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A B S T R A C T

Agency and state grant funding should be disseminated in ways so it will result in better management of
household hazardous waste (HHW) and environmental sustainability. Since location seems to matter in HHW
collection activities, it is important to consider pro-environmental spatial spillovers that occur, based on agency
actions and waste collection behavior taking place in other locations. These may influence HHW-related
practices in close-by regions. Using a county-level spatio-temporal dataset that consists of economic,
demographic, and HHW data in California from 2004 to 2015, we evaluate the impact of HHW grants on HHW
collection activities while considering pro-environmental spillovers. We employ a research design that controls
for confounding factors across the North, Central and South Regions, and over time. The research models assess
causal relationships using a random effects panel data model with instrumental variables to estimate the grants’
influences, while considering spatial effects and unobservable bias. Several findings were obtained: (1) HHW
grants had positive effects on waste collection in a consistent way across multiple models that we tested; (2)
positive spatial spillover effects occurred for HHW collection activities due to the pro-environmental activities of
nearby counties. This research contributes to the growing body of research on geospatial policy analytics, ways
to establish the basis for causal inference, and the use of robustness checks to develop a deeper understanding of
how to make waste management grant programs more effective in the regions where they are implemented.

1. Introduction

Household hazardous waste (HHW) arises from household products
that have not been consumed or used in the household, and are
potentially harmful to the people who live in a residence, and to their
neighbors if they are not disposed of properly. According to the U.S.
Environmental Protection Agency (EPA), HHW typically contains
corrosive, toxic, ignitable, or reactive ingredient, including pesticides
and weed killers, cleansers and detergents, motor oils and automotive
components such as antifreeze, batteries and light bulbs, and paint and
varnish (U.S. EPA, 2014). Such waste is difficult and costly for a
household to disposed of safely. As a result, this kind of waste often gets
handled very irresponsibly: it is poured down household drains, onto
the ground beside the road or in parks, into nearby storm sewers, or set
out for collection with regular trash.

Improper disposal of such toxic waste causes hazardous substances

to contaminate the environment, leading to polluted ground water,
which is still a main source of drinking water in the United States (U.S.
EPA, 2015). This has the potential to create adverse health effects for
people living in the vicinity of the contamination too. Thus, it is crucial
for municipal and regional governments, in collaboration with produ-
cers and waste management service providers, to effectively manage
HHW collection and disposal.

Government grants for HHW management via programs in
California (CalRecycle, 2016) and New York (New York State
Department of Environmental Conservation, 2017) have been crucial to
communities. They have provided the necessary funding for projects to
establish or expand HHW collection and recycling drop-off facilities,
curb-side and take-back programs, and collection events. Assessing
causal effects of grants on HHW collection activities can help policy-
makers evaluate if the dissemination of HHW grants made a positive
impact on environmental quality where people live.
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Previous studies have shown that the patterns of waste collection
vary with location. Examples include: the recycling of electronic waste
in the rural areas of China (Tong & Wang, 2004); the collection of
municipal solid waste in an island city of China (Zhang et al., 2014);
and waste recycling in the U.K. (Abbott, Nandeibam, & O’Shea, 2011).
Pollution and other environmental problems caused by improper dis-
posal of HHW may spread over geographic areas. So applying geolo-
cational data analytics approaches is appropriate to provide a spatial
perspective on key environmental issues. This kind of thing has been
done in studies conducted on pro-environmental tourist travel (Barr &
Prillwitz, 2012), pollution-generating plant relocation (Liu, 2013), and
geographic inequality in pollution mitigation (Bakhtsiyarava &
Nawrotzki, 2017). Similarly, in analyzing the effects of grants on HHW
collection output, the spatial dimension should be considered. This is
because environmental sustainability activities in a locality may en-
courage similar kinds of beneficial activities nearby.

This research also investigates the spatial effects of pro-environmental
spillovers. This term is defined as the influence of pro-environmental
activities, such as HHW collection, government announcements of new
recycling programs, and news of advancing performance of recycling
from close-by counties or regions. Such effects are likely to arise under
two conditions. First, the participation of households is related to the
extent to which they exhibit pro-environmental behavior, which is
strongly influenced by what is happening around them (Agovino,
Crociata, & Sacco, 2016). Second, strategic interactions among local
governments may encourage pro-environmental activities to a greater
extent when they cooperate in achieving higher environmental quality
(Brueckner, 2003).

Impact evaluations that identify the causal effects of policies in
spatial terms are in short supply due to data availability issues, the
absence of randomization in empirical designs, and other practical
barriers (Gibbons, Nathan, & Overman, 2014). Establishing causal re-
lationships is critical in assessing environmental policy to obtain un-
biased evidence with better internal validity (Ferraro, 2009). When
carrying out a randomized controlled experiment is not an option, the
available identification strategies include research designs that can
address selection for unobservable factors that are present in the setting
(Gibbons et al., 2014). The selection of strategies depends on the
sources of variation in the variables associated with the treatment and
in the data overall (Baum-Snow & Ferreira, 2015, chap. 1).

Given the nature of the observational data in this research, we
employ a spatial panel data model that considers unobservable, time-
invariant effects from neighboring counties that may influence HHW
collection activities in a county that is nearby. HHW grants were not
randomly awarded to waste agencies in the counties, as one may expect
with a government agency that seeks to maximize the value of grant
money disseminated to improve environmental outcomes. As a result,
we applied an instrumental variable (IV) method to isolate the un-
observed factors that may have determined the amount of grants
awarded to specific counties. To our knowledge, this research is the first
empirical study that attempts to model the effects of HHW grants on
HHW collection outcomes, by measuring spatial spillover effects from
pro-environmental activities in nearby geographic areas. Besides using
econometric methods, we perform data tests and robustness checks to
support causal inference.

This empirical research uses HHW collection and demographic data
in California due to the state's diverse geography and demographics.
HHW has been banned from trash in California since 2006, when
California's Department of Recycling (CalRecycle) mandated that waste
management agencies in the state should report annually on HHW
collection and disposition activities. Different waste agencies manage
HHW programs in the counties they cover. We observed some colla-
boration among the counties also. For example, Calaveras County de-
veloped a “medical sharps” collection strategy with the Central Sierra
Sharps Coalition that has involved four counties: Alpine, Calaveras, El
Dorado, and Tuolumne (CalRecycle, 2016). Such programs need to be

considered when estimating the impact of HHW-related policies and
strategies on HHW collection activities.

We model the spatial effects of HHW grants on HHW collection. The
effects are then quantified to create a basis for meaningful policy ana-
lysis. Our goal is to provide impact assessments of waste collection
beyond associational results and findings. We asked three research
questions: (1) What mechanisms involving spatial dependencies operate
across counties and regions? (2) Are there pro-environmental locational
effects of HHW collection activity among neighboring counties? (3)
What are the impacts of HHW grants on the amount of HHW collected
considering spatial dependencies?

Our objectives in answering these research questions focus on how
impact evaluations can offer insights into what drives the amount of
HHW collected so that policy-relevant questions can be answered. Our
first objective is basic: to identify the extent to which the amount of
HHW grants awarded to counties in a region influenced their popula-
tion-normalized HHW collection performance. A second objective is to
estimate the differential effects of such awards across different geo-
graphic and demographic environments. A third objective is to explore
whether pro-environmental activities in close-by areas may affect HHW
recycling outcomes.

2. Theory and hypotheses

In economic theory, individual households make choices to max-
imize their well-being under the constraints they face. This study
broadens the theoretical framework to analyze the HHW collection
activities to include theoretical insights from other areas in the Social
Sciences. We do this to explain environmental behavior, including the
social dilemmas, and pro-environmental behavior and its geographical
contagion effects. These insights led us to establish a model that re-
presents the causal relationships between HHW collection outputs and
HHW-related policies, such as HHW grants, with consideration of the
spatial effects from close-by areas.

The success of HHW collection programs depends on household
participation in separating and collecting HHW. With the participation
of only a few households, the local government is unlikely to be able to
divert hazardous materials from contaminating the environment. When
the environment is contaminated by HHW from nearby counties, even
the households that participated in the HHW collection program are not
likely to be free from environmental contamination. HHW pollution can
spread through land and ground water across county boundaries.
Everyone in the vicinity will suffer if most households do not separate
and deliver their HHW to be recycled or processed properly. This si-
tuation is a social dilemma in maintaining good environmental quality
(Hage, Söderholm, & Berglund, 2009).

To resolve this dilemma, cooperation among households and local
governments in neighboring counties is required. Cooperation leads to
geospatial spillovers of HHW collection activities among nearby
households and local governments. Cooperation should happen if there
is evidence that they have exhibited pro-environmental attitudes and
behavior, in which they weigh the long-term societal and environ-
mental consequences of their decisions (Vugt, Meertens, & Lange,
1995). Similarly, households that exhibit pro-environmental behavior
should be willing to separate their HHW and dispose of it properly
because they are aware of the danger of hazardous material con-
tamination to the environment and to people's health. The spatial
spillovers can cross administrative boundaries so similar spillovers also
should be observable for nearby counties.

Pro-environmental behavior is subject to geographic contagion due
to socio-spatial transmission effects (Truelove, Carrico, Weber, Raimi, &
Vandenbergh, 2014). In a province-level study in Italy, Agovino et al.
(2016) found that pro-environmental behavior (proxied by the rate of
waste separation prior to collection) in a province was influenced by
the behavior of nearby provinces. Thus, proximity to regions with pro-
environmental behavior may positively influence neighboring regions
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with less-than-best pro-environmental records. Similar to Italy, socio-
spatial effects in HHW collection and recycling activities can be viewed
at the province or county level. Thus, HHW collection activities from
households in nearby counties should have positive spatial effects on
collection in other counties when households cooperate.

Spatial effects may occur at the local government level as well. In
Public Economics, the decision of a jurisdiction may be affected by
decisions undertaken in neighboring jurisdictions due to the interaction
among the local governments (Brueckner, 2003). The related interac-
tions may facilitate resource transfers or collaboration in facility im-
provement projects. These interactions are motivated to achieve higher
environmental quality so that neighboring counties will also manage
their HHW properly. As an example, local governments in 22 rural
counties in California formed the Environmental Services Joint Powers
Authority (2018) in 1993. It provides regulatory advocacy and tech-
nical support related to recycling and hazardous waste management.

Besides pro-environmental behavior, according to the theory of
planned behavior (Ajzen, 1991), households may not cooperate in di-
verting HHW if the tasks are perceived to be difficult. This is especially
true if HHW collection and recycling facilities are too far away or in-
convenient to access. So, a local government's role in providing the
necessary HHW facilities and programs is crucial. The establishment of
HHW programs is supported by state governments through HHW grant
funding in some regions. As more new facilities become available and
existing facilities are improved due to the projects funded by such
grants, households should be more likely to participate in waste
collection programs due to their increased awareness of them and the
accessibility of collection facilities. Thus, more HHW can be collected,
recycled, and most importantly, diverted from polluting the environ-
ment. This should result in grant funding having positive effects on
HHW collected.

3. Context and data

California was selected for this study due to its diverse geography
and demographics, and active pro-environmental approach, that has
the potential to create pro-environmental spillover effects.

3.1. The regions and counties of California

Based on cultural and political differences, California has three main
regions (See Fig. 1.).

The North Region is comprised of 39 counties, the Central Region
has just 9 counties, and the South Region has 10 counties. The North
Region is demographically and geographically similar to the Central
Region. In the North Region, the Sacramento Valley is surrounded by
the Coastal Mountains, the Klamath Mountains, and the Cascade
Mountains. The Coastal Mountains are fronted by the beaches of the
coastline that face the Pacific Ocean. In the North and Central Regions,
the San Joaquin Valley is positioned between the Coastal Mountains
and the Sierra Nevada Mountains. The Central Region includes
Fresno, Kings, Madera, Merced, Monterey, San Benito, Stanislaus,
Tulare and Tuolumne Counties. In the South Region, in contrast, the
Mojave and Colorado Deserts cover most of the surface area (World
Atlas, 2017).

As the most populous state in the U.S. since 1962, in 2015 California
had a total population of 38.95 million people. It had a 54.3% owner-
occupied housing unit rate in 2011–2015, and had a high proportion of
well-educated people with 81.8% high school graduates in 2011–2015.
Its median household income was $61,818 in this same period (U.S.
Census Bureau, 2015).

3.2. Primary data sources for the study

Geospatial data for counties. Our data for California were ob-
tained from the Database of Global Administrative Areas (GADM,
Version 2.8) (2015). California has 58 counties overall, and the geos-
patial data contain information about their borders with one another.
For our map projection, we used the North American Datum of 1983
(NAD 83) that has been officially adopted by California (Public
Resources Code, 2005). Implemented in 1986, NAD 83 provides “hor-
izontal” control data based on the locations of “monuments” (as well as
“vertical” control data for altitudes) for the U.S., Canada, Mexico, and
Central America. The system is based on geocentric origins for 250,000
points of geolocation, including 600 Doppler satellite stations (National
Geodetic Survey, 2009).

Fig. 1. California geography and regions.
Source: Used by permission of WorldAtlas.com (2017).
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HHW data from CalRecycle. CalRecycle has overseen waste
management in California since 2010. Previously, it was known as the
California Integrated Waste Management Board (CIWMB), which was
established in 1989 and performed services that are similar to what
CalRecycle does now. We collected HHW-related data from CalRecycle
Form 303. It has historical HHW data from 2004 and is submitted an-
nually by public agencies responsible for HHWmanagement by October
1 each year, for the reporting period from July 1 to June 30 of the past
year (CalRecycle, 2014). Although the waste data are at the agency
level and contain details by waste material types, we aggregated the
total amount of county-level HHW data, and normalized it based on
county population data.

Demographic data from the U.S. Census Bureau. The demo-
graphic data for this study include population density, mean household
income, and percentage of high school graduates. They were collected
from the American Community Survey (U.S. Census Bureau, 2015) for
the years 2004–2015.1 The data cover only 39 of 58 counties in Cali-
fornia, so this aspect of our data collection limited the size our panel
data (See Table 1 for the counties included or excluded, and the regions
they are associated with.). We also use taxable sales as a proxy for year-
to-year economic activity. For this, data were collected from the
California State Board of Equalization (2015) for 2004 to 2015.

3.3. HHW grant data collection and its accompanying issues

In California, HHW grants are awarded annually to local govern-
ments, cities, counties, and waste management agencies to establish or
expand their HHW collection or recycling facilities for enhancing the
local environment's sustainability since the 1990s (CalRecycle, 2016).
Grants have been awarded every July, which is the state's fiscal year start
and the beginning of the HHW reporting period each year. Fig. 2 shows
the grant amounts awarded from 2004 to 2015 to the 39 counties.

The amount was $3.5-$4.5 million before 2009 and $1.0-$1.5 mil-
lion in and after 2009. This funding reduction coincides with the
January 2010 transfer of waste management responsibilities to
CalRecycle from CIWMB, and the diminished funds available from the

State's budget that accompanied this change. Other than in 2004 and
2015, more grant funding typically was awarded to the North Region
counties despite a higher population in the South Region counties. For
example, Yuba County (North) received about $12/person, but Los
Angeles County (South) received only $0.30/person during the study
period. The latter had a larger tax base to build infrastructure.

Since the term of the grants was for three years, we use the cumu-
lative grant award over 3 years as the grant variable (3YCumGrant$) in
our analysis. We compared this variable with the HHW collection
density for each Californian region and its county type using boxplots.2

(Besides this footnote, see Appendix Figure A1 for a fuller explanation,
and what we learned from the comparisons of the visual non-parametric
boxplots). The 2013 Rural-Urban Continuum Code (RUCC) published
by the U.S. Department of Agriculture's Economic Research Service
(2013) is used to classify the county by population size, degree of ur-
banization, and adjacency to a metro area.

We aggregated all datasets by county and year. The definitions and
the descriptive statistics for the variables used in our study are pre-
sented in Tables 2 and 3, respectively.

4. Estimation approach

The estimation that we conducted to establish causal relationships
was challenging for two main reasons. First, spatial dependencies exist
in HHW collection activities. This is due to the effects of pro-environ-
mental behavior among households and also the interactions among
local governments. Ignoring such spatial dependencies would result in
biased estimates, as their effects spill over into the observation of HHW
collections by geolocation and by year.

Second, although the HHW grant awards were established before

Table 1
California counties included in the study dataset, by region, 2004–2015

# North (in dataset) # North (not in dataset) # Central (in dataset) # Central (not in dataset)

1 Alameda 23 Alpine 1 Fresno 8 Mariposa
2 Butte 24 Amador 2 Kings 9 San Benito
3 Contra Costa 25 Calaveras 3 Madera
4 El Dorado 26 Colusa 4 Merced
5 Humboldt 27 Del Norte 5 Monterey
6 Lake 28 Glenn 6 Stanislaus
7 Marin 29 Inyo 7 Tulare
8 Mendocino 30 Lassen

9 Napa 31 Modoc # South (in dataset)

10 Nevada 32 Mono 1 Imperial
11 Placer 33 Plumas 2 Kern
12 Sacramento 34 Siskiyou 3 Los Angeles
13 San Francisco 35 Sierra 4 Orange
14 San Joaquin 36 Sutter 5 Riverside
15 San Mateo 37 Tehama 6 San Bernardino
16 Santa Clara 38 Trinity 7 San Diego
17 Santa Cruz 39 Tuolumne 8 San Luis Obispo
18 Shasta 9 Santa Barbara
19 Solano 10 Ventura
20 Sonoma
21 Yolo
22 Yuba

1 Demographic data for 2004 were backward extrapolated by using the an-
nual growth rate calculated from historical data from 2005 to 2012.

2 The term of CalRecycle's HHW grants for counties in California was three
years. This led us to select the cumulative grant award over three years
(3YCumGrant$) to be our primary indicator for the HHW grant variable in our
models. Appendix Figure A1's purpose is to assess how 3YCumGrant$ visually
compares with HHW collection density (CollDens) as a potential driver of how
much effort is being put toward mitigating hazardous waste-driven pollution
through pro-environmental grants versus actual success with higher levels of
HHW collection density. This led us to compare variables for each California
Region and County Type, with Rural-Urban Continuum Codes (RUCCs).
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the beginning of the HHW collection survey, the grants were not
awarded randomly to local governments and waste agencies. In
California, the eligible local governments and waste agencies submitted
project proposals and then were selected on a competitive basis. The
grant applications were reviewed based on criteria such as the need for
the funding, the proposed work plan, and the planned budget.
Discretionary criteria points were given to projects in rural areas, small
cities, and underserved populations. Additional points were also given
to agencies that had not received any grants in the last two years
(CalRecycle, 2016). Thus, the HHW grants variable is endogenous due
to unobserved factors that would likely affect the amount and decision
to award grants to particular counties.

Additionally, there likely was autocorrelation between the HHW col-
lection levels in the previous years that were also unobservable, resulting in
serial correlation of the error terms. Although serial correlation affects the
efficiency of the estimators, it does not affect their unbiasedness and con-
sistency, if the model is correctly specified (Wooldridge, 2013).

Our research approach takes into consideration these challenges
(See Appendix Figure B1 for an overview of the methods sequence that
we used to deal with these problems in a highly-readable flowchart
form.). Briefly, we first developed a baseline spatial panel data model to
explain the relationship between HHW collection and grants. A set of

Lagrange multipliers tests were employed to test the model for serial
correlation, spatial autocorrelation, and random effects (Baltagi, Song,
Jung, & Koh, 2007). In the random effects specification, the un-
observable time-invariant county effects were assumed to have homo-
scedastic variance and orthogonal to each of the explanatory variables.
To test the validity of this assumption in our panel data, we used the
spatial Hausman test to compare the random and fixed effects estima-
tors (Mutl & Pfaffermayr, 2011).

After confirming the presence of county-level random effects, serial
correlation, spatial dependence in the error terms, and the specification
assumptions, we ran the model using random effects estimators and the
instrumental variable (IV) method to handle endogeneity with the
3YCumGrant$ variable, spatial-lag dependence, and the error term structure.

Different spatial weights used in the model are known to result in
different estimates (Corrado & Fingleton, 2012). So, we performed
sensitivity analysis with various spatial weight matrices. To further
check the robustness of the estimates, we investigated whether there
were plausible alternative explanations for the changes in the HHW
collection outputs.

4.1. Model specification

The panel data model has spatial-lag dependence and county effects,
in which HHW collection in a specific year is a function of related grant
funding:

= + + + + +
=

XCollDens w CollDens YCumGrant µ e3 $ itit
j

J

ij jt it i it
1

Here, i indexes the I counties; and j is the index of another interacting
county among the J counties in the sample; t is an index for year.
CollDensit is HHW collection density normalized by the county popu-
lation (lbs/person); and 3YCumGrant$it is the amount of HHW grants
normalized by county population (in $/person) over three years.
Further, Xit is a vector of control variables; wij is a pre-specified spatial
weights matrix for HHW collection for the spatial autocorrelation
analysis; and λ is the associated scalar parameter of the spatial lag of
CollDens. Finally, μi is a vector of time-invariant county-specific effects;
α is the intercept; and eit represents white-noise errors.

For the control variables, we used county demographic variables,
which include mean household income (HHInc), population density
(PopDens), and education level (EduHS%). These variables have been used
in previous empirical research and recycling and HHW management
(Abbott et al., 2011; Lim-Wavde, Kauffman, & Dawson, 2017; Sidique,
Joshi, & Lupi, 2010). Better-educated households are more aware of the
risks of HHW, so they should be motivated to separate and recycle
household waste. Households with higher incomes have more time and

Fig. 2. HHW Grants Awarded to 39 Counties in Study, by
Region, in 2004–2015 ($ million)
Notes. No regular HHW grants were awarded in 2011 by
CalRecycle. The funding was allocated to a one-time grant
to support a safe, convenient and cost-effective infra-
structure for collecting and disposing of home-generated
medical sharp waste instead (CalRecycle, 2016). The actual
amounts awarded amount were not provided by the Cal-
Recycle website.

Table 2
Variable definitions for county-level and HHW-Related variables.

Variables Definitions

EduHS% % population over age 25 with high school diploma
PopDens County population density (people per sq mi)
HHInc Mean household income in county ($)
TaxSales$ County taxable sales ($ per person)
3YCumGrant$ 3-year cumulative HHW grants awarded ($ million per person)
CollDens Quantity HHW collected (lbs per person)

Table 3
Descriptive statistics of the county-level variables.

Mean Std. Dev. Median

EduHS% 82% 8% 85%
PopDens 977 people/sq mi 2760 people/sq mi 182 people/sq mi
HHInc $76,400 $20,700 $73,400
TaxSales$ $13.98/person $3.37/person $13.93/person
3YCumGrant$ $0.44/person $0.90/person $0.10/person
CollDens 3.79 lbs/person 3.53 lbs/person 2.63 lbs/person

Notes. Obs.: 468, 39 counties, 2004–2015. EduHS%, PopDens, HHInc were
collected from the American Community Survey (U.S. Census Bureau, 2015);
TaxSales$ data were from the California State Board of Equalization (2015); and
3YCumGrant$ and CollDens were obtained from CalRecycle (2014, 2016).
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access for participating in HHW collection programs or taking waste to
HHW facilities. In contrast, though prior empirical research on recycling
showed that population density was positively linked with recycling
(Sidique et al., 2010), it was negatively associated with HHW collected
(Kinnaman & Fullerton, 2000). This may be due to lack of space, dis-
couraging households from separating and delivering waste to the ap-
propriate facilities.

The spatial weight matrix, wij, defines the relationships between vari-
ables.3 California is ∼560 miles east to west, and ∼1040 miles north to
south. It has diverse geography and land areas. The North Region consists of
counties with smaller land areas, and farms, forests, mountains, and valleys;
the Central Region is similar. The South Region, has counties with larger
land areas, including desert expanses, coastal cities and suburbs. If con-
tiguity-based weighting were used, some counties would have many
neighboring counties, while others relatively few. Moreover, HHW collec-
tion programs in one county may affect several others nearby, not only
those that share the same boundaries.

The research design of this work applies an adaptive distance-based
weight matrix. This was calculated using a bi-square distance function
with an adaptive distance limit, but a fixed number of neighboring
counties (Anselin, 2016; Anselin, Florax, & Rey, 2004). This ensured the
same number of neighboring counties when spatial weights for pairs of
counties were calculated. The weight matrix was row-standardized with
0-values on the diagonal, and rows of the neighbors matrix summed to
unity.

The bi-square distance function is discontinuous, and excludes ob-
servations beyond some distance (b). In addition, the weights decrease
as the distance between the assigned reference points (dij) increases.
The distances between counties were calculated via population centroid
coordinates, for which the coordinates of the county seats were used.4,5

Compared with the possible use of geographic county centers, the appli-
cation of population centroids is important for capturing spatial auto-
correlation and the uneven distributions of the population in counties
where waste collection occurred (Patuella and Arbia, 2016). The latter
is appropriate to support research at the county level for household
patterns of HHW collection and recycling, and captures more of the
knowledge from our field study of HHW collection and recycling in
California.

Before estimating the model, we tested the data for spatial

autocorrelation, serial correlation, and random effects using joint and
conditional Lagrange multiplier (LM) tests (Baltagi et al., 2007). The re-
sults are reported in Table 4. The joint conditional test was rejected;
this indicated the existence of spatial or serial correlation or random
county effects. The C.1 and C.2 conditional tests were also rejected, so
there may be spatial error and serial correlation (Croissant & Millo,
2019).

4.2. Generalized moments estimation

We employed the generalized spatial two-stage least squares (GS2SLS)
estimation procedure proposed by Kelejian and Piras (2017). The pro-
cedure involves several steps. Generalized moments (GM) estimators are
first defined based on the related moment conditions6 to estimate the
variance components for the general spatial panel model (Kapoor,
Kelejian, & Prucha, 2007). In this step, we selected the GM estimators
that take into account all of the moment conditions, and applied an
optimal weighting scheme. Given the estimates of the variance com-
ponents, we found that the model can be transformed to account for
spatial error lags and the variance-covariance matrix of the error terms.
Since the spatial lag of the dependent variable (CollDens) was en-
dogenous, we implemented an IV procedure as in Baltagi and Liu
(2011), using instruments proposed by Kelejian and Prucha (1998).
Coefficients were then obtained from feasible generalized least squares
(FGLS) estimation (Wooldridge, 2002).

To resolve the endogeneity issue with the HHW grants variable, we
included another IV that is correlated with HHW grants, but not directly
correlated with the amount of HHW collected. For this purpose, we
used a binary variable (CalRecyle) set to 1 from 2009 onwards. This
variable indicates the drastic reduction in the amount of HHW grants
(illustrated in Fig. 2) when CalRecycle took over waste management
responsibilities in California in January 2010. Changes in waste man-
agement practices influence the amount of grants awarded, but they
seemed to not influence HHW collection output directly (at least in our
dataset). The county-level taxable sales amount per capita (TaxSales$),
which represents economic activity in a county, also was used as an IV.
This is because counties with higher economic activity may need fewer
grants than those with lower activity. They have the funds available,
and can use them on sustainability and pollution mitigation-related
expenditures. This seems as though it did not influence HHW collection
output right away also.

5. Spatial panel data estimation results

Table 5 summarizes our findings from the GMM estimation for the
effects of HHW grants and spatial spillover effects on HHW collection
outputs. The “Random Effects” column reports coefficient estimates of

Table 4
Joint and conditional Lagrange multiplier test results.

Test LM Null Hypothesis

Joint 749.35** No spatial or serial error correlation; no random region effects
C.1 Conditional 9.18** No spatial error correlation; allows error correlation, random region effects
C.2 Conditional 57.27** No serial correlation; allows error correlation and random region effects

Notes. Test stats.: Lagrange multipliers (LM). Signif.: **p < 01.

3 There are three types of weights (Brundson and Singleton, 2015). Contiguity-
based weights consider the other counties that share the same boundary as their
neighbors. Distance-based weights are specified using a distance function separ-
ating the counties; the neighbors can be determined using the k-nearest
neighbor criterion or distance bands. Kernel weights combine the distance-based
thresholds together with continuously-valued weight functions, such as bi-
square, tri-cube, exponential, or Gaussian functions (Lloyd, 2010). We per-
formed sensitivity analysis by calculating the weight matrices using these
functions, and the bi-square function supported better detection of more
counties in spatial clusters compared to other functions.

4 The function is: = <( )w if d b1 ,ij
dij
b ij

2 2
and 0 otherwise (Gollini,

Lu, Charlton, Brundson, & Harris, 2015). For a fixed number of neighbors, we
needed a large enough sample size to calculate the spatial autocorrelation.

5 A county seat is the city that is the administrative capital of a county.

6 Moment conditions, according to Hansen (2001) and other authors, are
functions of a model's estimated parameters. They yield an expected value of 0
when the parameters of the model reach their true values in the estimation
process. The generalized method of moments (GMM) has been characterized as
minimizing sample averages of the moment conditions for the data against a
selected mathematical norm or vector distance.
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the random effects model ignoring the spatial dependence. The “Spatial
Random Effects” column reports coefficient estimates of parameters in
the spatial random effects model.

The coefficient γ of HHW grants (3YCumGrant$ γ) was positive and
significant in both the random effects (γ =1.44, p < 0.01) and spatial
random effects estimates (γ =1.12, p < 0.05). These findings indicate
that, all else equal, the HHW grants had positive effects on HHW col-
lection density (CollDens), rather than negative or no effects. The effect
estimate was lower after spatial dependence was included in the model
though (γ =1.44 > 1.12). This means that if the spatial effects were
excluded, the effects of HHW grant funding on the HHW collection
output would have been over-estimated – a central finding of this work
that is supportive of our overall perspective on the nuanced nature of
how spatial effects may influence how well HHW grants work when
they are offered to different counties. After isolating the influence from
neighboring counties, we found that $1 more in grants awarded to a
county led to about 1.1 pounds more HHW collected per person in the
county (p < 0.05). This is interesting, because even with the special
attention that we gave to spatial influences and a sound model to re-
present the complexity of HHW collection in counties, the same kinds of
results as have been reported in prior research (Agovino et al., 2016;
Truelove et al., 2014) continue to be present when we estimate more
complex and realistically-specified models.

The coefficient of the spatial lag for HHW collection output, λ, was
also positive (p < 0.01). This confirms the presence of positive spil-
lover effects of HHW collection activities from the nearby counties j to
county i within a region. In other words, the pro-environmental ac-
tivities in a county appear to have been positively influenced by other
nearby counties – a second major demonstration in our empirical re-
sults of what we conjectured was true, based on theory, at the start of
this work.

Further, and as we expected, the coefficient of county demographic
variables had the same signs in both the random effects and spatial
random effects estimations. The education level (β1= 9.00, p < 0.05;
9.26, p < 0.05) and household income (β2= 3.88, p < 0.01; 2.88,
p < 0.05) were positive and significant for the two models. In contrast,
the coefficient of population density (PopDens) was not significant
(β3=−0.79, p ≅ .10) for the random effects model, while it was

negative and significant (β3=−0.77, p < 0.05) for the spatial random
effects model.7 So higher education level and household income lead to
a greater amount of HHW collected in a county, while the effects of
higher population density appear to diminish the beneficial effects that
are created for HHW collection. Based on the magnitude of the coeffi-
cients, the most important control variable appears to be a county's
education level. However, the evidence suggests but does not confirm
that higher population density interferes with households' effectiveness
in disposing of HHW to reduce toxic chemical pollution. This finding is
consistent with a prior study conducted by the authors (Lim-Wavde,
Kauffman, & Dawson, 2017).

6. Robustness checks

We next make an attempt to push our results a little farther. We
wish to see whether it is possible to establish causal relationships
among HHW grants, HHW collection output, and the spatial effects that
are in play across California's counties. For this, we used a spatial panel
data model with random effects estimators to address spatial correla-
tion issues and unobserved county effects. We also employed an IV
procedure to address the endogeneity of the treatment variable, HHW
grants. However, there were threats to the internal validity of the extent
to which causal inference for HHW grants can be asserted. The key
question was: Are the causal effects valid for the population also?

First, the HHW grants during our study period were discretionary
grants: CalRecycle selected awardees based on their merit and elig-
ibility. The selection scheme could have biased the results though.
Some counties might have had a higher chance of getting a grant than
others, though the criteria for winning were highly publicized and the
scores obtained were readily discoverable via Freedom of Information
Act (FOIA) requests. We earlier discussed why this may be the case.

The methodology we applied, IV estimation, was aimed at addres-
sing bias from unobservable confounding factors. In spite of this
though, our approach may still not have addressed selection bias
completely. To check if this were the case, we performed t-tests to
compare the means of the two focal variables for counties that: received
or did not receive a grant in a given year; or had higher or lower po-
pulation density. The results indicated that counties which received
grants had higher population density, as well as economic activities on
average. (See Table 6.) This is something an analyst would readily ex-
pect, in spite of CalRecycle's effort to make the grant award process
transparent and fair. During our study period, for example, the Los
Angeles, Riverside, and Sacramento city-counties were awarded grants
more often than others. In our data, only Nevada County was not
awarded any grants during this time. Thus, the estimated effects of

Table 5
GMM estimation results for HHW grants and spatial spillovers.

Variables (1)
Random Effects

Only

(2)
Spatial

Random Effects

Coef. SE Coef. SE

3YCumGrant$ γ 1.44** 0.54 1.12** 0.54
Spatial Lag, HHW Output, λ – – 0.68** 0.26
Intercept a −43.34** 14.11 −34.85** 13.61
EduHS% β1 9.00** 4.56 9.26** 3.92
ln (HHInc) β2 3.88** 1.37 2.88** 1.32
ln (PopDens) β3 −0.79 0.44 −0.77** 0.33
Pseudo-R2 93.5% 92.7%
Correlation2 – 29.7%
SSE 380.7 430.5

Notes. Baseline model: random-effects; dep. var.: CollDens; 468 obs. (39 coun-
ties x 12 years). IV for 3YCumGrant$: CalRecycle, TaxSales$. Spatial weights
were based on the adaptive bi-square distance function with 30 nearest
neighbors. Spatial Hausman test: χ2=5.15, p=0.27); could not reject the null
hypothesis that the random effects estimator is consistent. Pseudo-R2= 1 –
(variance of model residuals/variance of HHW collection density) (CollDens);
correlation2 =square of correlation between CollDens predicted by the model
and the empirical value of CollDens. The difference between Pseudo-R2 and
Correlation2 indicates how much variation is explained by fixed or random
effects specifications (Elhorst, 2014). Spatial errors were not considered.
Signif.: ∗∗p < 0.01, ∗p < 0.05.

Table 6
Statistical results for differences between means.

Awarded Grant (1)
Mean
ln (HIinc)

(2)
Mean
EduHS%

(3)
Mean
ln (PopDens)

(4)
Mean
TaxSales$

No 11.21 0.82 5.47* 13.73*
Yes 11.21 0.82 5.77* 14.42*
p-value (for t-test) 0.90 0.67 0.02 0.03

Note. 486 obs. (39 counties× 12 years). Method: paired t-tests of means for
counties that did or did not receive an HHW grant for HHW collection output/
population, CollDens/PopDens for household income, educational level, popu-
lation density and taxable sales as a proxy for county economy. Signif:
*p < 0.05.

7We calculated the variance inflation factors (VIFs) of the variables and found
no multicollinearity issues.

K. Lim-Wavde, et al. Applied Geography 109 (2019) 102032

7



HHW grants may be biased downward in our estimations. This is be-
cause counties with higher population density and economic activities
had lower HHW collection outputs normalized by population.8

Second, HHW grants have been awarded in California since 1990,
well before the start of our study period in 2004. The counties did not
receive grant funds the same year they were announced; there was a
time lag.9 Because of variation in the frequency and timing of grant
disbursement, an extended analysis based on the sequence of the grants
awarded to counties is useful to identify their potentially heterogeneous
effects over the years. However, we do not have complete demographic
and economic activity data during that period. So in our extended
analysis, we included an additional control variable: the sum of the
grants received from 1990 to 2003, normalized by the county population in
2004. The extended analysis results showed mixed positive effects of
HHW grants in a revised spatial random effects model covering the
years 1990–2015. The coefficient of the main effect variable (Grant
γ =0.92, p < 0.10) was positive and the Spatial Lag for CollDens was
also positive (λ=0.55, p < 0.05), while the HHW grants received
from prior years was positive and significant in the production of HHW
collection output (GrantPrev β4= 0.77, p < 0.01). (See Appendix
Table C1 for the results.)

Third, the HHW collection density variable (CollDens) aggregates
the HHW for various material categories. Some counties seem to have
had more uneven distributions in different material categories. Analysis
of variance (ANOVA) tests of the distribution of electronic waste showed
that the average amount of this waste was higher in the North Region,
compared to the South and Central Regions. When we broke the ana-
lysis down by material categories, the estimated effects of HHW grants
(not reported due to space limitations) differed in more nuanced ways
across the categories.

Fourth, our spatial panel model addresses spatial autocorrelation
issues, which reflect the real-world nature of our data in the study,
however, our model estimations used a pre-determined weight matrix
based on the nature of the spatial influences or the geography of the
spatial units. Existing theories of spatial dependence typically do not
permit the derivation of a specific functional form for calculating the
spatial weights (Plümper & Neumayer, 2010). Similarly, in pro-en-
vironmental contagion research (e.g., Truelove et al., 2014), no theory
guides the calculation of the weight matrix. So, to check the robustness
of the results, we did sensitivity analysis using alternative weight ma-
trices with fewer or more fixed neighboring counties.

Sensitivity analysis of the random spatial estimations results was
conducted, for spatial weights with the 25 and 35 nearest neighbors
around the 30 neighbors that were defined in Table 5 earlier, is pro-
vided in Appendix Table C2.10 The results suggest, that when the

number of neighbors was fewer than 35 – and also fewer than 30, HHW
grants seemed to have monotonically smaller effects on normalized
HHW collection outputs through 3YCumGrant$ γ=1.06 (p < 0.05) for
the 25 nearest neighbors versus γ= 1.12 (p < 0.05) for the 30 nearest
neighbors, and finally compared to γ=1.16 (p < 0.05) for the 35
nearest neighbors.

Further, based on the sensitivity analysis we conducted, HHW collection
activities from closer-by counties seem to have had greater effects on HHW
collection output in a given county. We can see this from the Spatial Lag for
CollDens estimate, reflecting the influence from other nearby counties. The
variable's coefficient is λ=0.73 (p < 0.01), and thus represents a larger
pro-environmental influence of the 25 nearest neighbors versus λ=0.68,
(p < 0.01) for the 30 nearest neighbors, and λ=0.67 (p < 0.05) for the
35 nearest neighbors. We suspect that these results are picking up the di-
lution of the effects in the presence of more counties and a mix of pro-
environmental spillover levels, though we have not included a causal test
for this effect using our current modeling approach. Moreover, we only
were able to study a total of 39 counties in California.

Finally, did HHW grants awarded to other nearby counties affected
the likelihood of a grant being awarded in other nearby counties? To
measure spatial correlation of HHW grants, we calculated the value
global Moran's I (Moran, 1950) for each year.11 There was no evidence
for significant spatial patterns though. Thus, county-to-nearby-county
grant award patterns seem unfounded – at least in our data. In addition,
the published grant evaluation criteria that CalRecycle uses do not
consider this in awarding a grant: they do not recognize the potential
benefits of pro-environmental spatial spillovers – though they indeed
may be present. So follow-on research is required to sort out the details
of the mechanism at work, in spite of our effort to theorize about it.

7. Conclusion

This article highlights the importance of considering location and
demographics in assessing the direct impact and indirect spillover ef-
fects of environmental policy-related grant funding to support im-
proved HHW collection to control how much toxic substances are re-
leased into the environment.

7.1. Empirical findings and contrasts with prior research

Its primary empirical findings are as follows:

• Finding 1 (Direct Causal Effects of HHW Grants). We identified
beneficial causal effects from HHW grants, tested in cumulative 3-year
total value terms, on population-normalized HHW collected at the county
level in California.

There are numerous other past studies and programs in different
states in the U.S. (e.g., Alaska, Arizona, Hawaii, Minnesota, Oregon,
Pennsylvania, Wisconsin, and others), as well as in foreign countries

8 To overcome this issue, many studies employ propensity score matching
(PSM) to reduce possible bias (López-Valpuesta & Sánchez-Braza, 2016;
O'Keefe, 2004). We checked whether PSM would be useful to match data ob-
servations for the treated counties with the untreated ones, based on known
characteristics of the counties. But the standard PSM approach was not useful
for our content because of the time-varying grants and other confounding
factors. So we further assessed the appropriateness of using a covariate-balanced
generalized propensity score (CBGPS) approach (Imai & Ratkovic, 2013). It
minimizes the association between a continuous treatment variable and other
related covariates to obtain optimal weights to adjust the covariate balance in a
model (Fong, Hazlett, & Imai, 2016). However, we found that use of the weights
did not change the estimated results, and thus we concluded that they are
reasonably robust without using these more complex approaches.

9 The counties that received the grants the earliest were mostly the metro
counties, such as Los Angeles, San Francisco, Alameda, Orange, and Fresno
Counties. From 1990 to 2003, some counties were also awarded funding more
often than the others, such as Los Angeles, San Bernardino, San Diego, Santa
Clara, and Ventura Counties.

10 Neighbors means the nearest neighboring counties within some predefined
distance; they are not necessarily adjacent to the a given county. The number of
neighbors is used to calculate adaptive distance-based weights.

11 According to the Environmental Systems Research Institute's (2019)
ArcGis Pro's online documentation, global Moran's
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of an attribute for feature i from its mean (xi – X), wi,j is the spatial weight
between features i and j, and the double summation term on the left of the
denominator is the aggregation of all the spatial weights. This math expression
computes “an inferential statistic, which means that the results of the analysis
are always interpreted within the context of its null hypothesis. … [It] states
that the attribute being analyzed is randomly distributed among the features in
your study area; said another way, the spatial processes promoting the observed
pattern of values is random chance. Imagine that you could pick up the values
for the attribute you are analyzing and throw them down onto your features,
letting each value fall where it may. This process (picking up and throwing
down the values) is an example of a random chance spatial process. When the p-
value returned … is statistically significant, you can reject the null hypothesis.”
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(e.g., Environment Canada's program, total waste control in Singapore,
and HHW management approaches in Japan, Sweden – which imports
garbage! – and Finland). They have all reported similar kinds of direct
results for funding HHW collection through grants. For example, the
Texas Association of Regional Councils (2015), which does annual re-
porting on waste management grant programs, reported on 226 pro-
jects' impacts reflecting grants of $5.3 million. The solid waste grantees
diverted 135 million pounds of recyclables overall, with 100 million
pounds of trash and recyclable materials from community collections in
the 2014–2015 fiscal year. Over its 20 years since 1995, 4,376 grants
were made, resulting in 4.2 million pounds of recyclables, and 14,000
tons of HHWmaterials. In addition, the availability of HHW grants from
government agencies is a proxy for their general effectiveness, since
there is considerable accumulated knowledge about their impacts.

Another example is New Mexico's Eight Northern Indian Pueblos
Council (2016), which obtained a 4-year, $200,000 EPA General As-
sistance Program (GAP) grant, and resulted in the removal of 10,500
pounds of HHW where there had never been any earlier organized form
of HHW collection. The measurement approach was basic: the grant
initiated a new form of waste pick-up.

The difference between our study's contribution of new knowledge
and results, in contrast to other funding assessments like those for Texas
and New Mexico (and many other states) is that we were able to
identify the marginal impacts of HHW grants in different county and
regional contexts. To do this, we used a spatial random effects model
with an IV to explore the causal implications of HHW grants at the
county level. This modeling approach also can be used to project future
HHW and other kinds of waste collection output driven by waste
management grants, so it is quite general, rather than specific to HHW
products.

• Finding 2 (Indirect Causal Effects of Locations and
Demographics). We uncovered evidence of beneficial indirect causal
effects due to HHW grants that arose from the contrasting geographic
and demographic environments of counties and regions in California,
where the grant money was spent.

Our approach is useful for policy-makers to estimate the amount of
HHW collected and diverted from polluting the environment, through
the effective allocation of additional grant funding for the most
households to participate, and what geographic and demographic fac-
tors influence it. Along these lines, in other research (Lim-Wavde,
Kauffman, & Dawson, 2017), we quantified the marginal cost of en-
hancing household informedness, so people could do their own
“household utility calculus” for recycling. This can help the households
to decide whether to participate in HHW collection programs, which
require costly, inconvenient planned behavior (Ajzen, 1991) and a
sense of the value of environmental action. Different county geography
– urban or rural, crowded or comfortable, farmland or mountains, and
so on – is likely to have an impact on how socio-spatial transmission
effects operate, influencing the strength of the indirect effects on HHW
collection that we discovered are present.

There also are drawbacks to the kind of empirical results that
Findings 1 and 2 represent. They only came at the cost of

methodological sophistication and research design considerations that
government agency staff members may not have the time or the
training to utilize. Also, other research has not used the cross-spatial
and causal inference approach that we have applied. So potential users
have not yet seen their application demonstrated for how to make
causal inferences on policy design and management decisions. Such
methods improve our understanding of the underlying social dilemma
of separating our own trash (Hage et al., 2009) and opting for public
transport or ride-sharing (Vugt et al., 1995) – over the true health costs
that we have to endure in the long run from not managing HHW
properly.

• Finding 3 (Spatial Proximity, Geographic Contagion, and Pro-
Environmental Spillovers Seem to Matter). Pro-environmental
activities exhibit geographic contagion due to socio-spatial transmission
and spatial proximity effects, that also are likely to be influenced in-
directly by geographical and demographic factors that characterize dif-
ferent counties and regions in California.

We used the word “seem” in the name of Finding 3 because our results
are not as strong as those associated with Findings 1 and 2. Thus, if we err,
we prefer to do so on the cautious side of not over-claiming theory-driven
results that may not stand the test of repeated investigation. The primary
elements that are missed out include more in-depth empirical probing of the
mechanism(s) at work that create(s) the indirect network effects, a theo-
retical basis for the specification of the spatial weight matrix (strengthening
the basis for causal inference), and being able to more fully understand what
is happening when HHW output is “unbundled” and its component waste
types are separately analyzed.

Prior research that we reviewed has noted that pro-environmental
behavior resulting in more HHW recycling and collection has the po-
tential to be influenced by socio-spatial transmission effects (Truelove
et al., 2014), geographic contagion (Agovino et al., 2016), and spatial
spillovers from close-by counties (Lim-Wavde, Kauffman, Kam, &
Dawson, 2017). An important contribution of our research results and
the causal inference methods behind them is that pro-environmental
spillovers are likely to be affected such that there is a tendency to over-
estimate the effects of HHW grants and other policies.

7.2. Policy implications and limitations

A direct policy implication of spillover effects is that they should be
taken into account when a regional waste management agency plans
HHW-related policies. Their primary purpose should be to maximize
household participation in HHW collection and recycling programs. So
policy-makers need to avoid the potentially harmful impacts that they
need to be recognize from policy analytics research.

Another policy implication is related to the model in this research. It
was developed to help policy-makers assess the effectiveness of their
HHW funding programs and policies on the basis of publicly-available
data. We also sought to address confounding factors and plausible rival
interpretations subject to considerable underlying complexity. This
makes it so that policy-makers will be more capable of uncovering
hidden biases in their policy and program evaluations, and making
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better decisions about grant allocations for establishing and expanding
HHW collection and recycling facilities in different geographic and
demographic environments.

In spite of these research and practical contributions, it is important
for us to briefly point out some limitations of our work. This research
used aggregated HHW collection data, so we were not able to analyze
variations in the HHW categories with the same precision to obtain
evidence for causal inferences. In addition, the kinds of spatial spil-
lovers that we assumed were present (similar to Agovino et al., 2016,
and others) only happen when the people in the regions that were
studied cooperated to improve the quality of the environment around
them, by demonstrating collaborative pro-environmental behavior.

In addition, spillover effects from close-by counties may not arise
without adequate environmental and social awareness in the commu-
nity – which are essentially a matter of citizen informedness (Lim-Wavde
& Kauffman, 2018). So the model used in this research is applicable to
other regions when the people or the local government are keen to
cooperate in maintaining good environmental quality for the whole
region, such as in California, but it may not be applicable to other re-
gions or countries without such traits. Other kinds of spatial spillovers
have been studied in the literature as a source of beneficial network
effects, including knowledge, industry, and growth spillovers (Capello,
2007). These spatially-bounded spillovers create value for households
and local governments across a region without any expenses, and
complement pro-environmental activities, in contrast to the kinds of
pro-environmental activities that we studied.
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APPENDIX A. TWO-VARIABLE COMPARISONS: BY REGIONS AND COUNTY TYPES

The Region and Rural-Urban Continuum Codes (RUCCs) selected for the California county analysis are:

• 1 – counties in metro areas of 1 million or more population
• 2 – counties in metro areas of 250,000 to 1 million population
• 3 – counties in metro areas of fewer than 250,000 population
• 4 – urban population of 20,000 + and adjacent to a metro area

The left boxplots are 3-year cumulative HHW grants (3YCumGrant$) and the right boxplots are HHW collection density (CollDens). The boxplots
can be interpreted as follows, according to Galarynx (2018). A boxplot is “a standard way of displaying the distribution of data based on a five-
number summary (the ‘minimum,’ 1st quartile (Q1), 2nd quartile (median), 3rd quartile (Q3), and the ‘maximum’).” It can tell you about your
outliers and what their values are. It can also tell you if your data [are] symmetrical, how tightly your data [are] grouped, and if and how your data
[are] skewed.” The boxplots shown in this figure are typical box-and-whisker plots, with the vertical lines above and below the box indicating
maximum and minimum values. The black circles above a boxplot are used to indicate outliers. In addition, a black horizontal line in the middle of a
box indicates the value of the median (2nd quartile) in the empirical data. Boxplots are purposely non-parametric and non-statistical. When the
different parts of a box are asymmetrical, this indicates how dispersed the data are. We include a number of comments on the different comparisons
of the variables between a Region and its individual County Types, one by one. Our hope is to share intuition on the nature of our data. For additional
information, see Tukey (1977).

The boxplots and their accompanying interpretation now follow.
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Fig. A1. HHW Grants vs. HHW Collection Density
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APPENDIX B. MODELING AND ESTIMATION

Fig. B1. Research Methods Roadmap

APPENDIX C. ROBUSTNESS CHECK

Table C1
GMM Estimation Results for HHW Grants and Spatial Spillovers with Consideration of Previous
Grants Received, 1990–2003

Variables Spatial
Random Effects

Coef. SE

3YCumGrant$ γ 0.92 0.51
Spatial Lag, HHW Output, λ 0.55* 0.23
Intercept α −48.51** 12.84
EduHS% β1 6.52** 3.73
ln (HHInc) β2 4.19** 1.33
ln (PopDens) β3 −0.37*** 0.31
GrantPrev β4 0.77** 0.26
Pseudo-R2 93.0%
Correlation2 38.9%
SSE 410.1

Notes. Baseline model: spatial random effects; dep.var.:CollDens; 468 obs. (39 counties x 12 years).
IV for 3YCumGrant$: CalRecycle and TaxSales$. GrantPrev is the sum of grants received from 1990 to
2003. Spatial weights based on adaptive bi-square distance function with 30 nearest neighbors.
Pseudo-R2= 1 – (variance of model residuals/variance of HHW collection density);
Correlation2= square of correlation between HHW collection density predicted by model and
empirical HHW collection density. The difference between Pseudo-R2 and Correlation2 indicates
how much variation is explained by fixed or random effects (Elhorst, 2014). Spatial errors not
considered. Signif.: ∗∗p < 0.01, ∗p < 0.05.
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Table C2
Spatial Panel Data Model Estimation Results with Different Spatial Weights

Spatial Random Effects

Variables (1)
25 neighbors

(2)
30 Neighbors

(3)
35 Neighbors

Coef. SE Coef. SE Coef. SE

3YCumGrant$ γ 1.06** 0.53 1.12** 0.54 1.16** 0.54
Spatial Lag (CollDens), λ 0.73** 0.25 0.68** 0.26 0.67** 0.28
Intercept α −33.25** 13.48 −34.85** 13.61 −33.75** 14.05
EduHS% β1 7.80** 4.03 9.26** 3.92 9.98** 3.96
ln (HHInc) β2 2.80** 1.30 2.88** 1.32 2.72** 1.38
ln (PopDens) β3 −0.71** 0.34 −0.77** 0.33 −0.75** 0.35
Pseudo-R2 92.0% 92.7% 92.5%
Correlation2 28.5% 29.7% 29.8%
SSE 466.4 430.5 436.7

Notes. Baseline model: spatial random-effects; dep. var.: CollDens; 468 obs. (39 counties x 12 years). IVs for Cum3YGrant$: CalRecycle and TaxSales$. Spatial weights
calculated using an adaptive bi-square distance function for the 25, 30 and 35 nearest neighbors. Spatial errors were not considered. Signif.: ∗∗p < 0.01, ∗p < 0.05.
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