
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2011

Defending against cross site scripting attacks Defending against cross site scripting attacks

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Hee Beng Kuan TAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
SHAR, Lwin Khin and TAN, Hee Beng Kuan. Defending against cross site scripting attacks. (2011).
Computer. 45, (3), 55-62.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4899

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4899&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

55MARCH 2012Published by the IEEE Computer Society0018-9162/12/$31.00 © 2012 IEEE

to exist in many Web applications due to developers’ lack of
understanding of the problem and their unfamiliarity with
current defenses’ strengths and limitations.

XSS EXPLOITS
XSS exploits are similar to SQL injection, an original form

of code injection. This type of attack exploits an applica-
tion’s output function that references poorly sanitized user
input. However, SQL injection targets the query function
that interacts with the database, whereas XSS exploits target
the HTML output function that sends data to the browser.

The basic idea of XSS injection is to use special char-
acters to cause Web browser interpreters to switch from
a data context to a code context.1 For example, when an
HTML page references a user input as data, an attacker
might include the tag <script>, which can invoke the Java-
Script interpreter. If the application does not filter such spe-
cial characters, XSS injection is successful, and the attacker
can perform exploits such as account hijacking, cookie
poisoning, denial of service (DoS), and Web content ma-
nipulation. Typical input sources that attackers manipulate
include HTML forms, cookies, URLs, and external files. At-
tackers often favor JavaScript, but other kinds of client-side

A ccording to security experts, cross-site scripting
is among the most serious and common threats in
Web applications today, surpassing buffer over-
flows—the number one vulnerability for the past

decade. In 2010, XSS ranked first in the Mitre Common
Weakness Enumeration (CWE)/SANS Institute list of Top
25 Most Dangerous Software Errors (http://cwe.mitre.org/
top25) and second in the Open Web Application Security
Project (OWASP) Top 10 list of security risks (https://www.
owasp.org/index.php/Top_10). Several major websites
including Facebook, Twitter, Myspace, eBay, Google, and
McAfee have been the targets of XSS exploits.

XSS is the result of a weakness inherent in many Web
applications’ security mechanisms: the absence or insuf-
ficient sanitization of user inputs. XSS flaws exist in Web
applications written in various programming languages
such as PHP, Java, and .NET where application webpages
reference unrestricted user inputs. Attackers inject mali-
cious code via these inputs, thereby causing unintended
script executions by clients’ browsers.

Researchers have proposed multiple XSS solutions
ranging from simple static analysis to complex runtime
protection mechanisms. However, vulnerabilities continue

Researchers have proposed multiple solutions to cross-site scripting,
but vulnerabilities continue to exist in many Web applications due to
developers’ lack of understanding of the problem and their unfamiliar-
ity with current defenses’ strengths and limitations.

Lwin Khin Shar and Hee Beng Kuan Tan
Nanyang Technological University, Singapore

Defending against Cross-Site
Scripting Attacks

PERSPECTIVES

1 <html>
2 <title>Forum for Traveling Tips</title>
3 <body>
4 <h1>Welcome <script language=“javascript” src=“travelerInfo.js”>
 </script>!</h1>

<%
5 String action = request.getParameter(“Action”);
6 String place = request.getParameter(“Place”);
7 if (place !=null && action.equals(“Post”)) {
8 String new_tip = request.getParameter(“Tip”);
9 if(new_tip.length < 100) {
10 stmt.executeUpdate(“INSERT INTO forum VALUES (” +
 place + “, ”+ new_tip + “)”);
11 out.println(“Your Post has been added under Place ‘”
 + HTMLencode(place)+“’”);
 }
 else {
12 out.println(“Your Message: ‘”+new_tip+ “’ is too long!”);
 }
 }
13 else if (place !=null && action.equals(“View”)) {
14 ResultSet rs = stmt.executeQuery(“SELECT * FROM forum
 WHERE place= ”+place);
15 out.println(“Here are the tips about visiting this place...”);
16 while(rs.next()) {
17 String tip = rs.getString(“tip”);
18 out.println(“‘”+tip+“’”);
 }
 }
 . . .
%>
19 </body></html>

<%
String HTMLencode(String value) { //server-side escaping method
20 value.replace(“&”, “&”);
21 value.replace(“<”, “<”);
22 value.replace(“>”, “>”);
23 return value;
}
%>

(a)

<SCRIPT>
24 var pos=document.URL.indexOf(“User=”)+5;
25 document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

(b)

PERSPECTIVES

COMPUTER 56

scripts such as VBScript and Flash, which browsers can
interpret, could cause XSS.

Injection methods
Depending on the ways HTML pages reference user

inputs, XSS exploits can be broadly classified as reflected,
stored, or DOM-based.

Reflected or nonpersistent XSS holes are present in
a Web application server program where it references

accessed user input in the outgoing web-
page. This type of XSS exploit is common
in error messages and search results. The
XSSed project (http://xssed.com) recently
reported multiple reflected XSS holes in
McAfee that attackers could exploit to
trick users into downloading viruses.

Stored or persistent XSS holes exist
when a server program stores user input
containing injected code in a persis-
tent data store such as a database and
then references it in a webpage. Attacks
against social networking sites com-
monly exploit this type of XXS flaw.
An example is the Samy worm (www.
securityfocus.com/brief/18), which, with-
in less than 24 hours after its release on
4 October 2005, caused an exponential
growth of friend lists for 1 million Myspace
users, effectively creating a DoS attack.

Both reflected and stored XSS holes
result from improper handling of user
inputs in server-side scripts. In contrast,
DOM-based XSS holes appear in the Web
application when client-side scripts
reference user inputs, dynamically ob-
tained from the Document Object Model
structure, without proper validation.
Bugzilla’s bug 272620 (https://bugzilla.
mozilla.org/show_bug.cgi?id=272620) is
an example of a DOM-based XSS exploit.

Example XSS exploits
Figure 1a shows a snippet from a server

program, travelerTip.jsp, for a Web appli-
cation that lets travelers share tips about
the places they have visited. The pro-
gram contains four input fields—“Action,”
“Place,” “Tip,” and “User”—that attackers
can manipulate. The program can be
called via a URL such as the one shown
in Figure 2a.

The statement at line 12 in Figure 1a
is vulnerable to reflected XSS due to the
replay of invalid input supplied by users

(lines 8, 9, 12). An attacker could send a seemingly innocu-
ous URL link like the one in Figure 2b to a victim via e-mail
or a social networking site. The script in bold will execute
on the victim’s browser if the victim follows the link to
travelingForum.

The statement at line 18 in Figure 1a is vulnerable to
stored XSS, as the program stores user-supplied mes-
sages without proper sanitization (lines 8-10) and displays
them to visitors (lines 14, 16-18). The URL in Figure 2c

Figure 1. Example vulnerable (a) server-side program and (b) client-side script for
a Web application that lets travelers share tips about the places they have visited.
The program contains four input fields—“Action,” “Place,” “Tip,” and “User”—that
attackers can manipulate.

57MARCH 2012

contains JavaScript capable of sending the cli-
ent’s cookie information to a hacker’s website.
Figure 3 illustrates this scenario in more detail.

The statement at line 4 in Figure 1a is vulner-
able to DOM-based XSS, as the program includes
a JavaScript file, travelerInfo.js, shown in Figure
1b, that accesses “User” information from the
URL (line 24) and displays it, without any saniti-
zation, to users (line 25). Similar to the reflected
XSS scenario, an attacker can exploit this vul-
nerability using a crafted URL like that shown
in Figure 2d.

XSS DEFENSES
XSS defenses can be broadly classified into

four types: defensive coding practices, XSS test-
ing, vulnerability detection, and runtime attack
prevention. Table 1 compares various current
techniques, which each have strengths and
weaknesses.

Defensive coding
Because XSS arises from the improper handling of

inputs, using defensive coding practices that validate and
sanitize inputs is the best way to eliminate XSS vulnerabili-
ties.1,2 Input validation ensures that user inputs conform to
a required input format.

There are four basic input sanitization options. Re-
placement and removal methods search for known bad
characters (blacklist comparison); the former replaces
them with nonmalicious characters, whereas the latter
simply removes them. Escaping methods search for
characters that have special meanings for client-side
interpreters and remove those meanings. Restriction

techniques limit inputs to known good inputs (whitelist
comparison).

Checking blacklisted characters in the inputs is more
scalable, but blacklist comparisons often fail as it is
difficult to anticipate every attack signature variant.
Whitelist comparisons are considered more secure, but
they can result in the rejection of many unlisted valid
inputs.

OWASP has issued rules that define proper escaping
schemes for inputs referenced in different HTML output
locations.1 For example, all three vulnerable statements
in Figure 1 can be secured by applying proper escaping
methods to the input variables at proper places, as in the
following (escape() is the JavaScript library function that
could encode HTML entities):

Hacker travelingForum Database hackerSite

1. Hacker posts a traveling tip via a crafted URL like the one shown in Figure 2c

2. travelingForum stores the information in a database, making the attack persistent

Client

3. Client visits travelerTip.jsp in “View” action

4. At travelerTip’s request, database sends the traveling tips stored

5. travelingForum displays the traveling tips to client

6. Client’s browser executes the malicious script contained in the tip posted by hacker,
 and the executed script sends the client’s credentials accessible from his cookies

Figure 3. Stored XSS attack scenario.

Figure 2. Example URLs that direct Web users to travelingForum. Malicious scripts that cause XSS exploits are highlighted in bold.
(a) Ordinary URL that activates travelerTip.jsp in “View” action. (b) URL that causes reflected XSS: it contains malicious HTML meta-
script capable of making a refresh request to travelingForum’s server every 0.3 seconds, potentially causing a denial of service.
(c) URL that creates stored XSS scenario: it contains JavaScript capable of sending the client’s cookie information to a hacker’s web-
site. (d) URL that causes DOM-based XSS: it contains script capable of injecting misleading information over an original message.

http://travelingForum/travelerTip.jsp?Action=View&Place=Greece&User=Jesper

(a)

http://travelingForum/travelerTip.jsp?Action=Post&Place=Greece&Tip=HiH
 iHiHiHiHiHiHi<meta%20http-equiv=“refresh”%20content=“0;”>&User=Jesper

(b)

http://travelingForum/travelerTip.jsp?Action=Post&Place=Greece&Tip=<Script>document.location=‘http://hackerSite/
 stealCookie.jsp?cookie=’+document.cookie;</Script>&User=Hacker

(c)

http://travelingForum/travelerTip.jsp?Action=View&Place=Greece&Tip=HiHi&User=Jesper<Script>document.
 getElementByTagName(‘Tip’)[child].innerHTML=‘Our Service is Bad, Please Go to Other Site!’</Script>

(d)

PERSPECTIVES

COMPUTER 58

tion operator ADES (Add escape function calls), generates

document.write(escape(document.URL.
 substring(pos,document.URL.length)));

and then attempts to find a test case that results in a
different number of HTML tags between the original state-
ment and its mutated statement. One such test case is

User → <Script>alert(‘XSSed!’)</Script>

MUTEC generates adequate test suites for exposing XSS
vulnerabilities but requires intensive labor as the task of
generating mutants is not automated.

Vulnerability detection
Other XSS defenses focus on identifying vulnerabilities

in server-side scripts. Static-analysis-based approaches
can prove the absence of vulnerabilities, but they tend to
generate many false positives. Recent approaches com-
bine static analysis with dynamic analysis techniques to
improve accuracy.

Static analysis. These techniques identify tainted inputs
accessed from external data sources, track the flow of
tainted data, and check if any reached sinks such as SQL
statements and HTML output statements. Benjamin Liv-
shits and Monica Lam used binary decision diagrams
to apply points-to analysis to server-side scripts; their
approach requires users to specify vulnerability patterns
in Program Query Language.5 Yichen Xie and Alex Aiken
proposed a static analysis technique that obtains block and
function summary information from symbolic execution.6

12 out.println(“Your Message: ‘”+
 HTMLencode(new_tip)+ “’ is too long!”);
18 out.println(“‘”+HTMLencode(tip)+“’”);
25 document.write(escape(document.URL.
 substring(pos,document.URL.length)));

Defensive coding practices, if applied appropriately, can
completely remove all XSS vulnerabilities in Web applica-
tions. However, they are labor-intensive, prone to human
error, and difficult to enforce in deployed applications.

XSS testing
Input validation testing could uncover XSS vulnerabili-

ties in Web applications. Specification-based IVT methods
generate test cases with the aim of exercising various
combinations of valid/invalid input conditions stated in
specifications.3 To avoid the sole dependency on specifica-
tions, Nuo Li and colleagues attempted to infer valid input
conditions by analyzing input fields and their surrounding
texts in client-side scripts.3 Code-based IVT methods apply
static analysis to extract valid/invalid input conditions from
server-side scripts.3 In general, the effectiveness of both
specification- and code-based approaches relies largely
on the completeness of specifications or the adequacy of
generated test suites for discovering XSS vulnerabilities in
source code.

Only test cases containing adequate XSS attack vec-
tors can induce original and mutated programs to behave
differently. Hossain Shahriar and Mohammad Zulkernine
developed MUTEC, a fault-based XSS testing tool that creates
mutated programs by changing sensitive program state-
ments, or sinks, with mutation operators.4 For example, for
the sink at line 25 in Figure 1b, MUTEC, through its muta-

Table 1. Comparison of XSS defenses.

Method
Code

modification
User

involvement

Applicable
before

deployment

Generate
concrete

attack
Locate

vulnerability
Input

source ID
Runtime

overhead

XSS
exploits

addressed

Defensive coding Yes Intensive Yes Not
applicable

Not
applicable

Not
applicable

Not
applicable

All types

Input validation
testing

No Intensive Yes Yes Not explicitly Yes No All types

Fault-based XSS
testing

Yes Intensive Yes Yes Yes Yes No All types

Static analysis No Average Yes No Yes Yes No Reflected
and stored

Static string
analysis

No Low Yes Not
explicitly

Yes Yes No Reflected
and stored

Combined static
and dynamic
analysis

No Low Yes Yes Yes Yes No Reflected
and stored

Server-side
prevention

Yes Average No No No No Yes All types

Client-side
prevention

No Intensive No No No No Yes All types

59MARCH 2012

Note that the program’s control flow structure (line 9)
dictates that the variable new_tip must contain at least 100
characters, but the CFG for new_tip results in the expres-
sion .* because Wassermann and Su’s approach cannot
handle string-numeric interactions.

Combined static and dynamic analysis. Motivated by
static-analysis-based approaches’ inability to identify
faulty sanitization functions, Davide Balzarotti and
colleagues developed the Saner tool, which checks the
adequacy of sanitization functions for defending against
XSS attacks.7 This successor to Pixy uses a static string
analysis method similar to that proposed by Wassermann
and Su to first identify the potentially faulty sanitization
methods, then simulates the identified methods with a
set of test inputs that contain attack strings and checks
if any attack could still reach the sinks.

Lam and colleagues carried out points-to analysis to
track the flow of tainted data in a program and then used
this information to instrument the program for model-
checking purposes.5 Applying the QED model checker based
on Java Pathfinder (http://babelfish.arc.nasa.gov/trac/jpf),
they simulated the instrumented program with inputs likely
to lead to a match with user-specified vulnerability patterns.
This approach’s effectiveness depends on the completeness
of the vulnerability specifications and QED’s ability to ex-
plore as many different paths as possible.

Building on the work by Wassermann and col-
leagues, a team led by Adam Kiezun used concolic
(concrete+symbolic) execution to capture program path
constraints and a constraint solver to generate test inputs
that explored various program paths.9 Upon reaching the
sinks, they exercised two sets of inputs—one of ordinary
valid strings and the other of attack strings from a library
(http;//ha.ckers.org/xss.html)—and checked the differences
between the resulting program behaviors.

The following concolic execution sequences lead to the
generation of an attack string that exploits the vulnerable
statement at line 12 in Figure 1a:

1. Assign a program’s input parameters null values:

 action → null, place → null, new_tip → null

2. The program executes on these inputs, capturing
 the constraint

 !(place !=null && action.equals(“Post”))

Pixy, an open source vulnerability scanner, includes
alias analysis to improve accuracy.7 For example, for the
program travelerTip.jsp in Figure 1a, it reports the following
statements as vulnerable:

11 out.println(“Your Post has been added
 under Place ‘” + HTMLencode(place)+“’”);
12 out.println(“Your Message: ‘”+
 new_tip+ “’ is too long!”);
18 out.println(“‘”+tip+“’”);

In this case, the reported vulnerable statement at line 11
is a false positive because an escaping method sufficiently
sanitizes the input. On the other hand, as it does not ana-
lyze travelerInfo.js in Figure 1b, it will miss a real vulnerable
statement at line 25.

Static-analysis-based techniques quickly detect potential
XSS vulnerabilities in source code and are relatively easy
for security personnel to implement and adopt. However,
they cannot check the correctness of input sanitization
functions and, instead, generally assume that unhandled or
unknown functions return unsafe data. These approaches
also miss DOM-based XSS vulnerabilities as they do not
target client-side scripts.

Static string analysis. Gary Wassermann and Zhen-
dong Su enhanced the original taint-based approaches
with string analysis.8 Their technique uses context-free
grammars (CFGs) to represent the values a string variable
can hold at a certain program point, which facilitates the
checking of blacklisted string values in sensitive program
statements.

The enhancement provides more accuracy as it can ana-
lyze string operations’ effects on inputs. However, when
conducting static string analysis, it is difficult to model
complex operations such as string-numeric interaction;
thus, this approach can result in false positives if analysts
make conservative approximations when handling such
operations. Static string analysis also suffers from the limi-
tations of blacklist comparisons.

For the program in Figure 1a, Wassermann and Su’s ap-
proach produces the following CFGs (represented using Perl
regular expression notation) for tainted strings at each sink:

At line 11: HTMLencode(place) →
 ([̂ &<>]*(&(amp|lt|gt);)*[̂ &<>]*)*
At line 12: new_tip → .*
At line 18: tip → .*

In this case, static string analysis reports the statement at
line 11 as safe because the expression ([̂ &<>]*(&(amp|lt
|gt);)*[^&<>]*)* does not allow the tags < and >, which
are the special characters an XSS exploit would use. It also
reports that the statements at line 12 and 18 are unsafe be-
cause the expression .* represents any string values and, as
such, any attack strings in new_tip and tip would execute
at these statements.

Static-analysis-based approaches can prove
the absence of XSS vulnerabilities, but they
tend to generate many false positives.

PERSPECTIVES

COMPUTER 60

3. To explore a new control flow path, negate the cap-
 tured constraint:

 place !=null && action.equals(“Post”)

4. The constraint solver solves the above constraint
 and generates new input values:

 action → Post, place → 1, new_tip → null

5. The program executes on these new inputs, cap-
 turing the constraint

 place !=null && action.equals(“Post”)
 && new_tip.length < 100

6. Similar to (2), generate a new constraint:

 place !=null && action.equals(“Post”)
 && new_tip.length >= 100

Kiezun and colleagues’ current solver cannot solve the
constraint new_tip.length >= 100 as it requires complex
analysis of string operations that return numeric values.
Instead of solving it, the concolic engine executes random
inputs and checks if the path satisfying this constraint is
exercised. If it generates the inputs

 action → Post, place → 1,
 new_tip → 1…1 (a hundred of ‘1’s)

within a given time, the engine exercises a new control
flow path and finds a sink referencing the tainted variable
new_tip (at line 12).

Once it encounters such a statement, the attack gen-
erator alters the current values of the input parameters
referenced in the statement using attack strings and re-
executes the program. If the altered inputs result in the
same control flow path, the engine finds a real attack vector
such as

 action → Post, place → 1,
 new_tip → 1…1<Script>alert(‘XSSed!’)</Script>

Combined static and dynamic analysis can create con-
crete attack vectors and thus avoid false positives; it also

enables fully automated test case generation. However,
current implementations only work on server-side scripts;
more research is needed on client-side script analysis.

This approach has two other weaknesses, both of which
can result in false negatives. First, the attack string library
might not be complete due to the everyday introduction
of new attacks. The program’s sanitization routines might
trap the sample attack vectors generated during testing,
but some real-life attack vectors might circumvent those
routines. Second, this technique suffers from state space
explosion and thus might miss some vulnerabilities in deep
state spaces.

Currently, there is no universal solution to the state space
explosion problem. Among recent empirical studies, QED
struggled at testing the Java-based JGossip (80,000 lines
of code) Web application due to the more than 30 billion
possible test cases, and Kiezun and colleagues’ Ardilla tool
only achieved 14 percent line coverage for the PHP-based
phpBB (35,000 LOC) Web application.5,9

Characterizing bug patterns using pattern analysis and
predicting unknown bugs using pattern matching and data
mining might ease the first problem, while more effec-
tive string constraint solving techniques and AI algorithms
could mitigate the second.

Runtime attack prevention
The final group of XSS defenses focus on preventing real-

time attacks using intrusion detection systems or runtime
monitors, which can be deployed on either the server side
or client side. In general, these methods set up a proxy
between the client and server to intercept incoming or out-
going HTTP traffic. The proxy then checks the HTTP data
for illegal scripts or verifies the resulting URL connections
against security policies.

Server-side prevention. Yao-Wen Huang and col-
leagues developed the WebSSARI (Web Security via
Static Analysis and Runtime Inspection) tool, which per-
forms type-based static analysis to identify potentially
vulnerable code sections and instrument them with
runtime guards.10 Users specify preconditions of sensi-
tive functions—for example, those that contain HTML
outputs—and postconditions of sanitization functions.
During runtime, instrumented guards check for conform-
ance of these user-specified conditions.

Other approaches use dynamic taint-tracking mecha-
nisms to monitor the flow of input data at runtime.10 They
ensure that these inputs are syntactically confined (only
treated as literal values) and do not contain unsafe content
defined in user-specified security policies.

Instead of tracking tainted data, a proposed technique
tracks untainted or trusted strings, such as those defined
by programmers, and ensures that SQL statements’ syn-
tactic contents have only these strings.10 Although this
defense focuses on SQL injection, it can be extended to

Combined static and dynamic analysis can
create concrete attack vectors and thus
avoid false positives; it also enables fully
automated test case generation.

61MARCH 2012

Client-side prevention provides a personal protection
layer for clients so that they need not rely on the security
of Web applications. Its main disadvantage is that it re-
quires client actions whenever a connection violates the
filter rules. Moreover, although this approach addresses all
types of XSS attacks, it only detects exploits that send user
information to a third-party server, not other exploits such
as those involving Web content manipulation.

TOOL SUPPORT
Implementations of some XSS defenses are available

online.
To help developers practice its defensive coding rules,

OWASP has created the Enterprise Security API (ESAPI;
https://owasp.org/index.php/Category:OWASP_Enterprise_
Security_API), an open source library for many different
programming languages. Microsoft also provides the Web
Protection Library (http://wpl.codeplex.com) for .NET de-
velopers. These libraries provide many escaping APIs and
other security control features.

Pixy (http://pixybox.seclab.tuwien.ac.at/pixy) imple-
ments static analysis on PHP 4 source code. The string
analyzer tool (http://score.is.tsukuba.ac.jp/~minamide/
phpsa) also works on PHP programs. The concolic engine
Ardilla is not available, but its underlying string constraint
solver Hampi (http://people.csail.mit.edu/akiezun/hampi)
is accessible as an independent tool. WebSSARI has been
commercialized as CodeSecure (www.armorize.com).
Noxes will soon be available as an open source tool (http://
iseclab.org/projects/noxes). Currently it only works on
MS Windows, and in a similar way to Windows personal
firewalls.

Various off-the-shelf scanners can also detect XSS vul-
nerabilities. SecTools maintains a list of the top scanners
(http://sectools.org/web-scanners.html). The list includes
popular commercial systems such as Acunetix’s Web
Vulnerability Scanner (www.acunetix.com/vulnerabil-
ity-scanner) and IBM’s Rational AppScan family (http://

address XSS because of the similarity of SQL injection
and XSS exploits.

XSS-Guard transforms server programs so that they
produce a shadow webpage, which reflects the program’s
intended output, for each real response page.11 As Figure
4 shows, before sending the real response page to clients,
XSS-Guard checks for differences in the script contents of
real and shadow pages.

Some server-side prevention approaches require the
collaboration of browsers. One example is BEEP (Browser-
Enforced Embedded Policies), a mechanism that modifies
the browser so that it cannot execute illegitimate scripts.11
Security policies dictate what data the server sends to
BEEP-enabled-browsers.

In contrast to BEEP, Blueprint is a server-side tool that
works on existing browsers.11 To evade unreliable pars-
ing behaviors, the server takes over the browser’s task of
parsing untrusted HTML contents—those parts that might
contain XSS vulnerabilities—and embeds the generated
parse tree as a model in place of the actual untrusted con-
tent. It also embeds a model interpreter so that the browser
can interpret the embedded models and produce the HTML
documents as intended.

Server-side prevention can, in principle, prevent all XSS
attacks because it checks actual runtime values of inputs
and no approximation is necessary. However, it incurs run-
time overhead due to interception of HTTP traffic. It also
requires code instrumentation to enable dynamic moni-
toring and installation of additional (possibly complex)
frameworks and, in some cases, user-defined security poli-
cies, both of which can be labor-intensive.

Client-side prevention. Noxes acts as a personal fire-
wall that allows or blocks connections to websites on the
basis of filter rules, which are basically user-specified URL
whitelists and blacklists.12 When the browser sends an
HTTP request to an unknown website, Noxes immediately
alerts the client, who chooses to permit or deny the con-
nection, and remembers the client’s action for future use.

Figure 4. XSS-Guard server-side prevention mechanism. (a) Sample code transformed from a part (lines 15-19) of the program in
Figure 1a. (b) Server-side attack prevention.

Client XSS-Guard proxy XSS-Guard-transformed
travelingForum

1. Client visits travelerTip (now transformed by XSS-Guard)
 in “View” action after an attacker has posted a malicious message

2. Server generates two webpages, real and shadow;
 the real page is generated with actual runtime values, while the
 shadow page is generated with XSS-Guard-supplied benign values

3. XSS-Guard intercepts the pages, detects the di�erence
 in their script contents, and prevents the attack

X

StringBuffer re= “”; //real response
StringBuffer sh= “”;//shadow response
 . . .
re.append(“Here are the tips….”);
re.append(“Here are the tips….”);
while(rs.next()) {
 String tip= rs.getString(“tip”);
 String tip_c= “a”;
 re.append(“‘”+tip+“’”);
 sh.append(“‘”+tip_c+“’”);
 . . .
re.append(“</body></html>”);
sh.append(“</body></html>”);
re= XSS-PREVENT(re, sh);

(a) (b)

IEEE Software seeks practical,

readable articles that will appeal to

experts and nonexperts alike. The

magazine aims to deliver reliable

information to software developers and

managers to help them stay on top of

rapid technology change. Submissions

must be original and no more than

4,700 words, including 200 words for

each table and fi gure.

Author guidelines:

www.computer.org/software/author.htm

Further details: software@computer.org

www.computer.org/software

Call for Articles

PERSPECTIVES

COMPUTER 62

References
 1. Open Web Application Security Project, XSS (Cross-

Site Scripting), Prevention Cheat Sheet, 2011; https://
www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_
Prevention_Cheat_Sheet.

 2. S. Fogie et al., XSS Attacks: Cross Site Scripting Exploits and
Defense, Syngress, 2007.

 3. N. Li et al., “Perturbation-Based User-Input-Validation Test-
ing of Web Applications,” J. Systems and Software, Nov.
2010, pp. 2263-2274.

 4. H. Shahriar and M. Zulkernine, “MUTEC: Mutation-Based
Testing of Cross Site Scripting,” Proc. 5th Int’l Workshop
Software Eng. for Secure Systems (SESS 09), IEEE, 2009, pp.
47-53.

 5. M.S. Lam et al., “Securing Web Applications with Static
and Dynamic Information Flow Tracking,” Proc. 2008 ACM
SIGPLAN Symp. Partial Evaluation and Semantics-Based
Program Manipulation (PEPM 08), ACM, 2008, pp. 3-12.

 6. Y. Xie and A. Aiken, “Static Detection of Security Vulner-
abilities in Scripting Languages,” Proc. 15th Usenix Security
Symp. (Usenix-SS 06), vol. 15, Usenix, 2006, pp. 179-192.

 7. D. Balzarotti et al., “Saner: Composing Static and Dynamic
Analysis to Validate Sanitization in Web Applications,” Proc.
29th IEEE Symp. Security and Privacy (SP 08), IEEE CS, 2008,
pp. 387-401.

 8. G. Wassermann and Z. Su, “Static Detection of Cross-Site
Scripting Vulnerabilities,” Proc. 30th Int’l Conf. Software
Eng. (ICSE 08), ACM, 2008, pp. 171-180.

 9. A. Kiezun et al., “Automatic Creation of SQL Injection and
Cross-Site Scripting Attacks,” Proc. 31st Int’l Conf. Software
Eng. (ICSE 09), IEEE CS, 2009, pp. 199-209.

 10. W. Halfond, A. Orso, and P. Manolios, “WASP: Protecting
Web Applications Using Positive Tainting and Syntax-
Aware Evaluation,” IEEE Trans. Software Eng., Jan. 2008,
pp. 65-81.

 11. M.T. Louw and V.N. Venkatakrishnan, “Blueprint: Robust
Prevention of Cross-Site Scripting Attacks for Existing
Browsers,” Proc. 30th IEEE Symp. Security and Privacy (SP
09), IEEE CS, 2009, pp. 331-346.

 12. E. Kirda et al., “Client-Side Cross-Site Scripting Protection,”
Computers & Security, Oct. 2009, pp. 592-604.

Lwin Khin Shar is a research student in the School of Electrical
and Electronic Engineering, Nanyang Technological University,
Singapore. His research interests include software security and
Web security. Shar received a BE in electrical and electronic
engineering from Nanyang Technological University. Contact
him at shar0035@ntu.edu.sg.

Hee Beng Kuan Tan is an associate professor of information
engineering in the School of Electrical and Electronic Engineer-
ing, Nanyang Technological University. His research focuses on
software security, analysis, and testing. Tan received a PhD in
computer science from the National University of Singapore.
He is a senior member of IEEE and a member of ACM. Contact
him at ibktan@ntu.edu.sg.

www-01.ibm.com/software/awdtools/appscan), as well as
open source scanners such as OWASP’s WebScarab (https://
owasp.org/index.php/Category:OWASP_WebScarab_Proj-
ect) and Paros (http://parosproxy.org). All of these scanners
generally use either crawlers or proxies to fetch webpages
and then inject predefined attack vectors into response
pages, letting users verify the resulting behaviors.

Existing techniques for defending against XSS exploits
suffer from various weaknesses: inherent limitations,
incomplete implementations, complex frameworks,

runtime overhead, and intensive manual-work require-
ments. Security researchers can address these weaknesses
from two different perspectives.

From a development perspective, researchers need to
craft simpler, better, and more flexible security defenses.
They need to look beyond current techniques by incor-
porating more effective input validation and sanitization
features. In time, development tools will incorporate
security frameworks such as ESAPI that implement state-
of-the-art technology.

From a program verification perspective, researchers
must integrate program analysis, pattern recognition, con-
colic testing, data mining, and AI algorithms—heretofore
used to solve different software engineering problems—to
enhance the effectiveness of vulnerability detection. They
can also improve the precision of current methods by ac-
quiring attack code patterns from outside experts as soon
as they become available.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

	Defending against cross site scripting attacks
	Citation

	tmp.1581581750.pdf.rtuMU

