
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2012

Defeating SQL injection Defeating SQL injection

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Hee Beng Kuan TAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, OS and Networks Commons, and the Programming

Languages and Compilers Commons

Citation Citation
SHAR, Lwin Khin and TAN, Hee Beng Kuan. Defeating SQL injection. (2012). Computer. 46, (3), 69-77.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4898

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4898&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

PERSPECTIVES

The best strategy for combating SQL injection, which has emerged as the
most widespread website security risk, calls for integrating defensive
coding practices with both vulnerability detection and runtime attack
prevention methods.

S tructured Query Language injection is a code injec-
tion technique commonly used to attack websites
in which the attacker inserts SQL characters or key-
words into a SQL statement via unrestricted user

input parameters to change the intended query’s logic.1 This
threat exists in any Web application that accesses a data-
base via SQL statements constructed with external input
data. By manipulating this data to modify the statements,
an attacker can cause the application to issue arbitrary SQL
commands and thereby compromise the database.

The Open Web Application Security Project (OWASP)
ranks SQL injection as the most widespread website secu-
rity risk (www.owasp.org/index.php/Top_10). In 2011, the
National Institute of Standards and Technology’s National
Vulnerability Database (nvd.nist.gov) reported 289 SQL
injection vulnerabilities (7 percent of all vulnerabilities) in
websites, including those of IBM, Hewlett-Packard, Cisco,
WordPress, and Joomla. In December 2011, SANS Insti-
tute security experts reported a major SQL injection attack
(SQLIA) that affected approximately 160,000 websites using
Microsoft’s Internet Information Services (IIS), ASP.NET, and
SQL Server frameworks (isc.sans.org/diary/SQL+Injection+
Attack+happening+ATM/12127).

Inadequate validation and sanitization of user inputs
make websites vulnerable to SQL injection, and research-
ers have proposed various ways to address this problem,
ranging from simple static analysis to complex dynamic
analysis. In 2006, William Halfond, Jeremy Viegas, and
Alessandro Orso2 evaluated then-available techniques and
called for more precise solutions. In reviewing work during

Lwin Khin Shar and Hee Beng Kuan Tan, Nanyang Technological University, Singapore

the past decade, we found that developers can effectively
combat SQL injection using the right combination of state-
of-the art methods. However, they must develop a better
understanding of SQL injection and how to practically inte-
grate current defenses.

INSECURE CODING PRACTICES
SQL is the standard language for accessing database

servers, including MySQL, Oracle, and SQL Server.1 Web
programming languages such as Java, ASP.NET, and PHP
provide various methods for constructing and executing
SQL statements, but, due to a lack of training and develop-
ment experience, application developers often misuse these
methods, resulting in SQL injection vulnerabilities (SQLIVs).

Developers commonly rely on dynamic query building
with string concatenation to construct SQL statements.
During runtime, the system forms queries with inputs
directly received from external sources. This method
makes it possible to build different queries based on vary-
ing conditions set by users. However, as this is the cause of
many SQLIVs, some developers opt to use parameterized
queries or stored procedures. While these methods are
more secure, their inappropriate use can still result in vul-
nerable code. In the PHP code examples below, name and
pwd are the “varchar” type columns and id is the “integer”
type column of a user database table.

Absence of checks. The most common and serious mis-
take developers make is using inputs in SQL statements
without any checks. The following PHP code is an example
of such a dynamic SQL statement:

Defeating SQL Injection

0018-9162/13/$31.00 © 2013 IEEE	 Published by the IEEE Computer Society 	 March 2013	 69

	 70	 computer

PERSPECTIVES

$query = “SELECT info FROM user WHERE name =
 ‘$_GET[“name”]’ AND pwd = ‘$_GET[“pwd”]’”;

Attackers can use tautologies to exploit this insecure
practice. In this case, by supplying the value x’ OR ‘1’=‘1
to the input parameter name, an attacker could access user
information without a valid account because the WHERE-
clause condition becomes

WHERE name = ‘x’ OR ‘1’=‘1’ AND …”;

which the system will evaluate to be true.
Insufficient escaping. If a developer escapes special

characters meaningful to a SQL parser, the parser will not
interpret them as SQL commands. For example, the above
tautology-based attack could be prevented by escaping
the ’ character (to avoid its being interpreted as a string
delimiter) from the inputs. However, many developers are
either not aware of the full list of characters that have spe-
cial meanings to the SQL parser or they are not familiar
with the proper usage patterns.

Consider the following PHP code, mysql_real_escape_
string, which is a function used to escape MySQL special
characters:

$name = mysql_real_escape_string($_GET[“name”]);
$query = “SELECT info FROM user WHERE pwd LIKE
 ‘%$pwd%’”;

The function mysql_real_escape_string would
protect SQL statements that do not use pattern-matching
database operators such as LIKE, GRANT, and REVOKE. In
this case, however, an attacker could include the additional
wildcard characters % and _ in the password field to match
more password characters than the beginning and end
characters because mysql_real_escape_string does not
escape wildcard characters.

Absence of data type checks. Another error that develop-
ers make is failing to check data types before constructing
SQL statements. Instead, they often apply programming
language or database-provided sanitization functions such
as addslashes and mysql_real_escape_string to the
input parameters before using them in SQL statements.

However, when the query is to access the database
columns of numeric data and other non-text-based data
types, a SQLIA need not contain the escaped/sanitized
characters. For example, the following PHP code shows a
SQL statement for which a tautology-based attack could be
conducted by supplying the value 1 OR 1=1 to the param-
eter id:

$id = mysql_real_escape_string($_GET[“id”]);
$query = “SELECT info FROM user WHERE id =
 $id”;

For such queries, instead of escaping characters, devel-
opers should use a data type check—for example,
if(is_numeric($id))—to prevent SQLIAs.

Absence or misuse of delimiters in query strings. When
constructing a query string with inputs, a programmer
must use proper delimiters to indicate the input’s data
type. The absence or misuse of delimiters could enable SQL
injection even in the presence of thorough input validation,
escaping, and type checking. For example, the following
PHP code does not include delimiters to indicate the input
string used in the SQL statement:

$name = mysql_real_escape_string($_GET[“name”]);
$query = “SELECT info FROM user WHERE name =
 $name”;

In this case, when the database server has the automatic
type conversion function enabled, an attacker could use
an alternate encoding method that circumvents input sani-
tization routines. For instance, if the attacker supplies the
encoded HEX string 0x270x780x270x200x4f0x520x200x
310x3d0x31 to the parameter name, the database parser
may convert it to the “varchar” value, resulting in the tau-
tology string ‘x’ OR 1=1. Because the conversion occurs
in the database, the server program’s escaping function
would not detect any special characters encoded in the
HEX string.

Improper parameterized queries or stored procedures.
Most developers believe that SQL injection is impossible
when using parameterized queries or stored procedures to
run SQL statements. Although this is generally true, some
developers are not aware that SQL injection is still possible
if parameterized query strings or stored procedures accept
nonparameterized inputs.

Consider, for example, the following PHP code:

$query = “SELECT info FROM user WHERE name =
 ?”.“ORDER BY ‘$_GET[“order”]’”;
$stmt = $dbo->prepare($query);
$stmt->bindParam(1, $_GET[“name”]);
$stmt->execute();

Although an attacker could not conduct a SQLIA through
the parameter name, SQL injection is still possible through
order, which is not parameterized. An attacker could inject
piggy-backed query attacks—malicious queries attached to
the original query—such as ASC; DROP TABLE user; -- into
the parameter order.

SQL INJECTION DEFENSES
SQL injection defense methods can be broadly classified

into three types: defensive coding, SQLIV detection, and
SQLIA runtime prevention. Table 1 compares the strengths
and weaknesses of various approaches in each category.

	 March 2013	 71

Table 1. Comparison of SQL injection defenses.

Defense
type Defense

User
involvement

Vulnerability
locating

Verification
assistance

Code
modifi-
cation

Generate
test suite

Usage
stage

Infra-
structure

Defensive
coding

Manual
defensive

coding
practices

Very high No No Manual No Develop-
ment

Developer
training

SQL DOM High No No Manual No Develop-
ment

Developer
training

Parameter-
ized query
insertion

Medium No No Auto-
mated

No Testing
and

debugging

Tool
for code

replacement

SQLIV
detection

SQL-
UnitGen

Medium Automated Unit test reports No Yes Testing
and

debugging

Static
analysis

tool

MUSIC Very high Manual
inspection

Test inputs that
expose the

weaknesses of
implemented

defense
mechanisms

Manual Yes Testing
and

debugging

Manual
tests

Vulnerabil-
ity and
attack

injection

Low Manual
inspection

Test inputs that
expose the

weaknesses of
implemented

defense
mechanisms

Auto-
mated

Yes Testing
and

debugging

Injection tool

SUSHI Low Automated Path conditions
that lead to

SQLIVs

Auto-
mated

Yes Testing
and

debugging

Symbolic
execution

engine

Ardilla Low Automated Concrete attacks Auto-
mated

Yes Testing
and

debugging

Concolic exe-
cution
engine

String
analyzer

Medium Automated Static dataflow
traces

No No Code
verification

Static string
analysis

 tool

PhpMinerI Low Automated Statistics of sani-
tization methods

implemented

No No Code
verification

Static
analysis
and data

mining tool

Runtime
SQLIA

preven-
tion

SQLrand High No No Manual No Deploy-
ment

Runtime
checker

AMNESIA Low No Static dataflow
traces

Auto-
mated

No Deploy-
ment

Static analy-
sis tool

and runtime
checker

SQLCheck Low No No No No Deploy-
ment

Runtime
checker

WASP Low No No Auto-
mated

No Deploy-
ment

Instrumenta-
tion tool and

runtime
checker

SQLProb High No No No No Deploy-
ment

Runtime
checker

CANDID Low No No Auto-
mated

No Deploy-
ment

Instrumenta-
tion tool

and runtime
checker

	 72	 computer

Developers could overcome the shortcomings of individual
methods by combining schemes, as Figure 1 shows.

Defensive coding
Defensive coding is a straightforward solution, as SQLIVs

are the direct consequence of developers’ insecure coding
practices.

Manual defensive coding practices. Many secu-
rity reports, such as OWASP’s SQL Injection Prevention
Cheat Sheet (http://owasp.org/index.php/SQL_Injection_
Prevention_Cheat_Sheet) and Chris Anley’s white paper,1
provide useful manual defensive coding guidelines.

Parameterized queries or stored procedures. Replacing
dynamic queries with properly coded parameterized que-
ries or stored procedures would force developers to first
define the SQL code’s structure before including param-
eters to the query. Because parameters are bound to the
defined SQL structure, it is not possible to inject additional
SQL code.

Escaping. If dynamic queries cannot be avoided, escaping
all user-supplied parameters is the best option. However, as
insufficient or improper escaping practices are common,
developers should identify all input sources to realize the
parameters that need escaping, follow database-specific
escaping procedures, and use standard escaping libraries
instead of custom escaping methods.

Data type validation. In addition to escaping, develop-
ers should use data type validation. Validating whether
an input is string or numeric could easily reject type-
mismatched inputs. This could also simplify the escaping
process because validated numeric inputs need no further

cleansing action and could be
safely used in queries.

White list filtering. Develop-
ers often use black list filtering to
reject known bad special char-
acters such as ’ and ; from the
parameters to avoid SQL injec-
tion. However, accepting only
inputs known to be legitimate is
safer. This filtering approach is
suitable for well-structured data
such as email addresses, dates,
zip codes, and Social Security
numbers. Developers could keep a
list of legitimate data patterns and
accept only matching input data.

SQL DOM. Although manual
defensive coding practices are
the best way to defeat SQL in-
jection, their application is labor-

intensive and error-prone. To
alleviate these problems, Russell
McClure and Ingolf Krüger3 created

SQL DOM, a set of classes that enables automated data
type validation and escaping. Developers provide their own
database schema and construct SQL statements using its
APIs. SQL DOM is especially useful when developers need
to use dynamic queries instead of parameterized queries
for greater flexibility. However, they can only use it with
new software projects, and they must learn a new query-
development process.

Parameterized query insertion. An automated vul-
nerability removal approach finds potentially vulnerable
(dynamic) SQL statements in programs and replaces them
with parameterized SQL statements.4 For example, this
approach would replace the PHP code

$rs = mysql_query(“SELECT info FROM user WHERE
 id = ‘$id’);

with the following code:

$dbh=new PDO(“mysql:host=xxx;dbname=xxx;”,“root”,
 “pwd”);
$PSinput00[] = Array();
$PSquery00 = “SELECT info FROM user WHERE id =
 ?”;
$PSInput00[] = $id;
$stmt = $dbh->prepare($query);
$i = 1;
foreach($PSinput00 as $input){
 $stmt->bindParam($i++, $input);
}
$rs = $stmt->execute();

Figure 1. Web application developers could overcome the shortcomings of individual SQL
injection methods by combining various schemes.

Code

Potentially vulnerable
code

Deployment

Code

Code veri�cation

Vulnerability
prediction

Predicted
vulnerable
code sections

Development

Testing and debugging

Test cases

Con�rmed
vulnerabilities

Defensive coding
practices

Vulnerability
detection

Runtime attack
prevention

Attack vector
generation

Vulnerability
removal

Vulnerability
testing

PERSPECTIVES

	 March 2013	 73

 A shortcoming of this method is that it only works on
SQL structures built with explicit strings; developers must
incorporate program analysis techniques to deduce SQL
structures built with data objects or through function calls.

SQLIV detection
Researchers have developed several methods to detect

SQLIVs.
Code-based vulnerability testing. This approach gener-

ally aims to generate an adequate test suite for detecting
SQLIVs. However, it does not explicitly find vulnerable pro-
gram points, necessitating manual inspection.

SQLUnitGen5 is a prototype tool that uses static analysis
to track user inputs to database access points and generate
unit test reports containing SQLIA patterns for these points.

MUSIC (mutation-based SQL injection vulnerability
checking)6 uses nine mutation operators to replace origi-
nal queries in a Web program with mutated queries. José
Fonseca, Marco Vieira, and Henrique Madeira7 developed
a tool that automatically injects SQLIVs into Web programs
and generates SQLIAs. Both tools assess the effectiveness of
the security mechanisms implemented in the application
under test based on the injected mutants/vulnerabilities
detected.

Concrete attack generation. This type of approach uses
state-of-the-art symbolic execution techniques to automati-
cally generate test inputs that actually expose SQLIVs in a
Web program.

Symbolic execution generates test inputs by solving the
constraints imposed on the inputs along the path to be exer-
cised. Traditionally, symbolic-execution-based approaches
use constraint solvers that only handle numeric operations.
Because inputs to Web applications are by default strings,
if a constraint solver can solve myriad string operations
applied to inputs, developers could use symbolic execution
to both detect the vulnerability of SQL statements that use
inputs and generate concrete inputs that attack them.

Xiang Fu and Chung-Chih Li developed a vulnerability
detection tool consisting of JavaSye, a symbolic execution
engine, and SUSHI, a powerful hybrid (numeric and string)
constraint solver.8 SUSHI solves path conditions that lead to
SQL statements and extracts test inputs containing SQLIAs
from the solution pool. As the “SUSHI Constraint Solver”
sidebar describes, if the tool generates such a test input,
the corresponding SQL statement is vulnerable.

Although effective, symbolic execution alone is gener-
ally not scalable to large programs due to path explosion.
Researchers have thus proposed various solutions to
improve code coverage. Ardilla9 incorporates concrete exe-
cution into symbolic execution, using randomized concrete
test inputs to exercise program paths that constraint solv-
ers cannot symbolically solve. SWAT10 uses a search-based
algorithm that formulates test input adequacy criteria as
fitness functions. It uses these functions to compare pooled

SUSHI Constraint
Solver
C onsider the following snippet of vulnerable PHP code:

1 $id = addslashes($_COOKIE[“id”]);
2 $query = “SELECT info FROM user WHERE ”;
3 if($id!=null) {
4 $query .= “id = $id”;	 //path 1
 } else {
5 $name = addslashes($_GET[“name”]);
6 $order = addslashes($_GET[“order”]);
7 $query .= “name = ‘$name’ ORDER BY
		 ‘$order’”; //path 2
 }
8 $rs = mysql_query($query);

The function addslashes() escapes string delimiters.
Therefore, a SQL injection attack is not possible through path
2 because a single-quote string delimiter is required to cancel
out the delimiters ($name) used in the query; however, a SQLIA
is possible through path 1 because the cookie parameter id is
an integer type and thus a string delimiter is not required to
create an attack.

X
c→\c

 is the symbolic expression of the addslashes()
function—which escapes the four SQL special characters ’, ”,
\, and \0—performed on id. When the symbolic execution
engine reaches the query execution statement at line 8, SUSHI
constructs and solves the following constraint, a conjunction
of two string equations in which + represents string concate-
nation and ≡ separates the left- and right-hand sides of the
equations:

!(X
c→\c

 ≡ null) ^ (“id = ” + X
c→\c

 ≡ id = [0-9]*

OR 1=1 --)

The second equation asks: Is it possible to obtain a solu-
tion for X such that the string on the left-hand side is matched
by the regular expression on the right-hand side? If yes, the
query structure constructed with the string on the left-hand
side is vulnerable because the regular expression on the
right-hand side is a representation of a tautology attack
(SUSHI maintains a set of regular expressions that represent
different types of attack patterns). In this case, SUSHI clearly
has a solution for this constraint, thereby detecting an SQL
injection vulnerability:

1 → $id: X
c→\c

 Path Condition: true
2 → $id: X

c→\c

 $query: “SELECT …”
 Path Condition: true
3 → $id: X

c→\c

 $query: “SELECT …”
 Path Condition: X

c→\c
=null

4 → $id: X
c→\c

 $query: “SELECT …”.“id = X

c→\c
”

 Path Condition: X
c→\c
!=null

8 → Database access point found,
 constraint solver is invoked!

	 74	 computer

 $query .= “name = ‘$name’ ORDER BY
		 ‘$order’”; //path 2
}
$rs = mysql_query($query);

Running PhpMinerI on this code would produce the follow-
ing vulnerability predictor in the form of a classification
tree:

sql_sanit < 0 : Vulnerable
sql_sanit ≥ 0
| dbattr_num < 0 : Not-Vulnerable
| dbattr_num ≥ 0
| |	 num_check < 0 : Vulnerable
| |	 num_check ≥ 0 : Not-Vulnerable

The tree indicates that a database access point is vulnerable
if no database-specific sanitization routine is implemented
or if there is an access to a database table’s numeric column
without any numeric type check in the program.

Such a probabilistic-based approach does not provide
precise analysis of vulnerabilities, but it is still useful given
that collecting static code attributes is easy and powerful
data mining tools such as Weka (cs.waikato.ac.nz/ml/weka)
are readily available. Developers could save much effort by
focusing on those code sections predicted to be vulnerable,
while incorporating techniques that mine control-flow and
data-dependency graphs would better discriminate vulner-
ability signatures and improve precision in vulnerability
localization.

Runtime SQLIA prevention
Researchers have developed tools and techniques that

could prevent all SQLIAs by checking actual runtime
against legitimate queries. However, runtime checks incur
a performance penalty, and some of these approaches
require code instrumentation to enable runtime checking,
which might make debugging security vulnerabilities even
more complex.

Randomization. SQLrand is a proposed mechanism that
forces developers to construct queries using randomized
SQL keywords instead of normal keywords.16 A proxy filter
intercepts queries sent to the database and de-randomizes
the keywords. An attacker could not inject SQL code with-
out the secret key to randomization.

Learning-based prevention. This type of approach
uses a runtime monitoring system deployed between
the application server and database server. It intercepts
all queries and checks SQL keywords to determine
whether the queries’ syntactic structures are legitimate
(programmer-intended) before the application sends them
to the database.

User specification. Specification-based methods require
developers to specify legitimate query structures using

test inputs and then applies the best (fittest) test inputs to
further explore program paths.

To the best of our knowledge, researchers have not
developed search-based or AI algorithms to detect SQL
injection vulnerabilities. However, it is possible to incorpo-
rate these recent techniques into symbolic-execution-based
SQLIV detection—for example, eliminating false negatives
resulting from code uncovered by symbolic execution.

Taint-based vulnerability detection. Researchers have
formulated SQL injection as an information flow integrity
problem.11 As such, it can be avoided by using static and
dynamic techniques to prevent tainted data (user inputs)
from affecting untainted data, such as programmer-defined
SQL query structures.

Several researchers have applied prominent static
analysis techniques, such as flow-sensitive analysis, context-
sensitive analysis, alias analysis, and interprocedural
dependency analysis, to identify input sources and data
sinks (database access points) and check whether every
flow from a source to a sink is subject to an input valida-
tion and/or input sanitization routine.12,13 However, these
approaches suffer from one or more of the following limi-
tations: they do not precisely model the semantics of such
routines, do not consider input validation using predi-
cates, fail to specify vulnerability patterns, or require user
intervention to state the taintedness of external or library
functions that inputs pass through. All these limitations
could result in false negatives or positives.

Gary Wassermann and Zhendong Su14 used context-
free grammars to model the effects of input validation and
sanitization routines. Their technique checks whether SQL
queries syntactically confine the string values returned
from those routines and, if so, automatically concludes
that the routines used are correctly implemented (and vice
versa). Wassermann and Su’s approach would not miss any
vulnerability, but it does not precisely handle some of the
complex string operations, and its conservative assump-
tions might result in false positives.

Data-mining-based vulnerability prediction. Php-
MinerI15 mines static code attributes that represent the
characteristics of input sanitization routines implemented
in Web programs. It then feeds the mined attributes and the
associated vulnerability information of existing programs
to lightweight classifications for building vulnerability
predictors.

Consider, for example, the following PHP code snippet:

$id = addslashes($_COOKIE[“id”]);
$query = “SELECT info FROM user WHERE ”;
if($id!=null) {
 $query .= “id = $id”;	 //path 1
} else {
 $name = addslashes($_GET[“name”]);
 $order = addslashes($_GET[“order”]);

PERSPECTIVES

	 March 2013	 75

source code, the attempted SQLIA does not generate a query
structure different from that generated by its corresponding
candidate input, id←null; name=“x”; order←“x”. There-
fore, CANDID does not consider it as an attack.

TOOL SUPPORT
To aid developers and security testers, some researchers

have made their work or implementations available online.
In addition to the SQL Injection Prevention Cheat Sheet,

OWASP provides the Enterprise Security API (ESAPI), a
library of various security APIs for retrofitting SQL injec-
tion defense mechanisms into existing Web applications
(http://owasp.org/index.php/Category:OWASP_Enterprise_
Security_API), to assist in defensive coding.

For SQLIV detection, a symbolic-execution-based tool is
available for download (http://people.hofstra.edu/Xiang_Fu/
XiangFu/projects.php). As SUSHI is an independent solver,
developers can use it for different programming languages
including Java and PHP. To improve SQLIV coverage, devel-
opers can also use other symbolic execution engines in
place of JavaSye, such as JavaPathFinder (http://babelfish.
arc.nasa.gov/trac/jpf). The static string analysis tools for
PHP (http://score.is.tsukuba.ac.jp/~minamide/phpsa) and
PhpMinerI (http://sharlwinkhin.com/phpminer.html) are
also available online.

Downloadable runtime SQLIA prevention implementa-
tions include the static-analysis-based AMNESIA (http://
www-bcf.usc.edu/~halfond/amnesia.html), which works
on Java. The dynamic-analysis-based WASP is being
commercialized.

Numerous off-the-shelf offerings are useful for quickly
detecting the presence of SQLIVs in websites. SecuBat
(secubat.codeplex.com), an open source black-box vulnera-
bility scanner, uses a Web spider to identify test targets—for
example, webpages that accept user inputs. It then launches
predefined attacks against these targets and determines
whether an attack was successful by evaluating the server
response against attack-specific response criteria, such as
SQL exceptions raised and program crashes. Other open
source scanners, such as Nikto2 (http://cirt.net/nikto2) and
sqlmap (http://sqlmap.org), are similar to SecuBat, but they
generally require known vulnerability patterns or user
intervention to conclude successful attacks.

Marco Vieira, Nuno Antunes, and Henrique Madeira25
tested and reported on the performance of three popu-

formal language expressions such as Extended Backus-
Naur Form.17,18

Static analysis. AMNESIA (Analysis for Monitoring and
NEutralizing SQL Injection Attacks)19 uses static analysis to
deduce valid queries that might appear at each database
access point in Web programs via isolation of tainted and
untainted data. Another runtime SQLIA prevention tech-
nique uses a query learning approach similar to AMNESIA,
but, instead of targeting query statements in a server pro-
gram, it targets stored procedures in a database.20

Dynamic analysis. Statically inferred legitimate query
structures might not be accurate, and attackers could
exploit this weakness to conduct SQLIAs.21 Researchers
have thus proposed dynamic-analysis-based approaches
to provide more accuracy.

SQLCheck22 tracks tainted data at runtime by marking
it with metacharacters. When a Web application invokes
a query, SQLCheck learns the query’s legitimate structure
by excluding marked data from it. Conversely, WASP (Web
application SQL-injection preventer)23 tracks untainted data
because identifying all input sources is often difficult, thus
some tainted data might go undetected. Metacharacter
marking requires low user effort, but it changes the data’s
original structure and thus might cause unpredictable
errors on benign inputs.

SQLProb24 executes a program of interest with various
valid inputs to collect all possible queries that might legiti-
mately appear during runtime. During runtime, it uses a
global pairwise alignment algorithm to compare issued
user queries against those in the legitimate query reposi-
tory and extracts the user inputs. It then uses a SQL parser
to check whether each extracted input is indeed part of
the issued query’s syntactic structure. SQLProb sends the
query to the database only if the user input is syntactically
confined. This approach requires using test inputs and
assumes that the test inputs are sufficient to exercise all
possible queries in the program.

CANDID21 dynamically mines a program’s legitimate
query structure at each path by executing the program with
valid and nonattacking inputs and, thereafter, comparing
the actual issued query with the legitimate query structure
mined for the same path.

To illustrate, consider again the PHP code snippet. If the
runtime user input is id←“1 OR 1=1 --”, the input exercises
path 1 and generates a query whose structure is SELECT
? FROM ? WHERE ?=? OR ?=? –- while its correspond-
ing candidate input (a valid input that exercises the same
path as the runtime input), id←“1”, generates a different
query structure: SELECT ? FROM ? WHERE ?=?. CANDID
detects a SQLIA and prevents execution of the query. If the
runtime user input is id←null; name=“x’ OR ‘1’=‘1”;
order←“ASC”, the input exercises path 2 and generates a
query whose structure is SELECT ? FROM ? WHERE ?=?
ORDER BY ?. In this case, due to the use of escaping in

Numerous off-the-shelf
offerings are useful for quickly
detecting the presence of
SQLIVs in websites.

	 76	 computer

lar commercial vulnerability scanners: HP WebInspect
(www.hpenterprisesecurity.com/products/hp-fortify
-software-security-center/hp-webinspect), IBM Rational
(now Security) AppScan (http://www-01.ibm.com/software/
awdtools/appscan), and the Acunetix Web Vulnerability
Scanner (www.acunetix.com/vulnerability-scanner).

E ach of the three main avenues to defeat SQL injection
has its own strengths and weaknesses. Defensive
coding practices will ensure secure code but are
time-consuming and labor-intensive. Vulnerability

detection approaches can identify most if not all SQLIVs,
but they will also generate many false alarms. Runtime
prevention methods can prevent SQLIAs, but they require
dynamic monitoring systems. The most effective strategy
calls for combining all three approaches. However, this
presents two major challenges.

First, Web application developers need more extensive
training to raise their awareness about SQL injection and to
become familiar with state-of-the-art defenses. At the same
time, they need sufficient time and resources to implement
security measures. Too often, project managers pay less
attention to security than to functional requirements.

Second, researchers should implement their proposed
approaches and make such implementations, along with
comprehensive user manuals, available either commer-
cially or as open source. Too many existing techniques are
either not publicly available or are difficult to adopt. Readily
available tools would motivate more developers to combat
SQL injection. In addition, researchers should find simple
ways to effectively combine existing defensive schemes to
overcome the limitations of individual methods rather than
focusing exclusively on novel ones.

Traditionally, SQL injection was limited to personal
computing environments. However, the increasing use
of smartphones, tablets, and other portable devices has
extended this problem to mobile and cloud computing envi-
ronments, where vulnerabilities could spread much faster
and become much easier to exploit. Security researchers
therefore need to address additional SQLIV-related issues
arising from the greater flexibility and mobility of emerg-
ing computing platforms as well as newer programming
languages such as HTML5.

References
	 1.	 C. Anley, “Advanced SQL Injection in SQL Server Applica-

tions,” white paper, Next Generation Security Software
Ltd., 2002; www.thomascookegypt.com/holidays/
pdfpkgs/931.pdf.

	 2.	 W.G.J. Halfond, J. Viegas, and A. Orso, “A Classification of
SQL Injection Attacks and Countermeasures,” Proc. Int’l
Symp. Secure Software Eng. (ISSSE 06), IEEE CS, 2006;
www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.
orso.ISSSE06.pdf.

	 3.	 R.A. McClure and I.H. Krüger, “SQL DOM: Compile Time
Checking of Dynamic SQL Statements,” Proc. 27th Int’l
Conf. Software Eng. (ICSE 05), ACM, 2005, pp. 88-96.

	 4.	 S. Thomas, L. Williams, and T. Xie, “On Automated Pre-
pared Statement Generation to Remove SQL Injection
Vulnerabilities,” Information and Software Technology,
Mar. 2009, pp. 589-598.

	 5.	 Y. Shin, L. Williams, and T. Xie, SQLUnitGen: Test Case
Generation for SQL Injection Detection, tech. report TR
2006-21, Computer Science Dept., North Carolina State
Univ., 2006.

	 6.	 H. Shahriar and M. Zulkernine, “MUSIC: Mutation-Based
SQL Injection Vulnerability Checking,” Proc. 8th Int’l Conf.
Quality Software (QSIC 08), IEEE CS, 2008, pp. 77-86.

	 7.	 J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability &
Attack Injection for Web Applications,” Proc. 39th Ann.
IEEE/IFIP Int’l Conf. Dependable Systems and Networks
(DSN 09), IEEE, 2009, pp. 93-102.

	 8.	 X. Fu and C.-C. Li, “A String Constraint Solver for Detect-
ing Web Application Vulnerability,” Proc. 22nd Int’l Conf.
Software Eng. and Knowledge Eng. (SEKE 10), Knowledge
Systems Institute Graduate School, 2010, pp. 535-542.

	 9.	 A. Kiezun et al., “Automatic Creation of SQL Injection
and Cross-Site Scripting Attacks,” Proc. 31st Int’l Conf.
Software Eng. (ICSE 09), IEEE CS, 2009, pp. 199-209.

	10.	 N. Alshahwan and M. Harman, “Automated Web Applica-
tion Testing Using Search Based Software Engineering,”
Proc. 26th IEEE/ACM Int’l Conference Automated Software
Eng. (ASE 11), IEEE, 2011, pp. 3-12.

	11.	 K.J. Biba, Integrity Considerations for Secure Computing
Systems, tech. report ESD-TR-76-372, Electronic Systems
Division, US Air Force, 1977.

	12.	 V.B. Livshits and M.S. Lam, “Finding Security Vulner-
abilities in Java Programs with Static Analysis,” Proc.
14th Conf. Usenix Security Symp. (Usenix-SS 05), Usenix,
2005; http://suif.stanford.edu/papers/usenixsec05.pdf.

	13.	 Y. Xie and A. Aiken, “Static Detection of Security Vul-
nerabilities in Scripting Languages,” Proc. 15th Conf.
Usenix Security Symp. (Usenix-SS 06), Usenix, 2006;
http://theory.stanford.edu/~aiken/publications/papers/
usenix06.pdf.

	14.	 G. Wassermann and Z. Su, “Sound and Precise Analysis
of Web Applications for Injection Vulnerabilities,” Proc.
ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI 07), ACM, 2007, pp. 32-41.

	15.	 L.K. Shar and H.B.K. Tan, “Mining Input Sanitization
Patterns for Predicting SQL Injection and Cross Site
Scripting Vulnerabilities,” Proc. 34th Int’l Conf. Software
Eng. (ICSE 12), IEEE, 2012, pp. 1293-1296.

	16.	 S.W. Boyd and A.D. Keromytis, “SQLrand: Preventing SQL
Injection Attacks,” Proc. 2nd Conf. Applied Cryptography
and Network Security (ACNS 04), LNCS 3089, Springer,
2004, pp. 292-302.

	17.	 K. Kemalis and T. Tzouramanis, “SQL-IDS: A Specification-
Based Approach for SQL-Injection Detection,” Proc.
ACM Symp. Applied Computing (SAC 08), ACM, 2008,
pp. 2153-2158.

	18.	 Y.-W. Huang et al., “Securing Web Application Code by
Static Analysis and Runtime Protection,” Proc. 13th

˙

PERSPECTIVES

	 March 2013	 77

	25.	 M. Vieira, N. Antunes, and H. Madeira, “Using Web Secu-
rity Scanners to Detect Vulnerabilities in Web Services,”
Proc. 39th Ann. IEEE/IFIP Int’l. Conf. Dependable Systems
and Networks (DSN 09), IEEE, 2009, pp. 566-571.

Lwin Khin Shar is a research student in the school of Elec-
trical and Electronic Engineering, Nanyang Technological
University, Singapore. His research interests include soft-
ware security and Web security. Shar received a BE in
electrical and electronic engineering from Nanyang Tech-
nological University. He is a member of IEEE. Contact him
at shar0035@ntu.edu.sg.

Hee Beng Kuan Tan is an associate professor of information
engineering in the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singapore. His
research focuses on software security, analysis, and testing.
Tan received a PhD in computer science from the National
University of Singapore. He is a senior member of IEEE and
a member of ACM. Contact him at ibktan@ntu.edu.sg.

Int’l Conf. World Wide Web (WWW 04), ACM, 2004,
pp. 40-52.

	19.	 W.G.J. Halfond and A. Orso, “Combining Static Analy-
sis and Runtime Monitoring to Counter SQL-Injection
Attacks,” Proc. 3rd Int’l Workshop Dynamic Analysis
(WODA 05), ACM, 2005; www.cc.gatech.edu/~orso/
papers/halfond.orso.WODA05.pdf.

	20.	 K. We, M. Muthuprasanna, and S. Kothari, “Preventing
SQL Injection Attacks in Stored Procedures,” Proc. Aus-
tralian Software Eng. Conf. (ASWEC 06), IEEE CS, 2006,
pp. 191-198.

	21.	 P. Bisht, P. Madhusudan, and V.N. Venkatakrishnan,
“CANDID: Dynamic Candidate Evaluations for Automatic
Prevention of SQL Injection Attacks,” ACM Trans. Infor-
mation and System Security, Feb. 2010; www.cs.illinois.
edu/~madhu/tissec09.pdf.

	22.	 Z. Su and G. Wassermann, “The Essence of Command
Injection Attacks in Web Applications,” Proc. 33rd ACM
SIGPLAN-SIGACT Symp. Principles of Programming Lan-
guages (POPL 06), ACM, 2006, pp. 372-382.

	23.	 W. Halfond, A. Orso, and P. Manolios, “WASP: Protecting
Web Applications Using Positive Tainting and Syntax-
Aware Evaluation,” IEEE Trans. Software Eng., Jan. 2008,
pp. 65-81.

	24.	 A. Liu et al., “SQLProb: A Proxy-Based Architecture
towards Preventing SQL Injection Attacks,” Proc. 24th
ACM Symp. Applied Computing (SAC 09), ACM, 2009,
pp. 2054-2061.

Mobile Malware detection, p. 65

developMent tools for sMartphone apps, p. 72

Multitouch interfaces, p. 80

S
E

P
T

E
M

B
E

R
 2

0
12

ht
tp

:/
/w

w
w

.c
om

pu
te

r.
or

g

ANYTIME, ANYWHERE ACCESS

DIGITAL MAGAZINES
Keep up on the latest tech innovations with new digital maga-
zines from the IEEE Computer Society. At more than 65%
off regular print prices, there has never been a better time to
try one. Our industry experts will keep you informed. Digital
magazines are:

• Easy to Save. Easy to Search.
• Email noti� cation. Receive an alert as soon as each digi-

tal magazine is available.
• Two formats. Choose the enhanced PDF version OR the

web browser-based version.
• Quick access. Download the full issue in a � ash.
• Convenience. Read your digital magazine anytime, any-

where—on your laptop, iPad, or other mobile device.
• Digital archives. Subscribers can access the digital issues

archive dating back to January 2007.

Interested? Go to www.computer.org/digitalmagazines
to subscribe and see sample articles.

	 Selected CS articles and columns are available
	 for free at http://ComputingNow.computer.org.

	Defeating SQL injection
	Citation

	tmp.1581581772.pdf.JfAbl

