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ABSTRACT
We present VitaMon, a mobile sensing system that can measure the

inter-heartbeat interval (IBI) from the facial video captured by a

commodity smartphone’s front camera. The continuous IBI mea-

surement is used to compute heart rate variability (HRV), one of the

most important markers of the autonomic nervous system (ANS)

regulation. The underlying idea of VitaMon is that video recording

of human face contains multiple cardiovascular pulse signals with

different phase shift. Our measurement on 10 participants shows the

significant time delay (36.79 ms) between the pulse signals mea-

sured at the jaw region and forehead region. VitaMon leverages deep

neural network models to extract both spatial and temporal infor-

mation of the video to reconstruct a pulse waveform signal that is

optimized for estimating IBI. We evaluated VitaMon with a dataset

collected from 30 participants under various conditions involving

different light intensity levels and motion artifacts. With the 15 fps

video input (66.67 ms time resolution), VitaMon can measure IBI

with an average error of 14.26 ms and 21.65 ms using personal

and general model respectively. HRV features including geometry

Poincare plot, time- and frequency-domain features extracted from

the IBI measurement all have high correlation with the reference

signal.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; Empirical studies in ubiquitous and
mobile computing.
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Heart Rate Variability, Photoplethysmography (PPG), Remote PPG,
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1 INTRODUCTION
Heart rate variability (HRV), fluctuations in the interval between

consecutive heartbeats, is an important physiological marker that

reflects the changes in the sympathetic-parasympathetic balance of

the autonomic nervous system (ANS). HRV has proven its effec-

tiveness as a diagnostic tool in various research and clinical studies

related to cardiovascular disease, diabetic autonomic dysfunction,

hypertension, and psychiatric and psychological disorders. Further-

more, daily HRV monitoring could be useful for screening and

tracking the condition of individuals at risk to serious health is-

sues [15, 44, 49, 52, 61]. More generally, beyond just clinical use,

HRV measurements can also help to measure stress and engagement

levels of a person performing various tasks, and it can also help

monitor sleep quality [53, 55].

Conventional HRV measurement techniques, however, have two

significant drawbacks to be used for daily HRV monitoring. First,

they require additional electronic or optical sensing devices [8, 24,

50] that are often not available to most people. Second, most sens-

ing instruments need direct contact to the skin for reliable signal

acquisition, making daily continuous measurements tedious and

uncomfortable. For example, electrocardiograph (ECG) recording

devices require several electrodes to be carefully attached to differ-

ent body points making it impractical as a general daily use solution.

Recently, more practical photoplethysmogram (PPG)-based tech-

niques are available that measure cardiac activities based on video

recordings of a finger or a human face. However, most of them are

limited to detecting just the heart rate (HR) [32, 39, 46, 62].

In this paper, we propose a novel contactless HRV sensing system,

named VitaMon, to measure HRV from a video of the user’s face

captured by a smartphone front camera. Our system has two clear

benefits over prior techniques: (1) VitaMon does not require any extra

sensing device and uses a commodity smartphone’s front camera,

possibly with low resolution and frame rate, (2) sensing can be

done naturally and unobtrusively while the user uses the phone for

different purposes (e.g., plays games or video-chat). This opens up

new opportunities to apply real-time HRV sensing in mobile apps

– e.g. to track the stress and engagement levels of users playing a

mobile game or using an education app.

Building VitaMon required solving several challenges before mea-

suring HRV using front-camera videos became viable. The core of
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HRV monitoring is to calculate the precise intervals between the two

peaks of consecutive heartbeat cycles. Techniques have been pro-

posed to count the number of heartbeat peaks (HR) from the changes

of the reflected light intensity in the video recordings, but it has still

not been feasible to identify the exact peak times. The reflected light

signals captured in video recording often have unclear peaks due to

noise, different ambient light conditions, and motion artifacts (head,

face and hand movement), making it difficult to accurately detect

the peaks. Also, the low frame-rate of the front camera (e.g., 15 fps)

makes it difficult to estimate the exact times of heartbeat peaks as

the peaks may occur in between two consecutive video frames.

VitaMon addresses these challenges using two key insights. Firstly,

VitaMon takes multiple PPG readings from different facial areas in a

single frame whereas prior camera-based PPG techniques consider

facial video as a single image. Multiple facial regions carry pulse

signals from the heart at different time offsets and shifted phases,

which enables VitaMon to overcome limitations from low frame

rates and noise. Second, we observed that there is a strong temporal

correlation between PPG signal patterns and ECG signal patterns.

VitaMon utilizes the correlation to build a deep learning model that

generates exact heartbeat peaks from low-quality PPG signals.

We built a novel HRV estimation technique based on the above

two insights. The technique is designed with a two-stage Convolu-

tional Neural Network (CNN). The first network learns the correla-

tion between the ECG signals and the PPG signals (estimated from

the video), and firstly reconstructs a form of ECG waveform from

the captured video to identify which video frame includes a peak.

The second CNN learns the relationships between the facial images

(the reflected light intensity of the multiple facial regions) and the

temporal distance between the actual peak time and the image cap-

ture time. Based on the trained model, VitaMon estimates the exact

timestamp of the peak.

The contributions of this work are as follows:

• We design VitaMon a contactless HRV monitoring system

using videos of user’s face captured by a commodity smart-

phone’s front camera with low frame rate.

• Our motivational study shows that PPG-based heartbeat es-

timation with facial videos can achieve higher granularities

than the video’s frame rate. Such fine grain measurements

allow the detection of heartbeat intervals at millisecond-level

accuracy.

• We built a novel HRV estimation technique based on Convo-

lutional Neural Networks (CNN) that can accurately estimate

the exact timestamps of heartbeat peaks from a facial video.

• We evaluate VitaMon with data collected from 30 partici-

pants under different smartphone usage conditions. The re-

sults show that our technique can detect heartbeat intervals

only with 14.26 ms of errors. Also, it is robust against the

light conditions and motion artifacts. Finally, through a user

study, we show that VitaMon can be used in various practical

applications such as stress detection.

2 BACKGROUND AND RELATED WORK
Cardiac activity monitoring is the basis of many clinical, healthcare

and psychological condition monitoring applications. In particular,

heart rate variability (HRV) measurements can be used for many

applications from early-warning of impending cardiac disorders,

diagnosing various diseases, to activity-associated stress monitoring.

While HRV can be captured in several different ways, in this work,

we focus on the use of the photoplethysmogram (PPG) measure-

ment, a low-cost and easy-to-apply method for measuring heartbeat.

Nevertheless, since most clinical-grade PPG sensors still require a

physical attachment of the special sensor, there has been prior work

to alleviate such inconvenience and use camera images for PPG mon-

itoring [19, 31, 38, 45, 62]. In this section, we present background

information on how PPG sensors work and discuss how previous

work utilizes camera-captured data to design non-invasive systems

for measuring HRV.

2.1 Photoplethysmogram (PPG)
Photoplethysmogram (PPG), initially developed in the 1930s, is an

optical sensing technique for detecting heart pulse [20]. It is based

on the principle that blood absorbs light more than the surrounding

tissue; thus, variations in the blood volume will affect the transmis-

sion or reflectance of light correspondingly. The conventional design

of a PPG sensor includes a light emitting diode (LED) to illuminate

a region on the skin and a photodiode to measure the intensity of

the reflected light. This light intensity is inversely related to the

blood volume, therefore, the pulsatile component of the PPG signal

oscillates with every heartbeat cycle.

Being an easy-to-use, low cost, and convenient sensing technique

for understanding cardiac activities, PPG sensing technology has

been extensively studied, and have continuously improved over time

to the point where the accuracy of these measurements can be used

to compute HRV. However, despite its accuracy, the fact that PPG

measurements typically need a sensor continuously attached to the

skin limits the realization of ubiquitous monitoring applications [58].

2.2 Other HRV Monitoring Techniques
Aside from PPG-based HRV monitoring, sensors of different modal-

ity such as electrical, acoustic, seismic sensors can be used to mea-

sure the inter-beat interval of heartbeat, and this information can be

used to interpret HRV [12, 13, 65]. However, given that they require

cumbersome attachments to the skin for accurate measurements, the

HRV captured from these devices are mostly used within clinical en-

vironments [4]. Nevertheless, with recently introduced wearable and

mobile ECG monitors, there has been a number of efforts in measur-

ing HRV from mobile devices. The work by Nepi et al. compared the

performance of a Zephyr Bioharness ECG sensor to clinical-grade

devices to validate their clinical effectiveness [41]. Wippert et al.

show performance evaluations of different mobile ECG platforms for

detecting various cardiac activity features, which include HRV [64].

While these work along with may similar efforts [17, 27, 36] show

promising results for its applicability in various domains, usability

issues with these devices yet remain [63].

2.3 Remote PPG
Remote PPG techniques, which do not involve a sensor attached to

the skin, have been recently proposed to improve the convenience of

PPG measurement for daily monitoring. This body of work utilizes a

camera to capture subtle changes in the skin color as the pulse wave
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Related Work N Video Input Additional Processing Steps Ref. Signal Result (MAE)

[5] 5 30fps, 800x600 Fuse with additional ballistocardiographic signal ECG 24.4 ms

[14] 20 60fps, 720x480 Extract the interval from the pulse signal’s first derivative ECG 35.3 ms

[39] 14 30fps, 960x720
Filter out pixels covering eye area

Contact PPG 26 ms
Apply ICA on color channel signals to recover source signals

[47] 15 15/60fps, 1280x720 Filter out pixels covering hair, beard, eyebrows area Contact PPG 15.04ms

Table 1: Related work on non-contact HRV measurement in stationary condition using signal processing approach. N: sample size of
the study; MAE: Mean Absolute Error.

propagates from the heart through the body. This color change is

not visible with the human eyes but can be captured using an RGB

camera. For instance, Poh et al.[45] is one of the early works that

introduced a remote heart rate assessment technique using a webcam

under ambient light conditions, showing the potential to apply these

techniques in various applications. The main processing pipeline in

the proposed techniques generally includes the following steps: (1)

detecting face region in each input frame; (2) averaging the pixel

value of the face region in consecutive frames to reconstruct the pulse

signal; (3) Up-sampling or applying interpolation and bandpass filter

on the pulse signal; (4) Performing peak detection and count the

number of heartbeat. More recent works exploit the smartphone’s

camera to implement remote PPG using similar processing approach.

In particular, Kwon et al.[32] has demonstrated the feasibility of

using smartphone camera (iPhone) to estimate heart rate from facial

video recording and reported the error of 1.08% (beat per minute).

While being attractive for heart rate monitoring, remote PPG

schemes proposed until now are inefficient for HRV monitoring.

A primary reason is that HRV monitoring requires 100 Hz sam-

pling rate [56], whereas smartphone cameras operate at a slower

sampling rate (e.g., 15 Hz for smartphone front cameras). If the

camera captures videos at 15 fps, the granularity or time resolution

of the heartbeat peak detection would be 67 msec in the ideal case.

Furthermore, external lighting conditions and motion artifacts (es-

pecially in mobile context) would further complicate the process of

capturing accurate PPG measurements. While some work suggests

the use of signal processing to overcome these challenges [31, 33],

the low frame rate and resolution of the smartphone’s front camera

still heavily impact the sensitivity of HRV measurements [56]. For

instance, as shown in Table1, Davila et al.[14] showed that with

a similar processing pipeline mentioned above, they can perform

the IBI measurement with 35.3ms Mean Absolute Error (MAE) .

While Rodriguez et al. [47] reported a more promising result IBI

estimation (MEA 15.04ms) using a similar processing technique, it

is worth noting that the IBI estimation was evaluated against another

finger pulse sensor. Previous studies have shown that the interval

measured by pulse sensor even with sampling rate as high as 1kHz

may still have certain error compared to the interval extracted from

ECG signal [14, 24]. This is due to the difference of the two signal

waveforms, the peak of PPG waveform is not as distinctive as the

R-peak in ECG waveform.

Different from these previous works, we empirically show that

the time delay of pulse signal traveling through facial regions is

Figure 1: Anatomy of facial artery (This figure is drawn based
on [1]).

significant as compared to the time resolution of commodity camera.

This finding suggests that a video of human face is a source of

multiple signals of blood volume pulse with different phases or time

delays. We propose an approach using convolution neural network

to leverage such spatial-temporal information from the input video

to estimate the IBI with higher precision.

3 INVESTIGATION: CAN YOU EXTRACT
MULTIPLE PPG DATA POINTS FROM
FACIAL IMAGES?

The basis of this work is on an important hypothesis: “Given the

structure of facial arteries, different parts of the face will show

PPG ‘peaks’ at different times.” We can exploit this information to

gain more precise peak-occurrence times, finer than the frame rate

granularity.

Prior works introduce the concept of pulse transit time, the time

a pulse wave to travel between two arterial sites [16, 54]. Existing

measurements from the heart to ear and finger [23] has shown that

the pulse transit times from the heart to the ear and finger is ∼174 ms

and ∼245 ms, respectively. We hypothesize that it would take some

3
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Figure 2: Normalized PPG signals at different facial positions.

time (significant compared to the time resolution of a video) for the

pulse to propagate even with the facial arteries. To the best of our

knowledge, no previous work quantifies the time delay of the pulse

traveling on different facial regions. Instead, previous work either

neglect this time delay or make assumptions that within the face, the

time delay is not significant.

To validate our hypothesis, we conducted an IRB-approved pre-

liminary study with 10 participants (ages from 19 to 31, 4 females).

We selected five facial regions and attach a photoplethysmogram

(PPG) sensor to each of these regions to understand how the PPG-

peak delay occurs for different regions. The five facial regions, R1

jaw corner, R2 center chin, R3 upper lip, R4 below left eye, and R5

forehead, were selected based on the anatomy of facial arteries as

illustrated in Figure 1. Participants in this study were asked to sit

on a chair while the PPG sensor captures samples at 1 kHz for one

minute. All five PPG sensors were attached to an Arduino, and the

five incoming signals were time-synchronised.

Figure 2 shows an example of normalized PPG signals from

our collected data. We can observe a phase shift of the peak of

the PPG signals detected at different locations. This observation

suggests that we can exploit this spatial-temporal aspect of PPG

signals, based on the artery structures of a person’s face. We further

quantify the time difference for signals observed at two different

facial regions in two ways: (a) using peak detection and (b) phase-

shift calculation via cross-correlation computation [6, 30]. Figure 3

shows the results. The time delay for different facial region pairs

are as significant as ∼36.79msec, when the pulse travels from the

corner jaw to the forehead. The delays are consistent over the two

quantification methods.

Potentially, as we will detail in the following section, VitaMon
exploits this to make very accurate measurements of the heartbeat

interval even with videos taken at low frame rates.

4 DESIGN OF VITAMON
VitaMon measures a user’s heart rate (HR) and heart rate variability

(HRV) using just videos captured from that user’s front facing phone

camera by exploiting the color changes that occur as blood pass

through the facial arteries. Figure 4 shows VitaMon’s data pipeline

and we explain each stage in more detail next:

Figure 3: Time delay of PPG peaks between two different facial
positions.

Figure 4: VitaMon data pipeline.
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4.1 Preprocessing: Extract the Green Color
Channel

Starting from the topmost preprocessing phase, we first resize each

frame from the videos to 224x224 resolution, then extract and nor-

malize the green color channel of each frame from the videos cap-

tured by a smartphone’s front camera. The key principle used by

VitaMon is that blood absorbs light more than the surrounding tissues

in the body and that the absorption levels are directly proportional

to the blood volume [62]. This phenomenon causes subtle color

changes to appear on human skin, which are invisible to human

eyes but can be captured by camera images. Prior work has shown

that the green channel captured by RGB camera is better than red

and blue channels in detecting these colour changes [31, 62]. This

is because the absorption spectra of hemoglobin (Hb) and oxyhe-

moglobin (HbO2), the two main constituent components of blood,

peaks in the 520 to 580 nm light spectrum – which falls in the middle

of the green spectrum [62]. Thus any changes in the blood volume,

caused by heartbeats etc. will be easier to detect using the green

channel information compared to the other colours.

4.2 Normalisation & Input Creation
VitaMon processes the green channel information to predict the HR

and HRV of the person in the captured images. However, processing

every frame produced by the camera is computationally very expen-

sive. Thus, VitaMon creates a multi-channel image that is formed by

stacking multiple green color-channels extracted from consecutive

video frames which is used as the input for subsequent machine

learning stages. In particular, we extract green channel samples in

sets of n samples to form a single image that combines the features

contained in the n samples. By doing this, the depth dimension of

this stacked image will contain the temporal information of n consec-

utive green frames. We found, empirically, that n = 25 worked best

for 15 fps video feeds – with each stack containing 25 samples repre-

senting changes in the green channel over a period of 1.67 seconds.

This is sufficiently long to allow us to detect a full heartbeat cycle,

even for heart rates as low as 36 bpm, just from a single image.

This stacking serves three main purposes: (1) it reduces the input

size to minimize model complexity; (2) stacking a single color chan-

nel to form an image allows the depth dimension of the image to

contain the temporal aspects – this separates away the color/spectral

information making the technique much more robust; (3) we now

have a single image that contains both spatial and temporal infor-

mation of the facial video, allowing us to extract pulse information

from the image using just a single 2D convolution.

4.3 Two-Phase Machine Learning
Reliable HRV measurement requires accurate identification of the

R-peaks of the ECG and their occurring timestamps in the cardio-

vascular pulse signals generated as the heart pumps blood around

the body. This is different from just measuring the heart rate as heart

rate calculation uses an average of the number of beats over a minute

(bpm) while HRV measures the inter-beat time in milliseconds.

To effectively extract the HRV using just video images of a user’s

face, VitaMon uses two phases: (1) it reconstructs the “frame-order

waveform” of the ECG signal to identify heartbeat cycle peaks from

the video sequences, and (2) it then estimates the exact timestamp

Figure 5: Example of ECG and frame-order ECG waveforms.

of each peak. In both phases, ECG reference signal is used only for

the purpose of model training and evaluation; VitaMon only takes

the facial video as input.

4.4 Phase 1: Reconstruction & Segmentation
Prior work has used photoplethysmogram (PPG)-based methods

to reconstruct the blood volume signal directly from video record-

ings. However, these methods are limited to just detecting the HR

and achieved poor results when used to also detect the HRV. To

detect the HRV, we use a CNN-based regression model with the

Inception module from InceptionV3 model [57]. We add enhance-

ments to reconstruct a pulse waveform in frame-units by utilizing

the color changes embedded in the 25-channel stacked input images

described earlier. Specifically, as each stacked image holds the facial

color change information (on the green channel) for at least one

full heartbeat cycle, we trained the CNN model to identify the exact

sub-frames within this stacked image where the heartbeat cycle’s

“peaks” have taken place. We did this by using the intuition that the

this peak will cause a noticeable color change (on the camera) due

to large amounts of blood flowing through the arteries.

Based on this, we mark the center-most frame in the n-channel

image with the respect to the nearest peak that occurs earlier. For in-

stance, if the peak occurs at the 13th sub-frame (e.g., the center-most

frame of the 25-channel image), the model will output a value ‘0’. If

the peak occurs on sub-frame 10, three sub-frames before the center,

the model will output ‘3’. We label the data by marking the offset

of the center frame according to only the previously observed peak.

Hence, the offset of the center frame is always a positive number.

Using this simple scheme, for each of the 25-channel images, we

can identify at what location (in the units of sub-frames/channels)

the heartbeat’s peak occurred with reference to the most recent

peak. When done for all of the image sequences, we can construct

a “frame-order waveform”, which is roughly correlated to the ECG

at a frame-level granularity. Figure 5 illustrates an example of the

ECG waveform and its corresponding frame-order waveform.

There are two major benefits of using this approach. First, the

frame-order waveform represents a normalized form of ECG. Natu-

rally, using the frame-order waveform eliminates the effects caused

from ECG peak amplitude variations and facilitate the model to

focus on the local relative change of the blood volume within the

samples. Using this information, our CNN model is optimized to

learn while focusing on the differences in color distributions among

different neighboring frames. Second, the use of the frame-order

waveform allows the model to easily distinguish between two con-

secutive heartbeats (i.e., the end of one heartbeat cycle and the

beginning of the next). Once the value decreases, we can quickly

5
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notice that one heartbeat cycle has ended. When using a PPG-based

approach, due to the smooth signal patterns, making this distinction

of whether the currently detected sample is before or after a peak is

difficult. By applying the frame-order waveform, the model, in its

training phase, can penalize heavier if an estimation is made for a

different subsequent heartbeat cycle.

Note that the range of the frame-order waveform will vary with

respect to the inter-heartbeat-interval, given that this interval varies

from person to person in the typical range of 500 ms to 1470 ms

under resting condition [48]. For instance, for a person with the a

heartbeat interval of 600ms, the output values will range from 0 to 9

(in unit of frames; assuming 15 fps), while a person with 1000 ms

interval, the output values will vary from 0 to 15.

4.5 Phase 2: Peak Detection
Next, in the second phase of our model, we take the n-channel

images that are labeled from the first CNN model as ‘0’ (i.e., the

peak has occurred at the center-most sub-channel for the image) and

cut-off sub-channels on the edges in a symmetric manner. As a result,

we leave only the m-channels in the center of the original n-channel

image (where m < n), and maintain the peak-detected channel at the

center of the stack. We then train a second CNN-based regression

model using these images and the ground truth ECG waveform.

By doing so, we can now correlate the ECG peaks with the exact

location of where within the peak-detected channel the R-peak took

place. Given that the color distribution for the peak-detected channel

will vary for different (more specific) R-peak occurrence locations,

we can start making fine-grain estimations (at the msec-level) on

the actual time that the R-peak occurred at a granularity finer that

that of the frame rate. Again, this is based on the findings from

our preliminary studies indicating that the pulse will travel at slow

speeds even within a person’s facial regions. Meaning that for some

images, we will have the peak at the jaw region of the face, and for

some, the peak will be at the forehead. Each of these images will

have different points at which the ground-truth ECG presents its

R-peak. Learning this information is the core of this second phase

CNN design.

4.6 VitaMon Implementation
We implemented VitaMon as an Android application with the phase

1 and phase 2 models implemented in tflite format with float32

precision. Figure 6 presents the overall CNN structure of both our

phase 1 and phase 2 models. Note: each convolution layer is followed

by a batch normalization layer and a rectified linear unit (ReLU)

activation layer. In terms of model complexity, the total number

of parameters is 508,129 and 104,129 for the Phase 1 and Phase

2 models, respectively. The complexity did not increase by using

stacked images as a similar schema for processing a standard 3-

channel RGB image would have 503,233 and 102,689, parameters

for the two phases, respectively.

We ran VitaMon on different octa-core phone devices including

the Lenovo Phab 2 (2016), Galaxy S8 (2017), and Huawei P20

Pro (2018). Table 2 reports the running time of VitaMon’s main

processing components on each phone using just CPU resources

(no GPU optimisations done yet). The preprocessing step in Table 2

refers to the process of extracting the green channel from each video

Figure 6: Structures of phase 1 and phase 2 models.

Processing time (ms)

Device Pre-process Phase1 model Phase2 model

Lenovo Phab 2 31.4 122.2 45.4

Galaxy S8 5.6 125.6 47.1

Huawei P20 Pro 8.5 108.4 44.4

Table 2: Operation latency of VitaMon’s components on three
different mobile devices.

frame and creating the stacked images that are fed as inputs to the

CNN models.

The operational latency of the phase 1 model is longer compared

to the phase 2 model as it is a more complicated model (as described

earlier). Overall the latency of VitaMon is sufficient for real-time

use. We can improve the latency further, as future work, by further

optimising the models or by using pruning or quantization scheme

[18] and/or GPU optimised DNN runtimes such as DeepMon [22]

or TensorFlow Lite running on mobile GPU [59].

5 DATA ACQUISITION
5.1 Sensors and Set-up
In this study, we use a Lenovo Phab Pro2 smartphone to record

the facial video of participants and a Zephyr Bioharness 3 ECG

strap to acquire ground truth reference pulse signals (e.g., ECG).

All videos were recorded using a frame rate of 15 fps with a pixel

resolution of 1920x1080 from the 8-megapixel front camera with

3.75 mm focal length and a f/2.2 lens aperture. The automated white

balance (AWB) mode of the camera was enabled to normalise the

color representations of the captured images under different lighting
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conditions. The ECG signal was recorded simultaneously throughout

the experiment using the Zephyr ECG strap with a sampling rate

of 250 Hz. The Zephyr is FDA-approved and multiple prior studies

have used it to provide reference ECG/RR interval data under various

conditions [25, 26, 28, 40].

5.2 In-lab Data Collection
We conducted an IRB-approved study with 30 participants of dif-

ferent ages (24 to 39) and skin tones (22 participants with light

yellow skin tone from South East Asia and East Asia, 6 participants

with dark brown skin tone from South Asia, and 2 participants with

fairer skin tone from Europe). Participants were seated on a height-

adjustable chair at a table in front of a tripod holding the smartphone

mounted vertically. The distance from the smartphone’s front camera

to the participant’s face varied from 25 to 50 cm depending on the

participant’s preferred sitting posture.

Each participant did eight 5-minute tasks that were fully recorded

by the smartphone. Each of the eight tasks was designed to capture

different motion artifacts and light conditions. The eight tasks were:

tasks one to five required the participant to stay as still as possible

the entire five minute duration with each task using a different fluo-

rescent light intensity. The intensities used were 150 (denoted as L1),

250 (L2), 380 (L3), 600 (L4), and 1000 (L5) lux and represented dif-

ferent types of real-world intensities. For example, the recommended

light level at homes is 150 lux, 500 lux for the library and 750 lux

at supermarkets [42]. The last three task required the participant

to perform an action under a consistent 380 lux lighting condition.

The three tasks were (M1) Speaking: Counting out loud from 1 to

100 repeatedly. (M2) Horizontal head rotation: Participants had to

rotate their heads horizontally by 120 degrees at a speed of about

20 degrees/sec. (M3) Manual phone holding: The smartphone was

removed from the tripod and held by the participant in their hands,

with the front facing camera still being able to see their faces, for 5

minutes.

5.3 Real-world Experiments
In addition to the controlled lab studies, to evaluate the robustness

of VitaMon in real-life scenarios, we collected data from two partici-

pants while they performed various real-world tasks. In particular:

(1) Passenger in a driving car: This scenario introduces different

types of motion artifacts as the car moves on the road (e.g., accelerate,

slow down, stop, bumps at potholes). Figure 7 shows an example

of the acceleration signals (excluding the gravity) collected from

the phone that participants used to record the facial video. The light

conditions also change dynamically as the car moves in and out of

shaded and non-shaded areas. Each participant held the phone in

their hand, with the front camera facing their faces, for two 5-minute

sessions.

(2) Coffee shop: This scenario required each participant to record

their faces for two 5-minute session while sitting in a very dim (40

lux) coffee shop.

6 EVALUATIONS
For the valuation of VitaMon , we train the model using two types

of data and create two versions of VitaMon : (1) a global model

with training data from multiple people, and (2) a personalized

Figure 7: Acceleration signals during the real-world experi-
ment, passenger in a driving car scenario.

Figure 8: Raw average signal extracted from green channel of
whole face region; Second component of ICA; VitaMon phase-1
model output; ECG reference signal.

model trained with a specific person’s previously collected data. For

each case, we evaluate the accuracy of different metrics that can

be extracted from a person’s heart. Specifically, we focus on the

accuracy of the heart rate, inter-beat-interval, and HRV. We evaluate

the global model with the leave-one-out subject level evaluation and

the personalized models with leave-one-out session level evaluation.

6.1 Heart Rate Detection
We first evaluate the performance of VitaMon in calculating the heart

rate from the captured video. VitaMon calculates the heart rate using

the output of the Phase-1 model; it identifies a frame that includes

the peak of a heartbeat and the heart rate can be calculated by

simple counting of such peak frames. We used a 1-minute window to

calculate the heart rate and slide the window every second. We also

compare the results with the state-of-the-art signal processing-based

remote PPG schemes as discussed in Section 2 [45, 46].

Figure 8 shows the waveforms reconstructed by VitaMon’s Phase-

1 model for 20-second epoch signal from our dataset, along with the

comparison with a state-of-the-art technique (a signal decomposition

method based on Independent Component Analysis (ICA) [45, 46])

and the reference ECG signals. The third plot in the figure shows that

our approach shows a clear representation of the pulsatile variations,

closely correlated with the ground-truth ECG traces in the bottom-

most plot. On the other hand, the ICA-based method results in

a much unclearer waveform (as shown in the second plot), from
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Light Condition

Metric Model L1 L2 L3 L4 L5

HR MAE General 0.82 1.06 0.82 0.94 0.88

(bpm) Personalized 0.67 0.72 0.61 0.61 0.56

Peak Position General 0.78 0.98 0.76 0.80 0.84

MAE (frame) Personalized 0.63 0.72 0.65 0.72 0.62

Table 3: Phase-1 model evaluation under different light condi-
tions: Mean Absolute Error (MAE) for heart rate (HR) and
peak position estimations. L1-L5 are set to 150, 250, 380, 600,
and 1000 Lux, respectively.

which heart rate calculation is not still trivial. The Phase-1 CNN

model identifies peak frames from a noisy signal by leveraging the

relationships between ECG signals and PPG signals whereas the

signal reconstruction is not effective based on signal processing

techniques.

We then quantitatively compute two metrics (1) the mean absolute

error (MAE) for the estimated heart rate compared to the ground-

truth, and (2) MAE for peak position (e.g., the peak position error

is 1 if the 10th frame should have the peak but our Phase-1 model

identifies 11th frame as the peak frame). Tables 3 and 4 show the

results for different lighting conditions and motions artifacts, respec-

tively. Each lighting condition L1-L5 and motion artifact M0-M3

correspond to the different conditions discussed in Section 5. We

use L1 and M0 by default.

Table 3 presents that VitaMon, despite under different light inten-

sities, have the exceptional performance of keeping HR estimation

error under a single beat. The personalized model, as one may ex-

pect, outperforms the general model, but for both cases, the errors

are kept extremely low. Overall, the CNN model we designed were

robust against different light conditions, allowing a reliable heart

rate measurement.

Results in Table 4 suggest that, with motion introduced, the

heart rate estimations are affected more than simple light condi-

tion changes. Especially when parts of the facial components move

(due to talking in M1) and the entire face rotates (M2) the error

increases to higher than 1 bpm. Small variations due to hand-holding

the smartphone (M3)) show relatively less loss in accuracy perfor-

mance. The CNN used in our model is more robust against small

movements of the face (e.g., slight facial position changes due to

phone holding) but its performance was affected by more significant

movement such as talking or head rotations.

The peak position errors in both tables show that the Phase-1

model well executes the task of extracting the sub-frame that contains

the peak of a heartbeat cycle. The MAE was maintained below a

single frame for light conditions and two frames for motion artifacts.

This suggests that if VitaMon needs to consider a maximum of 5

frames to calculate the exact time of the peak in the second phase.

6.2 Inter-beat Interval
Next, we examine the accuracy of VitaMon to predict the inter-

beat intervals (IBIs). (Note: IBI measures the distance between two

Motion Artifact Condition

Metric Model M0 M1 M2 M3

HR MAE General 0.82 1.77 1.69 1.31

(bpm) Personalized 0.61 1.23 1.38 1.08

Peak Position General 0.76 1.33 1.45 1.32

MAE (frame) Personalized 0.65 1.02 1.19 1.18

Table 4: Phase1 model evaluation under different motion ar-
tifact conditions: Mean Absolute Error (MAE) for heart rate
(HR) and peak position estimations. M0-M3 are set to "no ac-
tion", "speaking, "horizontal head rotation", "manual mobile
phone holding", respectively.

(a) Peak detection MAE for different light conditions

(b) Peak detection MAE for different motion artifacts

Figure 9: Mean absolute error of peak detection in VitaMon .

R-peaks in an ECG and is used to capture disorders such as arrhyth-

mia.) To compute an accurate IBI, we utilize the full VitaMon system,

including the Phase 2 model for capturing fine-grain heartbeat occur-

rence times. As in heart rate evaluations, we test the performance of

VitaMon for different lighting conditions and motion artifacts with

the personalized and global models.

An accurate IBI measurement requires the precise detection of

peak times in heartbeat cycles. For this, we first measure the MAE

for estimated peak times. Figure 9 presents the results for different
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(a) IBI MAE for different light conditions

(b) IBI MAE for different motion artifacts

Figure 10: Mean absolute error of inter-beat interval (IBI) mea-
surements.

light conditions and motion artifacts. The results show that VitaMon
estimates the peak times with the errors of around only 10ms for

the personal model and 15 ms for the global model. Also, accuracy

is minimally affected by different illumination levels and motion

artifacts. Assuming an 80 bpm heartbeat, a 10 msec error translates

to an error of only 1.3% on the time-scale. Even when using the

general model and also when introducing different motion artifacts,

we observe errors less than 17 msec. This suggests that VitaMon’s

Phase-2 model estimates the heartbeat cycle peak (ECG R-peak)

with very high accuracy; its underlying CNN model well captures

the correlation between a face image (that include multiple PPG data

points at different facial areas) and the actual peak time.

We then evaluate the IBI estimation accuracy of VitaMon . Fig-

ure 10 shows the results. The MAEs for the IBI, in all cases, are

below 22 msec, and for the personalized model the errors are as

low as 12 msec. This is expected as the accurate peak detection

contributes to the accurate calculation of the IBI. There is a slight

impact on the performance as motion artifacts are introduced, but

this increase can be considered minimal considering their applicabil-

ity in many applications that involve users’ mobility, especially in

mobile context.

We also evaluate the performance of VitaMon on three groups of

participants with different skin tones. The results are summarized

in Table 5. Note that melanin, the pigment that accounts for the

color of human skin, has a high absorption coefficient compared to

Skin Tone Group

Metric Model G0 G1 G2

HR MAE General 0.58 1.90 0.71

(bpm) Personalized 0.32 1.55 0.53

IBI MAE General 20.71 25.43 20.92

(ms) Personalized 13.17 19.45 12.09

Table 5: Evaluation per skin tone group under stationary con-
dition. G0: light yellow skin tone, N = 22; G1: dark brown skin
tone, N = 6; G2: white skin tone, N = 2

hemoglobin’s in the wavelength range of visible light. Hence, more

melanin in skin or darker skin tone would attenuate the strength

of optical signal of blood volume pulse. Compared to the other

two groups, estimation on the group of participants with dark skin

tone has significantly higher error, in terms of both heart rate and

heartbeat interval measurement. On the other hand, Table 5 shows

a similar evaluation results of VitaMon on participants with light

yellow skin tone and participants with white skin tone, sample size

of the latter group is small (N = 2) though.

6.3 HRV Features
Next, we evaluate how accurately VitaMon calculates various HRV

features using the detected peak times. For HRV evaluation, we

extract a list of standard features in the time-domain, geometric

Poincare plot, and frequency-domain widely used for clinical pur-

poses [3, 7, 35]. Specifically, RMSSD is the square root of the mean

of the squares of successive differences between adjacent intervals,

SDNN is the standard deviation of intervals, SDSD is the standard

deviation of the successive differences between adjacent intervals,

NN50 shows the number of pairs of successive intervals that differ

by more than 50 msec, and pNN50 represents the proportion of

NN50 divided by the total number of intervals. These metrics are

features included in the time-domain. For the geometric Poincare

plot features, SD1 shows the length of the longitudinal line in the

Poincare plot of the intervals, and SD2 is the length of the trans-

verse line in the Poincare plot of intervals. Lastly for features in

the frequency domain, LFnu shows the normalized spectral power

in the low-frequency band from 0.04 to 0.15 Hz, and HFnu is the

normalized spectral power in the high-frequency band from 0.15 to

0.4 Hz. We point interested readers to [2, 37] for more details on

these metrics.

Table 6 presents a comparison between the VitaMon -estimated

features and ECG-driven features (used as the ground truth). From

the correlation coefficients, we can see that for five of the nine

features (i.e., RMSSD, SDNN, MRRI, SD1 and SD2), VitaMon
achieves a very high correlation with the ground truth. For the two

frequency domain features (LFnu and HFnu ), the correlations were

0.71 which are lower than the correlations of other time-domain

features. This is because the frequency-domain features represent

the trend in interval series and require accurate estimation of mul-

tiple continuous data points (intervals) to capture. In particular, LF

band covers 0.04-0.15Hz or 7-15 second rhythm of interval series.
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HRV features

Statistic Source RMSSD SDNN MRRI NN50 PNN50 SD1 SD2 LFnu HFnu

Mean ECG 111.65 87.32 751.92 9.90 13.50 80.39 96.01 25.67 74.40

Mean VitaMon 114.61 89.30 749.10 33.54 46.10 79.62 95.70 33.74 65.74

Standard Deviation ECG 70.58 45.07 68.52 9.27 12.38 50.12 42.84 30.45 30.45

Standard Deviation VitaMon 54.43 38.58 68.37 10.19 12.05 39.09 39.42 21.92 21.70

Correlation Coefficient 0.9817 0.9776 0.9943 0.4697 0.4317 0.9717 0.9710 0.72 0.72

RMSSD: The square root of the mean of the squares of successive differences between adjacent intervals.
SDNN: The standard deviation of intervals.
MRRI: The mean of R-R intervals.
SDSD: The standard deviation of the successive differences between adjacent intervals.
NN50: The number of pairs of successive intervals that differ by more than 50 msec.
pNN50: The proportion of NN50 divided by the total number of intervals.
SD1: The length of the longitudinal line in the Poincare plot of the intervals.
SD2: The length of the transverse line in the Poincare plot of intervals.
LFnu: The normalized spectral power in the low-frequency band from 0.04 to 0.15 Hz.
HFnu: The normalized spectral power in the high-frequency band from 0.15 to 0.4 Hz.

Table 6: HRV monitoring performance of the general model: Average HRV features extracted from ECG reference signal and Vita-
Mon estimation under stationary condition.

However, the correlations are still high; our evaluation for stress

detection (estimated by the ratio between LFnu and HFnu) in Sec-

tion 7 shows that the accuracy of stress detection using the LFnu
and HFnu features estimated by VitaMon was comparable with the

same features extracted from the ECG reference signal. The errors

for NN50 and pNN50 were high; these features are calculated based

on the difference between two heartbeat intervals and the error of

VitaMon ’s IBI estimation could be doubled while there is a clear

binary threshold of 50ms for evaluation.

The issues observed from the global model in Table 6 are allevi-

ated in Table 7, where we plot the results for a personal model. This

is so due to the fact that a personalized model will show fewer vari-

ations with higher peak detection accuracy as its underlying CNN

models better captures the relationships between actual ECG signal

peaks and the front camera images. While we omit the results for

the case with different motion artifacts, similar trends were observed

with other earlier evaluations.

6.4 Evaluation for Samples Collected from
Real-world Use Cases

We also evaluate VitaMon on the data collected while driving and

chatting in a coffee shop described in Section 5. Table 8 shows that

VitaMon can measure heart rate with the errors of 1-2bpm using

our Phase-1 model. The errors for the peak detection and inter-

beat interval are higher than in the lab experiment, however, the

errors remain low; for instance, the inter-beat interval errors remain

under 23 ms for the personalized model. We attribute the increment

of the errors to the different light conditions and motion artifact

that are not captured in our training data; for instance, passengers’

mobile phones were shaken when the car accelerated. We believe

we can further improve the accuracy of our models in various ways.

For instance, we can train our model with a more diverse set of

data collected in real-life situations. Also, it is possible to use the

phone’s accelerometer data to filter out the segment of unstable video

recording caused by the hand’s motion artifact.

7 VITAMON APPLICATIONS
VitaMon can be applied to various useful applications. Online ed-

ucation is one example of where VitaMon can play an important

role. As a student participates in the education programs, we can

continuously monitor their engagement and stress levels using a

face-facing camera, which are features that are known to be heavily

correlated with HRV [10, 11, 21, 43, 51].

7.1 User Study
To study the feasibility of applying VitaMon to capture the cardiovas-

cular responses to such psychological distress situations, we conduct

a small user study that involves 12 participants (age from 26 to

35). This user study includes an arithmetic stress test session and

a baseline session. All 12 participants participated in both of these

sessions. In the arithmetic stress test session, we follow the validated

experiment procedure described in [29, 34, 60]. While the users

were facing the front camera on a smartphone, we verbally delivered

questions with simple arithmetic operations (subtract 13 from 1022

as fast and accurately as possible), and their responses from mental

calculation was delivered back to us verbally as well. Upon respond-

ing with an incorrect answer, the participants re-started the process

from 1022, based on verbal feedback indicating to restart the calcu-

lation. Note that the arithmetic test was used as a tool to induce a

psychological distress situation and the subjective stress level under

the test may vary among participants. However, we did not collect

the self-report stress level as the main purpose of the test is not to

classify participants’ stress level, but to study the cardiovascular

responses measured by VitaMon as compared to the features from

ECG reference signal. The baseline session was designed so that the

participants stay still (sitting) while soothing classical music was
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HRV features

Statistic Source RMSSD SDNN MRRI NN50 PNN50 SD1 SD2 LFnu HFnu

Mean ECG 112.20 88.51 751.00 9.88 13.46 80.36 95.39 25.97 74.10

Mean VitaMon 114.51 89.47 750.15 16.46 23.30 80.55 95.77 30.66 68.81

Standard Deviation ECG 69.94 44.82 68.52 9.33 12.46 49.66 42.79 30.54 30.54

Standard Deviation VitaMon 61.29 41.49 68.38 9.55 13.02 43.97 4.90 24.71 24.50

Correlation Coefficient 0.9879 0.9836 0.9855 0.7948 0.7394 0.9861 0.9830 0.8134 0.8139

Please refer to Table 6 for an explanation of each feature.

Table 7: HRV monitoring performance of the personal model: Average HRV Features extracted from ECG reference signal and
VitaMon estimation under stationary condition.

Personalized model General model

Metric R1 R2 R1 R2

HR MAE (bpm) 1.25 1.00 2.00 2.00

Peak MAE (frame) 1.18 1.29 1.52 1.48

Peak MAE (ms) 16.97 15.25 19.10 17.55

IBI MAE (ms) 22.57 19.98 25.40 22.99

Table 8: Evaluation on data collected from real-world scenarios:
(R1) passenger in a driving car and (R2) in coffee shop with dim
light - 40lux.

Figure 11: HF/LF ratio HRV feature to distinguish stress and
baseline condition.

played. We used the Lenovo Phab 2 smartphone for data collection

and kept each session for five minutes each. Upon the beginning

of the first session, three minutes were given to the participants

to minimize the effect of the previous session. The two sessions

were separated by a six-minute break, and the session order was

randomized [29].

7.2 Data Analysis
To examine the cardiovascular responses to the stress stimulation, we

used a well-adopted previous method proven to be effective for stress

detection [9]. The analysis of HRV was carried out using the low

frequency (LF;0.04-0.15 Hz) and high frequency (HF; 0.15-0.40 Hz)

bands, which reflect the sympathetic activity with vagal modulation,

and parasympathetic activity, respectively.

Figure 11 plots the comparison of the ratio of HF and LF for the

ECG-based baseline, VitaMon with the global model and, VitaMon
with the personalized model when participating in the two different

sessions. Results suggest that indeed when the participant is involved

in the arithmetic stress test session, the ratio of HF over LF shows a

noticeably high value compared to the case when the participant is

in the baseline session. The results are consistent with prior studies

[10, 11] showing that under mental stress condition, the HF spectral

power increases while LF power decreases. The figure also serves as

an indicator for suggesting that VitaMon can be a useful involuntary

sensing tool for measuring stress. In Table 9 we present additional

details on the observations made for each study participant. The

results suggest that both types of models can effectively be used for

a real-world application to detect stress levels. We also emphasize

that when observing the HRV features themselves, the frequency-

band features, LFnu and HFnu did not show a significantly high

correlation with the ground truth. However, when utilizing these

features as application-specific features, even such features can be

considered useful for the target purpose.

8 DISCUSSION
In this section, we discuss some of the limitations of VitaMon and

present our future work plans.

8.1 Effect of Skin Tone & Make-up on VitaMon
VitaMon uses a camera-based PPG method to extract the subtle

variation of skin color caused the changing blood volume due to

heartbeats. However, the degree of color variation seen on the face

by the camera also depends on facial features such as the color and

intensity of the skin pigments and the amount and type of make-up

used etc. In particular, dark skin pigments or heavy make-up have

a high light absorption coefficient, which would result in a weaker

type of pulse signal being observed in the facial video. We plan to

extend our tests of VitaMon across a larger population segment in

future work.
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Subject

Source Condition S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

ECG Reference Stress 1.05 2.76 2.90 4.50 0.03 0.03 0.03 0.04 1.90 3.23 1.22 2.02

ECG Reference Baseline 0.02 0.04 0.04 0.04 0.03 0.04 0.57 0.08 0.03 1.28 0.49 0.52

Personal Model Stress 1.62 1.47 1.69 2.23 0.03 0.49 0.43 0.27 1.86 3.89 1.91 2.06

Personal Model Baseline 0.03 1.23 0.05 0.13 0.04 0.05 0.66 0.13 0.06 1.88 0.53 1.68

General Model Stress 1.54 1.59 1.23 2.21 0.08 0.68 0.38 0.32 1.88 2.61 1.91 3.16

General Model Baseline 0.10 0.62 0.13 0.96 0.07 0.16 0.71 0.09 0.14 1.36 1.53 2.70

Table 9: Average HRV Features extracted from ECG reference signal and VitaMon estimation (personal model) under stationary
condition.

8.2 Integrating VitaMon With Built-in Camera
Optimisations

Modern smart phone cameras perform a number of automatic image

corrections to improve the quality of the images taken as perceived

by a human user. For example, the camera might automatically

sharpen or increase the contrast of the image or even brighten the

image if the ambient light is too low. In addition, many smart phone

cameras automatically perform color filtering to increase the vivid-

ness of the photos and videos. In this paper, we did not investigate

how VitaMon would operate in situations where the camera software

was automatically manipulating the images using in-built algorithms.

8.3 Measuring Other Related Cardiovascular
Signals

In addition to detecting HRV, VitaMon may also be able to detect

other related physiological signals. In particular, many prior stud-

ies show that, a person’s respiration rate can be extracted directly

from the continuous IBI series, which we are already collecting in

VitaMon. Furthermore, given that the pulse speed is known to be

inversely related to the blood pressure, we can utilize the pulse prop-

agation delay utilized in this work for continuous blood pressure

monitoring. With the right extensions to our model, VitaMon could

accurately detect these signals using the same input data. We plan to

investigate this in the future.

8.4 Limitations & Future Work
The user study was conducted mainly with student volunteers in two

countries. It is possible that a more diverse user pool would show

very different results. In the future, we plan to improve VitaMon by

1) extending it to detect other physiological signals, 2) improving

its performance by integrating a simple yet powerful training step

– where a user can quickly provide facial data that is added to a

pre-trained general model to create a much better performing semi-

personalised model. Finally, 3) we plan to integrate VitaMon into a

student life-logging app and deploy it more generally across a larger

audience.

9 CONCLUSION
We present VitaMon, a mobile sensing system for daily HRV monitor-

ing using a commodity smartphone’s front camera. We first present

our two key insights in designing VitaMon: a human face contains

multiple cardiovascular pulse signals with different phase shift. Then,

we build a CNN-based technique to extract both spatial and temporal

information of the video to reconstruct a pulse waveform signal that

is optimized for detecting the exact time of heartbeat cycle peak oc-

currences, from which inter-beat intervals (IBIs) and HRV features

can be calculated. We evaluated VitaMon with a dataset collected

from 30 participants under various conditions involving different

light intensity levels and motion artifacts. Our results show that, with

15 fps video inputs (66.67 ms time resolution), VitaMon can measure

IBI with an average error of 14.26 ms and 21.65 ms using personal

and general models, respectively. Both time- and frequency-domain

HRV features extracted from the IBI measurements show a high

linear relationship with the reference signal.
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