605.08278
(2016). http://arxiv.org/abs/1605.08278

30. Zheng, X., Julien, C., Kim, M., Khurshid, S.: Perceptions on the state of the art in
verification and validation in cyber-physical systems. IEEE Syst. J. PP(99), 1–14
(2015)


	Towards learning and verifying invariants of cyber-physical systems by code mutation
	Citation

	tmp.1582774032.pdf.DSU6C

