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Abstract Crowdsourcing is a computing paradigm where

humans are actively involved in a computing task, espe-

cially for tasks that are intrinsically easier for humans

than for computers. Spatial crowdsourcing (SC) is an

increasing popular category of crowdsourcing in the era

of mobile Internet and sharing economy, where tasks

are spatiotemporal and must be completed at a spe-

cific location and time. In fact, spatial crowdsourcing

has stimulated a series of recent industrial successes in-

cluding sharing economy for urban services (Uber and

Gigwalk) and spatiotemporal data collection (Open-

StreetMap and Waze).

This survey dives deep into the challenges and tech-

niques brought by the unique characteristics of spatial
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crowdsourcing. Particularly, we identify four core al-

gorithmic issues in spatial crowdsourcing: (1) task as-

signment, (2) quality control, (3) incentive mechanism

design and (4) privacy protection. We conduct a com-

prehensive and systematic review of existing research

on the aforementioned four issues. We also analyze rep-

resentative spatial crowdsourcing applications and ex-

plain how they are enabled by these four technical is-

sues. Finally, we discuss open questions that need to be

addressed for future spatial crowdsourcing research and

applications.

Keywords Spatial crowdsourcing · Task assignment ·
Quality control · Incentive mechanism · Privacy

protection

1 Introduction

Crowdsourcing is a computing paradigm where humans

actively or passively participate in the procedure of

computing, especially for tasks that are intrinsically

easier for humans than for computers. It has attracted

extensive attention from both the academia and the in-

dustry [59, 69, 99, 141], and there have been many suc-

cessful crowdsourcing platforms such as Amazon Me-

chanical Turk (MTurk) [2] and Upwork [28].

With the development of mobile Internet and shar-

ing economy, traditional web-based crowdsourcing has

shifted to spatial crowdsourcing1 (a.k.a. mobile crowd-

sourcing) [57, 132, 207]. As with traditional crowdsourc-

ing, spatial crowdsourcing involves three components,

tasks, workers and the platform. Fig. 1 shows the typi-

cal workflow of spatial crowdsourcing. The roles of these

component are as follows.

1 The term was coined for the first tine in [132].
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Fig. 1: Key components and workflow in spatial crowd-

sourcing.

– Tasks. Tasks with spatiotemporal constraints (e.g.,

the positions and deadlines of tasks) are submitted

to the platform. To complete a task, a worker has

to physically move to the position of the task.

– Workers. Workers submit their spatiotemporal in-

formation such as their positions and deadlines to

the platform. Depending on the concrete applica-

tions, workers either are assigned to tasks or can

choose tasks by themselves.

– The Platform. The spatial crowdsourcing plat-

form (platform for short) connects tasks and work-

ers. Its core functions include assigning tasks to suit-

able works, aggregating the results submitted by

workers, setting rewards for workers and protecting

the privacy of the tasks and workers.

The major difference between spatial crowdsourc-

ing and web-based crowdsourcing is that the former re-

quires each worker to move in the physical world to

perform tasks [132]. Hence spatiotemporal information

such as location, mobility and the associated contexts

plays a crucial role. Its natural connection with the

physical world makes spatial crowdsourcing a comput-

ing paradigm for a wide spectrum of daily applications

including real-time ride-hailing services, e.g., Uber [17]

and DiDi Chuxing [4], product placement checking su-

permarkets, e.g., Gigwalk [8] and TaskRabbit [15], on-

wheel meal-ordering services, e.g., GrubHub [10] and

Meituan [26], and citizen sensing services, e.g., Open-

StreetMap [13] and Waze [19]2.

2 Sometimes Waze is also viewed as a crowdsensing appli-
cation, which leverages users’ sensor-equipped mobile devices

The emphasis on spatiotemporal dynamics calls for

new designs in crowdsourcing theories and systems. The

aim of this survey is to provide a comprehensive review

on the core algorithmic issues in spatial crowdsourcing

from the perspective of the platform.

Task Assignment. In practice, a spatial crowd-

sourcing platform needs to manage massive tasks and

workers every day. For example, in 2017, DiDi Chux-

ing needs to serve 25 million ride requests every day

with the registered over 21 million drivers, which even-

tually produces over 70TB spatiotemporal data every

day [21]. Thus, the first challenge of the spatial crowd-

sourcing platforms is how to assign the large-scale tasks

to their workers, i.e., task assignment. The platforms

usually aims to arrange the tasks to suitable workers

with different optimization objectives such as maximiz-

ing the total number of assigned tasks or the total payoff

of the tasks to their assigned workers, minimizing the

total travel cost of the allocated workers.

Quality Control. As with most crowdsourcing ap-

plications, results collected from workers in spatial crowd-

sourcing vary in quality. The aim of quality control is

to quantify the quality of workers and tasks and ef-

fectively aggregate results to ensure high-quality task

completion. Both the quality models and the aggrega-

tion techniques are tied to spatiotemporal information,

which imposes unique challenges.

Incentive Mechanism. Proper Incentive mecha-

nisms help attract workers to participate in spatial crowd-

sourcing. Dedicated incentive mechanism design is needed

because the spatiotemporal factors and the relative re-

lation between supply and demand in spatial crowd-

sourcing are dynamic. For example, if there are only a

few workers in some area, the tasks posted in this area

should provide more reward.

Privacy Protection. Privacy protection is partic-

ularly crucial in spatial crowdsourcing. Spatiotempo-

ral information of workers, tasks and intermediate re-

sults needs to be properly transformed to avoid pri-

vacy leakage while allowing efficient information pro-

cessing such as task assignment. Dedicated techniques

and frameworks need to be designed to balance between

the strength of privacy protection and the efficiency of

other spatial crowdsourcing operations.

Contributions over Existing Surveys. There

are some general surveys [34, 69, 99, 141] or tutorials

[58, 59, 142] on traditional web-based crowdsourcing.

Our survey focuses on the spatiotemporal factors and

the new algorithmic designs on crowdsourcing due to

these factors. There are also some surveys or tutorials

to collect and share data. Spatial crowdsourcing is a general
framework and can subsume crowdsensing or participatory
sensing [132].
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Table 1: A time-line of milestone papers of spatial crowdsourcing.

Year Reference Influence
2012 [132] First work of spatial crowdsourcing
2013 [78] First work of static task matching (see Sec. 3.3) in spatial crowdsourcing
2013 [133] First work of quality control (see Sec. 4) in spatial crowdsourcing
2014 [197] First work of privacy protection (see Sec. 6) in spatial crowdsourcing
2014 [63] First work of general spatial crowdsourcing platform
2015 [144] First work of dynamic task planning (see Sec. 3.6) in spatial crowdsourcing
2016 [206] First work of dynamic task matching (see Sec. 3.4) in spatial crowdsourcing
2016 [205] First experimental work of dynamic task matching in spatial crowdsourcing
2018 [211] First work of incentive mechanism (see Sec. 5) in spatial crowdsourcing
2018 [202] First work of privacy protection in dynamic scenario

on spatial crowdsourcing. For example, Guo et al. [104]

and Tong et al. [204] review task allocation of spatial

crowdsourcing; To et al. review privacy protection of

spatial crowdsourcing in Chapter 7 of [196]; Zhang et al.

[240] review the incentive mechanisms in spatial crowd-

sourcing; Zhao et al. [245] give a brief survey on spatial

crowdsourcing, which only sketches out a few represen-

tative works. Compared with [104, 196, 240, 245], we

provide a comprehensive and holistic review on the lat-

est progress on spatial crowdsourcing research. Chen

et al. [57] also conduct a survey on spatial crowdsourc-

ing. However, our work is more systematic in classifying

the techniques and also covers the most recent litera-

ture in the last three years. Tong et al. give a tutorial on

spatial crowdsourcing in [207]. This survey is its holistic

and systematic extension and update.

Bibliography Methodology. We select papers pri-

marily from top venues in the database communities

such as SIGMOD, VLDB, ICDE and TKDE. We also

include some representative works from the spatial and

mobile computing communities since some important

algorithmic issues in spatial crowdsourcing also stemmed

from there (although as the topic of crowdsensing, which

has a slightly different focus). In Table 1 we list the

milestone papers during the development of spatial crowd-

sourcing and their influence on this research area.

In the rest of this survey, we first present the pre-

liminaries in Sec. 2 and review the representative re-

search on the four core issues in spatial crowdsourcing

in Sec. 3 to Sec. 6. We then study some killer appli-

cations of spatial crowdsourcing in Sec. 7 and discuss

future challenges and opportunities in Sec. 8. Finally

we conclude in Sec. 9.

2 Preliminaries

This section introduces the models of tasks, the models

of workers and the practical constraints that will be

frequently used in this survey.

2.1 Task Modeling

In spatial crowdsourcing, a task is also known as a

spatial task [132], a crowdsourced task [97], a spatial

crowdsourced task [96], or a request [154]. The user,

who submits the task on such platforms, is called task

requester [187] or requester [132]. In real-world applica-

tions, a task can be a taxi calling request in ride sharing

platform (e.g., Uber [17] and Didi Chuxing [4]), a take-

out order in food delivery platform (e.g., GrubHub [10]

and Seamless [27]), a last-mile delivery request in ur-

ban logistic platform (e.g., UPS [18] and FedEx [6]),

and other general tasks like taking photos of landmarks

and appliance repairment in Gigwalk [8] and TaskRab-

bit [15]. For example, the number of food delivery or-

ders has been increased to 10 billion in China by the

end of 2017 [227]. The main reason is that crowdsourc-

ing these tasks can usually result in higher quality task

completion (e.g., low latency) at a lower cost due to the

large scale of workers.

After receiving the task issued by the requester,

the platform will know the following major information

about this task.

– Arrival time indicates when the task is submitted.

– Location represents the spatial information of the

task. Some task (e.g., a taxi calling request or a

food delivery order) contains two types of locations,

origin (pickup location) and destination (delivery

location). To complete such a task, a worker needs

to first come to the origin and then take to the des-

tination.

– Deadline represents the expired time of the task.

– Radius restricts a circular range whose center is

the location of the task.

– Reward is the payoff to the worker if he/she com-

pletes the task. The amount of reward is either di-

rectly decided by the requester or determined by the

platform based on its incentive mechanisms.

A few other attributes of tasks are also considered in

some studies, e.g., required skills [66] (the requirement
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Table 2: A summary about the attributes of tasks and workers used in the four core issues.

Task Worker
Arrival
Time

Location Deadline Radius Reward
Arrival
Time

Location Deadline Radius Capacity

Task
Assignment ! ! ! ! ! ! ! ! ! !

Quality
Control ! ! ! % % ! ! % ! !

Incentive
Mechanism ! ! ! ! ! ! ! ! ! !

Privacy
Protection ! ! ! ! ! ! ! ! ! %

of skills to perform the task), arrival rate [84] (the prob-

ability of appearance in a unit time), etc.

Similar to crowdsourcing [141], the tasks in spatial

crowdsourcing can be also classified into two kinds in

terms of granularity: i.e., macro-tasks and micro-tasks.

A macro-task in spatial crowdsourcing often involves a

wider space and requires more time to complete. In con-

trast, a micro-task in spatial crowdsourcing usually in-

volves much fewer locations and needs less time to com-

plete. For example, mapping a city belongs to a macro-

task whereas geotagging a landmark of this city is a

micro-task. As most existing studies in spatial crowd-

sourcing focus on micro-tasks, this survey also mainly

restricts to the scope of micro-tasks and only briefly

discusses the issues of task assignment, quality control

and incentive mechanism in macro-tasks.

2.2 Worker Modeling

In spatial crowdsourcing, a worker is also known as

a spatial worker [33], a crowd worker [206], a mobile

worker [112], a service provider [205], or an agent [55].

To join the platform and perform tasks, a worker usu-

ally shares his/her spatiotemporal information with the

platform. The commonly used attributes include:

– Arrival time indicates when the worker appears

on the platform.

– Location is the spatial information of the worker.

– Deadline restricts the leaving time of the worker.

– Radius represents a circular range whose center is

the location of the worker.

– Capacity is the maximum number of tasks that

he/she can perform before the deadline.

From historical data, the platform will also know the

acceptance ratio of the worker [238] (the percentage of

accepted ones among all the assigned tasks) and the

reputation of the worker [108, 219]. Some works also

consider a few other attributes of workers, e.g., his/her

skills [98, 188], travel budget [97, 246], etc.

Table 2 summarizes the attributes of tasks and work-

ers used in the four core issues in spatial crowdsourcing

that we will discuss in the subsequent sections.

2.3 Practical Constraints

The main characteristic of spatial crowdsourcing is the

spatial factors (e.g., location) and temporal factors (e.g.,

deadline). These factors are important when the plat-

form makes task assignment, controls the quality, de-

signs the incentive mechanism and protects the privacy.

Thus, existing works usually consider three types of

constraints to satisfy the dynamics in spatial crowd-

sourcing, i.e., spatial constraints, temporal con-

straints and other constraints. We list the major

ones as follows.

Spatial Constraints.

– Range constraint: the task assigned to a worker is

within his/her restricted range; the worker assigned

to a task is within its restricted range.

– Travel budget constraint: the total travel cost of

the worker should be under his/her travel budget.

Temporal Constraints.

– Deadline constraint: the task will expire after the

corresponding deadline; the worker will leave the

platform after his/her deadline.

– Real-time constraint (a.k.a. instantaneous con-

straint): once a task appears, a worker must be as-

signed to it before the next task appears.

Other Constraints.

– Capacity constraint: the number of tasks assigned

to a worker cannot exceed his/her capacity.

– Invariable constraint: once a task is assigned to

a worker, the allocation between the task and the

worker cannot be changed.

– Reward budget constraint: the total payoff to

the assigned workers should be under the reward

budget of the requester.
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– Skill constraint: each required skills of a task is

covered by the skills of at least one worker.

– Reliability constraint: the probability of the task

being performed correctly should be larger than a

threshold of reliability.

Some of these constraints are more widely used in

all four core issues, e.g., range constraint, deadline con-

straint and capacity constraint. Some other constraints

are only used in specific scenario, e.g., skill constraint is

often used when a task has a specific requirement about

the skills of the assigned workers.

3 Task Assignment

Task assignment is considered as the most fundamen-

tal challenge in spatial crowdsourcing [57, 207]. This

is because all the other core issues in spatial crowd-

sourcing are connected with task assignment, as we will

discuss in the next several sections. In this section, we

first define the task assignment problem (Sec. 3.1) and

then categorize existing research from two dimensions

(Sec. 3.2): the arrival of input (i.e., static or dynamic)

and the algorithmic assignment model (i.e., matching

or planning). Accordingly, we introduce existing research

from four categories: static matching (Sec. 3.3), dy-

namic matching (Sec. 3.4), static planning (Sec. 3.5),

and dynamic planning (Sec. 3.6). Finally, we summa-

rize these studies in Sec. 3.7.

3.1 Generic Definition

Task assignment aims to arrange tasks to suitable

workers for different objectives. A generic definition of

task assignment in spatial crowdsourcing is as follows.

Given a set of tasks and a set of workers, task as-

signment refers to the process to make an arrangement

between tasks and workers for specific objectives, while

satisfying spatial constraints, temporal constraints and

(or) other constraints.

In terms of objectives, there are mainly two types of

optimization goals: total utility and total cost. Below

are the general definitions of utility and the cost.

– Utility. It is a value that measures the utility of an

assignment between a task and its assigned worker.

Utility can be a constant value of 1, the reward of

the task, the acceptance ratio of the worker, or even

the reward times the acceptance ratio. Accordingly,

the total utility will represent the total number of

performed tasks [78], the total acceptance ratio of

the workers [238], the total rewards of the assigned

tasks [243] or the total expected rewards of the as-

signed tasks [206, 222].

Fig. 2: Matrix overview of task assignment research.

– Cost. It is a value to measure the cost of the assign-

ment between a task and its assigned worker. Cost

can be the travel distance (time) of the worker to

the task, or the delay of the task from its arrival

time to the completion time. Accordingly, the total

cost will represent the total travel distance of the

workers [205] or the total delay of all the tasks [64].

Stable assignment is another objective for certain

spatial crowdsourcing applications [225, 243]. It is mo-

tivated by stable marriage [94], which aims to minimize

the number of unstable pairs (a.k.a. blocking pairs). A

pair of task and worker (except its current assigned

worker) is an unstable pair if the following conditions

are satisfied: (1) the task prefers the worker more than

its current assigned worker; (2) the worker prefers the

task more than his/her current assigned task.

3.2 Categories of Existing Research

Fig. 2 summarizes the taxonomy of task assignment

research. Existing studies can be categorized from two

dimensions: the arrival scenario, which can be static

or dynamic; and the algorithmic model, which can

be matching or planning.

Arrival Scenario: Static vs. Dynamic.

– Static. In the static scenario (a.k.a. offline scenario),

the platform is assumed to know all the spatiotem-

poral information of the tasks and workers at the

beginning, which includes the arrival times and lo-

cations of tasks and workers.

– Dynamic. In the dynamic scenario (a.k.a. online

scenario), the spatiotemporal information of either

tasks or workers is only known upon their arrival.

Intuitively, the dynamic scenario is more practical yet

more challenging than the static one, since tasks and

workers in the dynamic scenario need to be assigned

based on only partial information.

Algorithmic Model: Matching vs. Planning.
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– Matching. In the matching model, task assignment

is often formulated as a bipartite graph based prob-

lem. Workers and tasks can be represented by the

vertices in the bipartite graph and utility or cost

between a worker and a task can be denoted by the

weight of the edges. Then the problem is to obtain

an optimal matching in the bipartite graph.

– Planning. In the planning model (a.k.a. scheduling

model), task assignment aims to plan a route for

each worker to perform a sequence of tasks.

Before introducing solutions to each category of task

assignment research, we list the evaluation metrics for a

task assignment algorithm. In terms of efficiency of the

algorithm, time and memory costs are used. In terms of

effectiveness, approximation ratio and competitive

ratio are standard to assess the theoretical guarantee

of the offline algorithms and online algorithms, respec-

tively. Specifically, the approximation ratio represent

the effectiveness that an offline algorithm can guaran-

tee in the worst case. The competitive ratio represents

the effectiveness that an online algorithm can guarantee

but under various analysis models. In the task assign-

ment research in spatial crowdsourcing, the following

analysis models are covered:

– Adversarial Order Model (AO). It considers the

worst case of the online algorithm.

– Random Order Model (RO). It considers the

average case of the online algorithm, i.e., the ar-

rival order of inputs is uniformly sampled from all

possible permutations.

– I.I.D Model (IID). It assumes that the dynam-

ically arrived vertices (i.e., workers or tasks) are

identical and independent distributed but unknown

to the algorithms.

– Known I.I.D Model (KIID). It also assumes

that workers or tasks are i.i.d., but the algorithm

knows the distribution.

– Known Adversarial Distribution Model (KAD).

It is a generalization of the KIID model. However,

each task and worker in this model is sampled ac-

cording to an arbitrary distribution, which is known

to the algorithm. Different from KIID model, the

distributions of the tasks (workers) may be differ-

ent from each other.

Now we review existing studies in four categories:

static matching (Sec. 3.3), dynamic matching (Sec. 3.4),

static planning (Sec. 3.5), and dynamic planning (Sec. 3.6).

3.3 Static Matching

This subsection reviews research on task matching in

the static scenario, where information of workers and

tasks is known before assignment. We discuss exist-

ing studies in terms of different objectives, which in-

clude utility maximization (Sec. 3.3.1), cost minimiza-

tion (Sec. 3.3.2), and stable matching (Sec. 3.3.3).

3.3.1 Utility Maximization

In practice, utility can represent the constant value 1

(i.e., the number of assigned task) or the payoff to the

worker. Accordingly, the objective of utility maximiza-

tion is equivalent to either maximizing the total number

of assignments or the total payoff. We discuss existing

solutions to these two objectives separately.

Maximizing Total Number of Assignments. So-

lutions to static matching problem that maximizes the

number of assigned tasks are either exact or greedy

based approximate algorithms.

– Exact. Since task matching can be formulated as a

bipartite graph, the maximum cardinality bipartite

matching of the graph yields the assignment with

the maximum total number. Hence exact algorithms

(e.g., Hungarian algorithm [52]) can optimally solve

the problem. Alternatively, Kazemi et al. [132] re-

duce the bipartite graph into an instance of the max-

imum flow problem [32] and use the Ford-Fulkerson

algorithm [93] to obtain the exact result. They also

consider some practical issues. For example, a task

may have fewer workers around and hence it should

be assigned with higher priority. Therefore, the au-

thors borrow the idea of location entropy [74] to

represent this priority. Location entropy measures

the total number of workers near that location as

well as the relative proportion of their future visits

to that location. Another heuristic strategy is to it-

eratively assign the task to its nearest worker (i.e.,

Nearest Neighbor Priority (NNP)).

– Greedy based. To reduce the computation cost

of exact solutions (i.e., Hungarian [52] and Ford-

Fulkerson [93] algorithms), various greedy based meth-

ods are proposed. Both [200] and [213] maximize the

total number while considering a budget constraint.

They extend the idea of location entropy [132] to

region entropy, i.e., tasks in the spatial region with

fewer workers inside (i.e., less region entropy) should

have a higher priority to be assigned. Then they

greedily make assignment based on the current high-

est priority. Alfarrarjeh et al. [33] further design

several partition based distributed implementations

(e.g., Spatial Partitioning Approach (SPA)) to im-

prove the scalability of the solutions.
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Maximizing Total Payoff. Solutions to static match-

ing that maximizes the total payoff are also either exact

or greedy based approximate algorithms.

– Exact. To et al. [198] extend the problem in [132]

by assuming that a worker with better performance

should be paid more. Accordingly, an instance of

static matching can be reduced to an instance of

maximum weighted bipartite matching [52]. Thus

the Hungarian algorithm [52] can still be utilized to

obtain an exact solution. Considering worker distri-

bution and travel cost, they also reduce the original

matching problem to the minimum-cost maximum

weighted bipartite matching problem.

– Greedy based. Similarly, the greedy based algo-

rithms are proposed to improve the efficiency of

exact algorithms such as the Hungarian algorithm.

She et al. [184] consider the conflicts among tasks

and propose an approximation solution with ratio
1

1+Cmax
, where Cmax is the maximum capacity of

workers. Cheng et al. [66] study the settings where

a task has requirements on the worker’s skills under

a budget constraint. Assuming a batch mode [200],

they propose a greedy based method and further de-

velop a new algorithm with an adaptive cost model.

3.3.2 Cost Minimization

Since the platform tends to serve more tasks, the actual

objective is often to find a matching with maximum

cardinality and minimum cost. Hence the correspond-

ing static matching problem can be transferred to the

minimum-cost maximum-flow (MCMF) problem [32].

The problem can again be solved by exact algorithms

such as the Hungarian algorithm [52] and Successive

Shortest Path Algorithm (SSPA) [81]. To improve the

efficiency, Hou et al. [214] leverage indexing and I/O

optimization techniques. Specifically, they introduce in-

cremental SSPA-based exact solutions with R-tree in-

dexing. A heuristic algorithm is also designed to achieve

better efficiency with an approximate result.

Bei et al. [48] study static matching with cost mini-

mization where each worker can be assigned to at most

two tasks at any time. The problem is formulated as a

variant of the 3-dimensional matching (3DM) [101]. A

matching in 3DM is a triple which consists of two tasks

and one worker. To solve the problem, they first pack

every two tasks and then make an arrangement between

the workers and the pairs of tasks after packing. This

two-phase based algorithm achieves an approximation

ratio of 2.5 when the number of tasks is exactly twice

of the number of workers.

Long et al. [156] also focuses on the static matching

with cost minimization. Differently, they want to find a

matching with maximum cardinality which minimizes

the maximum travel cost among all the assignments.

They devise a scalable algorithm called Swap-Chain to

efficiently get the optimal solution.

3.3.3 Stable Matching

Some other research studies the static stable matching

problem in spatial data. Solutions to the stable mar-

riage problem can be applied to static stable matching.

For example, the problem can be solved by the Gale-

Shapley algorithm [94], which takes O(|T ||W |) time

when T is the set of tasks and W is the set of work-

ers. Another intuitive solution is to iteratively select

the closest pair from the remaining tasks and work-

ers [72, 229]. To improve the efficiency, Wong et al. [225]

reduce the concept of “mutual nearest neighbor” to the

Bichromatic Mutual NN Search problem, and propose

an NN search based Chain algorithm with a time com-

plexity of O((|T |+ |W |) · (logO(1) |T |+ logO(1) |W |)).

3.3.4 Summary on Static Matching

Table 3 lists the representative studies on static match-

ing. Solutions to the static matching problem are the

basis of many other more complex task assignment prob-

lems in spatial crowdsourcing. Cheng et al. [67] con-

duct a comprehensive evaluation on mainstream static

matching algorithms. They conduct the experiments on

the open datasets [9] collected by the gMission and the

toolbox called SCAWG [199] for spatial crowdsourcing.

According to their experimental results, LLEP [198] is

a good choice to maximize the total utility and NNP

[132] is closely effective but more efficient.

Besides, solutions to the static matching problem

can be also extended for the dynamic scenario via the

batch based mode [132, 200]. In the batch mode, an ar-

rangement is made between tasks and workers in a fixed

time interval (i.e., a batch). However, the response time

of tasks or workers tends to be long in the batch mode.

Hence online algorithms directly designed for dynamic

matching are desired, which we present below.

3.4 Dynamic Matching

This subsection reviews task matching research in the

dynamic scenario, where the information of either tasks

or workers is unknown beforehand. Dynamic matching

can be further classified into one-sided dynamic match-

ing and two-sided dynamic matching. In one-sided dy-

namic matching, only the information of workers or
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Table 3: Comparison of existing solutions to task assignment as a static matching problem.

Method Objective Constraints1
Time

Complexity2 Ratio

GR [132]
maximizing

total number

deadline, range - optimal
SP-WR-A [33] range - heuristic
Temporal [200] deadline, range, budget - heuristic

Greedy-GEACC [183]
maximizing
total payoff

capacity O(n3) 1/(1 + Cmax)
g-D&C[66] deadline, range, skill, budget - heuristic

ADAPTIVE [66] deadline, range, skill, budget - heuristic
Basic [198] deadline, range - optimal
IDA [214]

minimizing
total distance

- - optimal
CA [214] - - heuristic

Allocation [48] capacity O(n3) 2.5

Swap-Chain [156]
minimizing

maximum distance
capacity O(R · |T |(|T |+ |W |)) optimal

Gale-Shapley [94]
minimizing

#blocking pair

capacity O(|T ||W |) optimal
Closest Pair [72, 229] capacity O(|T ||W |2) optimal

Chain [225] capacity
O((|T |+ |W |)·

(logO(1) |T |+ logO(1) |W |)) optimal

1 In the column of constraints, we use “-” to represent that the method supports no aforementioned constraints in Sec. 2.3.
We use “range” to denote range constraints, “deadline” to denote deadline constraints (see Sec. 2.3 for more details).

2 In the column of time complexity, we use “-” to represent the case when time complexity is not given in the paper. We use
T and W to denote the set of tasks and the set of workers respectively. Hence n is max{|T |, |W |} and R is a parameter such
that R� |T ||W |.

(a) At 7:01. (b) At 7:03. (c) At 7:05. (d) At 7:07. (e) At 7:09.

Fig. 3: An example of one-sided dynamic matching, where only tasks on the right appear dynamically. The

information of workers on the left is known in advance.

(a) At 7:01. (b) At 7:03. (c) At 7:05. (d) At 7:07. (e) At 7:09.

Fig. 4: An example of two-sided dynamic matching, where both workers and tasks appear dynamically and the

assignment is made immediately.

tasks is unknown (e.g., parcel delivery), while in two-

sided dynamic matching, the information of both work-

ers and tasks is unknown (e.g., on-demand taxi dis-

patching). Fig. 3 and Fig. 4 show the examples of one-

sided and two-sided dynamic matching, respectively. As

in static matching, we review prior works based on their

objectives: utility maximization (Sec. 3.4.1), cost mini-

mization (Sec. 3.4.2) and stable matching (Sec. 3.4.3).

3.4.1 Utility Maximization

As in static matching, the utility between a task and

its assigned worker in dynamic matching can also repre-

sent a constant value 1 and the payoff of the task. Since

some real-world applications of dynamic matching allow

workers to decide whether to accept the assigned task

or not, the utility in dynamic matching can additionally
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represent the accepted ratio of the worker and further

the payoff times the acceptation ratio, i.e., expected

payoff. Accordingly, the main objectives for dynamic

matching with utility maximization include maximiz-

ing the (expected) total number of assigned tasks and

maximizing the (expected) total payoff of assigned tasks.

Maximizing Total Number of Assignments. Dy-

namic matching with this objective is also known as

the online bipartite matching problem. Most research

along this line focuses on the one-sided online bipar-

tite matching problem [50, 82, 91, 102, 121, 129, 159],

while relatively a few have investigated two-sided online

bipartite matching [120, 209, 221].

(i) Solutions to One-sided Scenario. We discuss

solutions optimized for worst-case performance and av-

erage performance, respectively.

– Optimized for Worst-case Performance. Karp

et al. [129] propose three algorithms, i.e., GREEDY,

RANDOM and RANKING. GREEDY assigns a new

task to an arbitrarily chosen available worker. RAN-

DOM differs in that the worker is uniformly sam-

pled. The competitive ratios of GREEDY and RAN-

DOM are both 0.5 under the adversarial order model.

RANKING is a two-phase algorithm. In the first

phase, a random permutation of workers is picked

and it represents the priority (i.e., rank) of the work-

ers. In the second phase, a newly appeared task

will be assigned to the available worker with the

highest rank. RANKING yields a competitive ratio

1− 1/e ∼ 0.632 under the adversarial order model.

The ratio is proven to be the lower bound of any

online algorithm [50, 82, 102].

– Optimized for Average Performance. While

RANKING has achieved the lower bound under the

adversarial order model, it is unknown whether it is

the most effective under other models such as the

random order model and the i.i.d model [102]. Feld-

man et al. [91] devise the suggested matching algo-

rithm with a higher ratio 0.67. The idea is to guide

the online algorithm by offline solutions (“offline-

guide-online”). Fig. 5 shows the procedure of the

offline-guide-online technique. Specifically, they first

predict the spatiotemporal information of tasks and

workers (i.e., learn the distribution). Next, an of-

fline matching algorithm is used to obtain the op-

timal matching by using the predicted inputs. Fi-

nally, they use the offline matching to guide the on-

line matching policy. When a new task appears, an

eligible worker is usually sampled according to the

chosen probability of this assignment in the offline

solution. Following the same idea, Manshadi et al.

[159] improve the ratio to 0.702 using Monte Carlo

sampling. Jaillet et al. [121] apply linear program

Fig. 5: Procedure of offline-guide-online technique.

as the offline algorithm and obtain the best known

competitive ratio of 0.706.

(ii) Solutions to Two-sided Scenario. Many so-

lutions to the two-sided scenario are built upon those

to the one-sided scenario.

GREEDY can be applied to two-sided scenario and

achieves a competitive ratio of 0.5 under the adversarial

order model. Its effectiveness can be further improved

by two methods, the randomized primal dual technique

[120, 221] and the offline-guide-online technique [209].

In particular, the charging based framework [128]

can be extended to achieve better effectiveness. Its idea

is to increase the probability of each potential assign-

ment whenever a worker or a task appears on the plat-

form. At the deadline of each vertex, the algorithm will

determine the final assignment of this vertex based on

the probability. Wang et al. [221] extend the framework

with the water-filling algorithm and obtain a better

ratio of 0.526 than GREEDY under adversarial order

model. Huang et al. [120] extend RANKING into the

two-sided scenario where the vertex with higher rank

has a larger probability to be matched. The extended

RANKING algorithm achieves the currently best-known

competitive ratio of 0.554.

Tong et al. [209] apply the offline-guide-online tech-

nique to a different setting where a worker can move in

advance to other locations so as to increase the po-

tential number of assignments. Their solution first pre-

dicts the spatiotemporal information of tasks and work-

ers and guides workers to locations where there will be

tasks in the future, and then makes assignments based

on an offline guide. The proposed POLAR and POLAR-

OP algorithms yield competitive ratios of 0.399 and

0.47 under the i.i.d model.

Maximizing Expected Total Number of Assign-

ments. When workers are allowed to reject the assigned

tasks, the objective above is replaced by maximizing the

expected total number of assigned tasks.

Hassan et al. [111] use multi-armed bandit [176] to

model the problem and apply a contextual bandit algo-

rithm [143] to determine the assignments. Zhang et al.
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[238] focus on predicting the acceptance ratio of work-

ers in taxi dispatching via machine learning techniques.

Note that tasks rejected by workers can be considered

as new tasks and can be re-assigned to other workers.

Maximizing Total Payoff. Dynamic matching that

maximizes the total payoff can be considered as an on-

line vertex-weighted bipartite matching problem, where

the weight of each edge in bipartite graph is represented

by the weight of one-side vertex. There are also two ver-

sions of this problem, i.e., one-sided [31, 51, 195] and

two-sided [84, 195].

(i) Solutions to One-sided Scenario. In [31], Ag-

garwal et al. study the problem where the information

of tasks is known. A Perturbed-Greedy algorithm is pro-

posed which achieves a competitive ratio 1−1/e ∼ 0.632

under adversarial order model. Specifically, the algo-

rithm first perturbs each weight of vertices identically

and independently by a function ψ(x) = 1 − e−(1−x).
Then it sorts the vertices in the order of decreasing

perturbed weights, which forms a rank. Finally, it uti-

lizes the strategy of RANKING [129] to make the final

decision. The authors prove that no randomized algo-

rithm can obtain a higher ratio than 0.632 under the

adversarial order model. Ting et al. [195] devise a ran-

domized algorithm Greedy-RT to achieve the ratio of
1

2e lndUmax+1e under the adversarial order model, where

Umax denotes the upper bound of the utility between a

worker and a task. They first randomly sample a thresh-

old and then match the new vertex to any existing ver-

tex whose weight is higher than the threshold. Under

the known i.i.d model, Brubach et al. [51] propose the

VW algorithm with a competitive ratio of 0.729.

(ii) Solutions to Two-sided Scenario. For the
two-sided scenario, Ting et al. [195] prove that Greedy-

RT can still achieve the ratio of 1
2e lndUmax+1e under

the adversarial order model. They also prove that no

randomized algorithm can achieve a higher ratio than
2

dlogUmaxe+1 under the adversarial order model. Dicker-

son et al. [84] design an algorithm ADAP based on the

offline-guide-online technique. They first solve a linear

program benchmark and then use the offline solution to

simulate the online matching procedure. Finally, they

prove that the competitive ratio of ADAP is 0.343 un-

der the random order model.

Maximizing Expected Total Payoff. Similar to the

case of maximizing the expected total number of as-

signments, this thread of research assumes the worker

can reject the task with some probability. In this case,

the weight of edges in the bipartite graph is determined

by both the payoff of the task and the acceptance ratio

of the worker. Hence the problem is similar to the on-

line edge-weighted bipartite matching problem.

Again, there are two versions of this problem, i.e., one-

sided [51, 83, 134, 139] and two-sided [84, 206].

(i) Solutions to One-sided Scenario. Prior works

either borrow the idea from the secretary problem [92]

or use the offline-guide-online technique [51, 83].

Korula et al. [139] first propose a Sample-And-Price

algorithm that has a competitive ratio of 0.125 under

the random order model. The idea is to iteratively find

a global assignment by GREEDY whenever a new ver-

tex appears, and then sample an assignment with some

probability. Kesselheim et al. [134] are also motivated

by the secretary problem and devise the BOM algo-

rithm, which improves the competitive ratio to 1/e ∼
0.367 under the random order model. Different from

Sample-And-Price, BOM skips the first b(|W |+ |T |)/ec
vertices and finds a global optimal matching by the

Hungarian method.

Solutions which use the offline-guide-online tech-

nique to obtain more promising results. In [51, 83],

the authors first formulate the predicted instance with

linear programming (LP), and then solve it by exist-

ing LP solver (e.g., CPLEX [20]). They finally use the

result of the LP solver to guide the online matching

procedure. Under the known i.i.d model, the SW algo-

rithm [51] can achieve a competitive ratio of 0.632 and

an optimized algorithm EW [51] can obtain a ratio of

0.705. In [83], the authors exploit the fact that a worker

tends to be re-assigned a new task right after he/she

finishes the last task, and define the online matching

with (offline) reusable resources problem. They propose

a Monte-Carlo simulation based algorithm ADAP (γ),

which achieves a competitive ratio of 0.5 under the

known adversarial distribution model.

(ii) Solutions to Two-sided Scenario. In [206],

the authors extend the Greedy-RT algorithm [195] and

prove its competitive ratio still holds. They also borrow

the idea of secretary problem and devise a two-phase

based framework. In the first half of vertices, GREEDY

is used to determine the final assignment. In the other

half of vertices, they first find a global matching and

then determine the final assignment based on the global

matching. Their proposed algorithms achieve compet-

itive ratios of 0.25 and 0.125 under the random order

model. Dickerson et al. [84] further use the offline-guide-

online technique to improve the ratio to 0.295. Song

et al. [187] study a variant of the problem for applica-

tions such as InterestingSport [11] and Nanguache [12],

where workplaces, workers and tasks should all be con-

sidered. For example, InterestingSport needs to find

suitable trainers (i.e., workers) and book the corre-

sponding sports facilities (i.e., workplaces) for its users.

The problem is modeled as online trichromatic match-
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ing. A threshold-based randomized framework is pro-

posed to solve the problem with a ratio of 1
3e lndUmax+1e .

Summary. Most of the efforts on dynamic matching

with utility maximization can be modeled as a variant

of online bipartite matching problem. The offline-guide-

online technique [91] is useful to achieve good compet-

itive ratios, e.g., [84, 209]. However, the common as-

sumption is that the spatiotemporal distribution of ei-

ther tasks or workers is completely predictable, which

may be impractical in real-world applications.

3.4.2 Cost Minimization

The cost between a task and a worker can represent

the travel distance (time) between the location of the

worker and the location of the task, or the delay of the

task from release time to completion time. Hence cost

minimization indicates that tasks will be served more

rapidly. We discuss solutions that minimize the total

travel distance and the total delay separately.

Minimizing Total Travel Distance. Dynamic match-

ing with this objective can be modeled as a variant of

one-sided online minimum bipartite matching, where

tasks dynamically appear on the platform. Existing so-

lutions can be classified into two categories, greedy [127]

and HST based [46, 161] algorithms.

– Greedy based. Kalyanasundaram et al. [127] pro-

pose Permutation, a (2n − 1)-competitive ratio al-

gorithm, where n is the number of workers to be

matched. They also introduce Greedy, which greed-

ily assigns a task to its closest worker (i.e., nearest

neighbor) and randomly picks one if there is a tie.

Despite its efficiency, Greedy has a competitive ratio

of 2n−1 under the adversarial order model. In order

to distinguish from the GREEDY algorithm [129] on

utility maximization, we call this nearest neighbor

based greedy method as NN-Greedy.

– HST based. Hierarchically Separated Tree (HST)

[224] is a special type of tree metrics. Meyerson

et al. [161] consider a randomized greedy algorithm,

HST-Greedy, by extending the Permutation algo-

rithm [127] into HST structures and it yields an ex-

pected competitive ratio of O(log3 n) on any met-

ric space. The O(log3 n) bound is further improved

in [46] by the HST-Reassignment algorithm, which

is O(log n)-competitive on 2-HST metrics, and thus

O(log2 n)-competitive on general metrics.

The above studies focus on analyzing the compet-

itive ratios in worst cases i.e., under the adversarial

order model. To evaluate the performance of these al-

gorithms in practice, Tong et al. [205] present a com-

prehensive experimental comparison of some represen-

tative algorithms. The experiments show that the NN-

Greedy, which has always been considered as the worst

method due to its exponential competitive ratio (2n −
1), significantly outperforms the others in terms of effec-

tiveness. In particular, the worst case in the adversarial

order model of NN-Greedy has a constant competitive

ratio, 3.195 under the random order model.

Minimizing Total Delay. The delay of a task is the

duration from its release time to its completion time.

Unlike minimizing the total travel distance, minimiz-

ing the total delay is a group of problems where once a

task appears, it can be kept waiting for potential bet-

ter assignments instead of being matched immediately.

The cost incurred is the sum of travel distances be-

tween matched worker-task pairs (the travel cost), and

the sum of the tasks’ response time (the waiting cost).

The rationale is to trade off between the cost of instant

assignments and that of waiting for better assignments.

– Solutions to One-sided Scenario. Emek et al.

[88] present a randomized algorithm with competi-

tive ratio O(log2 n + log∆) ∼ O(log2 n) on n-point

metric spaces with the longest distance ∆. Ashlagi

et al. [42] prove the same ratio with a simpler anal-

ysis and Azar et al. [43] further improve the ratio to

O(log n) under the adversarial order model.

– Solutions to Two-sided Scenario. Chen et al.

[64] study the problem of minimizing the maximum

delay among all matches while both tasks and work-

ers dynamically appear. They present an HST-based

algorithm MMD-HST, which has better effective-

ness than a greedy based baseline.

Summary. Dynamic matching with cost minimization

is usually modeled as an online minimum bipartite match-

ing problem. There are mainly two kinds of solutions

to this problem, greedy based and HST based algo-

rithms. Compared with greedy based algorithms, HST

based algorithms tend to have better competitive ra-

tios in worst case analysis. However, since NN-Greedy

is demonstrated to be effective on both synthetic and

real datasets [205], it is still an open problem whether

the competitive ratio of NN-Greedy is arbitrarily bad

(i.e., 2n−1) under other analysis models (e.g., random

order model or known i.i.d model).

3.4.3 Stable Matching

Many studies on dynamic matching have integrated the

preferences of either workers or tasks into their opti-

mization objectives. For example, some studies [83, 206]

aim to maximize the total utility obtained from all

successful assignments, where the utility represents the

workers’ preference on payoff.
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Table 4: Comparison of existing solutions to task assignment as a dynamic matching problem.

Method Objective Constraints
Time

Complexity1
Analysis
Model2

Ratio

GREEDY [129]

maximizing
total number

one-sided, range O(n2) AO 0.5
GREEDY [102] one-sided, range O(n2) RO, IID 0.632
RANKING [129] one-sided, range O(n2) AO 0.632

suggested matching [91] one-sided, range O(n) IID 0.632
MC sampling [159] one-sided, range O(n) IID 0.702
Random Lists [121] one-sided, range O(n2) IID 0.706

GREEDY [120] two-sided, range, deadline O(n2) AO 0.5
water-filling [221] two-sided, range O(n2) AO 0.526

ext-RANKING [120] two-sided, range, deadline O(n2) AO 0.554
POLAR-OP [209] two-sided, range, deadline O(n2) IID 0.47

contextual bandit [111] maximizing expected
total number

two-sided, range, deadline O(n2) - heuristic
hill-climbing [238] two-sided, range O(n3) - heuristic

Perturbed-Greedy [31]
maximizing
total payoff

one-sided, range O(n logn) AO 0.632
VW [51] one-sided, range O(n2) KIID 0.729

Greedy-vRT [195] two-sided, range O(n2) AO 1
2e lndUmax+1e

ADAP [84] two-sided, range, deadline O(n2) KIID 0.343
Sample-And-Price [139]

maximizing expected
total payoff

one-sided, range O(n3) RO 0.125
BOM [134] one-sided, range O(n4) RO 0.367

SW,EW [51] one-sided, range O(n2) KIID 0.632,0.705
ADAP(γ) [84] two-sided, range O(n) KAD 0.5
TGOA [206] two-sided, range, deadline O(n4) RO 0.25

TGOA-Greedy [206] two-sided, range, deadline O(n3 logn) RO 0.125
NADAP [84] two-sided, range, deadline O(n) KIID 0.295

Permutation [127]
minimizing

total distance

one-sided O(n3) AO 2n− 1
NN-Greedy [127] one-sided O(n) AO 2n − 1
HST-Greedy [161] one-sided O(n) AO O(log3 n)

HST-Reassignment [46] one-sided O(n2) AO O(log2 n)
stilt-walker [88]

minimizing
total delay

one-sided - AO O(log2 n)
saturated [43] one-sided - AO O(logn)

TGM [41] one-sided - AO O(logn)

MMD-HST [64]
minimizing

maximum delay
two-sided - AO O(logn)

FCFS-Greedy [135]
minimizing

#blocking pair
one-sided O(n2) AO O(|E|)

LP-ALG [243]

maximizing
total payoff &

minimizing
#blocking pair

one-sided, range O(n) KIID
0.632
0.6|E|

1 In the column of constraints, we use “range” to denote range constraints, “deadline” to denote deadline constraints (see
Sec. 2.3 for more details).

2 In the column of time complexity, we use “-” to represent that the time complexity is not given in the paper. We use n to
denote the maximum value between the number of tasks and the number of workers.

3 In the column of analysis model, we use “-” to represent that the paper has no competitive analysis under specific models.

Zhao et al. [243] first consider the preferences of

both workers and tasks in dynamic task matching and

formulate the task assignment problem as a variant

of online stable matching problem. The online stable

matching problem is first studied by Khuller et al. [135].

They prove that the “first come, first served” method

(FCFS-Greedy) produces O(n log n) blocking pairs on

average and O(n2) blocking pairs in worst case. Zhao

et al. [243] study a more difficult version since they also

aim to maximize the total utility at the same time. They

use the offline-guide-online technique [91] and propose

an LP based algorithm LP-ALG, which achieves a com-

petitive ratio of 1 − 1/e ∼ 0.632 for maximizing total

utility with no more than 0.6|E| blocking pairs under

the known i.i.d model.

3.4.4 Summary on Dynamic Matching

Table 4 compares the representative research on dy-

namic matching with three objectives (utility maxi-

mization, cost minimization and stable matching). As

is shown, the competitive ratio is often constant in

solutions to utility maximization and different analy-

sis models are often used to obtain a better result.

However, fewer studies focus on minimizing the total

cost or online stable matching. In particular, most re-

search [46, 88, 161] uses the adversarial order model to
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analyze the effectiveness of the algorithm in the worst

case, which is more difficult to obtain a promising re-

sult. Thus, it is still an open problem whether it is possi-

ble to design an algorithm with a constant competitive

ratio under the random order model or the known i.i.d

model. Finally, it is worth mentioning that many re-

search (e.g., [145, 209, 243]) conducts the experiments

of dynamic matching on the datasets collected by DiDi

Chuxing [4]. DiDi Chuxing has so far already released

many open datasets in their GAIA initiative [22]. These

real datasets can usually be used to validate the per-

formances of the dynamic matching algorithms for dif-

ferent objectives.

3.5 Static Planning

Task assignment in the real applications such as ride

sharing and food delivery is a planning problem, where

a route (i.e., a sequence of tasks) should be planned

for workers. This subsection reviews studies on static

planning, which fall into two categories, One-Worker-

To-Many-Tasks Static Planning (Sec. 3.5.1), which

plans a route for one single worker, and Many-Workers-

To-Many-Tasks Static Planning (Sec. 3.5.2), which

plans routes for multiple workers.

3.5.1 One Worker To Many Tasks

In One-Worker-To-Many-Tasks Static Planning, most

studies aim to find a route for one worker such that

the number of performed tasks is maximized under the

travel budget constraint. This problem is closely related

to the orienteering problem [215]. The major differences

include: (1) the utility value of each matching is often

zero or one, and (2) the end vertex of the route is not

given. Thus, the utility often represents a constant value

1 in the majority of works [78, 80] and only [73] con-

siders the more general utility (i.e., payoff). We discuss

existing works based on their objectives.

Maximizing Total Number of Assignments. Deng

et al. [78] first study static planning which maximizes

the total number of performed tasks under the travel

budget and deadline constraints. They name it the Max-

imum Task Scheduling (MTS) problem and prove its

NP-hardness. There are two kinds of solutions to the

this problem: exact and greedy based algorithms.

– Exact. To address the MTS problem, Deng et al.

[78] propose several exact solutions. They first pro-

pose a dynamic programming algorithm, MST-DP,

with a time complexity of O(n22n) and a space com-

plexity of O(n2n). They further propose a branch-

and-bound based algorithm MST-BB, which has a

time complexity of O(n!) and a space complexity of

O(n2). They also propose several pruning strategies

to improve the actual running time.

– Greedy based. Deng et al. [78] also propose several

greedy based heuristics, including Nearest Neighbor

Heuristic (NNH), Most Promising Heuristic (MPH)

and Least Expiration Time Heuristic (LEH). Among

these solutions, NNH is the most efficient and effec-

tive. To achieve a better trade-off between efficiency

and effectiveness, they further present Beam Search

Heuristic (BSH) [80]. It expands the cardinality of

candidate set to a given threshold instead of one in

NNH. BSH then invokes MST-BB with this candi-

date set to select proper tasks. Even though BSH

is less efficient than NNH, it is more effective in ex-

perimental evaluations.

Maximizing Total Payoff. Costa et al. [73] study

static planning which maximizes the total payoff. They

assume that a worker may be on his/her preferred path

and is willing to consider the trade-off between payoff

and the travel cost. Due to its NP-hardness, they pro-

pose a Detour Oriented Heuristic (DOH) to find all non-

dominated routes and recommend them to the workers.

3.5.2 Many Workers To Many Tasks

Although it is already NP-hard to plan a route for a sin-

gle worker, a few efforts have explored Many-Workers-

To-Many-Tasks Static Planning. Research on Many-

Workers-To-Many-Tasks Static Planning mainly focuses

on maximizing the general utility (e.g., satisfaction score

[97, 182], payoff [113]) while only [79] aims at maximiz-

ing the total number of performed tasks.

Maximizing Total Number of Assignments. Deng

et al. [79] extend their Maximum Task Scheduling prob-

lem to the multiple-workers version. They devise a new

three-phase framework called Global Assignment and

Local Scheduling (GALS). The first two phases are static

matching and One-Worker-To-Many-Tasks Static Plan-

ning. The last phase is to refine the matching result

with the updated routing result. The last two phases

repeat until no more tasks can be performed. The com-

plexity of GALS is O(n4), which is relatively high in

practice. Thus, they propose the Local Assignment Lo-

cal Scheduling (LALS) algorithm based on the similar

idea to improve the efficiency.

Maximizing Total Payoff/Satisfaction. In practice,

the utility function can represent the satisfaction score

[97, 182] between workers and tasks or the payoff of the

worker by performing the task [113]. There are mainly

two types of solutions to this problem, greedy based

[97, 182] and local ratio based [113, 182] algorithms.
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Table 5: Comparison of existing solutions to task assignment as a static planning problem.

Method Objective Constraints
Time

Complexity1 Ratio

MST-BB [78]
maximizing

total number

deadline O(n!) optimal
NNH [78] deadline - heuristic
GALS [79] deadline O(n4) heuristic

LRBA [113]
maximizing
total utility

travel budget - 5
DeDPO [182] deadline, travel budget O(n3) 0.5

SCUP [97] deadline, travel budget, skill O(n2) heuristic
1 In the column of constraints, we use “deadline” to denote deadline constraints (see Sec. 2.3

for more details).
2 In the column of time complexity, we use “-” to represent that the time complexity is not

given in the paper. We use n to denote the maximum value between the number of tasks
and the number of workers.

– Greedy based. She et al. [182] propose the prob-

lem of Utility-aware Social Event-participant Plan-

ning (USEP), which maximizes the total satisfac-

tion of all the users considering the travel budget

constraint. They propose a greedy based algorithm,

RatioGreedy, which considers the utility-cost ratio

of each worker-task pair and adds the pair with the

largest ratio into the planning. Gao et al. [97] study

a variant of the problem, where tasks may impose

different skill requirements on the workers. They

first form a set of worker with minimum cardinal-

ity to cover the skill requirement of tasks and then

greedily assign the worker with the largest satisfac-

tion to the tasks.

– Local Ratio based. The main idea of the local ra-

tio framework [47] is to first decompose the problem

into several simpler sub-problems and then elimi-

nate the conflict of these sub-problems. She et al.

[182] propose a two-phase algorithm called DeDP.

It achieves the approximation ratio of 0.5 with time

complexity of O(n3) and space complexity of O(n2).

To improve the efficiency, they further devise an op-

timized algorithm DeDPO. To maximize the reward

of the performed tasks, He et al. [113] propose a lo-

cal ratio based algorithm, LRBA. They also use the

same technique to prove that the approximation ra-

tio of LRBA is 5. Experimental results show that

LRBA outperforms a greedy based algorithm.

3.5.3 Summary on Static Planning

Table 5 summarizes existing works on static planning.

Static planning in spatial crowdsourcing has been stud-

ied in two settings, One-Worker-To-Many-Tasks Static

Planning and Many-Workers-To-Many-Tasks Static Plan-

ning. Since One-Worker-To-Many-Tasks Static Planning

is NP-hard, the greedy based solutions are proposed to

improve the efficiency of exact solutions. However, all

greedy based solutions have no theoretical guarantee

in the effectiveness. The local ratio technique is often

exploited to design an approximation solution. Experi-

ments [113, 182] on the Meetup datasets in [153] show

that the local ratio based algorithm is more effective

than the greedy based solution.

3.6 Dynamic Planning

Dynamic planning is the planning problem where the

information of workers or tasks is unknown in advance.

It is more challenging than static planning since the

routes of workers have to be planned when only partial

information is available. As with static planning, we re-

view research on dynamic planning in two categories:

One-Worker-To-Many-Tasks Dynamic Planning

(Sec. 3.6.1) and Many-Workers-To-Many-Tasks Dy-

namic Planning (Sec. 3.6.2).

3.6.1 One Worker To Many Tasks

Research on One-Worker-To-Many-Tasks Dynamic Plan-

ning often maximizes the total utility under the budget

of travel cost. As before, we review two kinds of total

utilities, the total number of assignments [144] and the

total payoff of the workers [191].

Maximizing Total Number of Assignments. Li

et al. [144] prove that under the adversarial order model,

no deterministic algorithm has a constant competitive

ratio. They propose several greedy based approaches

such as Nearest Neighbor Heuristic (NN-Greedy) and

Earliest Deadline Heuristic (ED-Greedy). They further

propose a bi-directional search based algorithm to im-

prove the effectiveness. The search begins with the ori-

gin and the destination of the worker. Some pruning

strategies are proposed to reduce the searching space.

Maximizing Total Payoff. Sun et al. [191] extend

the problem in [144] to maximize the total payoff to

workers. They devise an NN-Greedy based algorithm
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Table 6: Comparisons of existing solutions to task assignment as a dynamic planning problem.

Method Objective Constraints
Time

Complexity1
Analysis
Model2

Ratio

Re-Route [144] maximizing
total number

deadline - AO heuristic
Auction-SC [38] deadline - - heuristic

Fast-Planning [193]
maximizing
total payoff

deadline O(n3) AO heuristic
APART [40] deadline, budget - AO heuristic
EPBR [191] deadline, range - - heuristic
PBM [248] deadline, budget O(n3) - heuristic

t-share [158] minimizing total
travel distance

deadline - - heuristic
kinetic [119] deadline, budget - - heuristic

pruneGreedyDP [212] minimizing unified cost deadline O(n2 + n2 logn) AO heuristic
1 In the column of constraints, we use “range” to denote range constraints, “deadline” to denote deadline con-

straints (see Sec. 2.3 for more details).
2 In the column of time complexity, we use “-” to represent that the time complexity is not given in the paper.

We use n to denote the maximum value between the number of tasks and the number of workers.
3 In the column of analysis model, we use “-” to represent that the paper has no competitive analysis under

specific models.

to balance three influence factors on a worker’s choice

in terms of which task to undertake next. They further

borrow the idea of offline-guide-online technique [91] to

enhance the effectiveness and efficiency.

3.6.2 Many Workers To Many Tasks

Among the planning problems discussed in this survey,

dynamic planning for multiple workers is the most chal-

lenging. We review existing literature with the the ob-

jectives to maximize the total number of assignments [38],

maximize the total payoff [40, 193, 248] or minimize the

total travel distance [119, 158].

Maximizing Total Number of Assignments. In

[38], the authors design an auction based framework.

In the framework, workers give out their bids according
to their best schedule if incorporating the new task and

the platform then selects a worker for the task.

Maximizing Total Payoff. Tao et al. [193] devise two

algorithms, Delay-Planning and Fast-Planning to solve

the problem. In Delay-Planning, the worker, who has

not finished his/her currently assigned tasks, will not

be allocated to the newly arrived tasks. Instead, the

route of a worker in Fast-Planning may be updated

when new tasks arrive. Both [40] and [248] focus on

maximizing the total payoff in another type of applica-

tion, ride sharing. Asghari et al. [40] propose a branch-

and-bound solution to find the optimal routes. Zheng

et al. [248] devise an order matching based solution.

Minimizing Total Travel Distance. Both [158] and

[119] aim to minimize the total travel distance while

trying to serve all requests. Ma et al. [158] first study

the dynamic task planning for ride sharing service on

a road network. A filter-and-refine based framework t-

share is devised with grid index. Based on a similar

framework, Huang et al. [119] design a trie based data

structure called kinetic tree. The kinetic tree applies

the procedure of insertion to update the route of each

worker.

3.6.3 Summary on Dynamic Planning

Table 6 compares existing works on dynamic planning.

Existing studies on dynamic planning, particularly those

for ride sharing service, has two main limitations. First,

the optimization objectives in some papers are conflict-

ing (e.g., [158] and [119]). Second, some solutions are

inefficient. Specifically, some algorithms are inefficient

when the capacity of workers becomes larger. For ex-

ample, [248] restricts that the capacity is no more than

2 and [119] can not response in real time anymore when

the capacity becomes 6 (see experiments in [212]). Ma-

jor solutions rely on inefficient insertion procedure [119,

158]. To address these limitations, Tong et al. [212]

abstract a unified formulation of dynamic planning in

sharing transportation, i.e., URPSM problem, which

generalizes the previous two objectives. They further

design a novel dynamic programming based insertion

operation to improve the efficiency. They compare their

solutions with the state-of-the-art algorithms on two

large-scale datasets, i.e., the GAIA datasets [22] col-

lected by DiDi Chuxing and the NYC datasets [16] col-

lected from the taxis in New York City. Experiments on

these two datasets show that their framework prune-

GreedyDP outperforms t-share [158] and kinetic [119].

3.7 Discussions

We summarize representative studies on each category

of task assignment in Table 3 (static matching), Table 4
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(dynamic matching), Table 5 (static planning) and Ta-

ble 6 (dynamic planning). Almost all these papers fo-

cus on the micro-tasks rather than macro-tasks. This is

because a macro-task (e.g., mapping a city) is usually

decomposed into large numbers of micro-tasks (e.g.,

geotagging a landmark in this city) on real-world plat-

forms. Then the algorithms can still be used to deter-

mine the allocation between workers and decomposed

micro-tasks. Comparing these studies, many focus on

the dynamic scenario instead of the static scenario and

there are more papers on matching than planning. It

seems that the offline-guide-online technique is helpful

to obtain a better competitive ratio in dynamic task

matching under the known i.i.d model or the known

adversarial distribution model. We also observe that

there is no competitive algorithm in dynamic planning.

Thus, the offline-guide-online technique from dynamic

matching may be a starting point to devise competi-

tive algorithms for dynamic planning. Finally, despite

extensive research on either static planning or dynamic

planning, there is still no comprehensive evaluation on

these solutions either empirically or theoretically.

4 Quality Control

One characteristic of crowdsourcing is that tasks are

performed by workers of diverse quality. Quality control

aims to ensure high-quality task completion in presence

of diverse worker quality, which is achieved by allowing

multiple workers to perform the same task. Quality con-

trol in traditional crowdsourcing roughly deals with two

issues: (1) how to quantify the quality of workers and

tasks; and (2) how to aggregate results from workers

of diverse qualities to meet the quality requirements of

tasks. The spatiotemporal factors add new dimensions

in both issues, which we discuss in this section.

4.1 Quality Modeling

The definition of worker and task quality is application-

specific. We focus on the worker and task quality related

to spatiotemporal factors.

4.1.1 Quality of Worker

First we discuss worker quality used in traditional crowd-

sourcing (inherent worker quality) and then the new

factors in spatial crowdsourcing (spatiotemporal related

worker quality). Finally we briefly review the methods

to estimate the quality of workers.

Inherent Worker Quality. Worker quality in tradi-

tional crowdsourcing can be modeled by worker proba-

bility [53, 105, 210], confusion matrix [216, 223] and

diversity of skills [115, 247]. Specifically, the worker

probability approach uses a single value to model the

quality of a worker. The value can be the accuracy, con-

fidence, experience or reputation of the worker. A large

value normally means a high worker quality. However,

the single-valued quality may not suffice to characterize

the worker quality for some complex tasks. Hence multi-

dimensional approaches such as vectors and confusion

matrices are proposed to describe worker quality. The

elements in the vectors or confusion matrices represent

various skills of workers and the conditional probabili-

ties with different truth values. For example, a normal-

ized four-dimensional vector (0.30, 0.78, 1.00, 0)T may

represent a worker’s abilities on Java, Python, Ruby

and C#. Each row of a confusion matrix is the probabil-

ity distribution under the condition of different correct

answers. In general, the vector and matrix approaches

characterize workers in more detail and outperform the

single-valued worker probability model [249].

Spatiotemporal Related Worker Quality. In spa-

tial crowdsourcing, quality of workers is often affected

by extra spatiotemporal constraints. For example, in

addition to an inherent quality as mentioned above,

each worker is also assumed to have a distance-aware

quality in crowdsourced POI labeling applications [117].

In fact, it is common for spatial crowdsourcing applica-

tions to assume that workers can only reliably perform

tasks within a certain range [133, 206].

Assessment of Worker Quality. The assessment meth-

ods of worker quality vary for different aspects of worker
quality. Assessment of the inherent quality is usually

based on historical data [63, 65, 133, 238]. For exam-

ple, the historical accuracy to perform tasks is used to

estimate the accuracy of a worker to perform future

tasks [65, 238]. Spatiotemporal related quality is often

set via various spatiotemporal data processing models.

For distance-aware quality, parameter estimation meth-

ods like Bayesian [100, 167, 168] and Maximum Like-

lihood estimation [117] are adopted to evaluate worker

qualities with different distance sensitivities.

4.1.2 Quality of Task

On the one hand, similar to traditional crowdsourcing,

the quality of a crowdsourcing task is evaluated by re-

liability, which is usually formalized as the probability

that over 50% workers correctly answer the task [133,

181, 220] or the chance that as least one worker success-

fully completes the task [103, 241]. Specifically, [133]

was the first work to consider the quality issue in spa-
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tial crowdsourcing. These studies [133, 181, 220] focus

on the spatial tasks that needs a qualified answer, e.g.,

spatial data collection by taking photos. Therefore, the

requester of the task usually has an expectation of the

final answers. Differently, another type of tasks only

needs to be successfully completed by one worker, e.g.,

the on-demand taxi calling service in DiDi Chuxing [4].

Thus, such studies [103, 241] focus on the probability

that at least one worker can eventually finish the task.

On the other hand, unlike the crowdsourcing tasks

commonly seen in traditional crowdsourcing, the spa-

tiotemporal factors may directly reflect the quality of

tasks in spatial crowdsourcing.

Latency as Task Quality. Latency of tasks is closely

related to the quality of service for a spatial crowd-

sourcing platform. Specifically, Zeng et al. [233] con-

sider the maximum latency of all tasks as a criterion

for task quality. This criteria is commonly used in real-

world applications like Facebook Editor [5] and Open-

StreetMap [13]. Differently, Das et al. [75] consider the

average latency of all tasks as a criterion for task qual-

ity. The average latency is usually considered as the

quality of tasks in taxi dispatching platform (e.g., Uber [17]

and DiDi Chuxing [4]) or food/parcel delivery platform

(e.g., Meituan [26] and Cainiao [3]).

Diversity as Task Quality. Diversity is particularly

important for event detection or labelling applications.

For example, a POI may need to be labelled multiple

times by different workers so that reasonably accurate

and complete information about the POI can be ob-

tained [118]. Cheng et al. [65] first consider the diversity

in the quality of tasks. They observe two types of di-

versity from the tasks in spatial crowdsourcing: spatial

diversity and temporal diversity.

Specifically, spatial diversity is important when some

tasks ask the workers to take photos/videos of the city

landmarks from different angles. When there are r work-

ers around the task, the authors use the entropy to de-

fine the spatial diversity (SD) as

SD = −
r∑

j=1

Aj

2π
· log(

Aj

2π
), (1)

where Aj is the angles between two results (photos).

Temporal diversity is important when some tasks re-

quire the workers to complete the tasks at different time

intervals. For instance, a vacant parking space needs to

be monitored at different time windows [65]. If there

are r workers who will be working at each time interval

of the whole working period T , the temporal diversity

is also defined based on the idea of entropy as

TD = −
r+1∑
j=1

tj
T
· log(

tj
T

), (2)

where tj is the j-th time interval.

The two kinds of diversity can also be combined to

assess the spatiotemporal diversity (STD) of a task:

STD = β · SD + (1− β) · TD, (3)

where β is a parameter to balance the importance of

spatial diversity and temporal diversity.

4.2 Result Aggregation

Given the worker quality and the results from multiple

workers, aggregation techniques derive the final result

for each task so that the quality requirements of tasks

can be satisfied. Typical aggregation techniques [249]

include Majority Voting [53, 140], Weighted Majority

Voting [115, 147], Probabilistic Graphical Models [77,

174], etc. Aggregation techniques in spatial crowdsourc-

ing need to account for spatiotemporal factors, which

brings in new aggregation techniques.

In the task of real-time urban traffic speed esti-

mation, workers are assigned to collect or voluntarily

contribute traffic data in different locations, and the

goal of the task is to reliably estimate the traffic speed

in the road network. For example, in [116, 155], the

systems recruit workers to probe the real-time traffic

speed of some roads, while Waze [19] collects traffic

data from users’ mobile phones to estimate the aver-

age speed when its users drive around with the app

turned on. Existing studies generally ignore the qual-

ity of workers, implicitly assuming that the data col-

lected by workers are reliable. In addition, it is often the

case that limited number of workers can be recruited
to measure the traffic speed because of the budget con-

straint, i.e., only the speeds of part of road segments are

available. Therefore, the problem boils down to choos-

ing the optimal subset of road segments to measure

in order to maximize the quality of speed estimation

of the entire road network. Hu et al. [116] study the

real-time urban traffic speed estimation problem where

only the speeds on a predefined number of roads (seeds)

can be obtained by spatial crowdsourcing. They pro-

pose five algorithms (SupGreedy, Random, MaxCov,

CovGreedy, HybridGreedy) to select seeds and present

a two-step model to estimate the speeds of other roads,

taking advantage of the correlation among roads. Specif-

ically, the first step constructs a probability graphical

model to infer the traffic trend and the second step

estimates the traffic speed using a hierarchical linear

model. Evaluations on the taxi datasets [1] collected

in Beijing and Nanjing show a traffic speed estimation

accuracy around 80%. Similar to [116], Liu et al. [155]

capture two statistical properties of speed, periodicity
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Table 7: Comparison of representative studies on quality control in spatial crowdsourcing.

Reference
Quality Modeling

Aggregated Method1

Worker Task
[133] probability reliability majority voting
[233] probability latency and reliability majority voting
[65] probability diversity and reliability majority voting
[220] probability reliability weighted majority voting
[103] probability reliability -
[241] probability reliability -
[100] probability reliability bayesian estimation

[167, 168] probability reliability bayesian estimation
[117] probability and distance reliability expectation maximization

1 In the column of aggregated method, we use “-” to represent that the paper aims to guarantee
that at least one worker can successfully complete the task (e.g., on-demand taxi-dispatching)
and hence the proposed method does not need to consider the aggregation.

and correlation, using a probabilistic graphical model.

They propose to select the best set of workers to probe

the real-time traffic speed for the corresponding roads

using a hybrid greedy-based algorithm with an approx-

imation ratio above (1− 1
e )/2. The traffic speed of the

entire road network is then estimated using speed prop-

agation based on the model constructed beforehand.

The final false estimation rate of the proposed method

on the gMission dataset [63] is around 0.08.

In the crowdsourced POI labeling task, a graphical

probability model is proposed to deduce the correct la-

bels [117]. Assuming that the labeling results follow a

conditional distribution on worker quality, POI influ-

ence and the true labels, the authors propose a Max-

imum Likelihood Estimation (MLE) and Expectation

Maximization (EM) method to estimate the unknown

probability parameters and labeling results.

In the task of crowdsourced event detection, reports

from different workers are aggregated to detect the true

event [100, 168]. In [168], the problem is formulated as

truth inference under missing or wrong reports. The

authors model missing and wrong reports based on the

location popularity, the truth of events and the partic-

ipant reliability, and propose a recursive inference al-

gorithm to infer the latent variables and the truth of

events. The method is extended in [100] by considering

the state of event as a function of time. The authors

design inference algorithms to update the conditional

probability of report and variables recursively until the

true label of event converges. The Kalman filter is also

used to improve the approximation to the event truth.

In the tasks of collaborative mapping, workers of-

ten voluntarily participate in map making without fi-

nancial compensation. In such applications (e.g., Open-

StreetMap [13] and Wikimapia [29]), the major purpose

of the macro task is to map a large region (e.g., city),

which can be decomposed into large numbers of micro-

tasks (e.g., mapping a landmark). Quality control for

such macro-tasks, i.e., obtaining the qualified results of

the macro-task, consists of three steps.

– Assessment of worker/task quality. Since the

workers are usually volunteered, the qualities of work-

ers and tasks may notably differ in practice [114,

179]. On one hand, the inherent quality of worker

is usually based on historical records and the user

profiles [236]. On the other hand, the quality of task

can be evaluated based on spatiotemporal diver-

sity [65, 70]. Existing work also uses the densities

of the tasks to assess the quality of task [70], e.g.,

the number of provided answers over the area of the

region, the number of volunteered workers over the

population of the region, etc.

– Aggregation of micro-tasks. With the decompo-

sition of the macro-tasks, the results of each micro

tasks can be independently aggregated. Therefore,

typical aggregation techniques include voting [249]

and rating [180] can be applied. Some platforms like

OpenStreetMap [13] also allow the expert workers

to help validate the aggregated answers.

– Removal of inconsistencies. Finally, the results

of some micro-tasks may be conflicting from the

global view of the macro-task, e.g., administrative

boundaries self-intersect or split instead of being

closed-loop sequences of roads. Thus, existing work

also investigates removing the consistencies between

the micro tasks. KeepRight [24] is a data consistency

check tool for OpenStreetMap which can detect er-

rors in the map data, such as loops, overlapping

ways and missing boundaries. Hashemi et al. [110]

present a similarity-based framework to detect the

logical, topological inconsistencies according to the

spatial relationships of micro-tasks.

A few studies have also explored deep learning [56] in

collaborative mapping.
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4.3 Discussions

In a sense, quality control and task assignment in spa-

tial crowdsourcing are interwoven. Table 7 summarizes

existing studies on quality control.

On the one hand, the quality metrics of workers and

tasks in Sec. 4.1 can be directly applied as either a con-

straint or an objective in the task assignment problems

in spatial crowdsourcing. For example, in [65], max-

imizing the expected spatial/temporal diversities and

the smallest reliability among all tasks are regarded as

part the objective of task assignment. In the maximum

correct task assignment problem [133], a correct match

between a task and assigned workers should satisfy two

spatial constraints: (i) tasks should be in the spatial

region of assigned workers; (ii) aggregated reputation

of workers should exceed a preset threshold of tasks.

On the other hand, the aggregation techniques in

Sec. 4.2 can be combined with effective task assignment

to further improve the quality of task completion. For

example, in crowdsourced POI labeling, the authors di-

vide the problem into label inference and task assign-

ment [117]. In label inference, the accuracy of a label

is determined by worker quality and POI influence. In

task assignment, they use MLE to estimate the param-

eters mentioned above and the final results of labels.

Then they adopt a greedy based algorithm which selects

the assignment with maximum accuracy improvement

for current workers. In [116], the speed estimation task

is completed in two steps. The first step is task assign-

ment which selects K roads that can best perform speed

estimation. After obtaining the speeds of K roads, the

second step is to infer the speed of other roads based

on the these K roads.

5 Incentive Mechanism

Any crowdsourcing involves certain incentive mecha-

nisms to attract active and qualified workers. Incentive

mechanisms determine the rewards to workers such that

more workers can be motivated to perform the tasks.

Compared with the incentive mechanisms in traditional

crowdsourcing, incentive mechanisms in spatial crowd-

sourcing not only need to attract the interests of work-

ers (which is similar), but also to involve reliable work-

ers to physically move to the location of tasks (which is

unique). Since the locations of workers may change over

time, the incentive mechanisms in spatial crowdsourc-

ing also need to account for the spatiotemporal factors.

In this section, we first introduce the commonly used

evaluation metrics in the design of incentive mecha-

nisms (Sec. 5.1). Next, we divide existing works into two

categories: posted price models (Sec. 5.2) and auc-

tion based models (Sec. 5.3). In posted price models,

the platform first determines the reward for workers

and workers can only accept it or not. Conversely, in

auction-based models, workers can first submit their

expected reward and the platform then determines the

rewards to the workers afterwards. Finally, we compare

existing studies in Sec. 5.4.

5.1 Evaluation Metrics

An incentive mechanism is assessed from two aspects,

algorithm metrics and mechanism metrics.

Algorithm Metrics. In spatial crowdsourcing, an in-

centive mechanism is often an algorithm. Thus, the

common algorithm metrics are also used to assess the

efficiency and effectiveness of a mechanism.

– Complexity. Complexity analysis includes the run-

ning time and memory usage of the algorithm, which

reflects the efficiency of an incentive mechanism. In

particular, the computational efficiency of a mech-

anism represents whether the algorithm can be ter-

minated in polynomial time.

– Approximation/Competitive Ratio. Approxi-

mation ratio and competitive ratio guarantee how

bad an algorithm is compared with the optimal so-

lution in the worst case in the offline scenario and

the online scenario, which reflect the effectiveness of

an incentive mechanism.

Mechanism Metrics. As a functional mechanism, an

incentive mechanism should have the properties below.

– Truthfulness. A truthful mechanism guarantees that

workers always submit the truthful information (e.g.,

the expected reward based on his/her private eval-

uation) to the platform. In other words, they can-

not obtain more revenue by submitting false infor-

mation about themselves, where the revenue of a

worker represents his/her reward minus his/her cost

to perform the task.

– Individual Rationality. An individually rational

mechanism guarantees that each participated worker

will obtain a non-negative revenue, i.e., the reward

to the worker is no less than the cost of the worker

to perform the task.

– Budget Balance. A budget-balanced mechanism

guarantees that the total reward to workers does

not exceed a given budget, i.e., the mechanism does

not need more budget from outside.
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5.2 Posted Price Models

The posted price model is widely used in applications

like taxi dispatching (e.g., Uber [17]) and food delivery

(e.g., Meituan [26]). In this model, the platform de-

termines the reward to the worker and the worker can

only decide whether to accept the task or not. Incentive

mechanisms following this model can be further divided

into two types, Supply-and-Demand-Aware Model and

Quality-Aware Model. In the first type, the rewards are

mainly determined based on the comparison between

supply (i.e., the number of workers) and demand (i.e.,

the number of tasks). In the second type, the rewards

are mainly determined based on the quality of workers

or the quality of tasks.

5.2.1 Supply-and-Demand-Aware Model

In spatial crowdsourcing applications, the supply (i.e.,

the number of workers) and the demand (i.e., the num-

ber of tasks) often vary in space and time [208]. The

corresponding incentive mechanism should reflect the

spatiotemporal dynamics between supply and demand.

That is, the reward to the worker and the payment of

the requester should be dynamic, i.e., dynamic pricing.

Compared with the traditional fixed price strategy (i.e.,

static pricing), the incentive mechanisms based on this

model are more likely to obtain higher total revenue,

which has already been validated in real-world applica-

tions e.g., the surge pricing in Uber [17].

In the model, a base price represents the long term

unit price, which is usually determined based on prior

knowledge of the markets. According to the dynamics

of supply and demand, an incentive mechanism changes

the unit reward on basis of the base price or the most

recently used price.

A well-known adoption of this model is the surge

pricing in Uber [17], which has been studied in [54, 61,

122, 138, 157]. Specifically, during times of high demand

for rides, the unit fare may change by multiplying the

base price with a multiplier accordingly to the incen-

tive mechanism of surge pricing. Thus, the areas with

higher multipliers usually indicate a steady stream of

ride requests (i.e., tasks), where drivers (i.e., workers)

will be attracted to come to. As a result, this incen-

tive mechanism will eventually ensure that the pickup

is quick and reliable. Experiments show that the surge

pricing strategy not only reduces the waiting times of

tasks, but also improves rewards for workers [157].

The supply-and-demand-aware model has also at-

tracted extensive academic research.

Banerjee et al. [44] apply queuing theories to analyze

the incentive mechanisms in ride sharing. They pro-

pose a single-threshold based dynamic pricing, where

the unit fare for tasks reduces to a lower value if the

number of workers is above the threshold. They find

that the single-threshold dynamic pricing is robust and

can be applied to find an optimal base price.

Both [45] and [60] apply Markov process to deter-

mine the fare to tasks and the reward to workers. Baner-

jee et al. [45] still assume that tasks appear on the

platform following the queuing model and their pric-

ing strategy is determined by Markovian transitions be-

tween independent state (i.e., the distributions of work-

ers on the platform). They obtain the approximate solu-

tion by relaxation techniques. Chen et al. [60] consider

more spatiotemporal issues, e.g., travel time and driver

direction. They use Markov Decision Process (MDP) to

formulate the problem, i.e., the driver distribution on

each vertex of graph as a state, the throughputs of tasks

on each edge as actions, and the transitions between

states as the revenue. Even though it is PSPACE-hard

to solve MDPs, they design an polynomial-time algo-

rithm to find an approximate result.

Differently, Tong et al. [211] use bipartite graphs

to model the Global Dynamic Pricing (GDP) problem.

They aim to find the optimal pricing strategy along

with the task assignment. First, they propose a My-

erson Reserve Price based algorithm to determine the

base price for each urban area. Based on this base price,

they further propose a matching based algorithm with

an approximation ratio of 1 − 1/e ∼ 0.632 to dynam-

ically adjust the unit price for each area according to

the dynamics of supply and demand.

Other studies [39, 90, 185] focus on the incentive

mechanisms specifically for ride sharing. Fang et al.

[90] use subsidies to provide incentives to workers such

that enough supplies can be ensured. Their experiments

show that subsidies are effective to avoid supply short-

ages. Asghari et al. [39] take the future changes of sup-

ply and demand into consideration. Their intuition is

that in regions where the supply is abundant, lower-

ing the prices can lead to higher demand which in turn

increases the number of requests.

Shen et al. [185] integrate the task planning into

the design of incentive mechanisms in dynamic sce-

nario. They develop an Integrated Online Ridesharing

Mechanism (IORS), which satisfies desirable properties

such as truthfulness, individual rationality, and budget

balance. Their experiments show that compared to an

auction-based mechanism [68] (which we will introduce

later), IORS achieves a very close performance with

substantially less computational time.
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5.2.2 Quality-Aware Model

Sometimes tasks are expected to be accomplished with

high quality, especially in applications like crowdsourced

spatiotemporal data collection. The quality-aware model

takes quality into account when providing incentives

to workers. We focus on how to design effective in-

centives (i.e., determine the reward to attract reliable

workers), which is related to, but different from qual-

ity control in Sec. 4. According to the types of qual-

ity discussed in Sec. 4, we divide incentive mechanisms

using quality-aware models into two types, quality-of-

worker-aware [219, 226, 231] and quality-of-task-aware

[151, 163]. Note that most of the studies above are un-

der a reward budget constraint, i.e., the total rewards

of workers should not exceed the budget of the task.

Quality-of-Worker-aware. Studies of this type con-

sider the reputation of workers [219, 231] or the will-

ingness of workers in terms of spatial factors [226] when

deciding the reward regarding the quality of workers.

Yu et al. [231] and Wang et al. [219] model the

quality of workers with their reputation. They both as-

sume that workers are classified into three kinds: high

reputation, medium reputation or low reputation. The

rewards of workers are determined by the reputation

level, i.e., the worker with higher reputation will obtain

higher reward. However, a worker with low reputation

will not be paid, since they assume the requester does

not like to engage such a worker.

Wu et al. [226] consider the distance between work-

ers and tasks. In general, workers prefer tasks nearby

[173]. Therefore, in [226], extra remote subsidies should

be paid if workers far away are selected. The subsidy

increases linearly with the distance between the worker

and the task but no higher than a threshold. The final

reward for a worker consists of the base price (calcu-

lated with the local average payment per unit time),

the subsidy, and the extra tips for more incentives.

Quality-of-Task-aware. Studies in this type consider

the latency [163] or the spatial diversity [151] with re-

gard to quality of tasks.

Mitsopoulou et al. [163] try to minimize the latency

of tasks by incentive mechanisms. They propose an adap-

tive pricing policy. Specifically, workers will receive a

penalty if they do not respond immediately, i.e., work-

ers providing responses with longer latency will get less

reward, and the penalty increases with the latency. The

parameters of the reward function can be tuned for ev-

ery worker. So by adjusting the parameters, the plat-

form can make more workers respond to the tasks, or

make workers respond more quickly.

Liu et al. [151] provide incentives to workers in con-

sideration of the spatial diversity. They study the case

Fig. 6: Workflow of a basic auction model for incentive

mechanism design in spatial crowdsourcing. Step (1):

Announcement; Step (2): Bidding; Step (3): Rewarding.

where there is a task which needs to collect data from

different places and propose a price adjustment func-

tion. This function allocates more money to the workers

doing tasks in such places where data already collected

is less than the expected amount. As a result, more

workers will be attracted to such places, and the imbal-

ance of data collection among different places can be

mitigated. With enough data in each place required by

the task, higher quality can be achieved.

Many real applications apply the idea of giving more

rewards to remote places for more data, considering

the spatial diversity. Pokémon Go [14] is among one

of the most successful. In this gamification based spa-

tial crowdsourcing platform, users can use their mobile

phones to track and catch Pokémon (virtual monsters).

According to a recent study [203], the platform can also

collect the spatial data via GPS. By placing attractive

Pokémons at different locations, the platform can stim-

ulate players to go there. As a result, diversified and

qualified data can be collected.

5.3 Auction based Model

Posted price models determine the reward to workers

based on the estimated expectation of workers. When

the estimation is wrong or unavailable, the reward might

be improperly set. Auction based models overcome this

disadvantage by permitting workers to bid the task with

their own expectation (i.e., private information includ-

ing the reward they expect, etc.) and then determining

the reward to the worker afterwards. We first introduce

the workflow of the auction model in Sec. 5.3.1, and

then review the representative works in Sec. 5.3.2.

5.3.1 Workflow

Fig. 6 illustrates the workflow of a basic auction model.

It includes three steps.

(1) Announcement. The platform first announces the

task to the workers who are possible to complete it

under the spatiotemporal constraints.
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(2) Bidding. After receiving the announcement from

the platform, workers bid based on their private in-

formation (e.g., submit their expected payment) to

the platform. In this step, a worker can be strategic

and selfish. Hence he may submit the fake infor-

mation to earn higher reward (i.e., an untruthful

worker). The incentive mechanisms should guaran-

tee the truthfulness of the worker.

(3) Rewarding. The platform decides the reward ac-

cording to the collected private information. Be-

sides, the platform somtimes also needs to deter-

mine the task assignment along with the reward.

Next we review representative auction based incen-

tive mechanisms. Since the first step of announce-

ment is the same for most mechanisms, we mainly dis-

cuss the bidding and the rewarding procedures of

different mechanisms as well as their performances.

5.3.2 Representative Auction based Mechanisms

We review auction based incentive mechanisms for two

applications, ride sharing [37, 40, 237] and citizen sens-

ing services [68, 244].

(i) Auction based Incentives for Ride Shar-

ing. Both [40] and [37] focus on incentive mechanisms

to maximize the total revenue of the platform, i.e., total

payment of requesters minus the total rewards to work-

ers. They both use an auction based model to determine

the reward to the worker along with the assignment

of tasks. Specifically, after receiving the announcement

from the platform, the worker will locally calculate the

updated route which is the most profitable to complete

this new task. Next, the worker will bid their expected

reward and the calculated route to the platform. Fi-

nally, the platform will assign the task to the worker

with the highest revenue from this task.

In [37, 40], the payment of requester is determined

based on the calculated route of its assigned worker.

In [40], the authors apply a first-price auction scheme

(i.e., to pay the highest reward to the worker with

highest bid) to determine the reward to the worker

while in [37] the researchers use the second-price auc-

tion scheme (i.e., to pay the second highest reward to

the worker with highest bid) to determine his/her re-

ward. Since a second-price auction model can guaran-

tee a few promising mechanism properties, the incentive

mechanism used in [37], SPARP, is truthful and indi-

vidually rational. Finally, they conduct the experiments

on the real-world datasets of New York City’s Taxi [16].

Experimental results show that [37] can obtain more to-

tal revenue than the first-price auction scheme.

Zhang et al. [237] adopt another auction model, dou-

ble auction. In their incentive mechanism, both work-

ers and requesters provide their bids based on private

information (i.e., the expected reward to workers and

the expected payment of requester) to the platform at

the same time. After receiving the private information

from the two sides of the market, the platform will make

a task matching between workers and requesters, and

determine the actual reward and the actual payment.

They also design a discounted trade reduction mech-

anism to make a discount in both actual reward and

actual payment, DTR, which is truthful, individually

rational and budget balanced.

Cheng et al. [68] study the incentive mechanism de-

sign in the last-mile delivery service. In the step of bid-

ding, the worker sends his/her direct travel distance and

a compensation rate (i.e., the cost in unit distance) to

the platform. The authors devise the bottom-up mecha-

nism to determine the actual reward along with routing

plan. Their mechanism is truthful, individually rational

and budget balanced.

(ii) Auction based Incentives for Citizen Sens-

ing. Zhang et al. [239] propose an auction-based incen-

tive mechanism in the online scenario. Specifically, each

worker dynamically appears on the platform, and pro-

poses his/her bid (including the expected reward) to the

platform. The platform assigns the tasks to the selected

workers and determines the reward to them, in order to

maximize the total utility. Their incentive mechanism

TOIM is computationally efficient, truthful, individu-

ally rational and profitable (i.e., the platform will get

a non-negative revenue from the mechanism).

Zhao et al. [244] also focus on the incentive mech-

anism design in the online scenario, with any mono-
tone submodular [166] objective function and a bud-

get constraint. In the bidding step, each worker sub-

mits his/her expected reward and the sets of tasks that

he/she would like to accomplish. In the last step, the

platform selects a subset of workers based on an adap-

tive threshold such that the total reward to these work-

ers does not exceed the budget. They propose two in-

centive mechanisms, OMZ and OMG, to handle the

cases when workers immediately leave the platform and

the workers can stay for a time period, respectively. The

mechanisms are are truthful and individually rational

with a competitive ratio of 0.25 and time complexity

of O(mnmin(m,n)) at each time, where m and n are

the number of requests and workers. To validate the ef-

fectiveness of the proposed mechanisms, they conduct

the experiments in the Wi-Fi signal sensing application

provided by [186]. The experimental results show that

both OMZ and OMG achieve the approximate result as

the offline optimal solution. In particular, OMZ is often

better than OMG in terms of effectiveness.
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Table 8: Comparison of representative studies on incentive mechanisms in spatial crowdsourcing.

Incentive Model Reference
Time

Complexity1 Ratio Truthfulness
Individual
Rationality

Budget
Balance

auction [40] - - % % %

auction [37] - - ! ! !

auction [237] - - ! ! !

auction [68] - - ! ! !

auction [239] O(1
ε
|W |3 log(|T |) O(1

ε
) ! ! %

auction [244] O(|T ||W |min(|T |, |W |)) 0.25 ! ! !

quality-aware [231] - - % % !

quality-aware [219] O(|W |) - % % !

quality-aware [226] - - % % !

quality-aware [151] O(|T | × (# of Time Windows)) - % % !

quality-aware [163] - - % % !

supply-and-demand-aware [211]
|G| log |G|+ |P |×

min(|T |, |W |)(log |G|+ |E|) 0.632 % % %

supply-and-demand-aware [44] - - ! % %

supply-and-demand-aware [60] polynomial - % % %

supply-and-demand-aware [39] O(|G|3) - % % %

supply-and-demand-aware [90] - - ! % %
1 In the column of time complexity, we use “-” to represent that the time complexity or ratio is not given in the paper. We

use T and W to denote the set of tasks and the set of workers respectively.
2 |G| is the number of regions, |P | is the number of discrete prices, and |E| is the number of possible assigned pairs of tasks

and workers.

5.4 Discussions

In summary, an incentive mechanism should motivate

workers to participate in the tasks. In spatial crowd-

sourcing, different workers may have different interest

in the task because of the variable spatial and temporal

information of workers and tasks. Thus it has become

a challenge how to design the incentive mechanism for

spatial crowdsourcing.

An incentive mechanism is assessed using two types

of metrics, i.e., algorithm metrics and mechanism met-

rics. As shown in Table 8, most efforts focus on the algo-

rithm metrics (especially the time complexity) of their

mechanisms. Although many incentive mechanisms are

computationally efficient (i.e., able to terminate in poly-

nomial time), the spatiotemporal dynamics may raise

a real-time requirement for practical incentive mecha-

nism design. Mechanism metrics are emphasized more

in auction models than in posted price models. This is

because the auction based model considers the partici-

patory of the workers before pricing for workers, and as

a result requires the mechanism metrics to guarantee

the robustness.

Besides, the formulation of the incentive models no-

tably varies even for the applications (e.g., for taxi dis-

patching [45, 60, 211]). Hence it seems necessary to

come up with a unified formulation such that the pro-

posed incentive mechanisms can be fairly compared in

terms of effectiveness, efficiency and flexibility. Further-

more, many existing works focus on maximizing the

revenue in short-term and it is still open how to design

an incentive mechanism for the long-term revenue.

Finally, it is worth mentioning that there is another

successful incentive besides the aforementioned ones:

volunteered based incentive. In practice, when the scale

of the whole task is large (e.g., editing the whole map

of world), it usually requires a large number of workers

which often leads to a extremely high payment. Thus,

a practical and efficient way to complete such tasks is

to get help from volunteer workers [85]. For example,

one of the biggest volunteer based community in spa-

tial crowdsourcing is the Humanitarian OpenStreetMap

Team (HOT) [23]. Since its foundation in 2010, HOT

has already had 170,252 registered volunteers and to-

gether completed 1,933,608 tasks related to environ-

mental and societal issues (e.g., disaster response and

risk reduction). The motivations of these volunteers

are either contributing to the greater good (e.g., users

in HOT) or gaining something by taking part (e.g.,

drivers in Waze [19]). However, rather than the algo-

rithmic/theoretic aspects of incentive mechanisms, ex-

isting works on volunteer-based incentives usually fo-

cus on the supporting tool designs to attract volun-

teers [85, 137], which is not the major concern in this

survey. We refer readers to [85, 136, 137, 152] on im-
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Fig. 7: Workflow of privacy protection for task assign-

ment in spatial crowdsourcing. Step (1): transforma-

tion; Step (2): assignment; Step (3): refinement.

portant issues in supporting tool designs for volunteer-

based incentive mechanisms.

6 Privacy Protection

As in traditional web-based crowdsourcing, privacy is

an important concern in spatial crowdsourcing. One

particular interest in spatial crowdsourcing is to protect

the location information of tasks and workers (and cer-

tain intermediate results) so that spatiotemporal tasks

can be released and performed without exposing the

physical locations of tasks and workers to malicious

users. Overall, privacy protection research in spatial

crowdsourcing is dedicated to design privacy-preserving

frameworks and techniques compatible for the core is-

sues in spatial crowdsourcing (e.g., task assignment [171]).

6.1 Generic Framework

Most studies on privacy protection in spatial crowd-

sourcing focus on privacy-preserving task assignment.

A generic privacy-preserving framework for task assign-

ment in spatial crowdsourcing consists of three steps.

Fig. 7 shows its workflow.

(1) Transformation. The locations of workers and (or)

tasks are transformed by some techniques.

(2) Assignment. The spatial crowdsourcing platform

performs task assignment based on the transformed

locations of workers and (or) tasks.

(3) Refinement. Workers confirm or refine the task

assignment results based on their true locations.

Depending on the location transformation techniques

and the assumptions on trusted parties, the step of re-

finement may be omitted. Furthermore, some privacy

protection schemes may involve auxiliary trusted servers.

In the context of spatial crowdsourcing, the spatial crowd-

sourcing platform (the platform for short) is usually

assumed to be untrusted.

Below we review representative studies that exploit

three categories of transformation techniques: spatiotem-

poral cloaking, differential privacy and encryption.

6.2 Spatiotemporal Cloaking based Transformation

Spatiotemporal cloaking protects location privacy by

hiding the locations inside a cloaked region.

In [217], the locations of workers are first submitted

to an extra trusted server. Then, the trusted server con-

structs a cloaked region around the worker’s actual lo-

cation for each worker based on locality-sensitive hash-

ing (LSH) [76], where both K-anonymity [192] and lo-

cality are preserved. The untrusted spatial crowdsourc-

ing platform can only access the above transformed spa-

tial cloak of each worker. Then an algorithm is devised

for searching the k-nearest tasks of a worker with the

help of the refinement by the trusted server, based on

which task assignment can be performed.

In [130, 131], the authors assume that the workers

trust each other but do not trust the spatial crowd-

sourcing platform. Each worker calculates his/her Voronoi

cell in a distributed manner and forms the spatial cloak.

Then a voting mechanism is designed through which

a set of representative participants are selected whose

cloaked regions should be sent out to the spatial crowd-

sourcing platform for querying the nearest tasks, during

withK-anonymity is preserved. These query results will

later be shared with the rest of the workers. As a result,

all the tasks are assigned to the nearest workers.

In [170], instead of a spatiotemporal point, each

worker submits a cloaked area including a spatiotem-

poral region a and the probability density function f

of the worker at each point in a. Based on the cloaked

locations of workers and exact locations of tasks, the

spatial crowdsourcing platform performs uncertain task

pre-assignment via the expected distances between the

tasks and workers. The pre-assignment results are sent

to the service of the workers and refined according to

the exact locations of the workers. Based on the meth-

ods in [170], [172] proposes a demo of a location-based

mobile Q&A application.

6.3 Differential Privacy based Transformation

Differential privacy [86] is a general-purpose approach

for privacy protection and has emerged as the de facto

standard for private data release. It releases data of a

group such that what can be learned from the released

data does not substantially differ regardless of the in-

clusion of a given individual’s data [87]. Below are some

works with different implementations of differential pri-

vacy for task assignment in spatial crowdsourcing.

In [197], the locations of workers are first submit-

ted to a trusted server and then transformed via Pri-

vate Spatiotemporal Decomposition (PSD) proposed in
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[71]. A PSD is a spatiotemporal index transformed ac-

cording to differential privacy, where each index node is

obtained by releasing a noisy count of the data points

enclosed by that node’s extent. The spatial crowdsourc-

ing platform then performs task assignment as follows.

For each task t the platform first queries the PSD re-

leased by the trusted server for a region where there are

workers near t with a high probability. Then the plat-

form geocasts the information of t to the workers in this

region. The workers who are willing to perform t send

a consent message back to the platform. The method

can be also extended to dynamic data [201].

In [124, 125], the authors investigate privacy protec-

tion in crowdsourced dynamic spectrum sensing. The

locations of workers are not transformed directly. In-

stead, the bids provided by all the workers are trans-

formed, which represent the worker’s cost for spectrum

sensing and are closely tied to the worker’s current lo-

cations. The transformation to protect differential pri-

vacy is based on the exponential mechanism [160]. Then

task assignment is modeled as a reserve auction prob-

lem and privacy-preserving methods for worker selec-

tion are proposed based on the transformation.

In [218], the authors study privacy protection in

crowdsourced urban sensing. To transform the loca-

tions of workers, the spatial crowdsourcing platform

first provides an obfuscation matrix and a data adjust-

ment function designed via differential privacy. The lo-

cation information is transformed by the obfuscation

matrix which encodes the probabilities of obfuscating

any one region to another. The corresponding data is

transformed by the data adjustment function. Note that

the platform cannot obtain the original data although

it provides the obfuscation matrix and data adjustment

function. After the transformed locations and sensory

data are uploaded to the spatial crowdsourcing plat-

form, the platform can infer the distribution of the data

in the sensed regions from the transformed data.

In [202], the authors propose a privacy-preserving

one-sided online task assignment scheme where tasks

appear dynamically. The locations of workers are trans-

formed by Geo-indistinguishability (Geo-I) [35], which

is a notion of location privacy based on differential pri-

vacy, and are submitted to the spatial crowdsourcing

platform in advance. Once a task appears, the trans-

formed location is submitted to the spatial crowdsourc-

ing platform. Subsequently, the spatial crowdsourcing

platform identifies a set of candidate workers who are

most capable to perform the task and sends the infor-

mation of these workers to the requester of the task. Fi-

nally, the requester of the task connects the workers one

by one bypassing the spatial crowdsourcing platform

and share the exact location to refine whom can com-

plete the task. The authors test their privacy-preserving

schemes on a taxi datasets called T-Drive [232]. Their

experimental results show the proposed techniques, al-

gorithms, and heuristics achieve high effectiveness and

low disclosure of the location information.

6.4 Encryption based Transformation

This line of research applies specific encryption tech-

niques on the locations of tasks and workers such that

particular calculation can still be performed on the en-

crypted data, e.g., calculating the distance between two

encrypted positions. Thus tasks can be assigned based

on the calculation results.

In [150], the locations of tasks and workers are en-

crypted via a Paillier cryptosystem [169]. According to

Paillier cryptosystem’s characteristics, the exact dis-

tance between two encrypted positions can be calcu-

lated without releasing the plain data. Hence the dis-

tances between the tasks and workers can be obtained

during task assignment. However the adoption of the

Paillier cryptosystem significantly increases the compu-

tation overhead. Thus the authors in [150] extend KD-

tree to SKD-tree in order to prune unnecessary Paillier

cryptosystem query or computation.

In [149], the authors take the velocity of workers

into consideration and propose a Paillier cryptosystem

[169] and ElGamal cryptosystem [95] based privacy pro-

tection method. Specifically, the locations of tasks and

workers are encrypted and the distance is computed in

a privacy-preserving way. The velocity of workers is also

encrypted and the travel time for a worker to move to

the position of a task can also be computed with pri-

vacy preservation. Thus each task can be assignment to

the worker with the minimum travel time.

In [148], researchers encrypt the locations of tasks

and workers and calculate the distance secretly via the

Paillier cryptosystem [169]. Distance comparison is per-

formed via the Yao’s protocol [146, 230], and each task

is assigned to the nearest worker. To improve the effi-

ciency, Geohash [7] is adopted to find the nearest work-

ers approximately.

In [175, 234], the information of tasks including their

positions are posed in the spatial crowdsourcing plat-

form in advance and thus are not protected. The work-

ers can browse the information and submit their travel

costs for different tasks instead of their exact positions

to the platform. The travel cost is encrypted into per-

turbed data via Bitwise XOR homomorphic cipher sys-

tem [242]. After receiving all the perturbed data from

the workers, the platform assigns tasks through a re-

verse auction based algorithm.
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Table 9: Comparison of privacy protection techniques in spatial crowdsourcing.

Transformation
Techniques

Reference
Protected

Components
Arrival

Scenario
Assignment

Goal
Without

Extra Server
Computation

Overhead

spatiotemporal
cloaking

[217] workers static nearest % low

[130, 131] workers static nearest ! low

[170] workers static
minimizing
total cost ! low

differential
privacy

[197] workers static
maximizing

total number
% low

[201] workers dynamic
maximizing

total number
% low

[124, 125] workers static
minimizing
total cost ! low

[218] workers static
quality of

sensed data ! low

[202]
tasks &
workers

dynamic
maximizing

total number ! low

encryption

[150]
tasks &
workers

static

nmaximizing
total number &

minimizing
total cost

% high

[149]
tasks &
workers

static nearest % high

[148]
tasks &
workers

static nearest % high

[234] workers static
maximizing
total utility

% high

6.5 Discussions

Table 9 shows representative studies on privacy pro-

tection using different transformation techniques. We

summarize their main characteristics below.

– Protected Components. Spatial cloaking based

and most differential privacy based methods only

protect workers. The reasons are two fold. (i) The

location privacy of workers is more sensitive than

that of tasks. (ii) It is non-trivial to extend spatial

cloaking and differential privacy based transforma-

tion techniques to the cases where two components

of data need to be protected.

– Applicable Task Assignment Categories. Most

existing privacy-preserving task assignment schemes

only apply to static arrival scenarios. Protecting dy-

namic location information is more difficult since

many transformation techniques require all data to

be protected to be known in advance. Since most

studies integrate privacy protection into the task

assignment framework, the applicable assignment

goals are constrained by the privacy protection meth-

ods. For example, in [130, 131, 148, 149, 217] the

goal is simply to assign the tasks to the nearest

workers. For other more complex goals, the assign-

ment methods are closely coupled with the privacy

protection methods and most of them are heuristic.

– Overhead. It adds extra overhead to protect pri-

vacy in task assignment. Encryption based methods

are often more computation-intensive than spatial

cloaking and differential privacy based methods, due

to the high cost of encryption/decryption and the

need for extra trusted servers for key distribution.

– Trade-off. The impact of enforcing privacy pro-

tection on the locations of workers and/or tasks de-

pends on the specific privacy-preserving technique.

If the transformation is performed through spatiotem-

poral cloaking or differential privacy, the effect is

mainly on the number of assigned pairs of tasks and

workers, as some pairs which satisfies the range con-

straint may not satisfy it anymore after their loca-

tions are transformed. However, the quality of each

assigned pair is not affected due to the refinement

step. If the transformation is performed through en-

cryption, the quality is not impacted as all the cal-

culation is exact. However, the low efficiency of en-

cryption is its main drawback.

In summary, a practical privacy-preserving task as-

signment scheme should protect at least the locations of

workers. Privacy protection brings extra overhead and

constraints to task assignment in spatial crowdsourcing.

In addition to task assignment, privacy protection

is also necessary in other core issues in spatial crowd-

sourcing. For example, privacy protection is combined

with quality control in [218], where an inference algo-
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rithm is designed to improve the inference accuracy for

the data transformed according to differential privacy.

In [123], privacy protection is combined with incentive

mechanism. Specifically, a reverse auction based incen-

tive mechanism is designed when considering the pri-

vacy requirement of different workers. Then, the data

collected via spatial crowdsourcing is published after

transformation through differential privacy.

7 Applications

Spatial crowdsourcing is closely tied to the physical

world and there have been various real-world applica-

tions. This section summarizes typical spatial crowd-

sourcing applications into two categories: sharing econ-

omy based urban services and crowdsourced spatiotem-

poral data collection.

7.1 Sharing Economy based Urban Services

Sharing economy based urban services refer to applica-

tions such as delivery and on-site services crowdsourced

to freelancers. In the context of spatial crowdsourcing,

a task in these applications is usually served by a sin-

gle worker and thus often involves no explicit quality

control (i.e., result aggregation). Popular applications

include on-demand taxi dispatching, ride sharing, food

delivery and on-site micro services.

On-demand Taxi Dispatching. It is one of the ear-

liest successful spatial crowdsourcing applications. Pas-

sengers appear dynamically and submit taxi requests

to platforms such as Uber [17] and Didi Chuxing [4].

The platform assigns taxis to passengers in real time

to pick up passengers. Hence in terms of task assign-

ment, on-demand taxi dispatching can be modeled as

a dynamic matching problem with diverse objectives

such as maximizing the total payoff or minimizing the

average latency of passengers.

Ride Sharing. This application is an emerging exten-

sion of on-demand taxi dispatching service often pro-

vided by the same companies, e.g., Uber [17] and Didi

Chuxing [4]. The key issue of ride sharing is to schedule

a route, which consists of a sequence of pickup loca-

tions and delivery locations for each passenger to min-

imize the total travel cost of the drivers (i.e., work-

ers) [158] or the average latency of the passengers (i.e.,

requesters) [228]. In terms of task assignment, ride shar-

ing is often modeled as a dynamic planning problem [40,

119, 158, 212].

Food Delivery. Food delivery services such as Grub-

hub [10] and Meituan [26] are similar to ride sharing in

terms of task assignment. Customers dynamically sub-

mit food delivery requests to the platform. The plat-

form then determines the price of the delivery requests

for the requesters and the schedules of the delivery re-

quests for the couriers. Similarly, food delivery services

are often formulated as dynamic planning [154].

On-site Micro Services. On-site micro services are

another successful adoption of spatial crowdsourcing.

Platforms such as TaskRabbit [15] and Gigwalk [8] con-

nect various domestic services, e.g., house cleaning, with

freelancers. Similar to on-demand taxi dispatching, task

assignment in on-site micro services can be considered

as a dynamic matching problem.

Discussions. Sharing economy for urban services of-

ten deal with highly dynamic data at urban scale. To

provide better quality of services, more efficient and ef-

fective task assignment algorithms are needed. Sharing

economy for urban services usually apply the incentive

mechanisms based on supply-and-demand-aware mod-

els and provide certain degree of privacy protection.

Nevertheless, there is a growing trend to introduce ad-

ditional incentive mechanisms into these applications to

consistently attract more users.

7.2 Crowdsourced Spatiotemporal Data Collection

Crowdsourced spatiotemporal data collection refers to

applications that crowdsource collection of various spa-

tiotemporal information to citizens. In the context of

spatial crowdsourcing, a task in these applications is

usually performed by multiple workers and involves cer-

tain spatiotemporal data processing. Tasks in this cat-

egory vary in real-time requirement and degree of spa-
tiotemporal data processing, but all involve quality con-

trol to aggregate highly qualified results.

Crowdsourced Event Detection and Labelling.

It is natural to crowdsource detecting and labelling of

urban spots or events to citizens. For instance, resi-

dents can contribute to POI labelling in the neighbour-

hood [117]. They can also report noise pollution [189],

air pollution [109] and weather conditions [200] in the

vicinity. Since such data are normally provided by un-

professional workers using noisy sensors, it is crucial

to aggregate sensory data from workers to control the

quality of the detection or labelling tasks. Truth infer-

ence is commonly used for quality control in crowd-

sourced event detection and labelling [162, 168].

Crowdsourced Map Applications. Spatial crowd-

sourcing can also be applied in more complex spatiotem-

poral data collection and processing such as map gener-

ation, real-time traffic speed estimation and road nav-

igation. For example, OpenStreetMap [107] is already
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Table 10: Categories of core issues in typical spatial crowdsourcing applications.

Category Reference
Task

Assignment
Quality
Control

Incentive
Mechanism

Privacy
Protection1

sharing economy
based

urban services

taxi
dispatching

[4, 17]
dynamic
matching

%
supply-and-

demand-aware
!

ride
sharing

[158, 212]
dynamic
planning

%
supply-and-

demand-aware
!

food
delivery

[10, 26]
dynamic
planning

%
supply-and-

demand-aware
!

on-site
micro services

[8, 15, 164]
dynamic
matching

%
supply-and-

demand-aware
!

spatiotemporal
data

collection

event
detection

and
labelling

POI
labelling

[117]
static

matching
expectation

maximization
% %

pollution
detection

[109, 189]
static

matching
aggregated
diversity

% !

event
detection

[30, 168]
dynamic
matching

bayesian
estimation

% %

map
application

map
generation

[62, 107]
dynamic
matching

aggregated
diversity

quality-
aware

!

speed
estimation

[116, 155]
static

matching
bayesian

estimation
% %

road
navigation

[19, 89]
static

planning
aggregated
diversity

% %

congestion
alert

[36]
dynamic
matching

expectation
maximization

% %

path
selection

[190, 235]
static

matching
expectation

maximization
% %

1 Some applications claim that privacy protection is considered but the detailed techniques are not specified.

the world’s largest crowdsourced mapping project that

creates a free and collaboratively editable map of the

world. Real-time traffic speed in a map can be inferred

by crowdsourcing speed estimation of a portion of seed

roads and jointly considering historical speed informa-

tion [116, 155]. Crowdsourced road navigation is viable

by collecting real-time traffic information, e.g., using

Waze [19] and constructing a landmark scoring model

for route recommendation [89]. Some other functions

in map applications, such as alerting traffic congestion

[36] or answering path selection queries [190, 235] could

also be crowdsourced by consulting nearby drivers and

picking out desirable answers. Quality control in these

applications is dedicated and sometimes is coupled with

the underlying spatiotemporal data processing process.

Discussions. Table 10 summarizes the aforementioned

applications in spatial crowdsourcing. Compared with

the sharing economy based urban services, task assign-

ment in crowdsourced spatiotemporal data collection

depends on the specific data to collect and varies in

the models. It can be formulated as static matching

(e.g., POI labelling [117]), static planning (e.g., road

navigation [89]), or dynamic matching (e.g., map gen-

eration [107]). It is important for crowdsourced spa-

tiotemporal data collection applications to attract the

highly qualified workers. Hence the incentive mecha-

nisms based on the quality-aware models are used to

motivate workers. While some pioneer studies have pro-

posed privacy protection schemes for certain applica-

tions in this category (e.g., pollution detection [162]

and map generation [62]), it is unclear whether privacy

protection methods suited for other applications have

been designed.

8 Open Problems

In this section, we discuss some important open prob-

lems in spatial crowdsourcing.

More Effective Task Assignment Algorithms. Task

assignment is central to spatial crowdsourcing, yet its

effectiveness is still not satisfactory for many real-world

applications. Particularly, emerging applications such

as on-demand taxi dispatching and ride sharing require

highly effective dynamic matching and planning algo-

rithms. Yet the competitive ratios of the state-of-the-art

algorithms for dynamic matching are often no higher

than 0.5 unless under some strong assumptions (e.g.,

one-sided [121], arrival rate [120]). It also seems hard

to propose competitive solutions to dynamic task plan-

ning under extreme cases. In particular, the worst cases

to prove the hardness result are usually impractical,

e.g., with the extremely short deadline [144, 193]. Thus,

existing studies (e.g., [119, 158, 193]) usually propose

heuristics without any theoretical guarantee. One op-
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portunity to improve the effectiveness of dynamic task

assignment is that practical applications may not strictly

require instant assignments. Therefore, it may be fea-

sible to wait for a reasonably short period and make

global assignments on a batch basis. However, it re-

mains open how to theoretically select the best single

batch or adapt the batch size in real-time to notably im-

prove the effectiveness of task assignment algorithms.

Indices for Spatial Crowdsourced Data. Efficient

spatial crowdsourcing requires not only efficient algo-

rithms but also efficient data structures, e.g., indices.

Indices for spatial crowdsourced data need to be opti-

mized for spatial queries and frequent updates. Some

indices (e.g., grid, R-tree [106], quadtree [178] and k-

d tree [49]) are proposed for spatial queries. Others

are proposed to handle the dynamics of spatiotempo-

ral data, such as 3D R-tree [194], HR-tree [165] and

TPR-tree [177]. Recently, Jonathan et al. [126] exploit

a pyramid multi-resolution index to speed up the re-

trieval of workers in a given area. However, dedicated

spatiotemporal indices are overlooked in existing spatial

crowdsourcing algorithms. It is largely unexplored how

to select or design suitable spatiotemporal indices and

co-optimize the end-to-end efficiency of spatial crowd-

sourcing algorithms.

Benchmarks for Spatial Crowdsourcing. Standard-

ized benchmarks are important for the continuous de-

velopment of spatial crowdsourcing research. There have

been many benchmarks for classical spatial data man-

agement. For example, DIMACS Implementation Chal-

lenge provides a set of benchmark instances for various

shortest path problems. However, there is a lack of sim-

ilar benchmarks for spatial crowdsourcing. Although

there are a few synthetic data generators for spatial

crowdsourcing [199], the lack of public real-world datasets

still presents a challenge to the development of spa-

tial crowdsourcing. The reasons of such a quandary are

twofold. First, the owners of real data are usually com-

mercial platforms that are not willing to share their

data. Secondly, although there are open-source spatial

crowdsourcing platforms such as gMission [63] and Me-

diaQ [25], they cannot collect large amounts of data due

to their limited scales.

9 Conclusion

In this paper, we surveyed the state-of-the-art research

on spatial crowdsourcing, with comprehensive compar-

isons between spatial crowdsourcing and general-purposed

crowdsourcing in terms of challenges and techniques.

We summarized existing literature on spatial crowd-

sourcing algorithms into four categories: task assign-

ment, quality control, incentive mechanism design and

privacy protection. Particularly, for task assignment,

we reviewed matching and planning models in static

and dynamic scenarios; for quality control, we discussed

quality models of tasks/workers and result aggregation

techniques; for incentive mechanism design, we presented

posted price models and auction based models; for pri-

vacy protection, we offered a general privacy protection

framework and compared three types of data transfor-

mation techniques. In addition, we studied emerging

representative spatial crowdsourcing applications and

explained how they are enabled by these techniques.

Finally, we identified some open problems for future re-

search in this active research area. We envision this sur-

vey as a timely reference and guideline for researchers

and practitioners in spatial crowdsourcing.
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