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Towards Learning and Verifying Invariants of
Cyber-Physical Systems by Code Mutation

Yuqi Chen, Christopher M. Poskitt, and Jun Sun

Singapore University of Technology and Design, Singapore

Abstract. Cyber-physical systems (CPS), which integrate algorithmic
control with physical processes, often consist of physically distributed
components communicating over a network. A malfunctioning or com-
promised component in such a CPS can lead to costly consequences,
especially in the context of public infrastructure. In this short paper, we
argue for the importance of constructing invariants (or models) of the
physical behaviour exhibited by CPS, motivated by their applications to
the control, monitoring, and attestation of components. To achieve this
despite the inherent complexity of CPS, we propose a new technique
for learning invariants that combines machine learning with ideas from
mutation testing. We present a preliminary study on a water treatment
system that suggests the efficacy of this approach, propose strategies for
establishing confidence in the correctness of invariants, then summarise
some research questions and the steps we are taking to investigate them.

1 Introduction

Cyber-physical systems (CPS), characterised by their tight integration of algo-
rithmic control and physical processes, are prevalent across engineering domains
as diverse as aerospace, autonomous vehicles, and medical monitoring; they are
also used to control critical public infrastructure such as smart grids and wa-
ter treatment plants [16,18]. In such contexts, CPS often consist of distributed
software components (the “cyber” part) that communicate over a network and
interact with their local environments via sensors and actuators (the “physi-
cal” part). A component that exhibits faulty behaviour—or worse still, becomes
compromised [7]—can lead to costly and damaging consequences, motivating
research into approaches for ensuring their correctness, safety, and security.

Reasoning about a CPS as a whole, however, is very challenging, given that
models must capture both discrete behaviour in the cyber part as well as con-
tinuous behaviour in the physical part [30]. With source code for the former
and ordinary differential equations (ODEs) for the latter, it becomes possible to
model the CPS as a hybrid system and apply a variety of techniques (e.g. model
checking [11], SMT solving [12], non-standard analysis [13], concolic testing [17],
or theorem proving [23,24]). Yet CPS are inherently complex, and even with
domain-specific expertise, it can be difficult to determine ODEs that are accu-
rate enough in practice: there might always remain some discrepancy between



the verified model and the behaviour of the actual CPS, emphasising the impor-
tance of techniques that can be applied at runtime [20].

Our Approach. As an alternative to the endeavour of manual modelling, we
pursue in this paper a more systematic approach. We propose to apply machine
learning (ML) to the sensor data of CPS to construct models in the form of in-
variants—conditions that must hold in all states amongst the physical processes
controlled by the CPS—and to make those invariants checkable at runtime. To
achieve this, the learner must be trained on traces of sensor data representing
“normal” runs (the positive case, satisfying the invariant), and also on traces
representing incorrect behaviour (the negative case); the former being easy to
obtain, but the latter requiring more ingenuity. We obtain our negative traces by
the novel application of code mutation (à la mutation testing [14]) to the soft-
ware components of CPS. Besides characterising the CPS, the learnt invariants
have some important applications in controlling, monitoring, and attesting the
software components [25]. It is thus important to ascertain that the learnt in-
variants actually are invariants of the CPS: to address this, we propose to verify
them using statistical model checking and symbolic execution.

Our Contributions. This short paper describes a novel approach for gener-
ating invariants (or models) of CPS, based on the application of machine learn-
ing to traces of sensor data obtained under mutated software components. We
present the results of a preliminary experiment on (a simulator of) Secure Water
Treatment (SWaT) [1], a water purification testbed, which suggest the efficacy
of the approach and motivate the need for further research. Furthermore, we
propose the use of statistical model checking and symbolic execution for estab-
lishing confidence in the correctness of the learnt invariants, and highlight some
important open research questions which we are investigating in ongoing work.
For the formal methods community, this paper represents the start of a line of
work to model and verify—“warts and all”—a complex, real-world CPS. For the
CPS community, it describes a systematic approach for constructing invariants
that can be applied in controlling, monitoring, and attesting software compo-
nents. For the ML community, it presents a new application of learning arising
from a novel combination of ideas from CPS and mutation testing.

2 SWaT Testbed and Cyber-Physical System Invariants

SWaT. We are currently investigating our approach in the context of a partic-
ular CPS: the SWaT testbed [1]. SWaT, built for cyber-security research at the
Singapore University of Technology and Design, is a scaled-down but fully oper-
ational water treatment plant, capable of producing five gallons of safe drinking
water per minute. Water is treated in six distinct, co-operating stages, under
which it undergoes chemical processes such as ultrafiltration, de-chlorination,
and reverse osmosis. Each stage is controlled by an independent programmable
logic controller (PLC), which receives sensor data such as water flow rates and
tank levels, and then computes signals to send to actuators including pumps



and motorised valves. This communication all takes place over a network. Sensor
data is also available to a Supervisory Control and Data Acquisition (SCADA)
system, and is recorded by a historian to facilitate offline analyses.

Control is expressed in the programs that PLCs repeatedly cycle through.
These are structurally very simple, essentially boiling down to big (nested) if-
statements. The programs use only the simplest constructs: loops, for example,
are completely absent. Furthermore, the source code can easily be viewed, modi-
fied, and re-deployed to the PLCs using Rockwell’s RSLogix 5000, an industrial-
standard software suite. While the cyber part of SWaT is thus relatively simple,
the same is not true of the physical part: runs of the system are governed by
laws concerning the dynamics of water flow, the evolution of pH values, and the
chemical processes associated with the six water treatment stages.

To complement the SWaT testbed, we also have access to a simulator imple-
mented in Python (relying on some of its scientific libraries). The cyber part is
simulated faithfully as the PLC code was translated to Python directly. Since the
actual ODEs governing the physical part of SWaT are unknown, the simulator
is not as accurate in this regard. The ODEs it does implement, however, have
been improved over time by cross-validating data from the simulator with real
SWaT data collected by the historian.

CPS Invariants. The safety of water treatment plants is of paramount im-
portance, as breaches or malfunctioning components can lead to costly conse-
quences. In SWaT, for example, there is a risk of damaging the mechanics of
the system if the water levels in certain tanks become too high or too low [15].
One way to detect when runs of a system are diverging into such territory is to
monitor invariants—conditions that must hold in all states amongst the physical
processes controlled by the CPS—and raise an alarm when they are no longer
satisfied. This approach has been applied to a number of CPS [9,22], including for
stages of SWaT itself [3,4]. Typically, however, the invariants are manually de-
rived using the laws of physics and domain-specific knowledge. Moreover, they
are derived for specific, expected physical relationships, and may not capture
other important patterns hiding in the sensor data.

Beyond providing a characterisation of CPS and their important applications
in monitoring for safety, invariants can also be seen as facilitating a form of code
attestation. That is to say, if the actual behaviour of a CPS does not satisfy our
mathematical model of the physical world under its control (i.e. the invariant),
then it is possible that the cyber part has been compromised and that ill-intended
manipulations are occurring. This form of attestation is known as physical at-
testation [25,27], and while weaker than typical software- and hardware-based
attestation schemes (e.g. [5,6,8,26]), it is much more lightweight—neither the
firmware nor the hardware of the PLCs require modification.

3 Learning with Mutants

Learning SWaT Invariants. Rather than deriving further invariants for
SWaT manually, we propose to learn them systematically by applying ML—



initially, Support Vector Machines (SVM)—to traces of SWaT sensor data, tak-
ing the classifiers they learn as our invariants. To learn such a classifier, SVM
must be provided with traces that should be classified as positive (i.e. correct
behaviour) and traces that should be classified as negative. The data available
from the SWaT historian can be seen as representing correct (and thus positive)
behaviour of the system as a whole: the SWaT PLCs and actual (unknown)
ODEs together. In contrast, we propose to collect negative traces by running
the system under small manipulations. Since we cannot change the ODEs (we
cannot yet bend the laws of physics!), we propose to manipulate the part of
SWaT that we can: the programs running on the PLCs.

As previously discussed, it is straightforward to change the PLC programs
of SWaT and collect some negative traces, but it is more challenging to do so in
a systematic way that ensures the strength of the invariant and precision of the
classifier. The solution we propose is directly inspired by mutation testing [14],
a fault-based testing technique that deliberately seeds errors—small, syntactic
changes called mutations—into multiple copies of a program, which are executed
to assess the quality of a test suite (good ones should detect the mutants). Rather
than using mutations to improve the completeness of a test suite, we are using
them to generate a more comprehensive set of negative traces for training on.
By training on traces resulting from small syntactic changes, we hope to learn a
classifier as close to the boundary between correct and suspicious behaviour as
possible. Our rationale is that smaller changes are more likely to reveal negative
traces that are relevant in practice, corresponding, for example, to isolated PLCs
or sensors failing, or an attacker attempting to keep their changes undetected.

Using mutations for learning is also attractive because of the structural sim-
plicity of the PLC programs. Were we assessing a test suite on them, we could
do so efficiently and without redundancy by using the five basic (arithmetic,
relational, and logical) mutation operators identified by Offutt et al. [21]. We
hypothesise that (and are investigating whether) this result has an analogue for
learning that could help us in minimising the number of redundant traces. Even
if so, there remain some additional challenges to overcome. For example, if mu-
tations are not executed, this must be detected, and thus the traces rejected as
negative samples. Even if a mutant is executed, it may not lead to a physical ef-
fect immediately (or ever) and thus could generate traces indistinguishable from
positive ones. Other issues include how many mutations to use in each copy, and
how to handle valid modes of operation in SWaT that are rarely entered.

Preliminary Evaluation. As a very first step towards evaluating the outlined
approach, we undertook an experiment to ascertain the effectiveness of a classifier
learnt from traces produced by the SWaT simulator under a number of manually
applied mutations. Note that we used the simulator to facilitate a quick proof-of-
concept without the resource costs of the real system (e.g. water usage, human
monitoring); this ML approach can be applied to traces collected from the real
system in the same way.

First, we manually launched the SWaT simulator in three different initial
states (i.e. assignments of variables modelling sensors), collecting three traces of



correct behaviour each spanning 30 minutes. Following this, we made 20 copies
of the PLC code and manually applied a different (random) mutation to each.
Of these 20 mutants, 14 of them generated traces equivalent to correct behaviour
and were manually rejected. Seven mutants generated different traces, although
one mutant was rejected for generating a trace too similar to another. The six
remaining mutants were selected to generate our negative traces; three of the
mutations each modified an assignment, whereas the other three modified an
arithmetic expression in a conditional guard. We generated traces for each mu-
tant using the same three initial states as before.

We proceeded to apply SVM to learn six classifiers for the six mutants re-
spectively, each against the correct code. We selected 10 features: the first five
representing the water levels of the five tanks, and the next five representing the
same levels after 250ms. For training the classifiers and evaluating their accu-
racy, we applied k-fold cross-validation to the traces with k = 5. On average,
the classifiers achieved an accuracy of 99%.

Finally, we applied SVM to all the traces from all six mutants to learn a sin-
gle classifier, i.e. to determine whether a trace represents correct behaviour or
the behaviour caused by any one of the mutations. We found that this combined
classifier maintained a similar level of accuracy to the individual ones: 98.41%.
We extracted the learnt invariant from this classifier, which, albeit complicated,
expresses a linear relationship between water tank levels (mm) at one time point
(v1, . . . v5) and 250ms after it (v′1, . . . v

′
5). For simplicity of presentation, the co-

efficients are given below to three decimal places. The full model and training
data are all available online (see [2]).

−0.349v1 + 9.789v2 − 10.192v3 + 0.803v4 − 5.561v5
−0.630v′1 − 10.455v′2 + 10.333v′3 + 0.803v′4 + 3.928v′5 < −786.416

This experiment has shown that it is possible to apply SVM to learn an ac-
curate classifier for traces of sensor data, using the negative samples generated
under a small number of mutated PLC programs. It is, of course, too limited in
its present scope to allow for more general conclusions; a much more extensive
evaluation of the outlined approach is needed, and is underway. It does however
suggest the feasibility of the basic idea, and has highlighted a number of impor-
tant challenges. For instance, the process should be more automatic: mutation
operators should be applied automatically, as should the detection of unexercised
mutations, as well as the comparison of the generated traces against the positive
ones. Furthermore, to ensure as strong an invariant and precise a classifier as
possible, a number of questions must be answered empirically, regarding, e.g. the
number of mutations (and the possibility of multiple mutations per copy), the
sufficiency of mutation operators, and the length of traces.

Our experiment also highlighted the role that a simulator can play in muta-
tion “screening” before applying them to the real SWaT system and collecting
negative traces that are based on the actual ODEs. This helps to avoid wasting
time and resources otherwise lost by applying the mutations to the real PLCs
first. Note that while the ML technique can be applied to SWaT data in exactly
the same way as for the simulator, a human technician must be present while



collecting the data itself to ensure that the mutations do not lead the system
into a state that causes damage. This raises another research question: whether
one can determine a class of “safe” mutations for SWaT that still facilitate a
precise classifier but avoid entirely the possibility of causing damage.

4 Correctness of Invariants

Our preliminary experiment has allowed us to learn a new invariant for SWaT
(or rather, at least to begin with, its simulator). But is it actually an invariant?
It is not particularly intuitive to reason about. And even if it were, to argue for
its correctness, we would need some expertise in the physics of water treatment
plants; a requirement we wanted to avoid in the first place. As alternatives to
manual, ad hoc proofs, we propose two contrasting approaches for establishing
confidence in the correctness of invariants, and highlight their well-suitedness to
CPS like SWaT.

First, we will apply statistical model checking (SMC) to SWaT, a standard
technique for analysing and verifying CPS [10]. In SMC, executions of the sys-
tem (i.e. traces of sensor data) are observed, and hypothesis testing or statistical
estimation techniques are applied to determine whether or not the executions
provide statistical evidence of the invariant holding. SMC estimates the proba-
bility of correctness, rather than guaranteeing it outright, but is simple to apply
to SWaT (and its simulator) since it only requires the system to be executable.
Furthermore, should the ODEs of the SWaT simulator become more accurate in
the future, then our mutation-based learning approach could take place entirely
on that; SMC could then determine whether or not the learnt invariants are also
invariants of the real system, without having to apply any mutations to it.

Second, we will investigate the use of symbolic execution for analysing SWaT
with respect to a learnt invariant. In the PLC programs, symbolic values will be
used to abstract away from concrete sensor inputs. The technique will then build,
along the different paths of the PLC code, path constraints over the symbolic
values (i.e. path conditions in conjunction with an assertion based on the learnt
invariant). The PLC programs have a simple structure that is well-suited to
this task: they are free of loops, and the paths through the programs are short
(maximal depth of three; maximal branching of 28). Our invariants, however, are
based upon sensor readings at two different time points, so we cannot analyse
them with respect to the cyber part of SWaT alone: a model of the physical
processes is needed too, for reasoning about the effects that signals will have. As
we have discussed, we cannot expect to manually derive a completely accurate
one, but we could nonetheless use approximate models (e.g. as defined in the
simulator), or even models of SWaT that were automatically constructed using
different approaches to ours (e.g. the probabilistic model of [29]).

It should be emphasised that while neither technique can fully guarantee
correctness, they differ in where precision is lost, and so should complement
each other in helping to establish confidence in the learnt invariants. SMC, for
example, estimates a probability of correctness based only on the executions it



is provided with (leading to challenges such as handling rare events); yet by
working with actual system executions, its results are based on the actual phys-
ical processes. Symbolic execution, in contrast, must work with an approximate
physical model, but performs an analysis on the actual source code in the cyber
part (and not just on a subset of the possible system executions).

5 Conclusion and Next Steps

This short paper has proposed a novel approach for learning invariants of CPS
that trains a ML technique such as SVM on positive and negative traces of sensor
data, with the latter obtained by applying mutation operators to copies of the
programs in the cyber part—the part of the CPS that we can most easily control.
We presented a preliminary study on SWaT, a raw water treatment plant, that
suggested the effectiveness of constructing invariants this way. We furthermore
outlined the use of SMC and symbolic execution for establishing confidence in
the correctness of learnt invariants, and discussed their use in CPS applications
such as physical attestation.

Much work remains to be done to truly ascertain the effectiveness of our
approach for CPS. First, we will automate—as much as possible—our experi-
ment on the SWaT simulator, to allow for classifiers to be trained on several
additional mutants and initial states more easily, and to automatically detect
those mutants that do not cause the system to exhibit different physical be-
haviour. Then, within this framework, we will begin investigating the challenges
raised in Section 3 and the verification approaches outlined in Section 4, before
shifting our experimentation to traces obtained from the real SWaT system. We
will investigate the use of ML systems other than SVM, and compare our su-
pervised model learning approach against proposed unsupervised ones for CPS
(e.g. [19,28]). Finally, we will investigate the application of learnt invariants to
code attestation, by instigating cyber-attacks on the SWaT system and evaluat-
ing whether or not our classifiers are effective in detecting them.
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