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Abstract—Cyber-physical systems (CPS) consist of sensors,
actuators, and controllers all communicating over a network;
if any subset becomes compromised, an attacker could cause
significant damage. With access to data logs and a model of the
CPS, the physical effects of an attack could potentially be detected
before any damage is done. Manually building a model that is
accurate enough in practice, however, is extremely difficult. In
this paper, we propose a novel approach for constructing models
of CPS automatically, by applying supervised machine learning
to data traces obtained after systematically seeding their software
components with faults (“mutants”). We demonstrate the efficacy
of this approach on the simulator of a real-world water purifica-
tion plant, presenting a framework that automatically generates
mutants, collects data traces, and learns an SVM-based model.
Using cross-validation and statistical model checking, we show
that the learnt model characterises an invariant physical property
of the system. Furthermore, we demonstrate the usefulness of
the invariant by subjecting the system to 55 network and code-
modification attacks, and showing that it can detect 85% of them
from the data logs generated at runtime.

I. INTRODUCTION

Cyber-physical systems (CPS), in which software com-
ponents and physical processes are deeply intertwined, are
found across engineering domains as diverse as aerospace,
autonomous vehicles, and medical monitoring; they are also
increasingly prevalent in public infrastructure, automating crit-
ical operations such as the management of electricity demands
in the grid, or the purification of raw water [1, 2]. In such
applications, CPS typically consist of distributed software
components engaging with physical processes via sensors
and actuators, all connected over a network. A compromised
software component, sensor, or network has the potential
to cause considerable damage by driving the actuators into
states that are incompatible with the physical conditions [3],
motivating research into practical approaches for monitoring
and attesting CPS to ensure that they are operating safely and
as intended.

Reasoning about the behaviour exhibited by a CPS, how-
ever, is very challenging, given the tight integration of algo-
rithmic control in the “cyber” part with continuous behaviour
in the “physical” part [4]. While the software components
are often simple when viewed in isolation, this simplicity
betrays the typical complexity of a CPS when taken as a
whole: even with domain-specific expertise, manually deriving

accurate models of the physical processes (e.g. ODEs, hybrid
automata) can be extremely difficult—if not impossible. This
is unfortunate, since with an accurate mathematical model,
a supervisory system could query real CPS data traces and
determine whether they represent correct or compromised
behaviour, raising the alarm for the latter.

In this work, using a high degree of automation, we aim
to overcome the challenge of constructing CPS models that
are useful for detecting attacks in practice. In particular,
we propose to apply machine learning (ML) on traces of
sensor data to construct models that characterise invariant
properties—conditions that must hold in all states amongst
the physical processes controlled by the CPS—and to make
those invariants checkable at runtime. In contrast to existing
unsupervised approaches (e.g. [5, 6]), we propose a supervised
approach to learning that trains on traces of sensor data
representing “normal” runs (the positive case, satisfying the
invariant) as well as traces representing abnormal behaviour
(the negative case), in order to learn a model that charac-
terises the border between them effectively. To systematically
generate the negative traces, we propose the novel application
of code mutation (à la mutation testing [7]) to the software
components of CPS. Motivating this approach is the idea
that small syntactic changes may correspond more closely
to an attacker attempting to be subtle and undetected. Once
a CPS model is learnt, we propose to use statistical model
checking [8] to ascertain that it is actually an invariant of the
CPS, allowing for its use in applications such as the physical
attestation of software components [9] or runtime monitoring
for attacks.

In order to evaluate this approach, we apply it to Secure
Water Treatment (SWaT) [10], a scaled-down but fully oper-
ational water treatment testbed at the Singapore University
of Technology and Design, capable of producing five gal-
lons of safe drinking water per minute. SWaT has industry-
standard control software across its six Programmable Logic
Controllers (PLCs). While the software is structurally simple,
it must interact with physical processes that are very difficult
to reason about, since they are governed by laws of physics
concerning the dynamics of water flow, the evolution of
pH values, and the various chemical processes associated
with treating raw water. In this paper, we focus on water



flow: we learn invariants characterising how water tank levels
evolve over time, and show their usefulness in detecting both
manipulations of the control software (i.e. attestation) as well
as detecting attacks in the network that manipulate the sensor
readings and actuator signals. Our experiments take place
on a simulator of SWaT due to resource restrictions and
safety concerns, but the simulator is faithful and reasonable:
it implements the same PLC code as the testbed, and has a
cross-validated physical model for water flow.

Our Contributions. This paper proposes a novel approach
for generating models of CPS, based on the application of
supervised machine learning to traces of sensor data obtained
after systematically mutating software components. To demon-
strate the efficacy of the approach, we present a framework for
the SWaT simulator that: (1) automatically generates mutated
PLC programs; (2) automatically generates a large dataset of
normal and abnormal traces; and (3) applies Support Vector
Machines (SVM) to learn a model. We apply cross-validation
and statistical model checking to show that the model charac-
terises an invariant physical property of the system. Finally, we
demonstrate the usefulness of the invariant in two applications:
(1) code attestation, i.e. detecting modifications to the control
software through their effects on physical processes; and
(2) identifying standard network attacks, in which sensor
readings and actuator signals are manipulated.

This work follows from the ideas presented in our earlier
position paper [11], but differs significantly. In particular, the
preliminary experiment in [11] was entirely manual, used
(insufficiently expressive) linear classifiers, had a very limited
dataset, and only briefly discussed how the invariants might
be evaluated. In the present paper, we work with significantly
larger datasets that are generated automatically, learn much
more expressive classifiers using kernel methods, use a sys-
tematic approach to feature vector labelling, apply statistical
model checking to validate the model, and assess its usefulness
for detecting network and code-modification attacks.

Organisation. The remainder of the paper is organised as
follows. In Section II, we introduce the SWaT water treatment
system as our motivating case study, and present a high-
level overview of our approach. In Section III, we describe
in detail the main steps of our approach, as well as how it is
implemented for the SWaT simulator. In Section IV, we eval-
uate our approach with respect to five research questions. In
Section V, we highlight some additional related work. Finally,
in Section VI, we conclude and suggest some directions for
future work.

II. MOTIVATION AND OVERVIEW

In this section, we introduce SWaT, the water treatment
CPS that provides our motivation for learning and monitoring
invariants, and also forms the case study for this paper. Fol-
lowing this, we present a high-level overview of our learning
approach and how it can be applied to CPS.

Fig. 1. The Secure Water Treatment (SWaT) testbed

A. Motivational Case Study: SWaT Testbed

The CPS that forms the case study for our paper is Secure
Water Treatment (SWaT) [10], a testbed built for cyber-
security research at the Singapore University of Technology
and Design (Figure 1). SWaT is a scaled-down but fully
operational raw water purification plant, capable of producing
five gallons of safe drinking water per minute. Raw water
is treated in six distinct but co-operating stages, handling
chemical processes such as ultrafiltration, de-chlorination, and
reverse osmosis.

Each stage of SWaT consists of a dedicated programmable
logic controller (PLC), which communicates over a ring net-
work with some sensors and actuators that interact with the
physical environment. The sensors and actuators vary from
stage-to-stage, but a typical sensor in SWaT might read the
level of a water tank or the water flow rate in some pipe,
whereas a typical actuator might operate a motorised valve
(for opening an inflow pipe) or a pump (for emptying a tank).
A historian records the sensor readings and actuator signals,
facilitating large datasets for offline analyses [12].

The PLCs are responsible for algorithmic control in the
six stages, repeatedly reading sensor data and computing the
appropriate signals to send to actuators. The programs that
PLCs cycle through every 5ms are structurally simple. They
do not contain any loops, for example, and can essentially be
viewed as large, nested conditional statements for determining
the interactions with the system’s 42 sensors and actuators.
The programs can easily be viewed (in both a graphical and
textual style), modified, and re-deployed to the PLCs us-
ing Rockwell’s RSLogix 5000, an industry-standard software
suite.

In addition to the testbed itself, a SWaT simulator [13]
was also developed at the Singapore University of Technology
and Design. Built in Python, the simulator faithfully simulates
the cyber part of SWaT, as a direct translation of the PLC
programs was possible. Inevitably, the physical part (taking



Algorithm 1: Sketch of Overall Algorithm
Input: A CPS S
Output: An invariant φ

1 Randomly simulate S for n times and collect a set of
normal traces Tr;

2 Construct a set of mutants Mu from S;
3 Collect a set of positive feature vectors Po from Tr;
4 Collect a set of negative feature vectors Ne based on

abnormal traces from Mu;
5 Learn a classifier φ;
6 Apply statistical model checking to validate φ;
7 if φ satisfies our stopping criteria then
8 return φ;

9 Restart with additional data;

advantage of Python’s scientific libraries, e.g. NumPy, SciPy)
is less accurate since the actual ODEs governing SWaT are
unknown. The simulator currently models some of the simpler
physical processes such as water flow (omitting, for example,
models of the chemical processes), the accuracy of which has
been improved over time by cross-validating data from the
simulator with real SWaT data collected by the historian [12].
As a result, the simulator is especially faithful and useful for
investigating over- and underflow attacks on the water tanks.

The SWaT testbed characterises many of the security con-
cerns that come with the increasing automation of public
infrastructure. What happens, for example, if part of the
network is compromised and packets can be manipulated;
or if a PLC itself is compromised and the control software
replaced? If undetected, the system could be driven into a
state that causes physical damage, e.g. activating the pumps
of an empty tank, or causing another one to overflow. The
problem (which this paper aims to overcome) is that detecting
an attack at runtime is very difficult, since a monitor must
be able to query live data against a model of how SWaT is
actually expected to behave, and this model must incorporate
the physical processes. As mentioned, the PLC programs in
isolation are very simple and amenable to formal analysis,
but it is impossible to reason about the system as a whole
without incorporating some knowledge of the physical effects
of actuators over time.

B. Overview of Our Approach

Our approach for constructing CPS models consists of three
main steps, as sketched in Algorithm 1: (1) simulating the
CPS under different code mutations to collect a set of normal
and abnormal system traces; (2) constructing feature vectors
based on the two sets of traces and learning a classifier; and
(3) applying statistical model checking to determine whether
the classifier is an invariant, restarting the process if it is not. In
the following we provide a high-level overview of how these
three steps are applied in general. A more detailed presentation
of the steps and their application to the SWaT simulator are
given later, in Section III.

In the first step, traces (e.g. of sensor readings) representing
normal system behaviour are obtained by randomly simulating
the CPS under normal operating conditions, i.e. with the cyber
part (PLCs) and physical part (ODEs) unaltered. To collect
traces representing abnormal behaviour, our approach proposes
simulating the CPS under small manipulations. Since we aim
for our learnt invariants to be useful in detecting PLC and
network attacks (as opposed to attackers tampering directly
with the environment), we limit our manipulations to the
cyber part, and propose a systematic method motivated by
the assumption that attackers would attempt to be subtle in
their manipulations. Our approach is inspired by mutation
testing [7], a fault-based testing technique that deliberately
seeds errors—small, syntactic transformations called muta-
tions—into multiple copies of a program. Mutation testing is
typically used to assess the quality of a test suite (i.e. good
suites should detect the mutants), but in our approach, we
generate mutants from the original PLC programs, and use
these modified instances of the CPS to collect abnormal data
traces.

In the second step, we extract positive and negative feature
vectors from the normal and abnormal data traces respectively.
Since an attack (i.e. some modification of a PLC program or
a network attack) takes time to affect the physical processes,
our feature vectors are pairs of sensor readings taken at fixed
time intervals. While feature vectors can be extracted from the
normal traces immediately, some pre-processing is required
before they can be extracted from the abnormal ones: the
mutations in some mutant PLC programs may never have
been executed, or only executed after a certain number of
system cycles, leading to traces either totally or partially
indistinguishable from positive ones. To overcome this, we
compare abnormal traces with normal ones obtained from
the same initial states, discarding wholly indistinguishable
traces, and then extracting pairs of sensor readings only when
discrepancies are detected. With the feature vectors collected,
we apply a supervised ML algorithm, e.g. Support Vector
Machines (SVM), to learn a classifier.

In the third step, we must validate that the classifier is
actually an invariant of the CPS. After applying standard ML
cross-validation to minimise generalisation error, we apply
statistical model checking (SMC) [8] to establish whether or
not there is statistical evidence that the model is an invariant.
In SMC, additional normal traces of the CPS are observed, and
statistical estimation or hypothesis testing (e.g. the sequential
probability ratio test (SPRT) [14]) is used to estimate the
probability of the classifier’s correctness. If the probability
is high (i.e. above some predetermined threshold), we take
that classifier as our invariant. Otherwise, we repeat the whole
process with different randomly sampled data.

With a CPS invariant learnt, a supervisory system can
monitor live data from the system and query it against the
invariant, raising an alarm when it is not satisfied. This has
at least two applications in defending against attacks. First, it
can be used to detect standard network attacks, where packets
have been manipulated and actuators are shifted into states



that are inappropriate for the current physical environment.
Second, it can be seen as a form of code attestation: if the
actual behaviour of a CPS does not satisfy our mathematical
model of it (i.e. the invariant), then it is possible that the cyber
part has been compromised and that ill-intended manipulations
are occurring. This form of attestation is known as physical
attestation [9, 15], and while weaker than typical software- and
hardware-based attestation schemes (e.g. [16–19]), it is much
more lightweight as neither the firmware nor the hardware of
the PLCs need to be modified.

III. IMPLEMENTING OUR APPROACH

In this section, we describe in detail the main steps of our
approach: (1) generating mutants and data traces; (2) collecting
positive and negative feature vectors for learning a classifier;
and (3) validating the classifier.

We illustrate each of the steps in turn by applying them
to the SWaT simulator. We remark that our choice to use the
SWaT simulator (rather than the testbed) has some important
advantages for this paper. It allows us to automate each step
in an experimental framework, with which we can easily
investigate the effects of different parameters on the accuracy
of learnt models. Furthermore, mutations can be applied and
attacks can be simulated without the risk of damage, and
the usefulness of learnt invariants can be assessed without
wasting resources (e.g. water, chemicals) or navigating the
policy restrictions of the testbed. Obtaining an invariant for
the testbed can be achieved by re-running the trace collection
phase on SWaT with optimised parameters for learning (see
Section IV), or improving the accuracy of the physical model
in the simulator to the extent that learnt classifiers can be
validated as invariants of both the simulator and the testbed.

A. First Step: Generating Mutants and Traces

The first step of our approach is collecting the traces of
raw sensor data that will subsequently be used for learning a
CPS invariant. It consists of the following sub-steps: (i) fixing
a set of initial physical configurations and a time interval
for taking sensor readings; (ii) generating data traces that
represent normal system behaviour; (iii) applying mutations
and generating the (possibly) abnormal traces they produce.

Sub-step (i): Initial Configurations. In order to collect a set
of data that captures the CPS’ behaviour across a variety of
physical contexts, a set of initial configurations should be
chosen that covers the extremities of the sensors’ ranges, as
well as randomly selected combinations of values within them.
A time interval for logging sensor readings (e.g. the historian’s
default) should also be chosen, as well as a length of time to
run the CPS from each initial configuration.

Applied to SWaT. In the case of the SWaT simulator, since
it only models physical processes concerning water flow, we
collect traces of data from sensors recording the water levels
in the five tanks. In particular, physical configurations are
expressed in terms of the water levels recorded by these
five sensors. The set of initial configurations we use in
our experiments (see Section IV) therefore includes different

combinations of water tank levels, including extreme values
(i.e. tanks being full or empty). We choose to log the sensor
values every 5ms, corresponding to the default time interval
at which the simulator logs data. We fix 30 minutes as the
length of time to run the simulator from each configuration,
as previous experimentation has shown that the simulator’s
physical model remains accurate for at least this length of
time.

Sub-step (ii): Normal Traces. To generate normal traces,
we simply launch the CPS under normal operating conditions
from each initial physical configuration, using the run length
and time interval fixed in sub-step (i). The traces of sensor
data should be extracted from the historian for processing in
a later step.

Applied to SWaT. For our case study, we built a frame-
work [13] around the SWaT simulator that can automatically
launch and run the software on each of the initial configura-
tions chosen earlier. Each run uses the original (i.e. unaltered)
PLC programs, lasts for 30 minutes, and logs the simulated
water tank levels every 5ms. These logs are stored as raw text
files from which feature vectors are extracted in a later step.

Sub-step (iii): Mutants and Abnormal Traces. Next, we
need to generate data traces representing abnormal system
behaviour. In order to learn a classifier that is as close to
the boundary of normal and abnormal behaviour as possible,
we generate these traces after subjecting the control soft-
ware to small syntactic code changes (i.e. mutations). These
code changes are the result of applying simple mutation
operators, which randomly replace some Boolean operator,
logical connector, arithmetic function symbol, constant, or
variable. To ensure a diverse enough training set, we generate
abnormal traces from multiple versions of the control software
representing a variety of different mutations.

Our approach for generating mutant PLC programs is
summarised in Algorithm 2. Given a set of co-operating
PLC programs, the algorithm makes a copy of all of them,
and applies an applicable mutation operator to a single PLC
program in the set.

Applied to SWaT. In the case of the SWaT simulator, our
framework can automatically and randomly generate multiple
mutant simulators. Note that each mutant simulator, built up
of six PLC programs, consists of one mutation only in a
PLC program chosen at random. Since the PLC programs are
syntactically simple, we need only six mutation operators (Ta-
ble I). Evidence suggests that additional mutation operators are
unlikely to increase coverage [20], so our mutant simulators
should be sufficiently varied.

To illustrate, consider the code in Listing 1, a small extract
from the PLC program controlling ultrafiltration in SWaT. If
the guard conditions are met, line 5 will change the state of
the PLC to “19”. This number identifies a branch in a case
statement (not listed) that triggers the signals that should be
sent to actuators. Now consider Listing 2: this PLC program



Listing 1
SNIPPET OF UNMODIFIED CONTROL CODE FROM PLC #3

1 if Sec P:
2 MI.Cy P3.CIP CLEANING SEC=HMI.Cy P3.

CIP CLEANING SEC+1
3 if HMI.Cy P3.CIP CLEANING SEC>HMI.

Cy P3.CIP CLEANING SEC SP or self
.Mid NEXT:

4 self.Mid NEXT=0
5 HMI.P3.State=19
6 break

Listing 2
A POSSIBLE MUTANT OBTAINED FROM LISTING 1

1 if Sec P:
2 MI.Cy P3.CIP CLEANING SEC=HMI.Cy P3.

CIP CLEANING SEC+1
3 if HMI.Cy P3.CIP CLEANING SEC>HMI.

Cy P3.CIP CLEANING SEC SP or self
.Mid NEXT:

4 self.Mid NEXT=0
5 HMI.P3.State=14
6 break

Algorithm 2: Generating Mutant PLC Code
Input: A set of PLC programs S
Output: A mutant set of PLC programs SM

1 Let Ops be the set of mutation operators;
2 Make a copy SM of the PLC programs S;
3 applied := false;
4 while ¬applied do
5 Randomly choose a PLC P from SM ;
6 Randomly choose a line number i from P ;
7 if some operator in Ops is applicable to line i then
8 Apply an applicable operator to line i;
9 applied := true;

10 return SM ;

TABLE I
MUTATION OPERATORS

Mutation Operator Example

Scalar Variable Replacement x = a  x = b

Arithmetic Operator Replacement a+ b  a− b

Relational Operator Replacement a > b  a ≥ b

Guard Valuation Replacement if(c)  if(false)

Logical Connector Replacement a and b  a or b

Assignment Operator Replacement x = a  x += a

is identical to Listing 1, except for the result of a scalar
mutation on line 5 that means the PLC would be set to state
“14” instead. If executed, different signals will be sent to the
actuators, potentially causing abnormal effects on the physical
state—as might be the goal of an attacker.

Once we have our mutant simulators, we discard any that
cannot be compiled. Of the mutants remaining, we run them
with respect to each initial state for 30 minutes, logging the
levels of all the water tanks every 5ms.

The current implementation of our mutant simulator gener-
ator for SWaT is available online [13], consisting of just over
200 lines of Python code. It applies mutations to the PLC
programs by reading them as text files, randomly choosing
a line, and then randomly applying an applicable mutation
operator (Table I) by matching and substituting. This takes a

negligible amount of time, so hundreds of mutant simulators
can be generated very quickly (i.e. in seconds).

B. Second Step: Collecting Feature Vectors, Learning

At this point, we have a collection of raw data traces gener-
ated by normal PLC programs as well as by multiple mutant
PLC programs. The second step is to extract positive and
negative feature vectors from this data to perform supervised
learning. It consists of the following sub-steps: (i) fixing a
feature vector type; (ii) collecting feature vectors from the
data, undersampling the abnormal data to maintain balance;
(iii) applying a supervised learning algorithm.

Sub-step (i): Feature Vector Type. A feature vector type must
be defined that appropriately represents objects of the data. For
traces of sensor data, a simple feature vector would consist of
the sensor values at any given time point. For typical CPS
however, such a feature vector is far too simple, since it does
not encapsulate any information about how the values evolve
over the time series—an intrinsic part of the physical model.
A more useful feature vector would record the values at fixed
time intervals, making it possible to learn patterns about how
the levels of tanks change over the time series.

Applied to SWaT. In the case of the SWaT simulator, we
define our feature vectors to be of the form (π, π′), where π
denotes the water tank levels at a certain time and π′ denotes
the values of the same tanks after d time units, where d is
some fixed time interval that is a multiple of the interval
at which data is logged (we compare the effects of different
values of d in Section IV-B). Our feature vectors are based on
the sliding window method that is commonly used for time
series data [21].

Sub-step (ii): Collecting Feature Vectors. Next, the raw
normal and abnormal data traces must be organised into
positive and negative feature vectors of the type chosen in sub-
step (i). Extracting positive feature vectors from the normal
data is straightforward, but for negative feature vectors, we
have the additional difficulty that mutants are not guaranteed
to be effective, i.e. able to produce data traces distinguishable
from normal ones. Furthermore, even effective mutants may



Algorithm 3: Collecting Feature Vectors
Input: Set of normal traces TN and abnormal traces TA,

each trace of uniform size N
Output: Set of positive feature vectors Po; set of

negative feature vectors Ne
1 Let S be the unmodified simulator;
2 Let t be the time interval for logging data in traces;
3 Let d be the time interval for feature vectors;
4 x := 0; Po := ∅; Ne := ∅;
5 foreach Tr ∈ TN do
6 while x+ (d/t) < N do
7 π := 〈s0, s1, . . . 〉 for all sensor values si at row

x of Tr;
8 π′ := 〈s′0, s′1, . . . 〉 for all sensor values s′i at row

x+ (d/t) of Tr;
9 Po := Po ∪ {(π, π′)}

10 x := x+ 1;

11 x := 0;
12 foreach Tr ∈ TA do
13 while x+ (d/t) < N do
14 π := 〈s0, s1, . . . 〉 for all sensor values si at row

x of Tr;
15 π′ := 〈s′0, s′1, . . . 〉 for all sensor values s′i at row

x+ (d/t) of Tr;
16 Run simulator S on configuration π for d time

units to yield trace Tr′;
17 π′′ := 〈s′′0 , s′′1 , . . . 〉 for all sensor values s′′i at row

d/t of Tr′;
18 if π′ 6= π′′ then
19 Ne := Ne ∪ {(π, π′)}
20 x := x+ 1;

21 return Po, Ne;

not cause an immediate change. It is crucial not to mislabel
normal data as abnormal—additional filtering is required.

Applied to SWaT. Algorithm 3 summarises how feature
vectors are collected from the SWaT simulator and its mutants.
Collecting positive feature vectors is very simple: all possible
pairs of physical states (π, π′) are extracted from the normal
traces. For each pair (π, π′) extracted from the abnormal
traces, the unmodified simulator is run on π for d time units:
if the unmodified simulator leads to a state distinguishable
from π′, the original pair is collected as a negative feature
vector; if it leads to a state that is indistinguishable from
π′, it is discarded (since the mutation had no effect). In the
case of SWaT, its simulator is deterministic, allowing for this
judgement to be made easily. (For data from the testbed, some
acceptable level of tolerance would need to be defined.)

Sub-step (iii): Learning. Once the feature vectors are col-
lected, a supervised ML algorithm can be applied to learn a
model.

Applied to SWaT. For the SWaT simulator, we choose to
apply SVM as our supervised ML approach since it is fully
automatic, with well-developed active learning strategies, and
good library support (we use LIBSVM [22]). Furthermore,
SVM has expressive kernels and has often been successfully
applied to time series prediction [23]. Based on the training
data, SVM attempts to learn the (unknown) boundary that sep-
arates it. Different classification functions exist for expressing
this boundary, ranging from ones that attempt to find a simple
linear separation between the data, to non-linear solutions
based on RBF (we compare different classification functions
for SWaT in Section IV-A). For the purpose of validating the
classifier and assessing its generalisability, it is important to
train it on only a portion of the feature vectors, reserving a
portion of the data for testing. We randomly select 70% of the
feature vectors to use as the training set, reserving the rest for
evaluation.

We remark that SVM can struggle to learn a reasonable
classifier if the data is very unbalanced. This is the case for the
SWaT simulator: we have just one simulator for normal data,
but potentially infinite mutant simulators for generating ab-
normal data. To ensure balance, we undersample the negative
feature vectors. Let NPo denote the number of positive feature
vectors and NNe the number of negative feature vectors we
collected. We partition the negative feature vectors into subsets
of size NNe/NPo (rounded up to the nearest integer), and
randomly select a feature vector from each one. This leads to
an undersampled set of negative feature vectors that is roughly
the same size as the positive feature vector set.

C. Third Step: Validating the Classifier

At this point, we have collected normal and abnormal data,
processed it into positive and negative feature vectors, and
learnt a classifier by applying a supervised ML approach. This
final step is to determine whether or not there is evidence
that the learnt model can be considered a physical invariant
of the CPS. It consists of the following two sub-steps: (i)
applying standard ML cross-validation to assess how well the
classifier generalises; and (ii) apply SMC to determine whether
or not there is statistical evidence that the classifier does indeed
characterise an invariant property of the system.

Sub-step (i): Cross-Validation. Our first validation method is
to apply standard ML k-fold cross validation (with e.g. k = 5)
to assess how well the classifier generalises. This technique
computes the average accuracy of k different classifiers, each
obtained by partitioning the training set into k segments,
training on k − 1, and validating on the segment remaining
(repeating with respect to different validation partitions).

Sub-step (ii): Statistical Model Checking. The second valida-
tion method applies SMC, a standard technique for verifying
general stochastic systems [8]. The variant we use observes
executions of the system (i.e. traces of sensor data), and applies
hypothesis testing to determine whether or not the executions



provide statistical evidence of the learnt model being an invari-
ant of the system. SMC estimates the probability of correctness
rather than guaranteeing it outright. It is simple to apply, since
it only requires that we can execute the (unmodified) system
and collect data traces. It treats the system as a black box, and
thus does not require a model [24].

Given some classifier φ for a system S, we apply SMC
to determine whether or not φ is an invariant of S with a
probability greater or equal to some threshold θ, i.e. whether φ
correctly classifies the traces of S as normal with a probability
greater than θ. Note that the usefulness of invariants is a
separate question, addressed in Section IV-E. A classifier
that always labels normal and abnormal data as normal, for
example, is an invariant, but not a useful one for detecting
attacks.

Applied to SWaT. In the case of the SWaT simulator, we
generate a normal data trace from a new, distinct initial config-
uration, and collect the positive feature vectors from it. Next,
we randomly sample feature vectors from this set, evaluate
them with our classifier, and apply SPRT as our hypothesis test
to determine whether or not there is statistical evidence that
the classifier labels them correctly (setting the error bounds at
a standard level of 0.05) with accuracy greater than some θ. If
further data is required, we sample additional positive feature
vectors from another distinct initial configuration. We remark
that we choose θ to be the accuracy of the best classifier
we train in our evaluation (Section IV-D). These steps are
repeated several times, each with data from additional new
initial configurations.

IV. EVALUATION

We evaluate our approach through experiments intended to
answer the following research questions (RQs):
• RQ1: What kind of classification function do we need?
• RQ2: How large should the time interval in feature

vectors be?
• RQ3: How many mutants do we need?
• RQ4: Is our model a physical invariant of the system?
• RQ5: Is our model useful for detecting attacks?

RQ1–3 consider the effects of different parameters on the
performance of our learnt models, in particular, the classi-
fication function (linear, polynomial, or RBF), the different
time intervals for constructing feature vectors, and the number
of mutants to collect abnormal traces from. We take the
best classifier from these experiments, and assess for RQ4
whether or not there is statistical evidence that the model
characterises an invariant of the system. Finally, for RQ5, we
investigate whether or not the model is useful for detecting
various different attacks that manipulate the network and PLC
programs.

All the experiments in the following were performed on the
SWaT simulator [13]. The mutation and learning framework
we built for this simulator (as described in Section III) is avail-
able to download [13], and uses version 3.22 of LIBSVM [22]
to apply SVM to our feature vectors.

A. RQ1: What kind of classification function do we need?

Our first experiment is to determine which of the main
SVM-based classification functions—linear, polynomial (de-
gree 3), or RBF—we should use in order to learn models
with an acceptable level of accuracy. Intuitively, a simple
model is more useful for human interpretation, but it may not
be expressive enough to achieve high classification accuracy.
First, we generate 700 mutant simulators, of which 91 are
effective (i.e. led to some abnormal behaviour). From 20
initial configurations of the SWaT simulator, as described in
Section III-A, we generate 30 minute traces (at 5ms intervals)
of normal and abnormal data from the original simulator and
mutant simulators respectively. From these data traces, we
collect 1.68 ∗ 106 feature vectors with a 250ms time interval
type, using undersampling to account for the larger quantity
of abnormal data (see Section III-B). These vectors are then
randomly divided into two parts: 70% for training, and 30%
for testing. SVM is applied to the training vectors to learn
three separate linear, polynomial, and RBF classifiers.

Table II presents a comparison between the three classifiers
learnt in the experiment. We report two types of accuracy. The
accuracy column reports how many of the held-out feature
vectors (i.e. the 30% of the collected feature vectors held
out for testing) are labelled correctly by the classifier. The
cross-validation accuracy is the result of applying k-fold
cross-validation (with k = 5) to the training set: this is the
average accuracy of five different classifiers, each obtained
by partitioning the training set into five, training on four
partitions, and validating on the fifth (then repeating with a
different validation partition). This measure helps to assess
how well our classifier generalises. Sensitivity expresses the
proportion of positives that are correctly classified as such;
specificity is the same but for negatives. Across all four
measures, a higher percentage is better.

From our results, it is clear that the RBF-based classifier far
outperforms the other two options. While RBF scores highly
across all measures, the other classification functions lag far
behind at around 60 to 70%; they are much too simple for
the datasets we are considering. Intuitively, we believe linear
or polynomial classifiers are insufficient because readings
of different sensors in SWaT are correlated in complicated
ways which are beyond the expressiveness of these kinds
of classifiers. Given this outcome, we choose RBF as our
classification function.

B. RQ2: How large should the time interval in feature vectors
be?

Our second experiment assesses the effect on accuracy
of using different time intervals in the feature vectors. As
discussed before, a feature vector is of the form (π, π′) where
π denotes the water tank levels at a certain time and π′ denotes
the levels after d time units. Intuitively, using these feature
vectors, the learnt model characterises the effects of mutants
after d time units. On the one hand, an abnormal system
behaviour is more observable if this interval d is larger (as the
modified PLC control program has more time to take effect).



TABLE II
COMPARISON OF CLASSIFICATION FUNCTIONS

type accuracy cross-validation accuracy sensitivity specificity

SVM-linear 63.34% 64.12% 66.44% 60.23%

SVM-polynomial 67.10% 68.32% 74.92% 51.67%

SVM-RBF 91.05% 90.99% 99.28% 82.82%

On the other hand, having an interval that is too large runs
the risk of reporting abnormal behaviours too late and thus
potentially resulting in some safety violation.

Table III presents the results of a comparison of accuracy
and cross-validation accuracy (both defined as for RQ1) across
classifiers based on 100, 150, . . . 300 ms time intervals. SVM-
RBF was used as the classification function, and abnormal data
was generated from 700 mutants.

The results match the intuition mentioned earlier, although
the accuracy stabilises much more quickly than we initially
expected (at around 150ms time intervals). The time interval
of 250ms has, very slightly, the best accuracy, so we continue
to use it in the remaining experiments.

C. RQ3: How many mutants do we need?

Our third experiment assesses the effect on accuracy from
using different numbers of mutant simulators to generate
abnormal data. We are motivated to find the point at which
accuracy stabilises, in order to avoid the unnecessary compu-
tational overhead associated with larger numbers of mutants.

Table IV presents a comparison of accuracy and cross-
validation accuracy (both defined as for RQ1) across classi-
fiers learnt from the data generated by 300, 400, 500, 600, and
700 mutants. Our mutant sets are inclusive, i.e. the set of 700
mutants includes all the mutants in the set of 600 in addition
to 100 distinct ones. We also list how many of the generated
mutants are effective, in the sense that they can be compiled,
run, and cause some abnormal physical effect with respect to
at least one of the initial configurations. We used SVM-RBF
as the classification function, collecting feature vectors (see
Section III-B) with a time interval of 250ms.

The results indicate that both accuracy and cross-validation
accuracy start to stabilise in the 90s from 500 mutants (62
effective mutants) onwards. It also shows that with fewer
mutants (e.g. 300 mutants / 23 effective mutants) it is difficult
to learn a classifier with acceptable accuracy. Given the results,
we choose 600 as our standard number of mutants to generate.

D. RQ4: Is our model a physical invariant of the system?

Our fourth experiment is to establish whether or not there
is statistical evidence supporting that the learnt model is a
(physical) invariant of the system, i.e. it correctly classifies
the data in normal traces as normal with accuracy greater or
equal to some threshold θ. We perform SMC as described in
Section III-C, sampling positive feature vectors derived from
a new and distinct initial configuration, setting the acceptable
error bounds at a standard level of 0.05, and setting the
threshold as θ = 91.04% (i.e. the accuracy of the classifier

learnt from 600 mutants and a feature vector interval of
250ms). Our implementation performs hypothesis testing using
SPRT, randomly sampling feature vectors and applying the
classifier until SPRT’s stopping criteria are met. If the sampled
data is not enough, we sample additional feature vectors from
the traces of additional new initial configurations.

Our SMC implementation repeated the overall steps above
five times, each with normal data derived from a different
distinct initial configuration (falling within normal operational
ranges). In each run, our classifier passed, without requiring
data to be sampled from traces of additional configurations.
This provides some evidence that the classifier is an invariant
of the SWaT simulator. This is not surprising: in Section IV-A
we found that the sensitivity of the classifier was very high
(99.28%), i.e. the proportion of positive feature vectors that
it classified as such was very high. Our SMC implementation
evaluates for the same property but seeks statistical evidence.

E. RQ5: Is our model useful for detecting attacks?

Our final experiment assesses whether our learnt invariant
is effective at detecting different kinds of attacks, i.e. whether
it classifies feature vectors as negative once an attack has
been launched. First, we investigate network attacks, in which
an attacker is assumed to be able to manipulate network
packets containing sensor readings (read by PLCs) and signals
(read by actuators). Second, we investigate code-modification
attacks (i.e. manipulations of the PLC programs), by randomly
modifying the different PLC programs in the simulator and de-
termining whether any resulting physical effects are detected.
If able to detect the latter kind of attacks, the invariant can be
seen as physically attesting the integrity of the PLC code.

Network attacks. Table V presents a list of network attacks
that we implemented in the SWaT simulator, and the results
of our invariant’s attempts at classifying them. Our attacks
are from a benchmark of attacks that were performed on the
SWaT testbed for the purpose of data collection [12]. These
attacks cover a variety of attack points, and were designed
to comprehensively evaluate the robustness of SWaT under
different network attacks. Of the 36 attacks, we implemented
the 15 that could be supported by the ODEs of (and thus had
an effect on) the SWaT simulator. The attacks are all achieved
by (simulating) the manipulation of the communication taking
place over the network, i.e. hijacking data packets and chang-
ing sensor readings before they reach the PLC, and actuator
signals before they reach the valves and pumps. The attacks
cover a variety of attack points in the SWaT simulator: these
are documented online [10], but intuitively represent motorised



TABLE III
EFFECT OF INCREASING THE TIME INTERVAL ON STABILITY OF SVN-RBF FUNCTION

#time interval accuracy cross-validation accuracy

100 90.98% 88.68%

150 90.04% 90.01%

200 90.12% 90.08%

250 91.05% 90.99%

300 90.05% 90.99%

TABLE IV
EFFECT OF INCREASING THE NUMBER OF MUTANTS ON STABILITY OF SVN-RBF FUNCTION

#mutants #effective mutants accuracy cross-validation accuracy

300 23 63.01% 81.91%

400 31 83.01% 89.01%

500 62 90.07% 89.08%

600 76 91.04% 90.89%

700 91 91.05% 90.99%

TABLE V
RESULTS: DETECTING NETWORK ATTACKS INVOLVING MOTORISED VALVES (MV), PUMPS (P), AND LEVEL INDICATOR TRANSMITTERS (LIT)

attack # attack point start state attack detected accuracy

1 MV101 MV101 is closed Open MV101 yes 89.67%

2 P102 P101 is on whereas P102 is off Turn on P102 yes 90.01%

3 LIT101 Water level between L and H Increase by 1mm every second eventually 63.11%

4 LIT301 Water level between L and H Water level increased above HH yes 99.86%

5 MV504 MV504 is closed Open MV504 yes 92.11%

6 MV304 MV304 is open Close MV304 yes 88.01%

7 LIT301 Water level between L and H Decrease water level by 1mm each second eventually 56.97%

8 MV304 MV304 is open Close MV304 yes 90.16%

9 LIT401 Water level between L and H Set LIT401 to less than L yes 89.36%

10 LIT301 Water level between L and H Set LIT301 to above HH yes 99.07%

11 LIT101 Water level between L and H Set LIT101 to above H yes 91.12%

12 P101 P101 is on Turn P101 off yes 92.06%

13 P101; P102 P101 is on; P102 is off Turn P101 off; keep P102 off yes 91.62%

14 P302 P302 is on Close P302 yes 90.91%

15 LIT101 Water level between L and H Set LIT101 to less than LL yes 89.37%

valves (MV), pumps (P), and level indicator transmitters
(LIT). The table indicates whether or not the invariant was
able to detect each attack, and the accuracy with which it
labels the feature vectors (here, this reflects the percentage of
feature vectors labelled as negative after the attack has been
launched). If the accuracy is high (above a threshold of 85%),
we deem the attack to have been detected. Note that for attacks
manipulating the sensor readings (LITs) read by PLCs, we
assume that the correct levels are logged by the historian.

As can be seen, all of the attacks were successfully detected.
For all the attacks except #3 and #7, this is with very high
accuracy (around 90% and above). This is likely because these
attacks all trigger an immediate state change in an actuator
(opening/closing a valve; switching on/off a pump), either
by directly manipulating a control signal to it, or indirectly,
by reporting an incorrect tank level and causing the PLC to

send an inappropriate signal instead (e.g. attack #4 causes the
PLC to switch on a pump to drain the tank, even though the
water level is not actually high). Attacks #3 and #7 are not
detected initially, hence the lower accuracy (approx. 60%),
because the sensor for the tank level is manipulated slowly,
by 1mm per second. As a result, it takes more time to reach
the threshold when the PLC opens a valve or switches on
a pump, at which point the attack has a physical effect. If
measuring from this moment onwards, Attack #3 would have
an accuracy of 99.83% and #7 an accuracy of 99.72%—hence
our judgements of detected eventually.

Overall, the results suggest that our invariant is successful at
detecting network attacks when they lead to unusual physical
behaviour, and thus might be useful in monitoring a sys-
tem in combination with complementary defence mechanisms
(e.g. for ensuring the integrity of the communication links).



Code modification attacks. Table VI presents the results of
some code modification attacks, and our invariant’s ability to
detect them. Unlike for network attacks, there is no benchmark
of code modification attacks to use for SWaT. In lieu of
this, we randomly generated 40 effective mutants (distinct
from those in our learning phase), each consisting of a
single mutation to a PLC program controlling some stage of
the SWaT simulator. We generated data from these mutants
with respect to our 20 initial configurations, collected feature
vectors, and applied our invariant. The table reports how
many of the mutants were detected and with what accuracy
(we determine whether a feature vector should be positive
or negative analogously to how we labelled feature vectors
derived from mutant traces). After grouping the attacks with
respect to the PLC program they affect, we report both the
average accuracy for all attacks as well as for only those that
were detected.

Our invariant was able to detect 32 of the 40 mutants. Upon
manual investigation, we believe the reason it was unable
to detect the remaining mutants was because they generated
data traces that were too similar to the normal behaviour
of the system. Similar to our network attacks, when a code
modification attack led to an unexpected change in the states of
valves and pumps, the attack was detected. The results suggest
that the invariant could be effective for physically attesting the
PLCs, i.e. by monitoring the physical state of the system for
any unexpected behaviours that could be caused by modified
control code. Of course, an intelligent attacker may manipulate
the code in a way that is not sufficiently captured by random
modifications: seeking a more realistic attestation benchmark
set is thus an important item of future work.

F. Threats to Validity

Finally, we remark on some threats to the validity of our
evaluation:
(1) Our dataset is limited to a single system: the SWaT

simulator;
(2) Data traces were generated with respect to a fixed set of

initial configurations;
(3) We used randomly generated code modification attacks,

rather than code modifications injected by an intelligent
attacker.

Due to (1), it is possible that our results do no generalise to
other CPSs. Because of (2), it is possible that normal but rarely
occurring behaviours may have been missed in the training
phase, and thus may be classified incorrectly by our invariant.
These behaviours may also have been missed from the data
traces used in the validation phase (SMC). Because of (3), it
could be possible that our results do not apply to real code
modification attacks designed by attackers with knowledge of
the system.

V. RELATED WORK

Anomaly detection has been widely applied to CPS in
order to detect unusual behaviours (e.g. possible attacks)
from their data [25–33]. Many of these approaches, however,

require prior knowledge about the internals of the system—
our technique avoids this and attempts to construct a model
systematically and automatically.

The idea of detecting attacks by monitoring physical invari-
ants has been applied to a number of CPS [34, 35]. Typically,
however, the invariants are manually derived using the laws
of physics and domain-specific knowledge. Moreover, they are
derived for specific, expected physical relationships, and may
not capture other important patterns hiding in the sensor data.
Manual invariants have also been derived for stages of the
SWaT testbed itself [36, 37].

Apart from monitoring physical invariants, the SWaT
testbed has also been used to evaluate other attack detection
mechanisms, such as a hierarchical intrusion detection system
for monitoring network traffic [38], and anomaly detection
approaches based on unsupervised machine learning [5, 6].
The latter approaches were trained and evaluated using an
attack log [12] from the testbed itself. As our approach was
evaluated on the SWaT simulator, an immediate and direct
comparison with our results is not possible. However, we
believe that our supervised approach would lead to higher
sensitivity, and plan to do a proper comparison to confirm
or refute this.

Mutations are applied by Brandl et al. [39], but to specifi-
cations of hybrid systems (rather than to the PLC programs
themselves) in order to derive distinguishing model-based test
cases that can be seen as classifiers. A discrete view of
the system is used for generating test cases, with qualitative
reasoning applied to represent the continuous part.

It is possible to obtain strong guarantees about the behaviour
of a CPS by applying formal verification, but only with
accurate enough models of the controllers and ODEs. With
these, the CPS can be modelled as a hybrid system and a
variety of established techniques can be applied (e.g. model
checking [40], SMT solving [41], non-standard analysis [42],
concolic testing [43], runtime model validation [44], or theo-
rem proving [45, 46]). With discretised models of the phys-
ical part, classical modelling and verification techniques can
also be applied, e.g. as demonstrated for some properties of
SWaT [47, 48].

VI. CONCLUSION

We proposed a novel approach for automatically construct-
ing invariants of CPS, in which supervised ML is applied to
traces of data obtained from PLC programs that have been
systematically mutated. We implemented it for a simulator of
the SWaT raw water purification plant, presenting a framework
that can generate large quantities of mutant PLC programs,
data traces, and feature vectors. We used SVM-RBF to learn
an expressive model, and validated it as characterising an
invariant property of the system by applying cross-validation
and statistical model checking. Finally, we subjected the
simulator to 55 network and code modification attacks and
found that the invariant was able to detect 47 of them (missing
only 8 code modification attacks that had a limited effect on



TABLE VI
RESULTS: DETECTING CODE MODIFICATION ATTACKS

attack stage # effective mutants # detected accuracy (detected) accuracy (all)

PLC 1 8 5 99.82% 71.54%

PLC 3 20 17 99.89% 92.12%

PLC 4 4 4 99.29% 99.29%

PLC 5 5 3 99.43% 81.20%

PLC 6 3 3 99.87% 99.87%

summary 40 32 99.84% 88.20%

the water tank levels), suggesting its efficacy for monitoring
attacks and physically attesting the PLCs at runtime.

Future work should seek to address the current complexity
of the learnt invariants without reducing their effectiveness
at detecting attacks, in order to bring them within reach
of stronger validation approaches than SMC, e.g. symbolic
execution [11]. It should also seek to make the approach
more practical for real CPS such as the SWaT testbed (not
just its simulator), by finding ways of reducing the amount of
data that must be collected. One way we could achieve this is
by applying mutations more effectively, reducing the amount
of abnormal data we reject for being indistinguishable from
normal traces. For example, we could use domain knowledge
to focus the application of mutation operators to parts of the
PLC code more likely to lead to useful abnormal traces. In
future work we would also like to assess the generalisability
of our approach by implementing it for other testbeds
or simulators, especially those for applications other than
water treatment. Finally, we would like to compare our
supervised learning approach against some recently proposed
unsupervised ones for SWaT [5, 6], in order to clarify whether
or not the overhead of collecting abnormal data pays off in
terms of the accuracy of the invariant and its ability to detect
attacks.
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