Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

11-2019

Multi-hop knowledge base question answering with an iterative
sequence matching model

Yunshi LAN
Singapore Management University, yslan.2015@phdis.smu.edu.sg

Shuohang WANG
Singapore Management University, shwang.2014@phdis.smu.edu.sg

Jing JIANG
Singapore Management University, jingjiang@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Computer Sciences Commons

Citation

LAN, Yunshi; WANG, Shuohang; and JIANG, Jing. Multi-hop knowledge base question answering with an
iterative sequence matching model. (2019). Proceedings of the IEEE International Conference on Data
Mining.

Available at: https://ink.library.smu.edu.sg/sis_research/4936

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4936&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4936&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Multi-hop Knowledge Base Question Answering
with an Iterative Sequence Matching Model

Yunshi Lan
School of Information System
Singapore Management University
Singapore, Singapore
yslan.2015 @phdis.smu.edu.sg

Abstract—Knowledge Base Question Answering (KBQA) has
attracted much attention and recently there has been more
interest in multi-hop KBQA. In this paper, we propose a novel
iterative sequence matching model to address several limitations
of previous methods for multi-hop KBQA. Our method iteratively
grows the candidate relation paths that may lead to answer
entities. The method prunes away less relevant branches and
incrementally assigns matching scores to the paths. Empirical
results demonstrate that our method can significantly outperform
existing methods on three different benchmark datasets.

Index Terms—Knowledge base question answering, Sequence
matching model, Multi-hop question answering

I. INTRODUCTION

Answering questions in natural language using information
stored in a structured knowledge base such as Freebase [1],
YAGO [2], DBpedia [3] has been attracting much attention
in recent years. The task is often known as KBQA. Here
a KB (knowledge base) is usually represented as a graph
where nodes are entities and edges are relations. Figure 1
shows an example of a question and part of a knowledge
base from which the answer to the question can be found.
KBQA systems can be potentially used in many domains and
useful for building virtual assistants such as Google Duplex
and Amazon Alexa.

Previous work on KBQA largely focused on simple ques-
tions which can be answered from a single relation connecting
two entities in the KB [4, 5, 6, 7]. For example, the question
“who is Sylvia Brett’s other half” can be answered solely
from the triplet (sylvia brett, spouse, charles vyner brooke) in
the KB. However, questions in real applications can be more
complex and require multiple hops of relations to answer.
The question shown in Figure 1, for example, requires a
relation path of 3 hops in the KB, i.e., (spouse — parent —
place of birth), in order to reach a correct answer. Clearly
such questions are much harder to handle, because the correct
answers are multiple hops away in the KB from the entity
appearing in the question, leading to a much larger search
space.

We refer to this kind of KBQA problem where the answer
entities are multiple hops away in the KB from the entities in
the questions the multi-hop KBQA problem. Recently, there
have been a few attempts to tackle the multi-hop KBQA

Shuohang Wang
School of Information System
Singapore Management University
Singapore, Singapore
shwang.2014 @phdis.smu.edu.sg

Jing Jiang
School of Information System
Singapore Management University
Singapore, Singapore
jingjiang @phdis.smu.edu.sg

Question: Where is Sylvia Brett's other half's parent's birthplace?

- profession N
| empress jito |—>| writer |

profession

sylvia brett

spouse

| united kingdom |

nationaility

| burnham-on-sea |

| charles vyner brooke | female

place of
birth /parent yender
| charles anthoni johnson brooke | | mutnedjmet |

Fig. 1: An example question and a subset of a KB that contains
the answer to the question. The topic entity from the question
is “sylvia brett”. The shaded boxes show the path of entities
and relations that leads to the correct answer.

problem, together with a few benchmark datasets released. For
example, Zhang et al. (2017) proposed a variational reasoning
method that recursively traverses the entities in a KB to predict
their probabilities as correct answers. Zhou et al. (2018)
proposed an interpretable reasoning network for multi-hop
KBQA.

Although these studies proposed novel ideas to address
multi-hop KBQA and showed promising results, they have a
number of limitations. In this paper, we propose an iterative
sequence matching model to address these limitations and
empirically show that our method can outperform the previous
methods. First, the two existing studies [8, 9] consider a
large number of candidate answers or candidate relation paths
(albeit in a probabilistic way). This not only makes the
methods less efficient but also makes it harder to rank the
candidates, because the model has to learn to separate the
correct answers from many competing wrong answers. In
contrast, we propose to iteratively grow the candidate relation
paths that will eventually lead to the candidate answers, and
at each iteration we prune away branches that are unlikely to
lead to a correct answer. This allows our model to focus on
differentiating the correct answers from only those competing
candidates that are the most confusing. Our experiments show
that indeed this iterative pruning approach works better than

a baseline that considers all candidates.

Second, when it comes to matching a question with a rela-
tion path that leads to a candidate answer, Zhang et al. (2017)
and Zhou et al. (2018) encoded both the question and the
candidate answer as a single embedding vector, and then
the two vectors’ dot product is computed to measure their
similarity. Several previous studies have shown that this kind
of sequence matching is not as effective as a match-aggregate
sequence matching framework [10, 11, 12]. In our method,
we adopt a match-aggregate framework to match the question
with a candidate answer’s sequence representation. In addition,
because we iteratively grow the relation paths leading to
candidate answers, we propose a novel incremental sequence
matching model to efficiently compute the sequence matching
scores without having to revisit the earlier relations in a rela-
tion path. Our experiments show that indeed this incremental
sequence matching mechanism works better than standard
sequence matching.

Third, the two previous studies made some strong assump-
tions about the problem setup. Zhang et al. (2017) assumed
that the number of hops needed to answer a question is
known in advance, which seriously limits the applicability
of the method. In contrast, we propose a mechanism to
automatically determine the number of hops needed. Zhou
et al. (2018) proposed two versions of their method, and for
the better performing version, it is assumed that the sequences
of relations leading to the correct answers are known during
training time. In contrast, our method does not require such
information for training and yet we can outperform their
method.

Specifically, our method consists of three modules: iterative
path growth, incremental sequence matching, and termination
check. The three modules work together to iteratively consider
relation paths of 1 hop, 2 hops, etc. and iteratively match
these paths with the question in order to rank these paths.
The method automatically detects when to terminate the
iterations. We conduct experiments on three recently released
multi-hop KBQA datasets and find that our method performs
significantly better than existing methods. We also conduct
ablation studies to analyze the contributions of the different
components of our method, and we find that both the idea
of iteratively pruning the relation paths and the idea of
incrementally computing the matching scores are important
for our performance gain.

II. RELATED WORK

KBQA is a task that has been well studied. There are
generally two lines of work on KBQA: semantic parsing-
based and embedding-based. Semantic parsing-based meth-
ods [13, 14, 15, 16, 17, 18] first map questions to logical
forms, such as A-DCS [19, 20], excutable SPARQL or SQL
queries [15, 21, 22], graph-based queries [4, 23]. Then a
programmer is designed to execute the queries within the KB.
Once the question has been transformed into the logic form,
the answer could be immediently retrieved from the KB. While
they are theoretically sound, these methods require manually

annotated logical forms for training and are domain-specific.
It could be easily limited within small datasets. Recently
embedding-based methods have attracted much attention. This
method first identifies a topic entity. The entities which are 1
hop or 2 hops away from the topic entity are retrieved from
the KB as the candidate answers. Then the challenge becomes
how to rank these candidate answers. A number of methods
are proposed to solve this problem. Bordes et al. (2014)
took the subgraphs that surround the candidate answers as
features to rank. Dong and Lapata (2016) proposed Multi-
Column Convolutional Neural Networks, which convolution-
ally matches the question with different parts of the subgraph.
Yu et al. (2017) developed a HR-BiLSTM model to match
the question with relation paths of candidate answers at word
level and token level. The more recent work [26] defined a
special slot which contains the information of grammatical
structure of the question and took advantage of it to improve
the ranking accuracy. Other methods could be found from
these papers [5, 25, 27, 28].

Most of early work focuses on single-relation questions,
but in practice, we may encounter more complex questions.
The multi-hop questions are one kind of complex questions.
Recently, some reading comprehension datasets involve the
multi-hop questions which could be answered using multiple
ducuments [29, 30]. Several advanced methods [31, 32] have
been proposed to solve the multi-hop reading comprehension
task. The multi-hop questions are also worth to be explored in
KBQA task. So far, there has been only limited work on multi-
hop KBQA. Weston et al. (2015) applied Memory Network
to KBQA, where relation triplets are saved in memory and
queries are updated at every hop by interacting with the mem-
ory. The Key-Value Memory Network method [34] improves
Memory Network by dividing the memory into key and value
parts. Zhang et al. (2017) proposed a variational reasoning
network that integrates entity linking and relation prediction
together and performs reasoning by traversing within the
KB. Zhou et al. (2018) proposed an interpretable reasoning
network, which performs relation matching hop-by-hop and
has shown good performance on some datasets. However, as
we discussed earlier, these methods have several limitations.
We propose a new method in this paper to address these
limitations. A recently published work [35] proposed a gen-
eral framework to address the multi-hop question answering
task, which achieved outstanding results for evaluation. The
difference between their method and ours is that they re-visit
the ranked paths during the expansion of the relation paths
while we propose a more complex mechanism to remember
the visited paths.

III. OUR METHOD

A. Problem Definition

We assume that a knowledge base (or knowledge graph)
is defined over a set of entities £ and a set of relations R.
The knowledge base is a set of triplets, which we use KB =
{(e,r,€")} to represent, where e,e’ € £ and r € R. We also

assume that each entity e € £ or relation € R has a sequence
of words as its textual representation.

A question ¢ is a sequence of words. We assume that entity
detection and linking has been done by an entity linking tool
and a topic entity eg € £ has been identified inside g. Our
goal is to find an entity a € £ that answers the question, and
generally speaking, we expect that this answer a is linked to e
in the knowledge graph through one or more hops of relations,
and these relations between ey and a correspond to what is
expressed in g. For example, given the question in Figure 1, the
topic entity is sylvia brett. The sequence of relations between
sylvia brett and the correct answer entity burnham-on-sea
is (spouse, parent, place of birth), and we can see that these
relations collectively correspond to what is expressed in the
question.

For training, we assume that we have a set of (g, a) pairs
but we do not know which path of relations in the KB leads
to the answer a from the topic entity eg in q.

B. Method Overview

The general idea behind our method is to find answer
entities that are linked to the topic entity through one or
more hops of relations in the knowledge graph. For single-hop
KBQA, previous methods typically exhaustively enumerate all
the relation paths originating from the topic entity and match
them with the question in order to find the best answer. For
multi-hop KBQA, exhaustively enumerating all relation paths
would lead to too many candidates, which would not only
affect efficiency but also making the candidate ranking task
harder because of the many competing wrong candidates. Our
method iteratively grows the candidate paths and prunes away
those paths that are unlikely to lead to the correct answers at
each iteration. We also design a novel incremental sequence
matching method to score the candidate paths as well as to
help check when to terminate the iterations.

Our method consists of three modules: (1) an iterative path
growth module, (2) an incremental sequence matching module
and (3) a termination check module.

C. Iterative Path Growth

The iterative path growth module grows the candidate paths
up to 7' hops, one hop at each iteration. At the end of each
iteration, it keeps only the top-K candidate paths that best
match the question.

Let us first define some terms and notation to facilitate the
discussion.

Candidate path: Formally, given a question ¢, we first detect
its topic entity eg. A candidate path is the sequence of entities
and relations along a path that starts from e in the knowledge
graph. Let us use p = (eg, r1,€1,72, €2, ..., ', €) tO represent
a candidate path with ¢ hops of relations. Here, for all 1 <
[<t, (6171,7“1,61) € KB.

Candidate path set: We define the candidate path set after
the t-th iteration to be the set of the top-K candidate paths
we keep at the end of the ¢-th iteration of our method. We

Algorithm 1 Iterative Path Growth

1: Input: KB, question g, topic entity e, number of hops T’
2: Output: P(7)

3. Initialize: P(©) < {(eg)}

4: fort=1,2,....,T do

5 PO

6 for each p € P(—1) do

7 et—1 < tail(p)

8 for each (e,r,¢’) € KB such that e = ¢;_1 do

9: p—p®(re) > sequence concatenation
10: PO« PO U {p'}

11: score and rank elements in P(*)

12: P® « top-K elements in P

use P®) to represent this candidate path set. Note that each
|P®)| = K and each p € P*) has ¢ hops of relations.

Tail entity: The tail entity of a candidate path, denoted as
tail(p), is the last entity in the candidate path p.

Our iterative path growth module works as follows. In
the beginning, starting from ey, we identify all the relations
linked to eg in the knowledge graph. This gives us the initial
candidate path set P(1). Subsequently, at the ¢-th iteration, for
each p € P(~1), we identify all the relations linked to tail(p)
in the knowledge graph and use them to grow p by one hop
of relation. This gives us multiple new candidate paths, each
with ¢ hops of relations. Call this set of candidate paths P(*).
We then use the sequence matching module (presented in the
next section) to score and rank the paths in P®, and keep the
top-K paths to form P*).

For example, given the topic entity sylvia brett in Fig-
ure 1, we first construct P(1) that contains the following
candidate paths: (sylvia brett, profession, writer), (sylvia brett,
nationality, united kingdom), (sylvia brett, gender, female),
(sylvia brett, spouse, charles vyner brooke). Next, during the
second iteration, we grow each of these candidate paths to
construction P(). Given the subset of the KB shown in
Figure 1, P@ contains the following candidate paths: (sylvia
brett, profession, writer, profession™", empress jito)," (sylvia
brett, gender, female, genderfl, tey), (sylvia brett, gender,
female, gender_l, mutnedjmet), (sylvia brett, spouse, charles
vyner brooke, parent, charles anthoni johnson brooke). But
after pruning away the less relevant branches, P(2) may con-
tain only (sylvia brett, spouse, charles vyner brooke, parent,
charles anthoni johnson brooke).

The algorithm is formally defined in Algorithm 1.

D. Incremental Sequence Matching

The objective of the incremental sequence matching module
is to assign a score to each candidate path p such that we can
rank the paths in P(*). The score should reflect how well a
path p matches the question gq.

Since both the question and a candidate path are sequences,
normally we could employ a standard sequence matching

I'We use a single symbol “~1” to denote the reverse of a relation.

model such as the ones commonly used in natural language
inference [10], paraphrase detection [12] and machine com-
prehension [36]. However, because our candidate paths grow
iteratively, at the ¢-th iteration, when we need to match a
candidate path p € P with the question, the prefix of
p up to the (¢ — 1)-th relation has already been matched
with the question in previous iterations. Therefore, it makes
sense for us to only match the last relation of p with the
question and aggregate the matching score at this iteration
with the matching scores from previous iterations. Therefore,
our sequence matching mechanism is incremental.

We first further introduce some notation to facilitate our
discussion.

« To enable sequence matching, we represent question ¢ as

Q = (d1,99,-..,qm), Where g; is the embedding vector
of the i-th word in q.

« For a candidate path p = (e, 71, €1, ..,7¢, €t), We repre-
sent it as P() = (Wry 1, Wr,2, ..., Wr,), Where w,,
is the embedding vector of the j-th word in the textual
representation of 7;.> Note that here we only consider 7
and ignore the other relations in p because our matching
mechanism is incremental, i.e., at the current iteration,
we should focus on the matching between r; and g. Also
note that we ignore the entities ey, es, ... along the path
because we do not expect these entities to be mentioned in
the question. Our preliminary experiments also confirmed
that including these entities was not useful.

e For p € PO et p(t—1) denote the prefix of p
up to the (¢ — 1)-th relation. That is, if p =
(€0,T1,€1,. .., T¢—1,€4-1,T¢,€¢), then pi_qy is defined
as (€0,71,€1, -y Tt—1,€t-1)-

We now describe the incremental sequence matching mod-
ule. At the t-th iteration, let p be a candidate path from
P® (the set of candidate paths that need to be scored and
ranked), and let P® be the representation of p. We first use a
standard BiLSTM to process Q and obtain Q = (q;,qs, - - -).
Essentially q; represents the i-th word in the question to-
gether with its contextual information. We can similarly obtain
P = (W,,1.%,,.,...) using BILSTM.

Next, we compute two sets of attention weights, one nor-
malized across Q and the other normalized across P®, as
shown below:

ey = F(q)TF(Wr, ;) (D
o exp(e; ;))
M S elen) ?
P IC) 3)

Z?}=1 eXp(ei’,j),

where F'(-) is a single non-linear layer with ReLU as its
activation function.
Now to measure how well P®*) matches Q, for each word q;

. . . . —(t
in Q, we derive an attention-weighted sum of P() as follows:

2For P(l), we include the words in the textual representations of both eg
and rq.

pP®

Fig. 2: The incremental sequence matching model.

n
v = Qs i W
i - 2,] Tt "
Jj=1

Intuitively, we can compare g, with vl@ to measure how

well the ¢-th word in the question is matched in the current
iteration by relation 7,. However, recall that we are doing
incremental matching. q; may have been previously matched
with some other words in P(t—1)> and if so, it may not be so
critical to match q; with r; in the current iteration.

To capture this intuition, we borrow an idea from neural
machine translation [37, 38], where it is important not to
re-translate a word in the source sentence when sequentially
generating the target sentence. We define a scalar value ait to
remember how well q; has been matched in path p up to the
t-th iteration. Specifically, we set ago) = 0. We then define

%0

1
= af)JFZﬂm*
i=1

Note that f; ; is as defined above in Eqn. (3), based on
matching the question with 7; in the ¢-th iteration. Intuitively,
Z?Zl Bi,; represents how well q; has been matched by all the
words in 7, as compared with other words in Q.

Now with agt) clearly defined, let us define the following
matching vector:

agtfl)
qov? : ©))

@-vi") o @-v")
where © represents element-wise multiplication of two vec-
tors. Note that using vi ® ve and (vi — va) ® (vi — va)

m -

to represent how well vectors v; and vy match has been
commonly used in previous work [11, 12]. Here we add az(-t_l)
in the matching vector in order to take previous matching
results into consideration. Our preliminary experiments also
show that not including agt_l) here would markedly affect
the results.

Given the sequence (mgt),mgt),...,mg,t@)), we use an
LSTM to process the sequence followed by maxpooling to
derive a single vector m®:

m® = Max-Pool(LSTM(m" m{" . ..

-, mi))). (5)

We then use this vector to derive a matching score between
Q and P as follows:

,y(t) _ WTﬁ(t)_A'_b’ (6)

where the vector w and scalar b are parameters to be learned.

Note that although v(*) has implicitly encoded the matching
results of previous relations in p with the question through
al(.t_l) in Eqn. (4), it does not tell us whether each relation
in p is critical. When we score the entire path p, we would
want to promote those paths in which each segment is highly
relevant to the question. To do so, we define the final score for
p to be the product of v(*) with 4*~1) ~(t=2) and so on. Let
5(Y)(p) denote the complete matching score between candidate
path p and the question. s(*) (p) can be recursively defined as
follows: 5(°)(-) = 1. For p with ¢ relations,

sPp) = s Dpy_y))-y". (7)

The scoring function s(*)(-) is then used to rank the candidate
paths in P® in order to derive P,

Figure 2 illustrates how our incremental sequence matching
model works.

E. Termination Check

We now describe how our method determines when to
terminate the iterations. Intuitively, if a candidate path p has
matched the entire question ¢ well, then we can terminate the
iterations. Based on the matching method described above,
the vector m? encodes how well p matches ¢. To turn it into
a single value to facilitate our termination checking, we first
define the following score z(p) € [0,1] for each candidate
path p at the ¢-th iteration:

2Op) = o(vim® + o),

where the vector v and scalar c are parameters to be learned.
Then we take the maximum z among all the paths in). This
implicitly leverages the z(*)(p) of the best-matched candidate
path.

z® = max 2 (p).

peP®

During training we learn the parameters v and c for z.
During prediction time, we compare Z*) with a threshold 7
to determine when to stop the iterations.

F. Loss Function

We now describe the loss function we use during training.
The parameters of our model that need to be learned include
the following: the parameters of the various LSTMs we use,
the parameters of the function F'(-) used in Eqn. (1), the
parameters w and b in Eqn. (6) and v and c¢ in Eqn. (7).
We train these parameters in an end-to-end fashion.

For the loss function, we consider two factors. First, we
would like the candidate path that leads to the correct answer
entity or entities to be ranked higher than the other paths in
the candidate path set. Second, we want the value z® to be
close to 1 if we should terminate at the ¢-hop and close to 0
if we still need to continue to grow the paths.

Specifically, consider the candidate path set P(*). For each
p € PW, by comparing the tail entity (or tail entities if
the sequence of relations in p leads to more than one tail
entities) with the ground truth answer entity or entities, we
can calculate the F1 score of this path p. We then normalize
these scores using the following formula:

) _ Fl(p)
o) = Ppepm F1()

We can think of g(p) as the empirical probability for us to
choose p among all candidate paths in P,

On the other hand, we derive the probability for p from our
model:

exp (s (p))
Zp'epm eXP(S(t) (®)) 7
where s()(-) is as defined in Eqn. (7).
We use the KL-divergence between §(-) and g(-) as the first
part of our loss function:

g(p) =

L =

Z 9(p)In 9(p)

ol 9(p)

A second goal of our loss function is to help termination
check. Based on the ground truth answers, if at iteration ¢ one
of the candidate paths in P(*) can give a F1 score of 1, then
we consider ¢ to be the last iteration. We also cap the number
of iterations at a constant 7. So if ¢ reaches 1" before we see
any F1 score of 1, we also consider this to be the last iteration.
Let ¢ represent the ground truth number of iterations. We can
then define the second part of our loss function as follows:

i—1

- log(E(f)) + Z log(1 —z®)

t=1

Ly =

Our final loss funtion is

L = L;+ L,

IV. EXPERIMENTS
A. Data Sets

To evaluate the method we have proposed, we conduct
experiments using three recently released datasets designed
for multi-hop KBQA.

MetaQA PathQuestion WC2014

#Train 100k 5688 6416
#Dev 50k 722 758
#Test 10k 696 780
#Pattern 47 128 12

#Entities 40k 2256 1127
#Relations 18 26 12

#Triplets 134k 4050 3977
% 1-hop 25.3 0 80.5
% 2-hop 38.0 254 19.5
% 3-hop 36.7 75.6 0

TABLE I: Some statistics of the three datasets. The first section
shows the number of the questions in different splits and the
question patterns. The second section shows the number of the
entities, relations and triplets in the associated KB. The third
section shows the percentage of the different hop questions.

MetaQA (MoviE Text Audio QA): This dataset was intro-
duced by Zhang et al. (2017).% It contains more than 400K
questions in the movie domain which require either 1-hop, 2-
hop or 3-hop reasoning. While the original dataset separates
questions of different hops, we mix all questions together for
our evaluation. We take the vanilla text version of the dataset.
PathQuestion: This dataset was used in [9].* The questions
were created by first identifying the relation paths between
pairs of entities in a KB followed by generating natural
language questions based on these paths using templates. Some
further post-processing was done to vary the questions to make
them more real. We mix the 2-hop and 3-hop questions in
PathQuestions for our evaluation.

WC2014 (WorldCup2014): This dataset was created by Zhang
et al. (2016).°> It contains a mixture of 1-hop and 2-hop
questions related to 2014 World Cup.

Some statistics of the datasets are shown in Table I.

In all the original KBs, relation triplets are directional.
To simplify our path growth module, we add new edges
to the KBs by reversing the direction of each triplet
and adding the suffix INV to the relation description.
For example, from (sylvia brett, profession, writer), we create
(writer, profession INV, sylvia brett) and add it the the KB.

B. Experiment Setup

Although the three datasets already have topic entities
annotated, here for fair comparison we perform our own entity
linking based on simple string matching. Due to the simple
pattern of the question, we have achieved near-perfect entity

3https://github.com/yuyuz/MetaQA
“https://github.com/zmtkeke/IRN
Shttps://github.com/zmtkeke/IRN

linking accuracy on the three datasets. We do not provide more
details here because entity linking is not the focus of this paper.

It is worth noting that when we train on the PathQues-
tion dataset, since there are many 3-hop questions where
the answer entity is also directly connected to the topic
entity in the KB but the relation between them is
not relevant to the question, our method would mis-
takenly treat these I1-hop connections as correct candi-
date paths. For example, “The place of birth of parent
of Henri Victor Regnault’s offspring”, the golden relation

« . hild . ent
path “Henri Victor Regnault === Henri Regnault e,

place of birth
E—

Henri Victor Regnault Aachen” and fake golden

relation path “Henri Victor Regnault place SV A gehen”
both give us correct answers, if we follow the same criteria
to supervise our model, the fake relation path cheat the model
to obtain an early stop signal. Such scenarios happen a lot in
PathQuestion dataset. To avoid this problem, for PathQuestion,
we also make use of the ground truth hop numbers to supervise
our model. Note that even with this setting on PathQuestion,
we are not using any more information for training than previ-
ous methods by Zhang et al. (2018) and by Zhou et al. (2018),

We use the Adagrad optimizer [40] with an initial learning
rate of 0.01. We use 300 as the dimension of all word embed-
ding vectors. Word embeddings are initialized via GloVe [41].
All hyper-parameters are tuned on the development data. All
hidden dimensions in the model are set to 200 after tuning
it among {100, 150, 200, 250}. The dropout ratio is set to 0
after tuning it among {0,0.1,0.2,0.3,0.4}. For our iterative
sequence matching method, the threshold 7 is set to 0.5 after
tuning it among {0.3,0.5,0.8}. Finally, we set 7 = 3 and
K =3.

We use accuracy of the top-1 predicted answer entity as
our evaluation metric, where a predicted answer is considered
correct if it is one of the ground truth answers. This metric is
the same as the one used by Zhou et al. (2018) and essentially
the same as % hits@1 used by Zhang et al. (2017). Note that
in the case when our top-ranked candidate path in the last
iteration leads to more than one answer entities, we randomly
pick one of these answer entity as the top-1 predicted answer
entity.

C. Main Results

We first show the comparison of the following methods on
the three datasets:
VRN: This is the Variational Reasoning Network method
proposed by Zhang et al. (2017). Since their code is not
publicly available, we take their reported performance on
MetaQA. Note however that their method assumes that the
correct number of hops to answer a question is known, which
we do not assume we have except for PathQuestion.
IRN: This is the Interpretable Reasoning Network proposed
by Zhou et al. (2018). We re-implemented this method that
uses strong supervision, i.e., using the ground truth relation
path for supervision.
IRN-Cons: When re-implementing the IRN method, we re-
alized that this method does not restrict the relation paths to

MetaQA PathQuestion WC2014
VRN 59.6/- -/- -/-
IRN 17.0/8.8 86.9/80.2 90.7/68.4
IRN-Cons 21.8/9.2 89.8/82.9 92.6/70.5
MemNN 12.0/6.4 87.1/55.6 90.7/46.6
KVMemNN 16.6/6.5 88.0/56.3 90.5/47.1
Ours 98.6/98.1* 96.7/96.0* 99.9/99.9*

TABLE II: %Hits@1/F1 scores of various methods on the three
datasets. Note that for VRN, we took the reported performance
in [8], and we do not have its performance on the other
datasets. * indicates that the result is statistically significantly
better than the best baseline for that dataset at 0.05 significance
value based on McNemar test.

only those that are connected to the topic entities. We therefore
implemented an improved version of IRN by imposing such
a constraint, which we call IRN-Cons.

MemNN: This is the Memory Network method proposed by
Weston et al. (2015) for KBQA. Following work [6], the
memory contains all relevant triplets of topic entities. In our
implementation, we include triplets up to 3 hops away from
the topic entities in the memory.

KVMemNN: This is the Key-Value Memory Network
method [34]. It improves MemNN by splitting memory into
two parts: key and value. The key stores the subject entity and
relation, and the value stores the object entity. When we train
this model and MemNN, we set hop number as 3.

Ouwurs: This is our overall method that iteratively searches the
space of candidate paths while pruning away branches with
low scores. It also uses our incremental sequence matching to
score the candidate paths and our termination check mecha-
nism to determine when to stop the iterations.

Table II shows the comparison between these methods
on the three datasets. From the results, we can observe the
following: (1) First of all, our method clearly outperforms
all the baseline methods on all three datasets consistently.
This demonstrates the effectiveness of our method. (2) Our
method in general achieves very high accuracy values on all
datasets. This is probably because these datasets were to a
large extent generated from templates. Using a neural network
model with enough complexity and sufficient training data,
it is possible for the model to capture the patterns of these
templates. (3) We can see that IRN, IRN-Cons, MemNN and
KVMemNN perform poorly on MetaQA although they can
perform well on PathQuestion and WC2014. We think there
are a few reasons for this. First, the MetaQA dataset has a
much larger KB (see Table I) and thus a larger search space.
This shows that these methods cannot easily scale with large
KB. Second, both the PathQuestion and WC2014 datasets have
a large bias to questions with certain hop number (see Table I)
while we sample questions of MetaQA evenly. This shows
instead of memorizing the major hop number, our method
could detect the hop number accurately. Figure 3a verifies
that our termination check mechanism performs well on these
datasets even with a shrunken searching space.

1-hop 2-hop 3-hop
VRN 82.0 75.6 38.3
IRN 9.0 8.3 312
IRN-Cons 14.6 10.7 38.2
MemNN 7.0 11.3 16.0
KVMemNN 6.2 12.6 27.9
Ours 96.3 99.1 99.6

TABLE III: %Hits@1 performance on different questions in
MetaQA.

MetaQA PathQuestion WC2014
ES-Siamese 95.7/93.7 89.2/88.8 94.9/90.1
ES-MatchAgg 97.0/96.3 91.5/90.9 96.3/92.1
IS-Prune 97.5/96.5* 92.7/91.8 99.7/99.7*
Ours 98.6/98.1* 96.7/96.0* 99.9/99.9*

TABLE IV: Ablation experiment results. * indicates that the
result is statistically significantly better than ES-MatchAgg at
0.05 significance value based on McNemar test.

Next, we show the %hitsQ1 of these different methods on
MetaQA when we group questions by the number of hops
needed. The results are shown in Table III. We can see that for
VRN, the performance is high on 1-hop questions and gradu-
ally drops for 2-hop and 3-hop questions. This is reasonable as
longer questions are generally harder to answer. For IRN, IRN-
Cons, MemNN and KVMemNN, their performance increases
as the number of hops increases. This is because these methods
cannot automatically detect the correct number of hops needed,
and in our implementation we force them to always take
T = 3 hops. Therefore, they end up performing better for
3-hop questions. In contrast, our method automatically detects
when to stop the iterations and thus performs consistently well
for 1-hop, 2-hop and 3-hop questions.

D. Ablation Studies

Next, we conduct some ablation studies to test whether
each component of our method is necessary. Specifically, we
compare with the following variants of our method:
ES-Siamese: This is a basic method that exhaustively searches
all candidate paths up to 7" hops for the best answer entity,
i.e., there is no pruning as in our method. When ranking
the different paths, a traditional Siamese architecture is used
where both the question and the candidate path are each
separately encoded into a single vector before the two vectors
are matched.

ES-MatchAgg: This method also performs the exhaustive
search as ES-Siamese but uses a match-aggregate framework
for sequence matching.

Is-Prune: This method uses our iterative path growth mech-
anism together with the path pruning mechanism. However,
it does not use the incremental sequence matching model.
Instead, it uses a standard match-aggregate matching method
as in ES-MatchAgg. The purpose of this baseline is to measure
the effect of pruning.

Table IV shows the ablation experiment results. We can
observe the following. (1) ES-MatchAgg is better than ES-

100

—e— threshold = 0.2
—e— threshold = 0.5
—e— threshold = 0.8

=
=)

Em Ours
90+ mm RN

o
©

804

o
o

704

%hits@1

60+

hop accuracy

N
IS

50

o
N

404

5
=)

1.0/ —¢ beamsize =1
—e— beam size =3
| —¢— beamsize =5

%hits@1
o o
> »

o
~

o
N

o
o

o

MetaQA PathQuestion WC2014 1000

(a)

2000
epoch

(b)

3000 4000 0 1000 2000

epoch

(©

3000 4000

Fig. 3: (a) Hop number accuracy on three datasets of IRN and Ours methods. (b) Epoch and %hits@1 on test set of MetaQA
dataset with thresholds 7 = 0.2, 7 = 0.5, 7 = 0.8 respectively. (c) Epoch and %hits@1 on test set of MetaQA dataset with

beam sizes K =1, K = 3, K = b respectively.

Siamese, which shows that match-aggregate sequence match-
ing is useful for our problem. (2) IS-Prune is better than
ES-MatchAgg. It is worth noting that pruning is not only to
reduce the search space but also to improve the model by
restricting the negative candidate paths within the ones that
are very similar to the correct candidate paths and the most
confusing incorrect answers. Thus our iterative and pruning-
based path growth mechanism has the benefit of training a
more accurate matching function. (3) Our overall method is
better than IS-Prune, showing that the incremental sequence
matching mechanism is also effective. It’s worth noting that
even ES-Siamese baseline could outperform the IRN, IRN-
Cons, MemNN and KVMemNN a lot. We suspect the main
reason is that above comparable methods simply represent
the question as the unordered bag-of-words and represent the
relation or entity by a single embedding without any pre-
training. Such methods are not strong enough to select the
best-matched relation paths from a large scale of candidates
while ES-Siamese baseline can do it using the word-level
embedding and expressive encoding method.

E. Effect of Threshold and Beam Size

Threshold 7 and beam size K are two important hyper-
parameters in our method. To see how they influence the
results, we draw the line plot figures. These figures display
the changes of %hits@1 with the increase of training epochs
regarding different 7 or K. Figure 3b displays the effect of
the threshold. In Eqn. (6), 4(*) is a indicator which measures
how much information of question is already matched by
candidate sequences at the t-th iteration, when () is larger
than a threshold 7, we terminate the iteration and extract the
answer. So when 7 = 0.2, it’s easier to stop the iteration and
its performance is relatively good at the beginning, but it falls
behind with the increase of training epochs. when 7 = 0.8,
it’s harder to stop the iteration at the start of training. Among
these three values of threshold, 0.5 achieves best %hits@ 1
score at last.

In Figure 3c, we show the effect of the beam size K. As
we can see, when K = 3, the performance increases with

relatively fast speed and it achieves the best accuracy at last.
However, when K = 1, the accuracy improves relatively
slowly and it’s more likely to trap into a local optimum. But
increasing K means that we need to sacrifice efficiency, and
larger K doesn’t always provide better accuracy (See K = 5).
So this is a trade off for us to choose a proper K. In our
experiment, we select K as 3.

F. Visualization

We visualize parts of the incremental matching model to
understand its working mechanism.

In Eqn. (5), the matched sequence is processed by a LSTM.
After that, the most important words are maintained and
the other words are filtered by the maxpooling function.
In Figure 4, we first draw the heatmaps of the output of
LSTM. For the position whose value is the maximum along
a dimension, we keep the value. Otherwise, we assign 0 to
it. If we squeeze the heatmap vertically, we will obtain the
exact vectors ﬁ(l), m® and m®. So we denote them as
expanded versions of m("), m(® and m®). Based on such
figures, we could tell which sub-question the model is handling
at each iteration. Figure 4a displays that at the 1st iteration,
the maximum values are mostly distributed among the phrase
“elena of greece and denmark’s mom”. At the 2nd iteration,
the maximum values are distributed among “’s heir” and the
3rd iteration has maximum values around “place of birth”.
This indicates that for a multi-hop question, our model tries
to split them to sub-questions and solve sub-questions in the
right order.

With similar intuition, we draw the Figure 5 to show the
value of az(t) associated with each of its words for two hops
of matching. The words in the dark color are the ones that
have been matched up to that iteration. We can see that at
the 1st iteration, the phrase “catherine dolgorukov’s spouse”
has been well matched. At the 2nd iteration, the phrase
“father of catherine dolorukov’s spouse” has been matched.
This accumulative value indeed records how much information
of the question we have matched or answered, which could
provide clue to decide the termination time.

heir [| [heir
'S I sl
mom 1 [0 mom |
- T T T R [| 's 1|
denmark{ | ‘ | ||| | || » denmark ||| | |
2eed I " Tt 0 Y oreme
greece | |l ||| [||| R ||| greece -
of | | of
elena [|[I[[1I1 11 | [Tl elena -
of | | of{ |
birth | | | birth |
of 4 of 4
place | place
the 4 th_ef
S PN e T NIV 3
what - what -

heir-

| 's 1 |

mom - | |
.

s
denmark 4
| and A
greece
of 4
elena -
of 4
birth -
of 4
place+
the 1 | |

is
what -

(a)

(b)

©

Fig. 4: Visualization of expanded versions of (a) m®, (b) m®, (c) m® respectively for example question “What is the
place of birth of Elena of Greece and Denmark’s mom’s heir?”. The darker color indicates the larger value.

Hop 1 | What is - nationality of father of_ _._ |
¥
Hop 2 | What is [l nationality of father of (SElNCHNGS DOISORIKON 8 SHouse |

Fig. 5: Visualization of a(") and a(® for an example sentence
after matching with relation catherine dolgorukov spouse and
parent respectively.

G. Error Analysis

Even though our termination check mechanism works well
in most cases, we noticed that there are a few wrong
stops, which may come from redundant relation matching of
the question. For example, in the PathQuestion dataset, the
“husband” in the question “what religious belief does Rani
Mangammal’s husband have” has been matched twice. Other
errors mainly come from incorrect relation matching. Around
74% of the errors with such mis-matching happens at the first
hop for 1-hop, 2-hop or 3-hop questions, which might be due
to the fact that the first hop relation requires more complex
dependency analysis of the question.

V. CONCLUSIONS

In this paper, we proposed a novel iterative sequence
matching model for multi-hop KBQA. Our method iteratively
grows candidate relation paths, prunes away unrelated paths
and also automatically detects the end of iterations, which
could make the candidate relation path ranking procedure
more effective and accurate. Our method achieved state-of-
the-art performance on three multi-hop KBQA benchmarks.
We further do some analysis to demonstrate the working
mechanism of our method 6.

VI. ACKNOWLEDGMENT

This research is supported by the National Research Foun-
dation, Prime Ministers Office, Singapore under its Interna-
tional Research Centres in Singapore Funding Initiative.

SWe release our code at https://github.com/lanyunshi/Multi-hopQA.

REFERENCES

[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Tay-
lor, “Freebase: A collaboratively created graph database
for structuring human knowledge,” in Proceedings of the
SIGMOD, 2008, pp. 1247-1250.

F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago:
a core of semantic knowledge,” in Proceedings of the
WWW, 2007, pp. 697-706.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyga-
niak, and Z. Ives, “Dbpedia: a nucleus for a web of open
data,” in Proceedings of the ISWC, 2007, pp. 722-735.
W.-t. Yih, X. He, and C. Meek, “Semantic parsing for
single-relation question answering,” in Proceedings of the
ACL, 2014, pp. 643-648.

A. Bordes, S. Chopra, and J. Weston, “Question answer-
ing with subgraph embeddings,” in Proceedings of the
EMNLP, 2014, pp. 615-620.

A. Bordes, N. Usunier, S. Chopra, and J. Weston, “Large-
scale simple question answering with memory networks,”
arXiv:1506.02075, 2015.

[7]1 C. Ran, W. Shen, J. Wang, and X. Zhu, “Domain-specific
knowledge base enrichment using wikipedia tables,” in
Proceedings of the ICDM, 2015, pp. 349-358.

Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and
L. Song, “Variational reasoning for question answering
with knowledge graph,” in Proceedings of the AAAI,
2017, pp. 6069—6076.

M. Zhou, M. Huang, and X. Zhu, “An interpretable rea-
soning network for multi-relation question answering,”
in Proceedings of the COLING, 2018, pp. 2010-2022.
A. P. Parikh, O. Tiackstrom, D. Das, and J. Uszkoreit,
“A decomposable attention model for natural language
inference,” in Proceedings of the EMNLP, 2016, pp.
2249-2255.

S. Wang and J. Jiang, “A compare-aggregate model for
matching text sequences,” in Proceedings of the ICLR,
2017.

Z. Wang, H. Wael, and F. Radu, “Bilateral multi-
perspective matching for natural language sentences,” in

(2]

(3]

(4]

(5]

(6]

(8]

Proceeding of the 1JCAI, 2017, pp. 4144-4150.

[13] L. Zettlemoyer and M. Collins, “Learning context-
dependent mappings from sentences to logic form,” in
Proceedings of the ACL, 2009, pp. 976-984.

[14] T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer,
“Scaling semantic parsers with on-th-fly ontology match-
ing,” in Proceedings of the EMNLP, 2013, pp. 1545-
1556.

[15] F. Li and H. V. Jagadish, “Nalir: An interactive natural

language interface for querying relational databases,” in

Proceedings of the SIGMOD, 2014, pp. 709-712.

Y. Su, H. Sun, B. Sadler, M. Srivatsa, I. Giir, Z. Yan, and

X. Yan, “On generating characteristic-rich question sets

for qa evaluation,” in Proceedings of the EMNLP, 2016,

pp- 562-572.

J. Cheng, S. Reddy, V. Saraswat, and L. Mirella, “Learn-

ing an executable neural semantic parser,” vol. 45, no. 1,

pp- 59-94, 2017.

C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao,

“Neural symbolic machines: learning semantic parsers on

freebase with weak supervision,” in Proceedings of the

ACL, 2017, pp. 23-33.

J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic

parsing on Freebase from question-answer pairs,” in

Proceedings of the EMNLP, 2013, pp. 1533-1544.

[20] J. Berant and P. Liang, “Semantic parsing via paraphras-
ing,” in Proceedings of the ACL, 2014, pp. 1415-1425.

[21] C. Unger, L. Buhmann, J. Lehmann, A.-C. N. Ngomo,

D. Gerber, and P. Cimiano, “Template-based question

answering over rdf data,” in Proceedings of the WWW,

2012, pp. 639-648.

H. Bast and E. Haussmann, “More accurate question

answering on freebase,” in Proceedings of the CIKM,

2015, pp. 1431-1440.

L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and

D. Zhao, “Natural language question answering over rdf:

A graph data driven approach,” in Proceedings of the

SIGMOD, 2014, pp. 313-324.

L. Dong and M. Lapata, “Language to logical form with

neural attention,” in Proceedings of the ACL, 2016, pp.

33-43.

M. Yu, W. Yin, K. S. Hasan, C. d. Santos, B. Xiang,

and B. Zhou, “Improved neural relation detection for

knowledge base question answering,” in Proceedings of

the ACL, 2017, pp. 571-581.

Z. Xu, H. Zheng, Z. Fu, and W. Wang, “Enhancing

question understanding and representation for knowledge

base relation detection,” in Proceedings of the ICDM,

2017, pp. 571-581.

A. Bordes, J. Weston, and N. Usnier, “Open question

answering with weak supervised embedding models,” in

Proceedings of the PKDD, 2014, pp. 165-180.

M.-C. Yang, N. Duan, M. Zhou, and H. Rim, “Joint

relational embeddings for knowledge-based question an-

swering,” in Proceedings of the EMNLP, 2014, pp. 645—

650.

[16]

[17]

[18]

[19]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29] J. Welbl, P. Stenetorp, and S. Riedel, “Constructing
datasets for multi-hop reading comprehension across
documents,” TACL, vol. 6, pp. 287-302, 2018.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen,
R. Salakhutdinov, and C. D. Manning, “HotpotQA: A
dataset for diverse, explainable multi-hop question an-
swering,” in Proceedings of the EMNLP, 2018, pp. 2369—
2380.

N. D. Cao, W. Aziz, and L. Titov, “Question answering
by reasoning across documents with graph convolutional
networks,” in Proceedings of the NAACL, 2014, pp.
2306-2317.

M. Ding, C. Zhou, Q. Chen, H. Yang, and J. Tang,
“Cognitive graph for multi-hop reading comprehension
at scale,” in Proceedings of the ACL, 2019.

J. Weston, S. Chopra, and A. Bordes, “Memory net-
works,” in Proceedings of the ICLR, 2015.

A. H. Miller, A. Fisch, J. Dodge, and A.-H. Karimi,
“Key-value memory networks for directly reading docu-
ments,” in Proceedings of the EMNLP, 2016, pp. 1400-
1409.

Z.-Y. Chen, C.-H. Chang, Y.-P. Chen, J. Nayak, and L.-W.
Ku, “An unrestricted-hop relation extraction framework
for knowledge-based question answering,” in Proceed-
ings of the NAACL, 2019, pp. 345-356.

S. Minjoon, K. Aniruddaha, F. Ali, and H. Hananneh,
“Bi-directional attention flow for machine comprehen-
sion,” in Proceedings of the ICLR, 2016.

Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Modeling
coverage for neural machine translation,” in Proceedings
of the ACL, 2016, pp. 76-85.

A. See, P. J. Liu, and C. D. Manning, “Get to the
point: summarization with pointer-generator networks,”
in Proceedings of the ACL, 2017, pp. 1073-1083.

L. Zhang, J. Winn, and T. Ryota, “Gaussian attention
model and its application to knowledge base embedding
and question answering,” arXiv:1611.02266, 2016.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
vol. 12, pp. 2121-2159, 2011.

J. Pennington, R. Socher, and C. D. Manning, “Glove:
global vectors for word representation,” in Proceedings
of the EMNLP, 2014, pp. 1532-1543.

[30]

	Multi-hop knowledge base question answering with an iterative sequence matching model
	Citation

	tmp.1582774082.pdf.3idKp

