
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2010

Shifting inference control to user side: Architecture and protocol Shifting inference control to user side: Architecture and protocol

Yanjiang YANG

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Feng BAO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
YANG, Yanjiang; LI, Yingjiu; DENG, Robert H.; and BAO, Feng. Shifting inference control to user side:
Architecture and protocol. (2010). IEEE Transactions on Dependable and Secure Computing. 7, (2),
189-202.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4919

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Shifting Inference Control to User Side:
Architecture and Protocol

Yanjiang Yang, Member, IEEE, Yingjiu Li, Member, IEEE, Robert H. Deng, and Feng Bao

Abstract—Inference has been a longstanding issue in database security, and inference control, aiming to curb inference, provides an

extra line of defense to the confidentiality of databases by complementing access control. However, in traditional inference control

architecture, database server is a crucial bottleneck, as it enforces highly computation-intensive auditing for all users who query

the protected database. As a result, most auditing methods, though rigorously studied, are not practical for protecting large-scale

real-world database systems. In this paper, we shift this paradigm by proposing a new inference control architecture, entrusting

inference control to each user’s platform that is equipped with trusted computing technology. The trusted computing technology is

designed to attest the state of a user’s platform to the database server, so as to assure the server that inference control could be

enforced as prescribed. A generic protocol is proposed to formalize the interactions between the user’s platform and database server.

The authentication property of the protocol is formally proven. Since inference control is enforced in a distributed manner, our solution

avoids the bottleneck in the traditional architecture, thus can potentially support a large number of users making queries.

Index Terms—Inference control, trusted computing, database, auditing, security protocol.

Ç

1 INTRODUCTION

THE inference problem has been a longstanding issue in
database security that was first studied in statistical

databases [3], [16] and then extended to multilevel databases
and general-purpose databases [24]. The inference problem
can be referred to as the concern that one can infer (sensitive)
information beyond one’s privileges from the unsensitive
data to which one is granted access. The set of unsensitive
data leading to reference is said to constitute an inference
channel. The inference problem cannot be solved by
traditional access control (AC), as the disclosure of sensitive
information does not result from unauthorized accesses but
from authorized ones. The existence of various inference
channels is due to the inevitable interconnections between
sensitive data that are protected from and nonsensitive data
that are granted to users’ accesses.

For better understanding, Table 1 shows a simple
example that helps illustrate the inference problem. The
EMPLOYEE table contains AGE and SALARY information
for the employees in a company. To protect individuals’
salary information, the following access rule is enforced: the
database server can answer queries about sums of salaries over
multiple employees but rejects any query on a single employee’s
salary. With this AC policy enforced, however, employee C’s
salary can still be easily derived from the following

legitimate queries Q1, Q2, Q3, and Q4, provided that the
reply to Q3 is 1 and that to Q4 is 0 (i.e., the four queries form
an inference channel):

. Q1: select sum(SALARY) from EMPLOYEE, where
AGE � 30;

. Q2: select sum(SALARY) from EMPLOYEE, where
AGE � 32;

. Q3: select count(NAME) from EMPLOYEE, where
AGE ¼ 30; and

. Q4: select count(NAME) from EMPLOYEE, where
AGE ¼ 31.

1.1 Related Work

The existence of inference channels poses a serious threat to
the confidentiality of database systems. Extensive research
has been conducted on inference control (IC) to mitigate the
threat. IC techniques that aim to remove inference channels
can be classified into four general categories [3]: conceptual
approach, data perturbation, output perturbation, and
query restriction. There is also effort considering IC in a
specific context [8], [43], [44], or exploring a particular aspect
of IC [64]. The conceptual approach includes two well-known
models, the conceptual model [11] and the lattice model [18],
[20]. The former provides a general framework dealing with
security from the development of the conceptual schema to
implementation; the latter presents a framework describing
statistical database information in tabular form at different
levels of aggregation. The conceptual approach has turned
out to be quite useful for further study and understanding of
the inference problem, but the proposed frameworks are
sometimes too general for practical implementation.

The data perturbation approach (e.g., [27], [33], [36], [42], [61],
[65], and [66]) typically replicates the original database and
generates a perturbed database with noises for users to
access. This approach includes two subcategories: probability
distribution method and fixed data perturbation. In the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010 189

. Y. Yang is with the Institute for Infocomm Research, A*STAR,
1 Fusionopolis Way, #21-01 Connexis, South Tower, Singapore 138632.
E-mail: yyang@i2r.a-star.edu.sg.

. Y. Li and R.H. Deng are with the School of Information Systems, Singapore
Management University, 80 Stamford Road, Singapore 178902.
E-mail: {yjli, robertdeng}@smu.edu.sg.

. F. Bao is with the Institute for Infocomm Research, 1 Fusionopolis Way,
#19-01 Connexis, South Tower, Singapore 138632.
E-mail: baofeng@i2r.a-star.edu.sg.

Manuscript received 29 June 2007; revised 10 Apr. 2008; accepted 15 Oct.
2008; published online 6 Nov. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2007-06-0085.
Digital Object Identifier no. 10.1109/TDSC.2008.70.

1545-5971/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Published in IEEE Transactions on Dependable and Secure Computing, April 2010, 7 (2), 189-202.
https://doi.org/10.1109/TDSC.2008.70
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
Accepted version

former, the perturbed database is a sample drawn from the
same distribution as the original database; in the latter, the
perturbed database is generated by adding independent
noises to each entry of the original database. By and large,
the data perturbation approach suffers from a severe bias
problem due to the noises that are added into data; therefore,
it is not suitable for dynamic databases. In contrast, the output
perturbation approach (e.g., [1], [5], [17], and [25]) does not add
noises but performs certain manipulations over database
queries such as rounding the query replies up or down.
Though the output-perturbation-based approach is immune
to the bias problem, it may suffer from having null query sets,
in which case useful information is disclosed.

The last category is the query restriction approach, which can
be further classified into five subcategories: query-set-size
control (e.g., [19] and [50]), query-set-overlap control (e.g.,
[21]), partitioning (e.g., [10], [51], and [70]), cell suppression
(e.g., [13], [40], and [47]), and auditing (e.g., [9], [12], and
[28]). A comparison of these methods is given in [3] from
various aspects including degree of security, query proces-
sing overhead, and suitability for dynamic databases.

Among the query restriction-based approach, auditing is
an important IC method, having many desirable properties.
To enforce auditing, the database server keeps a log of all
users’ queries; when replying to a user query, it checks for
possible inference channels against the current query as
well as the past queries asked by the same user. Since the
control decision is made based upon a user’s whole access
history, auditing has the potential to achieve better security.
Furthermore, auditing provides users with unperturbed
query results as long as no inference channel is detected.
Due to these features, auditing has triggered intensive
research in database security from the 1970s [28], [49]
through the 1980s [6], [7], [9], [12] and 1990s [14], [38], [67]
to the 21st century [31], [34], [35], [37], [62], [63], [68], [71].

Unfortunately, auditing faces enormous difficulty in
practical deployment, mainly due to the excessive compu-
tational overhead it requires to check for inference channels
from the accumulated query log. Audit Expert1 [12] is a
typical example. It was shown that it takes Audit
Expert Oðn2Þ time to process a new SUM query [12], where
n is the number of database entities or records, and
Oðmn2Þ time to process a set of m queries. While this
workload could be improved to some extent in certain

specific situations (e.g., for range queries [9]), the complex-
ity is impractically high in the general case for auditing
large databases.

The obvious drawback of auditing due to high computa-
tional complexity is low system scalability. The database
server that enforces auditing can only afford a small
number of users asking queries simultaneously. For this
reason, auditing has not been deemed to be a practical IC
method for real-world database systems [3].

1.2 Our Contributions

To resolve the impracticality problem, we propose a new
architecture for IC (especially auditing) with trusted
computing, shifting IC from the server side to the user side.
More specifically, the new architecture works by entrusting
the enforcement of IC to individual users’ computer
platforms, in contrast to the traditional architecture in
which IC is enforced by the database server. In this new
architecture, the database server is still responsible for the
enforcement of AC, but each user’s platform is empowered
to handle IC over the queries issued by its own users. Since
the computation-intensive task of auditing is amortized to
all users, the database server is no longer a bottleneck. As a
result, our architecture can potentially be used for protect-
ing large-scale database systems.

A crucial issue associated with this shift of paradigm is to
ensure that IC is enforced at the user side exactly as
prescribed by the database server without any interference
or manipulation. This requires that each user’s platform is in
a trusted state when IC is enforced. A typical solution to attain
such a trusted state is to equip each user’s machine with a
TCG-compliant trusted platform module (TPM) [55], [60]
that establishes a hardware-based chain of trust from booting
to OS loading to application execution. In our architecture,
TPM is used to protect the execution environment of IC so as
to attest the trusted state of a user’s platform to the remote
database server, convincing the server that the enforcement
of IC will not deviate. We propose a generic protocol to
formalize the interactions between the user’s platform and
the database server. Any existing IC technique can work with
our protocol in the new architecture, and the authentication
property of our protocol can be formally proven.

1.3 Organization

The rest of this paper is organized as follows: In Section 2,
we propose a new architecture for shifting the IC paradigm.
In Section 3, we present a protocol to enable IC to be
executed on the users’ side using standard TPM com-
mands, followed by the security analysis in Section 4. In
Section 5, we further discuss some extensions to our
solution. Finally, we conclude this paper in Section 6.

2 ARCHITECTURE

Traditional architecture. The traditional architecture for IC is
illustrated in Fig. 1a, where both AC and IC are enforced at the
database server side. In this architecture, the AC module
(ACM) implements AC functionality, while the IC module
(ICM) executes a designated IC algorithm (e.g., Audit Expert)
and acts as an extra line of defense in protecting the database.
Upon receiving a new query from a user, ACM first decides

190 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

TABLE 1
Employee Table

1. Audit Expert is a classic auditing method. It maintains a binary matrix
whose columns represent specific linear combinations of database entities
(records) and whose rows represent user queries that have already been
answered. Audit Expert transforms the matrix by elementary row
operations to a standard form and concludes that exact inference exists if
at least one row contains all zeros except in one column.

whether the user is a legitimate user with respect to the
queried data. This can be done by checking an AC database,
which contains AC rules and policy. If the user is a legitimate
user, the database server further checks with ICM to
determine whether the query will lead to any inference. To
achieve this, ACM passes the query result granted to the user
to ICM, who assesses the query against the IC policy as well as
the user’s past queries (collected in the central query log that
accumulates all users’ queries) by executing the designated
IC algorithm. ACM bases the reply to the user’s query on both
the AC decision made by ACM and the IC decision returned
by ICM: the query result is returned to the user only if ACM
decides that the user has the proper access right and ICM
evaluates that no inference would occur under the IC policy;
otherwise, ACM rejects the user’s query.

New architecture. Since the enforcement of IC is compu-
tationally intensive, it may bottleneck the database server in
the traditional architecture. To solve this problem, we
propose a new architecture, shown in Fig. 1b, to enforce IC
in a distributed manner. The basic idea is to offload the IC
function to individual users. More specifically, ICM resides
at the user side instead of on the server side. ICM maintains a
local query log at the user’s host by accumulating the queries
issued by the user. To query the database, the user contacts
ICM by issuing a query, then ICM checks with ACM at the
server side to see whether the user has the right to access the
data. ACM checks the user’s request against the access rules
and policy. If the user is granted access, ACM returns the
query response, together with the IC policy2 and the user’s
latest past queries issued from other hosts, to ICM. Then,
ICM executes the IC algorithm by checking the query against
the IC policy based on all the user’s past queries, which
comprise the local query log as well as the queries just
passed from the server. ICM releases the query response to
the user only if the query would lead to no inference under
the IC policy. In this architecture, ICM on the user side acts
as an extension of the database server in IC.

In the process of IC, it is critical to support a user using
multiple hosts to query the database. This can be readily
achieved in the traditional architecture, because a user’s
queries, regardless of being issued from which host, are
collected in the central query log maintained by the server.
However, in the new architecture, queries that are
maintained at different hosts may not be readily available

to the current host where IC is enforced. Our solution is that
the database server still maintains a central query log as in
the traditional architecture, but it collects user queries at the
discretion of user identity in conjunction with host identity.
When a user issues a query from a particular host, the
queries previously issued by the user from all other hosts are
passed by ACM to the current host for the enforcement of IC.
For better communication efficiency, the host updates its
local query log by including all the queries it receives from
the server. As such, the server only needs to send the latest
past queries from other hosts, i.e., the queries issued at other
hosts by the user since when the last query was issued at the
current host. For convenience, these queries are referred to
as complementary queries in the sequel. It should be clear that
our new architecture dispenses fatally expensive IC func-
tionality to individual users at the price of minimum
overheads of local storage (to store local query log) and
network communication (to transfer complementary queries
and attestation information), which are expected to be
tolerable without bottlenecking the current system of broad-
band networks and powerful user computers. The commu-
nication overhead of sending complementary queries is not
incurred if the user chooses to use a single host.

Example of IC policy. It should be noted that in either the
traditional architectures or the new architecture, IC policy is
an essential component in the enforcement of IC. It stipulates
what is necessary for the execution of the IC algorithm, e.g.,
the attributes to be protected (e.g., Boolean, integer, or real),
protection objectives (e.g., partial disclosure control or
complete disclosure control), constraints (e.g., database
dependencies, integrity constraints, and domain knowl-
edge), and so on. For illustration purposes, an example of
IC policy for Audit Expert specified in XML is given in Fig. 2.
While a more formal language (e.g., XACML [69]) can be
defined, we are concerned with demonstrating how an

YANG ET AL.: SHIFTING INFERENCE CONTROL TO USER SIDE: ARCHITECTURE AND PROTOCOL 191

2. The IC policy needs to be delivered to the user only when it has been
modified by the server recently; otherwise, it can be kept at the user’s
platform safely (protected by TPM).

Fig. 1. IC architectures. (a) Traditional IC architecture. (b) New IC architecture.

Fig. 2. A sample policy for Audit Expert.

IC policy regulates the enforcement of IC in our proposed
new architecture. The IC policy defines the subject who
accesses the database, the object that consists of sensitive
attribute(s) to be protected, the type of queries imposed by the
subject, and the type of audit to be enforced. In Audit Expert,
there are two types of queries: range (sum) queries and
ad hoc (sum) queries, and two types of audit: exact audit [9],
[12] and interval audit [35]. For our example, a subject is
defined to be “senior user,” “junior user,” or “suspicious
user,” and the object is defined to be the SALARY attribute in
the EMPLOYEE table, which is shown in Table 1. The policy
states that a senior user can launch any ad hoc query and
obtain the query result as long as no exact value of the salary
attribute can be inferred from his cumulative queries.

Role of trusted computing. A challenging issue in our new
architecture is that the database server may lose its control
over ICM and that the user may compromise ICM so as to
bypass IC. To address this issue, assurance must be given to
the database server that ICM is executed as expected, free of
user’s interference and manipulation. This kind of assurance
is achieved by virtue of trusted computing. In Fig. 3, a user’s
machine is equipped with a TCG-compliant TPM [60] and
possibly other trusted hardware. A trusted platform can be
built from TPM at the hardware layer to a secure kernel in
the OS kernel space and to ICM in the application space.

The hardware, underpinning and cooperating with the
secure kernel, provides necessary security functions to ICM,
from basic cryptographic functions to sealed storage,
platform attestation, and a protected running environment.
TPM can assure the remote database server of the integrity of
the components in the platform, including the secure kernel
and ICM, through its integrity measuring, storing, and
reporting mechanisms. In particular, the running state of the
protected platform can be conveyed to the database server
by virtue of the platform attestation mechanism of TPM, so
that the server can decide whether the protected platform
runs in a sufficiently trusted state. The protected platform
running in a trusted state ensures that ICM enforces IC as
expected. This platform architecture can be considered as an
open system in the sense that the host accommodates both
protected applications and unprotected applications.

The involvement of TPM in IC can be considered yet
another application of trusted computing [39], [55]. Other
trusted computing applications that have been rigorously
studied in recent years include digital rights management
[23], remote AC enforcement [45], [48], server-side user

privacy protection [30], server privacy protection [56],
secure auction [41], and integrity measurement [46], to
name a few. The objective of these applications is to either
enable a server to extend its control over data distributed to
client side or protect users’ privacy on the server side, while
our major concern is to securely decentralize the enforce-
ment of IC so as to resolve the efficiency and scalability
problems inherent in IC. In the sequel, we assume prior
knowledge about TPM, and interested readers are referred
to Appendix for a brief review of TPM.

Interactions between ACM and ICM. In our new architec-
ture, ACM enforces the AC mechanism over an AC database,
and it represents the database server by interacting with all
users. On the other hand, ICM is responsible for enforcing IC
according to the IC policy specified by the database server,
and it also acts as an interface of the user side interacting
with the database server. ICM is an application protected by
TPM, which is inextricably bound to the user host.

The main interactions between ICM (having access to
TPM) and ACM are illustrated in Fig. 4. It is assumed that
the user has certain identification information (e.g., user
password) to identify itself to ACM. ICM first sends the
identification information (including user’s identification
information and host’s identity) together with a user query
to ACM (database server). Upon reception of the user
query, ACM enforces AC and formulates a response to the
query if the user query is authorized. Before ACM delivers
the query’s response, it first sends an attestation challenge
to ICM. Based on the attestation response from ICM, ACM
can decide whether the user’s platform is in a trusted state.
If so, it releases the query’s response as well as the IC policy
and the set of complementary queries to ICM for the
enforcement of IC. A detailed protocol is given in Section 3
to formalize the interactions between ACM and ICM.

3 PROTOCOL

We present a protocol for the interactions between ACM
and ICM. The protocol enables ICM at the user side to
enforce the IC prescribed by the database server. The
designing of the protocol assumes the use of version 1.2
TPM command set [59] and data structure [58].

3.1 Overview

Shifting IC from the database server to users’ hosts incurs
new security threats that do not exist in the traditional
architecture. We enumerate the new security threats and
explain the basic ideas in our protocol design to mitigate
these threats. The fundamental assumption is that the TPM is

192 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 3. TPM-enabled user host.

Fig. 4. Interactions between ACM and ICM.

perfectly secure in the sense that the functions of TPM cannot
be compromised. We note that there may exist some attacks
that modify or crash the protected applications at user side
after they have been attested by the server. Attacks of these
kinds are not specific to our system but generic to all
applications of trusted computing technology. A simple
solution suggested by Sailer et al. [45] is that the server
frequently challenges the user’s platform so as to detect the
attacks as soon as possible. Shi et al. [52] proposed fine-
grained attestation, which attests only to the piece of code that
is concerned, instead of the entire memory content. Further, it
measures code immediately before it is executed and uses a
sand-boxing mechanism to protect the execution of the
attested code. This greatly mitigates the concerns on the
discrepancy between the time of use and time of attestation.

Integrity of ICM. Since ICM resides in the user’s host, a
malicious user clearly has a motivation to alter the
designated function of the protected platform, especially
ICM, so as to bypass the IC. Since TPM is inextricably
bound to the user’s host, we can use its integrity measuring,
storage, and reporting mechanisms to detect any compro-
mise of the integrity of the user’s platform, including ICM.

Integrity of query history. This includes integrity of the local
query log and authenticity of the set of complementary
queries sent by the server. The latter can be addressed in the
same way as the IC policy (see below), and we here focus on
the former. We know that accurate IC depends on the
complete query history. However, as the local query log is
maintained in the user’s host, it easily suffers malicious
alteration including complete erasion. To thwart this threat, a
straightforward solution is to let ICM hold a secret key for
either MACing or signing the query log, with the secret key
stored in the sealed storage of TPM. However, this introduces
an extra key for ICM to manage. We instead use a different yet
novel method by associating the integrity digest of the query
log with the key for protecting the confidentiality of query
responses (see the details in confidentiality of query responses).

Authenticity of IC policy. The IC policy regulates how IC
is enforced. While in transit or in storage, the IC policy is
subject to malicious alteration. It is extremely important to
ensure that the IC policy enforced by ICM in the user’s
host is indeed dispatched by the database server and has
not been tampered with. This is achieved by assuming that
ACM holds a digital signature key pair ðpkACM; skACMÞ;
before disseminating the IC policy to the user, ACM signs
the IC policy so that ICM can check whether the policy has
been compromised either in transit or in storage. This also
enables ICM to verify the source of the IC policy.
Apparently, the same can be applied to protect the
authenticity of the complementary queries, which also
need to be transmitted from the server to the user host.

Confidentiality of secrets maintained by ICM. In some cases,
ICM needs to maintain some secret keys so as to protect the
database server’s data on the user side. To prevent malicious
users from reading the secrets, ICM needs help from TPM to
store these secrets in the sealed storage provided by TPM.

Confidentiality of query responses. Before ICM determines
whether it is safe to release query responses, the user should
be kept from reading the responses, whether they are in
transit or in store on the user host. While in store, the query
responses can be protected using secret keys maintained by

ICM (as described above). To achieve the confidentiality of
query responses in transit, a secure channel between ICM
and ACM is established. More specifically, ICM asks TPM to
generate an ephemeral asymmetric encryption key pair,
where the public key is certified by TPM and the private key
is stored in its protected storage. The public key can be used
by ACM to encrypt the query responses, which will be sent
to ICM. Upon receiving the encrypted message, ICM asks
TPM for decryption operation in a secure software environ-
ment. Note that, in this solution, TPM acts as a certifying
party; there is no need to resort to external certification
mechanisms.

As stated earlier, we novelly integrate the integrity
protection of the local query log into the confidentiality
protection of query responses. This is explained as follows:
When requesting that TPM perform the decryption opera-
tion, the invoking entity (i.e., ICM) is required to provide a
piece of authorization data, which is normally derived from
a password that is provided by the user who invokes ICM.
In our solution, however, the piece of authorization data is
derived by ICM not only from the user’s password but also
from a content digest of the local query log. As a result, if the
integrity of the query log is compromised, the authorization
data will be refuted by TPM so that the private key cannot
be accessed for the decryption operation. We must point out
that the content digest of the query log is not intended to
enhance the secrecy of the authorization data, which
depends totally on the strength of the user’s password.

Protected execution environment. A protected execution
environment is needed for the running of ICM; otherwise,
the OS kernel or other applications running in parallel on
the user host may access the code and data within the
ICM application domain. Though a TPM-enabled platform
can be configured as a restricted system (which only runs a
small set of protected applications, i.e., ICM in our case) or
an open system but with all applications being protected
by TPM, neither of the systems is practical. While the
impracticality of the restricted system is obvious, it is
challenging for TPM to perform platform attestation in an
open system. The reason is that the attestation would
involve a large set of application integrity metrics and that
the database server must know in advance all the applica-
tions that run on each user’s platform.

A more practical solution is that the user host remains
open, but it is partitioned into a protected domain and an
unprotected domain. The protected domain consists of a
restricted set of protected applications such as ICM, while
the unprotected domain includes other application soft-
wares that do not need to be protected. Although the current
TPM functionalities specified by the Trusted Computing
Group (TCG) do not suffice to support this solution, more
efforts have been made to establish the protected environ-
ment as desired. For example, the Intel’s LaGrande Technol-
ogy (LT) [32] incorporates an additional set of hardware and
software components around the TCG-compliant TPM,
enabling software domain separation and protection; as
such, a process without permission is not able to access
another process’s memory space, keystroke information, and
display information. This provides a protected execution
environment that is sufficient for our solution. Without
further complicating our presentation, it is reasonable to

YANG ET AL.: SHIFTING INFERENCE CONTROL TO USER SIDE: ARCHITECTURE AND PROTOCOL 193

assume in our protocol that TPM (possibly together with
other trusted hardware) enables ICM to run in isolation, free
from interferences from other applications running in
parallel. Moreover, the application data that ICM uses in its
execution domain will be automatically erased as long as
ICM exits its execution.

3.2 Steps

We present our protocol in five steps, where the first four
steps correspond to the four stages of interactions shown in
Fig. 4, and the last step represents the enforcement of IC
locally by ICM. Main notations used in the following
presentation are listed in Table 2.

Step 1. ICM ! ACM: idU , idH , q.
To issue query q, the user invokes ICM to send user
identification information idU , the host identity idH ,
together with q to ACM on the database server side.
Without specifying the composition of the identification
information, we simply assume that idU suffices to enable
ACM to identify the user and enforce AC.

Step 2. Upon reception of a query request from the user,
ACM checks whether the user has the requested right to
access the data in the query. If so, ACM challenges the user’s
platform for remote attestation. This step consists of three
substeps.

Step 2.1. ACM: identifyðidUÞ.
ACM identifies the user by executing identifyðidUÞ, the

deployed identification function.
Step 2.2. ACM: acðidUÞ.
ACM executes the AC algorithm acðidUÞ to determine

whether the user has the permission to access the data in the

query. If the user is not authorized, ACM aborts the

protocol; otherwise, it continues with step 2.3.
Step 2.3. ACM ! ICM: nACM .

ACM generates a random nonce nACM and sends it to ICM

as the challenge for platform attestation. The nonce is used to

thwart replay attacks in the following platform attestation.

Step 3. The platform attestation is performed in this

step. Be aware that before the start of this step, ICM

already has in possession a public key pkICM generated by

TPM in the last query session. This will be clear shortly in

steps 5.7 and 5.8.3 The details of step 3 are given as follows:

Step 3.1. ICM ! TPM: TPM_CertifyKey.
ICM first invokes a standard TPM command TPM_

CertifyKey for TPM to certify pkICM . The TPM_CertifyKey
command instructs TPM to generate a signature on a public
key using its attestation identity key (AIK). The operation of
key certification can be bound to a specific state of the
underlying platform. The input parameters of TPM_Certi-
fyKey include the key to be certified, externally supplied
data of 20 bytes, and the Platform Configuration Registers
(PCRs), whose contents are bound to the certification
operation. In our case, the externally supplied data are
calculated as SHA1ðnACM; idU ; idHÞ, and the PCRs contain
the integrity measurement metrics for the protected plat-
form including the booting procedure, the OS, and ICM.

Step 3.2. TPM ! ICM: TPM_Certify_Info, �TPM ¼
SskTPM ðSHA1ðpkICMÞkSHA1ðnACM; idU; idHÞkimÞ.

In response, TPM outputs a TPM_Certify_Info data
structure, as well as a signature signed on the public
key pkICM , the nonce nACM , the identification information
idU , idH associated with the query, and the integrity
measurement metrics im of the platform. Here, TPM_Certi-
fy_Info contains information regarding the usage of the
public key pkICM , the PCRs involved in signing, and a
digest of the public key. Note that skTPM denotes the
private AIK of TPM (accordingly, pkTPM denotes the
public AIK). For the sake of simplicity, an atomic quantity
im is used to represent the integrity measurement metrics of
the protected platform. It is interesting to note that the
platform integrity reporting is achieved through certifica-
tion of the public key in this step.

Step 3.3. ICM ! ACM: TPM_Key, TPM_Certify_Info,
�TPM , TPM.AIK credential.

In response to the attestation challenge, ICM sends
TPM_Key, TPM_Certify_Info, �TPM , and the relevant TPM
AIK credential to ACM on the server side. Here, TPM_Key
is a data structure that is generated in the last query
session; it contains the public key pkICM and other related
information, as will be explained in step 5.8.

Step 4. ACM verifies the attestation response and
sends a query response as well as the IC policy and the
complementary queries to ICM for the enforcement of IC.

Step 4.1. ACM: VpkTPM ð�TPMÞ.
Upon reception of the attestation response, ACM first

verifies the signature �TPM using public key pkTPM and the
corresponding certificate information.

Step 4.2. ACM: validateðimÞ.
Then, ACM verifies whether im (contained in TPM_Cer-

tify_Info) represents a trusted state of the user’s platform as
expected. In particular, it verifies whether ICM is running
as expected. We use an atomic function validateð�Þ to denote
this process.

Step 4.3. ACM ! ICM: "1 ¼ EpkICM ðk1kk2Þ, "2 ¼ enck1
ðdÞ,

"3¼enck2
ðCom QÞ,�ACM¼SskACMð"1k"2k"3kIC PolicykpkICMkqÞ,

pkACM .
If step 4.1 or 4.2 fails, the protocol aborts. If both step 4.1

and step 4.2 succeed, ACM generates two secret keys k1 and
k2 for symmetric key encryption. It encrypts k1 and k2 using
public key pkICM , yielding "1. Then, it encrypts the query
response d using k1, yielding "2, determines the set of
complementary queries (denoted as Com Q) among the
central query log at the discretion of user identity and host

194 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

TABLE 2
Notations

3. In the case that the user queries the database server for the first time,
there will be two extra substeps prior to step 3.1 that enable ICM to generate
pkICM . The two extra substeps are the same as steps 5.7 and 5.8, with the
only exception that the user’s query log is empty at this point.

identity, and encrypts the set using k2, yielding "3. After
formulating the IC policy (denoted as IC Policy) that is to
be enforced by the user, ACM signs the IC policy, the
complementary queries, "1, "2, and "3 using its private key,
yielding digital signature �ACM . Finally, ACM sends "1, "2,
"3, �ACM , and pkACM (including this public key’s certificate)
to ICM and updates the central query log by including q.
Note that we actually adopt a rollback mechanism that if q
is rejected (i.e., q leads to inference) later by ICM, ACM will
be informed to remove q from the central query log. Note
also that the reason for including pkICM and q in �ACM is to
prevent replay attack; moreover, since a complementary
query set contains the responses to these queries, so
confidentiality should be provided against outside adver-
sary taping on the communication channel.

Step 5. ICM enforces IC over the query response and
IC policy in a protected execution environment supported
by TPM.

Step 5.1. ICM: VpkACM ð�ACMÞ.
Upon reception of the query response, ICM verifies the

signature �ACM . If the signature is genuine, it proceeds to
the next step.

Step 5.2. ICM ! TPM: TPM_LoadKey2.
ICM issues TPM command TPM_LoadKey2 to TPM so as

to load the private key skICM to TPM. The input parameters
taken by TPM_LoadKey2 include a TPM_KEY structure and
authorization data. The TPM_KEY structure specifies the
clear public key pkICM and the wrapped private key skICM
(which can be unwrapped by TPM), as well as information
on PCR values bound to the key pair. The authorization data
are computed from the user’s password and the digest of
the local query log: SHA1ðpasswordkdigest-of-query-logÞ.
Refer to steps 5.7 and 5.8 for the exact composition of
TPM_KEY, why the authorization data is computed in such
a way, and how digest-of-query-log is obtained.

Step 5.3. TPM ! ICM: ðk1; k2Þ ¼ DskICM ð"1Þ.
Once TPM decides that the protected user platform is in

a trusted state and that the authorization data match that
specified when the ICM key pair was generated (see
step 5.7), TPM unwraps skICM , uses it to decrypt "1, and
returns k1 and k2 to ICM.

Step 5.4. ICM: d ¼ deck1
ð"2Þ, Com Q ¼ deck2

ð"3Þ.
ICM decrypts "2 using key k1 to get the query response d,

and"3 using keyk2 to obtain the set of complementary queries.
Step 5.5. ICM: infconðqd;Q; IC PolicyÞ.
ICM enforces IC based on qd andQand the IC policy, where

qd denotes the current query q together with its response d,
and Q denotes the union of the local query log and Com Q.
For reasons of generality, we assume that the query responses
are used in IC, though they are not absolutely necessary for
data independent algorithms such as Audit Expert.

Step 5.6. ICM: Q ¼ Q[fqdg [Com Q.
If infconð�Þ arbitrates that q is safe, leading to no

inference, ICM accepts the query: ICM updates the local
query log Q by including qd and the set of complementary
queries and then reveals the query response d to the user.
Otherwise, if infconð�Þ decides that qd causes inference, ICM
rejects the query: ICM refuses to release d and updates Q by
including only Com Q. ICM finally sends a REJECT
acknowledgement to the database server, so that the server

updates the central query log by deleting q.4 Note that

inconsistency between the user’s local query log and the

server’s central query log will occur if the server does not

receive the REJECT acknowledgement sent by ICM. For

clear presentation, we defer the discussion to this problem

to Section 5.
The above has completed the main task of IC. However, as

we mentioned earlier ICM still needs to prepare a public-key

encryption key pair for the next query session. The reason for

this is that we design to bind the integrity of the local query

log Q to the use of the private key. It is thus necessary to

generate the key pair immediately following the update ofQ.

The procedure of key generation is given as follows:
Step 5.7. ICM ! TPM: TPM_CreatWrapKey.
In this step, ICM invokes TPM command TPM_Creat-

WrapKey to instruct TPM to generate an asymmetric key

pair ðpkICM; skICMÞ and to wrap the private key skICM . The

input parameters of this command include

1. the handle of a wrapping key that can perform key
wrapping,

2. the authorization data necessary to access the
wrapping key,

3. a set of PCRs whose contents are bound to the
wrapping operation, and

4. the information about the key to be generated (e.g.,
key length, key algorithm, key usage).

The piece of authorization data is an SHA-1 hash value

(20 bytes) that is required for unwrapping the wrapped data.

In our scenario, the piece of authorization data is derived

from the user’s password and the content digest of the local

query log; that is, SHA1ðpasswordkdigest-of- query-logÞ,
where digest-of-query-log is obtained by applying a

one-way function to the whole set of the user’s queries

accumulated in the local query log. If the local query logQ is

maliciously modified later, the authorization data calculated

for unwrapping operation in the next query session will be

refuted by TPM, and as a result, skICM cannot be accessed

by ICM.
The key pair generated by TPM_CreatWrapKey is bound

to a state of the platform. The binding is achieved by
specifying a set of PCRs whose contents are bound to the
wrapping operation. In our case, the PCRs record the
integrity measurement metrics of the protected platform.
This binding ensures that skICM cannot be unwrapped
unless the user’s platform is in a trusted state.

Step 5.8. TPM ! ICM: TPM_Key.
Finally, TPM returns to ICM a TPM_Key data structure,

which contains public key pkICM and the corresponding

private key skICM encrypted by a wrapping key. TPM_Key

also contains a field TPM_Auth_Data_Usage, which can

take one of the following three values: 1) TPM_Auth_Never,

2) TPM_Auth_Always, and 3) TPM_Auth_Priv_Use_Only.

The first case allows the invoking party to load the private

key without submission of any authorization data, while the

second and third cases associate authorization data with

the public/private key pair and the private key only,

respectively. In our case, it suffices to instruct TPM to set

TPM_Auth_Data_Usage to TPM_Auth_Priv_Use_Only.

YANG ET AL.: SHIFTING INFERENCE CONTROL TO USER SIDE: ARCHITECTURE AND PROTOCOL 195

4. To provide authenticity, the acknowledgement can be signed by TPM.

4 SECURITY ANALYSIS

In this section, we formally prove the security, in
particular, the authentication property, of our protocol.
Given that the security services provided by TPM, the
protected execution environment on top of TPM, and the
cryptographic primitives we employed are secure (in a
sense that these services are not compromised), it is not
difficult to verify that our protocol meets the security
requirements listed in Section 3.1 if the authentication
property of our protocol can be formally proven.

Our protocol involves ACM on the server side and ICM on
the user side. According to Fig. 3, ICM takes root in a trusted
subsystem, which consists of secure OS kernel, TPM, and
other trusted hardware. The trusted subsystem restricts
ICM’s behavior from accessing the secrets and operations of
TPM, unless it is authorized, as specified in the protocol.
In the presence of “perfect” TPM (see Section 4.2 for our
assumptions on TPM), ICM and TPM can be considered as a
single entity (represented by ICM) in our protocol analysis.
Our protocol is essentially an authentication protocol
between ICM and ACM, with ICM having access to relevant
TPM commands as local operations. The main objective of
authentication is to ensure that ACM validates the security state

of ICM before sending out any query response. We formally prove
this property using the rank function [53], a specialized
theorem-proving method for establishing the correctness of
authentication protocols based on communicating sequential
processes (CSPs) [54]. This will eliminate typical attacks such
as replay attacks and masquerade attacks that are targeted at
our authentication protocol. It is cautioned that our proof
assumes prior knowledge of CSP [54].

To perform the proof, the rank function approach
requires modeling of the following three components:
1) the protocol, 2) the environment (attacker), and 3) the
security requirements on the protocol:

– The protocol is captured as a CSP process in terms of
the behavior of each system party.

– The environment is also described as a CSP process. It
is considered to be an unreliable medium that can
lose, reorder, and duplicate messages. The particular
behavior captured within the medium is precisely the
behavior that the protocol is designed to overcome.

– The security requirements on the protocol are
expressed as sat specifications on the observable
behaviors of the overall system.

When these components are modeled, one can use well-
established proof techniques to verify whether the protocol
satisfies its security requirements. We next elaborate on the
proof.

4.1 Protocol Simplification

Our protocol can be simplified as follows for proof clarity:

1) The public keys and corresponding certificate information

are removed from the protocol messages. This information is

used for the verification of digital signatures and in principle

can be obtained from a public directory. 2) The use of the

hash function is removed in the computation of �TPM ,

yielding �TPM ¼ SskTPM ðpkICMknACM; idkimÞ, where id is the

concatenation of idU and idH . In the sequel, for simplicity,

we omit id as we can view nACM as a compound of itself

and id. The removal of the hash function does not affect the

correctness of our analysis, as there is no secret involved in

hashing [29]. Fig. 5 illustrates the simplified version of our

protocol, which captures only the essential messages ex-

changed between ICM and ACM without revealing the

details of local operations.

4.2 Assumptions on TPM

Several assumptions are made to model the involvement of

TPM [15]. First, it is assumed that a user’s host has access to

a single TPM and is running a single instance of ICM. An

attacker may also have access to a single TPM; however, the

attacker’s platform is not trusted by the database server,

which distinguishes it from honest users. Second, only TPM

commands that are used in the protocol are modeled. This

means that the attacker cannot use other TPM commands to

gain advantages. This assumption is strong but reasonable,

as we are in a position to analyze the protocol in the

presence of “perfect” TPM. The resulting analysis can be

considered as a first step toward further analysis on a richer

set of TPM behaviors.

4.3 Protocol Modeling

Attacker. The model of the network is standard, based on

the Dolev-Yao model [22]. As shown in Fig. 6, the network

is composed of a set of honest users’ ICMs and a single

server’s ACM. The attacker is in full control of the network,

and all communication passes through it. The attacker may

choose to block or redirect messages, send messages of its

choice, and masquerade as other users. The users and the

server transmit messages on channel trans and receive

messages on channel rec. The event trans:i:j:m represents

the transmission of message m to j from i. Likewise,

rec:j:i:m indicates the reception of m by j from i.
The capabilities of the attacker are bounded by a finite

set of deductions, by which it can generate new messages

196 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 5. Simplified protocol.

Fig. 6. Network model.

from the set of messages it already knows. Let X ‘ m
denote that new message m is deduced from a set X of

messages. In our context, the attacker is capable of the

following three deductions related to the TPM commands

used in the protocol, in addition

TPM CreateWrapKey

X ‘ pkkETPME
ðskÞ ðpk; skÞ 2 AKEð Þ

TPM CertifyKey
X ‘ n X ‘ pk

X ‘ SskTPME
pkknkimð Þ �validateðimÞð Þ

TPM LoadKey2
X ‘ ETPMðskÞ X ‘ EpkðmÞ

X ‘ m ðpk; skÞ 2 AKEð Þ

to the standard deductions77 as pointed out in [53] (recall that

the attacker is allowed access to TPM). The first deduction

results from the attacker’s access to TPM_CreateWrapKey

command, where AKE denotes the set of key pairs available

to the attacker, and ETPME
ðskÞ represents that TPM stores sk

in its protected storage. The second deduction states that

given a nonce n and a public key pk, the attacker can deduce

SskTPME ðpkknkimÞ (the attestation response) by invoking

TPM_CertifyKey, where the side condition :validateðimÞ
ensures that im represents a platform state untrusted to the

database server. The third deduction states that given a

ciphertext EpkðmÞ and the corresponding private sk stays in

the protected storage of the TPM, the attacker can get the

cleartext m by invoking TPM command TPM_LoadKey2.
The following process ENEMY characterizes the beha-

vior of the attacker in possession of a set X of messages:

ENEMY ðXÞ ¼ trans?i?j?m! ENEMY X [fmgð Þ
tu
tu i;j:U

X‘m
rec!i!j!m! ENEMY ðXÞ:

The first branch of choice models the attacker intercept-

ing and adding any new message m (sent from any user to

any other user) to the set of messages X the attacker knows.

The second branch states that the attacker can send any

message m that can be generated from X to any user i,

pretending it coming from any other user j.
The attacker is initially parameterized by a set IK

representing the attacker’s initial knowledge, such as the

nonces that the attacker can use, usernames, public keys,

and compromised old session keys:

ENEMY ¼ ENEMY ðIKÞ:

Users. Each user is identified by its identity. We thus

model each ICM i by CSP process ICMiðidi; AKiÞ, where idi

is user identity andAKi is the set of asymmetric key pairs that

ICM i can use. As a result, USERS models the behavior of all

ICMs as an interleaving of ICMi (U is the set of all users):

USERS ¼ kji:UICMiðidi; AKiÞ:

Each ICMi models the messages engaged by ICM i:

ICMiðidi; AKiÞ ¼tuðpki;skiÞ:AKi;:q:Qi
trans:i:A:q

!tunA:N rec:i:A:nA

! uim:M trans:i:A: SskTPMi
pkiknAkimð Þ

� �

!tuk:K rec:i:A: EpkiðkÞ; enckðdÞ;
�

SskA EpkiðkÞkenckðdÞkIC PolicyknA
� ��

! ICMi idi; AKi n ðpki; skiÞf gð Þ;

whereA is the identity of ACM,Qi is the set of queries,N is the

set of nonces,M is the set of integrity metrics, andK is the set

of symmetric keys. The recursive definition of ICMi ensures

that only one instance of ICM will be running at a time.

Server. The CSP process SERVER models the behavior

of interleaving instances of a single ACM:

SERVER ¼ kjnA:NACMðnAÞ:

Each instance of ACM is modeled by process ACMðnAÞ,
parameterized by a nonce nA (see Fig. 5):

ACMðnAÞ ¼tui:U;q:Qi
rec:A:i:q

! trans:A:i:nA

!tuim:M;pki:AKi
rec:A:i: SskTPMi

pkiknAkimð Þ
� �

! validateðimÞ&signal:Trust:i:nA:appðqÞ
! trans:A:i:

�
EpkiðkÞ; enckðdÞ;

SskA EpkiðkÞkenckðdÞkIC PolicykpkICMkq
� ��

;
where k ¼ keyðnA; iÞ and d ¼ appðpÞ:

Note that in the definition of ACMðnAÞ, upon reception

of SskTPMi
ðpkiknAkimÞ, ACM performs a signal event

signal:Trust:i:nA:appðqÞ if im is validated as representing

a trusted state of the platform that issues q in a certain

protocol run. The secret key k is derived by keyðnA; iÞ and d

is derived by appðpÞ.
Entire Network. The entire network is thus modeled by

process NET , a parallel composition of USERS, SERVER,

andENEMY . The process is synchronized on trans and rec:

NET ¼ USERSkjSERVERð Þj fjtrans; recjg½ �jENEMY :

4.4 Authentication Objective

The authentication objective of the protocol is that ACM

responds to the query from ICM only after it has

validated the state of ICM. In other words, ACM will

not send out the query response unless ICM has already

attested its state as expected. For a particular ICM I,

message trans:I:A:SskTPMI
ðpkIknACMkimÞ indicates that

ICM has already attested its state in corresponding to

nonce nACM . For ACM, message signal:Trust:I:nACM:dI
indicates that ACM has already validated the state of I,

signaling that I is trusted to receive the response value dI
in a run involving nACM . The authentication objective can

thus be formalized as a sat predicate:

NET sat R precedes T;

where R ¼ ftrans:I:A:SskTPMI
ðpkIknACMkimÞjvalidateðimÞg,

and T ¼ fsignal:Trust:I:nACN:dIg.

4.5 Rank Function

The rank function approach [53] assigns a rank sec to the
messages that should remain secret during the protocol and

YANG ET AL.: SHIFTING INFERENCE CONTROL TO USER SIDE: ARCHITECTURE AND PROTOCOL 197

a rank pub to the messages that should be public ðsec < pubÞ.
The central rank theorem [53] gives four conditions the rank
function must satisfy in order to conclude that the protocol
indeed upholds the sat predicate. The interpretation of the
four conditions within our context is given below:

1. The messages in the initial set IK known to the
ENEMY process are of rank pub.

2. Any message generated by ENEMY from X under
the deductions rules has a rank pub whenever
messages in X have a rank pub.

3. signal:Trust:I:nACM:dI in R has a rank sec.
4. An ICM, when it is blocked from sending

trans:I:A:SskTPMI
ðpkIknACMkimÞ, can never give out

a message of rank sec unless it has previously
received a message of rank sec.

Fig. 7 shows the definition of our rank function �. The
security of our protocol is proven by verifying that the
rank function � satisfies the four conditions listed above,
thus the authentication objective is achieved. The first
three conditions can be checked independently of any
specific CSP process (with a slight exception in our case
that the attacker is capable of three extra deductions
related to TPM commands), and it is not difficult to
verify them against �. The fourth condition, however,
requires verifying USERSkjSERVER (CSP modeling of
the honest agents) against R precedes T . In particular, all
agents that are blocked on events from R should preserve
the rank function in a sense that if an agent receives
messages of rank pub only, then it should send messages
of rank pub only:

USERSkjSERVERj½R�jStopð Þ sat preserves �:

This can be interpreted as follows: If message
trans:I:A:SskTPMI

ðpkIknACMkimÞ, which is the only mes-
sage in R, is blocked, then signal:Trust:I:nACM:dI does
not occur. According to the laws of CSP, this can be
proven if all of the following four predicates hold:

1. ICMIðidI; AKIÞj½R�jStopÞ sat preserves �;
2. ICMiðidi; AKiÞj½R�jStopÞ sat preserves �, where

i 2 U n fIg;
3. ACMðnACMÞj½R�jStopÞ sat preserves �; and
4. ACMðnAÞj½R�jStopÞ sat p r e s e r v e s �, w h e r e

nA 2 N n fnACMg.
Checking these four predicates is a routine task. The
complete proof that these four predicates hold can be
found very similar to that given in [15].

5 DISCUSSIONS

In this section, we discuss several extensions to the above
system.

Defending against collusion attack. A typical attack against
IC systems is collusion attack. A collusion attack involves
several users forming a collusion group and combining their
query logs so as to infer some sensitive information that
cannot be derived from any individual query log. The
collusion attack is inherently difficult to mitigate and
presents as a serious inhibitor in the practical use of IC [3].
We must point out that there seems no technique can prevent
a user from purposely writing down her queries (as well as
query responses) and using them in collusion with other
users. What we can achieve is to restrict malevolent users
from directly using the query logs that are maintained by
ICMs for collusion. This requires the confidentiality of query log

to be maintained against any programs other than ICM. To

198 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 7. Rank function.

attain this requirement, the local query log can be encrypted
by ICM using a secret key, which can be stored in and
retrieved from the sealed storage of TPM by ICM only (using
TPM_Seal and TPM_Unseal commands). Note that in this
case, the authorization data for unwrapping operations (i.e.,
wrapping skICM) must be changed to SHA1(password||di-
gest of encrypted query log) in the above protocol.

In certain cases, the database server may be able to
“blacklist” some collusion groups of suspicious users who
may collude, with the help of certain out-of-band informa-
tion (e.g., the users from the same network domain). To
further mitigate the collusion attack, IC should be enforced
based on queries from all users in a collusion group rather
than from each individual user. This can be easily achieved
in our new architecture, with the database server managing
the central query log. More specifically, when any user in a
collusion group issues a query, the server sends to ICM the
complementary queries, which include not only the user’s
latest past queries issued at other hosts but also the queries
from all other users in the same collusion group; ICM can
then enforce IC based on the combination of its local query
log and the complementary queries it receives.

By and large, we can argue that our new architecture in
no way adversely affects the implementation of any
technique against collusion attack that can be applied in
the traditional architecture.

Casual damage of local query log. We have associated the
integrity of the query log with the access to the ephemeral
private key used to obtain the query responses in order to
deter malignant compromise to the local query log by the
user. However, this may cause problems in certain cases
that the local query log is damaged casually, e.g., by the
user’s misoperations or by break-ins: the user is unable to
query the database permanently, although she does not
purposely damage the local query log. This problem can be
solved by establishing an extra protocol that allows the user
to retrieve her queries kept in the central query log, under
the condition that she successfully identifies herself to the
database server.

Possible inconsistency between the local and central query logs.
In our protocol, we adopted a rollback mechanism that by
default ACM will include a query in the central query log
regardless of whether the query is accepted or rejected by
ICM; and ACM roll backs by deleting the query if the query
is later rejected by ICM. An inconsistency problem occurs if
the acknowledgement gets lost en route so that ACM does
not get it, e.g., due to the unreliability of the network or
because an attacker blocks the acknowledgement: the local
query log does not contain the query, but the central query
log has it. There is no adverse effect if the user uses a single
host, but it indeed has serious consequences in the case of a
user using multiple hosts. In such a case, the query will be
sent to other hosts as a part of the complementary query set.
Since the query has already caused inference with the
previous queries, no matter what the new queries are, they
are always rejected. This problem is essentially a “fairness”
issue that involves updating to the two distinct query logs.
While we can adapt the techniques of fair exchange
protocols, e.g., [2] and [4], for a remedy, the resulting
solution would be quite expensive. We can alleviate this
problem as follows: The user should be careful if her query

is rejected and keeps a copy of the REJECT acknowl-
edgement. When the user queries the database next time,
she must present the acknowledgement to the server. If
ACM has already received the REJECT acknowledgement,
it ignores it; otherwise, it updates the central query log
accordingly before processing the user’s query.

Effect of user’s host crash. In the security analysis in
Section 4, we did not consider an exceptional scenario that
the user’s host is crashed prematurely before it completes a
protocol execution. Note that the user has no motive to crash
her machine, since she wants to get the query response.
However, host crashes could be caused by break-ins or
hardware/software failure. We next discuss the effect of
such incidents. Referring to Fig. 4 and the protocol in
Section 3, we consider three possible points where the user
host could crash. The first is at a point that ICM has
completed step 1 but before its engaging in step 3. The effect
is that ACM does not receive attestation response, and thus,
it aborts the protocol. As neither party updates its query log,
no adverse effect is incurred. The second possible crash point
is at step 5.6, where ICM has updated its local query log but
before the query response is presented to the user. This
causes an unfair situation to the user. A possible solution is
that the user reissues the query after the host is recovered
from crash. The third possible crash point is after step 4.3 but
before ICM sends out the REJECT acknowledgement in case
the query is rejected. Since the user does not even get a copy
of the REJECT acknowledgement, she is not able to convince
the server to update the central query log next time. A
solution to this problem is that the user reissues the query so
as to get a copy of the REJECT acknowledgement after the
crash is recovered; this acknowledgement can be used by
the user as an evidence to roll back the rejected query on the
server side next time when she queries the database.

Database update. Database update (e.g., deletion of some
records) may necessitate updating the user’s local query log
on the user’s side. The central query log helps the database
server solve this problem. In case of database update, the
database server can determine the set of queries that are
affected by the update process. When a user queries the
database, the database server first checks for the affected
queries that belong to the user; it then informs the user to
update its query log so that the IC will be enforced upon the
latest query log.

6 CONCLUSIONS

We have proposed a new IC architecture and an IC protocol
upon it. While traditional IC is enforced by a database
server for all its users, our solution entrusts each user’s host
with the enforcement of IC for itself, provided that the
user’s host is equipped with trusted computing technology.
By decentralizing the highly computation-intensive task of
IC, our solution enjoys much better system scalability and is
thus suitable for supporting a large number of users in real-
world database systems. In comparison, the traditional
IC configuration can only support a small number of users
due to the bottleneck of enforcing IC for all users on the
server side. In this sense, our solution removes the crucial
impediment in traditional IC configuration and identifies a
new paradigm for the practical implementation of IC. Our

YANG ET AL.: SHIFTING INFERENCE CONTROL TO USER SIDE: ARCHITECTURE AND PROTOCOL 199

solution can work with any existing IC technique; even a
hybrid system of mixing our solution (for some users whose
platforms are TPM equipped) with traditional IC (for those
users who may not implement trusted computing) can be
easily set up. As a price to pay, the new architecture incurs
tolerable local storage and communication overheads.

Our solution relies on the use of trusting computing
technology, which is envisioned to be ubiquitous in several
years. Among other functionalities, the trusted computing
technology enables platform attestation for convincing the
remote database server that a user platform is in a trusted
state so that IC can be enforced on the user side as expected.
Our IC protocol is proposed to formalize the interactions
between the user platform and the database server based
on remote attestation. The authentication property of the
protocol is formally proven with the rank function approach.
We note that the security of our solution is proven based on
the “perfect TMP” assumption and the Dolev-Yao adversary
model. It remains unaddressed if the “perfect TMP” assump-
tion does not hold, or the adversarial behaviors are not
captured by the Dolev-Yao model. As an example, the
vulnerabilities caused by host crashes are not covered in
our security proof. In addition, we did not prove all security
properties (e.g., integrity of ICM and authenticity of IC
policy), as they can be straightforwardly derived and
enforced once the authentication property is established.

APPENDIX

A BRIEF INTRODUCTION TO TPM

The TCG [60] defines a set of trusted computing specifica-
tions [57], [58], [59] aiming to provide a hardware-based
root of trust and a set of mechanisms to propagate trust to
applications as well as across platforms. The root of trust in
TCG is a tamper resistant hardware engine, called TPM.
TPM is assumed robust against both hardware and software
attacks from either the underlying host or external sources.
It is a self-contained coprocessor with specialized functions
such as random number generation, RSA key generation,
RSA public key algorithms, SHA-1 hash function, HMAC
function, and volatile and nonvolatile memories. TPM may
have an identity, with an AIK pair associated it. The AIK
is issued by the Privacy Certification Authority (P-CA),
together with a certificate that binds the public AIK to TPM.
The private AIK can only be used by TPM to generate
signatures. TPM is also installed with a unique Endorse-
ment Key (EK) pair by the manufacturer before shipping,
which is exclusively used for data encryption purposes. The
private EK is securely held in TPM for decryption
operations, and the public EK is associated with an
endorsement credential and accessible to any application
for encrypting data to TPM.

TPM facilitates storage of integrity measurement metrics
of the underlying platform to the internal registers and
reporting of the metrics. In particular, TPM contains a set of
PCRs, which is used to record the integrity and configura-
tion metrics of a running platform from booting to OS
loading to application software loading. Each PCR value is
the SHA-1 hash value of its current value concatenated
with the new measured value of the protected objects, i.e.,
PCR½n� SHA1ðPCR½n�klatest measured valueÞ. Measure-
ment of a platform’s integrity results in the generation of

measurement events, which comprises two classes of data:
Measured values, which are representations of the data or
program code to be measured; and measurement digests,
which are hashes of the measured values. The measure-
ment digests are stored to PCRs in TPM, while the
measured values are stored to the Stored Measurement
Log (SML) outside TPM. With integrity measurement in
place, TPM (attestator) can attest to a remote challenging
platform (challenger) the integrity state of its underlying
platform through platform attestation. In particular, attesta-
tion works as follows: the challenger sends a challenge
message to the attestator, who then returns the related
PCR values signed by its AIK, together with the relevant
SML entries and the corresponding credentials. The
challenger validates the response and decides whether the
attestator platform is trusted for its intended purpose.

TPM provides hardware-based secure storage for secrets
by storing a storage root key (SRK) inside the chip and never
exposing it outside. Sealed storage is an essential security
mechanism offered by TPM. Sealed storage protects sensitive
data with integrity values. In particular, besides applying an
encryption key (RSA public key encryption) to encrypt the
data, one or more PCR values are stored together with
protected data during the encryption. Consequently, TPM
releases protected data only if the current PCR values match
those stored during encryption. The encryption key is
protected either directly by SRK, or by a key protected by
the SRK. Hence, the SRK acts as the root of trust for storage, and
all encryption keys can actually form a key hierarchy. SRK is
the only storage key permanently residing within TPM.

ACKNOWLEDGMENTS

A preliminary version of this paper has been published in
the Proceedings of the 21st Annual IFIP WG 11.3 Working
Conference on Data and Applications Security (DBSEC ’07),
LNCS 4602, pp. 243-258, 2007. This research is partly
supported by the Office of Research, Singapore Manage-
ment University. The authors would like to thank the
reviewers for their valuable comments and suggestions,
which help them improve the quality of this paper.

REFERENCES

[1] J.O. Achugbue and F.Y. Chin, “The Effectiveness of Output
Modification by Rounding for Protection of Statistical Databases,”
INFOR, vol. 17, no. 3, pp. 209-218, 1979.

[2] N. Asokan, M. Schunter, and M. Waidner, “Optimistic Protocols
for Fair Exchange,” Proc. ACM Conf. Computer and Comm. Security
(CCS ’97), pp. 7-17, 1997.

[3] N.R. Adam and J.C. Wortmann, “Security-Control Methods for
Statistical Databases: A Comparative Study,” ACM Computing
Surveys, vol. 21, no. 4, pp. 516-556, 1989.

[4] F. Bao, R. Deng, and W.B. Mao, “Efficient and Practical Fair
Exchange with Offline TTP,” Proc. IEEE Symp. Security and Privacy
(S&P ’98), pp. 77-85, 1998.

[5] L.L. Beck, “A Security Mechanism for Statistical Databases,” ACM
Trans. Database Systems, vol. 5, no. 3, pp. 316-338, 1980.

[6] M. Chen, L. McNamee, and M.A. Melkanoff, “A Model of
Summary Data and Its Applications to Statistical Databases,”
Proc. Fourth Int’l Conf. Statistical and Scientific Database Management
(SSDBM ’89), pp. 354-372, 1989.

[7] F.Y. Chin, “Security Problems on Inference Control for SUM,
MAX, and MIN Queries,” J. ACM, vol. 33, pp. 451-464, 1986.

[8] R. Chow, P. Goll, and J. Staddon, “Inference Detection Technology
for Web 2.0,” Proc. Web 2.0 Security and Privacy (W2SP), 2007.

200 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

[9] F.Y. Chin, P. Kossowski, and S.C. Loh, “Efficient Inference Control
for Range Sum Queries,” Theoretical Computer Science, vol. 32,
pp. 77-86, 1984.

[10] F.Y. Chin and G. Özsoyoglu, “Security in Partitioned Dynamic
Statistical Databases,” Proc. IEEE Int’l Computer Software and
Applications Conf. (COMPSAC ’79), pp. 594-601, 1979.

[11] F.Y. Chin and G. Özsoyoglu, “Statistical Database Design,” ACM
Trans. Database Systems, vol. 6, no. 1, pp. 113-139, 1981.

[12] F.Y. Chin and G. Özsoyoglu, “Auditing and Inference Control
in Statistical Databases,” IEEE Trans. Software Eng., vol. 6,
pp. 574-582, 1982.

[13] L.H. Cox, “Suppression Methodology and Statistical Disclosure
Control,” J. Am. Statistical Assoc., vol. 75, no. 370, pp. 377-385, 1980.

[14] L.H. Cox and L.V. Zayatz, “An Agenda for Research on Statistical
Disclosure Limitation,” J. Official Statistics, vol. 75, pp. 205-220,
1995.

[15] R. Delicata, “An Analysis of Two Protocols for Conditional Access
in Mobile Systems,” Technical Report CS-04-13, Dept. Computing,
Univ. of Surrey, 2005.

[16] D.E. Denning, Cryptography and Data Security. Addison Wesley,
1982.

[17] D.E. Denning, “Secure Statistical Databases with Random Sample
Queries,” ACM Trans. Database Systems, vol. 5, no. 3, pp. 88-102,
1980.

[18] D.E. Denning, “A Security Model for the Statistical Database
Problem,” Proc. Second Int’l Workshop Management, pp. 1-16, 1983.

[19] D.E. Denning, P.J. Denning, and M.D. Schwartz, “The Tracker: A
Threat to Statistical Database Security,” ACM Trans. Database
Systems, vol. 4, no. 1, pp. 76-96, 1979.

[20] D.E. Denning and J. Schlörer, “Inference Control for Statistical
Databases,” Computer, vol. 16, no. 7, pp. 69-82, 1983.

[21] D. Dobkin, A.K. Jones, and R.J. Lipton, “Secure Databases:
Protection against User Influence,” ACM Trans. Database Systems,
vol. 4, no. 1, pp. 97-106, 1979.

[22] D. Dolev and A.C. Yao, “On the Security of Public Key Protocols,”
IEEE Trans. Information Technology, vol. 29, no. 2, pp. 198-208, 1983.

[23] J.S. Erickson, “Fair Use, DRM, and Trusted Computing,” Comm.
ACM, vol. 46, no. 4, pp. 34-39, 2003.

[24] C. Farkas and S. Jajodia, “The Inference Problem: A Survey,”
SIGKDD Explorations, vol. 4, no. 2, pp. 6-11, 2002.

[25] I.P. Fellegi and J.L. Phillips, “Statistical Confidentiality: Some
Theory and Applications to Data Dissemination,” Annals of
Economic and Social Measurement, vol. 3, no. 2, pp. 399-409, 1974.

[26] E. Gallery, “An Overview of Trusted Computing Technology,”
Trusted Computing, C. Mitchell, ed., pp. 29-114, 2005.

[27] B.G. Greenberg, J.R. Abernathy, and D.G. Horvitz, “Application of
Randomized Response Technique in Obtaining Quantitative
Data,” Proc. Social Statistics Section, American Statistical Assoc.,
pp. 40-43, 1969.

[28] L.J. Hoffman, Modern Methods for Computer Security and Privacy.
Prentice-Hall, 1977.

[29] M.L. Hui and G. Lowe, “Safe Simplifying Transformations for
Security Protocols,” Proc. 12th Computer Security Foundations
Workshop, pp. 32-43, 1999.

[30] A. Iliev and S.W. Smith, “Protecting User Privacy via Trusted
Computing at the Server,” IEEE Security and Privacy, vol. 3, no. 2,
Mar./Apr. 2005.

[31] J. Kleinberg, C. Papadimitriou, and P. Raghavan, “Auditing
Boolean Attributes,” Proc. Ninth ACM Sigmod-SIGACT-SIGART
Symp. Principles of Database Systems (PODS ’00), pp. 86-91, 2000.

[32] LaGrande Technology Architecture. Intel Developer Forum, 2003.
[33] D. Lefons, A. Silvestri, and F. Tangorra, “An Analytic Approach to

Statistical Databases,” Proc. Ninth Int’l Conf. Very Large Data Bases
(VLDB ’83), pp. 260-273, 1983.

[34] Y. Li, H. Lu, and R.H. Deng, “Practical Inference Control for
Data,” Proc. IEEE Symp. Security and Privacy (S&P ’06), pp. 115-120,
2006.

[35] Y. Li, L. Wang, X.S. Wang, and S. Jajodia, “Auditing Interval-
Based Inference,” Proc. 14th Int’l Conf. Advanced Information
Systems Eng. (CAiSE ’02), pp. 553-567, 2002.

[36] C.K. Liew, W.J. Choi, and C.J. Liew, “A Data Distortion by
Probability Distribution,” ACM Trans. Database Systems, vol. 10,
no. 3, pp. 395-411, 1985.

[37] F.M. Malvestuto and M. Mezzini, “Auditing Sum-Queries,” Proc.
Ninth Int’l Conf. Database Theory (ICDT ’03), pp. 504-509, 2003.

[38] F.M. Malvestuto and M. Moscarini, “An Audit Expert for Large
Statistical Databases,” Statistical Data Protection, EUROSTAT ’99,
pp. 29-43, 1999.

[39] C. Mitchell, Trusted Computing. IEE, 2005.
[40] G. Özsoyoglu and J. Chung, “Information Loss in the Lattice

Model of Summary Tables Due to Suppression,” Proc. IEEE Symp.
Security and Privacy (S&P ’86), pp. 75-83, 1986.

[41] A. Perrig, S.W. Smith, D. Song, and J.D. Tygar, “SAM: A Flexible
and Secure Auction Architecture Using Trusted Hardware,”
eJETA.org: The Electronic J. E-Commerce Tools and Applications,
vol. 1, no. 1, 2002.

[42] J.P. Reiss, “Practical Data Swapping: The First Step,” Proc. IEEE
Symp. Security and Privacy (S&P ’80), pp. 36-44, 1980.

[43] J. Staddon, P. Goll, and B. Zimny, “Web-Based Inference
Detection,” Proc. USENIX Security Symp., pp. 71-86, 2007.

[44] J. Staddon, “Dynamic Inference Control,” Proc. ACM Sigmod
Workshop Research Issues in Data Mining and Knowledge Discovery
(DMKD ’03), pp. 94-100, 2003.

[45] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn, “Attestation-
Based Policy Enforcement for Remote Access,” Proc. ACM Conf.
Computer and Comm. Security (CCS ’04), pp. 308-317, 2004.

[46] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and
Implementation of a TCG-Based Integrity Measurement Archi-
tecture,” Proc. USENIX Security Symp., pp. 223-238, 2004.

[47] G. Sande, “Automated Cell Suppression to Reserve Confidenti-
ality of Business Statistics,” Proc. Second Workshop Statistical
Database Management, pp. 346-353, 1983.

[48] R. Sandhu and X. Zhang, “Peer-to-Peer Access Control Architec-
ture Using Trusted Computing Technology,” Proc. 10th ACM
Symp. Access Control Models and Technologies (SACMAT ’05),
pp. 147-158, 2005.

[49] J. Schlörer, “Confidentiality of Statistical Records: A Threat
Monitoring Scheme of On-line Dialogue,” Methods of Information
in Medicine, vol. 15, no. 1, pp. 36-42, 1976.

[50] J. Schlörer, “Disclosure from Statistical Databases: Quantitative
Aspects of Trackers,” ACM Trans. Database Systems, vol. 5, no. 4,
pp. 467-492, 1980.

[51] J. Schlörer, “Information Loss in Partitioned Statistical Databases,”
Computer J., vol. 26, no. 3, pp. 218-223, 1983.

[52] E. Shi, A. Perrig, and L. Van Doorn, “BIND: A Fine-grained
Attestation Service for Secure Distributed Systems,” Proc. IEEE
Symp. Security and Privacy (S&P ’05), pp. 154-168, 2005.

[53] S. Schneider, “Verifying Authentication Protocols with CSP,” Proc.
10th Computer Security Foundations Workshop, pp. 3-17, 1997.

[54] S. Schneider, Concurrent and Real-Time Systems: The CSP Approach.
Addison-Wesley, 1999.

[55] S.W. Smith, Trusted Computing Platforms: Design and Applications.
Springer, 2005.

[56] S.W. Smith and D. Safford, “Practical Server Privacy Using Secure
Coprocessors,” IBM Systems J. (special issue on End-to-End
Security), vol. 40, pp. 683-695, 2001.

[57] TCG. TPM Main, Part 1 Design Principles, TCG Specification Ver.1.2,
Revision 62, http://www.trustedcomputinggroup.org, 2003.

[58] TCG. TPM Main, Part 2 TPM Data Structure, TCG Specification Ver.1.2,
Revision 62, http://www.trustedcomputinggroup.org, 2003.

[59] TCG. TPM Main, Part 3 Commands, TCG Specification Ver.1.2,
Revision 62, www.trustedcomputinggroup.org, 2003.

[60] Trusted Computing Group, http://www.trustedcomputinggroup.
org, 2006.

[61] J.F. Traub, Y. Yemini, and H. Wozniakowski, “The Statistical
Security of a Statistical Database,” ACM Trans. Database Systems,
vol. 9, no. 4, pp. 672-679, 1984.

[62] L. Wang, Y. Li, D. Wijesekera, and S. Jajodia, “Precisely
Answering Multi-Dimensional Range Queries without Privacy
Breaches,” Proc. European Symp. Research in Computer Security
(ESORICS ’03), pp. 100-115, 2003.

[63] L. Wang, D. Wijesekera, and S. Jajodia, “Cardinality-Based
Inference Control in Sum-Only Data Cubes,” Proc. European Symp.
Research in Computer Security (ESORICS ’02), pp. 55-71, 2002.

[64] D. Woodruff and J. Staddon, “Private Inference Control,” Proc.
ACM Conf. Computer and Comm. Security (CCS ’04), pp. 188-197,
2004.

[65] S.L. Warner, “Randomized Response: A Survey Technique for
Eliminating Evasive Answer Bias,” J. Am. Statistical Assoc., vol. 60,
no. 309, pp. 63-69, 1965.

[66] S.L. Warner, “The Linear Randomized Response Model,” J. Am.
Statistical Assoc., vol. 66, no. 336, pp. 884-888, 1971.

YANG ET AL.: SHIFTING INFERENCE CONTROL TO USER SIDE: ARCHITECTURE AND PROTOCOL 201

[67] L. Willenborg and T. Waal, Statistical Disclosure Control in Practice,
vol. 111, Springer-Verlag, 1996.

[68] L. Willenborg and T. Waal, Elements of Statistical Disclosure,
vol. 155, Springer-Verlag, 2000.

[69] XACML and OASIS Security Services Technical Committee,
eXtensible Access Control Markup Language (XACML) Committee
Specification 2.0, 2005.

[70] C.T. Yu and F.Y. Chin, “A Study on the Protection of Statistical
Databases,” Proc. ACM SIGMOD ’77, pp. 169-181, 1977.

[71] N. Zhang, W. Zhao, and J. Chen, “Cardinality-based Inference
Control in OLAP Systems: An Information Theoretic Ap-
proach,” Proc. ACM Int’l Workshop Data Warehousing and OLAP
(DOLAP ’04), pp. 59-64, 2004.

Yanjiang Yang received the BEng and MEng
degrees in computer science and engineering
from Nanjing University of Aeronautics and
Astronautics, China, in 1995 and 1998, respec-
tively, and the MSc degree in biomedical
imaging and the PhD degree in security and
cryptography from the National University of
Singapore in 2001 and 2005, respectively. He is
currently a research fellow in the Institute for
Infocomm Research, A*STAR, Singapore. His

research areas include information security and biomedical imaging. He
is a member of the IEEE.

Yingjiu Li received the PhD degree in informa-
tion technology from George Mason University
in 2003. He is currently an assistant professor in
the School of Information Systems, Singapore
Management University. His research interests
include applications security, privacy protection,
and data rights management. He has published
more than 40 technical papers in the refereed
journals and conference proceedings. He is a
member of the ACM and the IEEE.

Robert H. Deng received the BEng degree from
the National University of Defense Technology,
Changsha, China and the MSc and PhD degrees
from Illinois Institute of Technology, Chicago. He
has been with the Singapore Management
University since 2004 and is currently a profes-
sor, an associate dean for Faculty and Re-
search, and the director of SIS Research Center,
School of Information Systems. Prior to this, he
was a principal scientist and the manager of

Infocomm Security Department, Institute for Infocomm Research,
Singapore. He has 26 patents and more than 200 technical publications
in international conference proceedings and journals in the areas of
computer networks, network security, and information security. He
served as a general chair, a program committee chair, and a member of
numerous international conferences. He received the University Out-
standing Researcher Award from the National University of Singapore in
1999 and the Lee Kuan Yew Fellow for Research Excellence from the
Singapore Management University in 2006.

Feng Bao received the BS degree in mathe-
matics and the MS degree in computer science
from Peking University in 1984 and 1986,
respectively, and the PhD degree in computer
science from Gunma University in 1996. He is
currently the principal scientist and the depart-
ment head of the Cryptography and Security
Department, Institute for Infocomm Research,
Singapore. His research areas include algo-
rithm, automata theory, complexity, cryptogra-

phy, distributed computing, fault tolerance, and information security. He
has published more than 180 international journal/conference papers
and holds 16 patents.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

202 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

	Shifting inference control to user side: Architecture and protocol
	Citation

	untitled

