Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

8-2013

Using contracts to guide the search-based verification of
concurrent programs

Christopher M. POSKITT
Singapore Management University, cposkitt@smu.edu.sg

Simon POULDING

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Theory and Algorithms Commons

Citation

POSKITT, Christopher M. and POULDING, Simon. Using contracts to guide the search-based verification of
concurrent programs. (2013). Search Based Software Engineering: 5th International Symposium, SSBSE
2013, St. Petersburg, Russia, August 24-26, Proceedings. 8084, 263-268.

Available at: https://ink.library.smu.edu.sg/sis_research/4914

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4914&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Using Contracts to Guide the Search-Based
Verification of Concurrent Programs

Christopher M. Poskitt! and Simon Poulding?

! ETH Ziirich, Switzerland, chris.poskitt@inf.ethz.ch
2 University of York, UK, simon.poulding@york.ac.uk

Abstract. Search-based techniques can be used to identify whether a
concurrent program exhibits faults such as race conditions, deadlocks,
and starvation: a fitness function is used to guide the search to a re-
gion of the program’s state space in which these concurrency faults are
more likely occur. In this short paper, we propose that contracts speci-
fied by the developer as part of the program’s implementation could be
used to provide additional guidance to the search. We sketch an example
of how contracts might be used in this way, and outline our plans for
investigating this verification approach.

1 Introduction

Concurrency is often necessary if programs are to make the most efficient use
of modern computing architectures. In particular, multiprocessor manufacturers
have shifted focus from increasing CPU clock speeds to producing processors
with multiple cores in the pursuit of better performance. For a program to realise
this potential performance improvement it must be able to use more than one
of the cores at the same time.

However, multi-threaded programs may exhibit concurrency-specific faults
which are both difficult to avoid during development and to identify during
testing. Race conditions can occur when more than one thread manipulates a
shared data structure simultaneously, potentially resulting in the corruption of
the data structure and consequential functional faults in the program. Race
conditions may be avoided by an arbitration mechanism, such as locking, that
controls access to shared resources. However, such mechanisms may give rise to
non-functional faults such as deadlocks when a cycle of threads are each waiting
to acquire a lock held by the next thread in the cycle and so none of them are
able to proceed; and starvation when one thread is continually denied access to
a shared resource as a result of the method of arbitration.

Verification of concurrent programs is thus complicated by the need to con-
sider not only input data, but also the relative times at which key events occur,
such as lock acquisitions and accesses to shared resources, across all of the pro-
gram’s threads. The temporal order of such events is referred to as an interleaving
of the threads. The timings of such key events are not typically constrained and
so each invocation of the program can have a different interleaving as a result of



non-determinism in the hardware and software platform on which the program
runs. Therefore verification techniques—both dynamic testing as well as more
formal static approaches—must consider many possible interleavings in order to
assess the likelihood of a concurrency fault.

A number of effective search-based techniques have been demonstrated for
this purpose, each using a fitness function to guide the search algorithm to
interleavings that could cause concurrency faults.

In this short paper, we propose that contracts provided by the developer could
provide additional information with which to guide the search, and therefore
improve the practicality of verifying concurrent programs using search-based
techniques.

2 Background and Related Work

One approach to detecting concurrency faults is model checking, a static tech-
nique that builds an abstract model of the concurrent program from its de-
sign or implementation. The model is used to determine all possible states of
the program and the valid transitions between these states. By exhaustively
analysing all reachable model states for the existence of concurrency faults, all
thread interleavings—mnot just those that occurred in a single invocation of the
program—may be verified. However, since the set of model states is formed by
a product of the states of each thread in the program, the number of states to
be checked grows very quickly with the size of the program and the number of
threads.

Alternatively, the set of possible interleavings can be explored during dy-
namic testing of the program itself by exerting control over the relative timings
of key events in each thread. This can be achieved by inserting instructions that
introduce delays around critical operations such as the acquisition of locks. How-
ever, as for the model checking, the number of potential interleavings that must
be explored grows very quickly with the program size.

Search-based techniques can be used to locate counterexamples—specific
thread interleavings (or equivalently, model states) in which concurrent faults
arise—rather than an exhaustive exploration of the entire space. Such an ap-
proach does not guarantee the absence of such faults, but can demonstrate the
presence of faults. If the metaheuristic algorithm can efficiently locate regions
of the search space (i.e. the set of possible thread interleavings or model states)
that potentially give rise to concurrency faults, this is a practical alternative to
exhaustive exploration of all possible interleavings/model states.

An important factor that determines the efficiency of a search is the fitness
function which guides the metaheuristic algorithm. For many types of concur-
rency faults, the fault either exists or it does not: for example, a deadlock cannot
be ‘partial’. Thus a fitness function based only on the existence of the fault it-
self would provide no guidance to the metaheuristic algorithm, and the function
must instead utilise other information to identify interleavings/model states that
are ‘closer’ to one that exhibits the concurrency fault.



For example, Godefroid and Khurshid [4], Alba et al. [1], and Shousha et al.
[7], each describe the use of a genetic algorithm to locate deadlocks in models of
concurrent programs; Staunton and Clark [8] describe an estimation of distribu-
tion algorithm using N-grams with the same objective. The fitness function used
by Godefroid and Khurshid utilises the total number of transitions out of model
states visited on the path to the current state. The rationale is that minimising
this sum will guide the search to states with no outgoing transitions: such a state
represents a deadlock. The fitness functions used by the other three algorithms
all utilise the number of blocked threads (those waiting to acquire locks) in the
current state as one of the metrics to guide the search. The rationale in this
case is that the more threads that are waiting to acquire locks, the more likely
a deadlock state is to occur.

Bhattacharya et al. [2] use hill climbing and simulated annealing to identify
potential race conditions through dynamic testing. A simulator is used to execute
the program as this allows control of the thread interleaving by injecting timing
delays while removing other sources of non-determinism. The fitness function
is based on the timing between write accesses to the same memory location
by different threads. The rationale is that by reducing the gap between write
accesses, a race condition is more likely to arise.

3 Using Contracts to Guide Search

3.1 Owur Proposed Use of Contracts

The search-based techniques discussed in the previous section used a fitness
function to efficiently guide the search to regions of the space of thread in-
terleavings/model states in which concurrency faults are most likely to occur.
Nevertheless, some of the fitness functions return values from only a small range
of discrete values. For example, the metric of the number of blocked threads—
used in the functions that guide the search to deadlock states during model
checking—takes only integer values between 0 and the total number of threads
in the program. Thus many states may have the same fitness, and the search is
provided with no guidance as to how to choose between them in order to reach
a state that has, in this example, more blocked threads.

We propose that there is opportunity to provide additional guidance to the
search by utilising developer-specified contracts. The objective would be to im-
prove the efficiency of the search algorithm by incorporating additional informa-
tion into the fitness function.

We do not envisage contracts taking the form of exhaustive specifications.
Instead we propose the use of formal contracts of the type used in the Design
by Contract approach to software development. Examples of this type of con-
tract are the preconditions, invariants and postconditions specified in the Eiffel
programming language using the require, invariant, and ensure constructs re-
spectively [5]; and equivalent constructs in the Java Modeling Language (JML)
[3]. Such contracts do not necessarily change the semantics of a program unless



the developer chooses to enable runtime checking for contract violations (for
example, in order to localise bugs in development builds), and there is no re-
quirement on them to be exhaustive. However they do document the behaviour
of the program intended and assumed by the developer in a form that might not
otherwise be easily inferable from the program code itself. It is this information
that we believe could be used to guide the search.

For example, a contract could document the assumption that the developer
has made as to how other threads will access the shared resources used by a
particular section of code. The search could then attempt to locate thread inter-
leavings that break this assumption using a fitness function derived automati-
cally from the contract. The rationale would be that if the assumption made by
the developer can be invalidated, it is likely that such interleavings could give
rise to concurrency faults.

Alternatively, a contract could be used to guide the search to particular
data states that increase the likelihood of concurrency faults. This possibility is
motivated by the observation that most of the existing fitness functions consider
only metrics related to interleavings—such as the number of blocked threads
or time between access to a shared memory location—but not the data that,
for example, satisfies guards on code that performs operations likely to cause
concurrency faults. This additional information in the fitness function could be
used to guide the selection of input data as well as thread interleavings.

Our proposal to use developer-specified assumptions in search-based algo-
rithms contrasts with their use in more analytical approaches. For example,
the approach of [10] uses an SMT solver to construct sequences of interfering
instructions that drive a program under test to break the assumptions.

3.2 An Example

As a motivating example, we consider a program written in concurrent Eiffel
with SCOOP (for Simple Concurrent Object-Oriented Programming). SCOOP
[5,6] is an experimental object-oriented concurrency model which has contracts
as a central concept, making it an interesting starting point for our work.

An object in the model can be declared with a special type using the keyword
separate, meaning that applications of routines to it may occur on a different
processor (an abstraction of threads, physical cores, etc.), and that calls to com-
mands (i.e. routines that do not return results) are executed asynchronously.
Every object belongs to exactly one processor; no other processor can access its
state. Calls to separate objects are only allowed if the current processor con-
trols the processors owning those objects; this is guaranteed if they are passed
as arguments, in which case they are automatically and exclusively locked for
the duration of the routine’s execution.

SCOOP supports pre- and postconditions for routines (preceded by require
and ensure respectively). In a sequential setting, preconditions are (optionally)
checked before executing the routine. In a concurrent setting, preconditions are
interpreted as wait conditions. That is, the execution of the routine is delayed



until simultaneously the precondition is satisfied and the processors handling the
separate objects controlled.

Suppose we have a simple program that has a bounded buffer, on which
we can store integers and from which we can consume them—provided that
respectively, the buffer is not full or empty. We give possible implementations
of a store routine below, using both the Eiffel SCOOP model (left) and Java
(right). Both implementations involve waiting if the buffer is full. In the SCOOP
version, an (asynchronous) execution would first wait for the separate a_buffer
object to become available and for the precondition to hold; then, the buffer is
locked, a new element is pushed, and the lock released. The Java version is
intended to do the same, but when waiting for buffer space to become available
(with the call to buffer.wait()), relies on an (unspecified) consumer object
notifying this store thread that it has consumed an element from the buffer.

store (a_buffer: separate public void store(BBuffer<Integer>
BOUNDED_BUFFER [INTEGER]; buffer , int element) {
an_element : INTEGER) synchronized (buffer) {
require while (!(buffer.size() <
a_buffer.count < a_buffer.size buffer.maxSize())) {
do try {
a_buffer.put (an_element) buffer.wait () ;
ensure } catch
not a_buffer.is_empty (InterruptedException e) {}
a_buffer.count = old a_buffer.
count + 1 buffer .push(element);
end o}

We have only given fragments of the whole programs, but already, with the
precondition in the SCOOP version, we can infer a “region of interest” in the
state space, i.e. a region where concurrency bugs may be more likely to reveal
themselves. In our example, this region involves states in which the buffer is ap-
proaching its bound. A poor design of the SCOOP program might, for example,
lead to a call of store waiting for an unacceptably long time, e.g. if consumers
are starved of access to a full buffer. In the Java version, threads that are blocked
because of a full buffer may never be awoken, for example, if the implementa-
tion of consumers fails to notify threads when the buffer is no longer full. These
bugs would not be observed outside of that region of interest, and with a suffi-
ciently large bound on the buffer, naive testing strategies might not encounter
them. The information provided by the precondition should be incorporated into
the fitness function to guide the search towards this region of interest, perhaps
by converting the contract’s Boolean condition to a metric similar in nature to
the branch distance [9] used in other forms of search-based testing. Note that
the precondition is essentially exposing information that is present in the Java
program, but would be more difficult for search to extract in that form.

This is a simple motivating example, and though illustrated with SCOOP,
we hope that the approach will generalise to other concurrent object-oriented
languages by allowing routines to be annotated with some notion of contract.
Furthermore, the example we considered used a functional precondition. We are
also interested in how search might be guided by a contract language offering



non-functional preconditions, such as expressions about patterns of access or
deadlock-free resource usage.

4 Conclusions and Next Steps

In this short paper, we have proposed the use of contracts in concurrent programs
for guiding search-based techniques towards regions of the state space where
concurrency faults may be more likely. We placed our proposal within the context
of the state-of-the-art, and sketched an example in a concurrent object-oriented
programming model to discuss how contracts might be exploited.

Our next step is to empirically evaluate our proposal on realistic software
with preconditions expressed in JML, the wait conditions of SCOOP, or another
suitable language. We also plan to investigate whether and how search-based
techniques can benefit from simple non-functional contracts in the code.

Acknowledgements. This work is funded in part by ERC grant agreement no.
291389, CME: Concurrency Made Easy, and by EPSRC grant EP/J017515/1,
DAASE: Dynamic Adaptive Automated Software Engineering.

References

1. Alba, E., Chicano, F., Ferreira, M., Gomez-Pulido, J.: Finding deadlocks in large
concurrent Java programs using genetic algorithms. In: Proc. 10th Annual Confer-
ence on Genetic and Evolutionary Computation. pp. 1735-1742 (2008)

2. Bhattacharya, N., EI-Mahi, O., Duclos, E., Beltrame, G., Antoniol, G., Le Diga-
bel, S., Guéhéneuc, Y.G.: Optimizing threads schedule alignments to expose the
interference bug pattern. In: Proc. 4th International Symposium on Search Based
Software Engineering. pp. 90-104 (2012)

3. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced
specification and verification with JML and ESC/Java2. In: Formal methods for
components and objects. pp. 342-363 (2006)

4. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algo-
rithms. In: Tools and Algorithms for the Construction and Analysis of Systems,
pp. 266—280. Springer (2002)

5. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, 2nd edn. (1997)

6. Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. Ph.D. thesis, ETH Zirich (2007)

7. Shousha, M., Briand, L.C., Labiche, Y.: A UML/MARTE model analysis method
for uncovering scenarios leading to starvation and deadlocks in concurrent systems.
IEEE Transactions on Software Engineering 38(2), 354-374 (2012)

8. Staunton, J., Clark, J.A.: Searching for safety violations using estimation of distri-
bution algorithms. In: Proc. 3rd International Workshop on Search-Based Software
Testing. pp. 212-221 (2010)

9. Tracey, N.J.: A Search-Based Automated Test-Data Generation Framework for
Safety-Critical Software. Ph.D. thesis, The University of York (2000)

10. West, S., Nanz, S., Meyer, B.: Demonic testing of concurrent programs. In: Proc.
14th International Conference on Formal Engineering Methods. LNCS, vol. 7635,
pp. 478-493. Springer (2012)



	Using contracts to guide the search-based verification of concurrent programs
	Citation

	tmp.1581577280.pdf.DsMd4

