
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2011

Automated removal of cross site scripting vulnerabilities in web Automated removal of cross site scripting vulnerabilities in web

applications applications

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Hee Beng Kuan TAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
SHAR, Lwin Khin and TAN, Hee Beng Kuan. Automated removal of cross site scripting vulnerabilities in
web applications. (2011). Information and Software Technology. 54, (5), 467-478.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4897

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4897&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4897&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Automated removal of cross site scripting vulnerabilities in web applications

Lwin Khin Shar ⇑, Hee Beng Kuan Tan
School of Electrical and Electronic Engineering, Block S2, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

a r t i c l e i n f o

Article history:
Received 18 February 2011
Received in revised form 1 October 2011
Accepted 20 December 2011
Available online 28 December 2011

Keywords:
Cross site scripting
Injection vulnerability
Character escaping
Encoding
Web security
Automated bug fixing

a b s t r a c t

Context: Cross site scripting (XSS) vulnerability is among the top web application vulnerabilities accord-
ing to recent surveys. This vulnerability occurs when a web application uses inputs received from users in
web pages without properly checking them. This allows an attacker to inject malicious scripts in web
pages via such inputs such that the scripts perform malicious actions when a client visits the exploited
web pages. Such an attack may cause serious security violations such as account hijacking and cookie
theft. Current approaches to mitigate this problem mainly focus on effective detection of XSS vulnerabil-
ities in the programs or prevention of real time XSS attacks. As more sophisticated attack vectors are
being discovered, vulnerabilities if not removed could be exploited anytime.
Objective: To address this issue, this paper presents an approach for removing XSS vulnerabilities in web
applications.
Method: Based on static analysis and pattern matching techniques, our approach identifies potential XSS
vulnerabilities in program source code and secures them with appropriate escaping mechanisms which
prevent input values from causing any script execution.
Results: We developed a tool, saferXSS, to implement the proposed approach. Using the tool, we evalu-
ated the applicability and effectiveness of the proposed approach based on the experiments on five
Java-based web applications.
Conclusion: Our evaluation has shown that the tool can be applied to real-world web applications and it
automatically removed all the real XSS vulnerabilities in the test subjects.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recent reports from OWASP [1] and CWE/SANS [2] reveal that
cross site scripting (XSS) is one of the most common and serious
web security flaws. It is a type of code injection vulnerability that
enables attackers to send malicious scripts to web clients. It occurs
whenever a web application references user inputs in its HTML
pages (i.e., web pages sent by the application to its clients) without
properly validating them. An attacker may embed malicious scripts
via such inputs in the application’s HTML pages. When a client vis-
its an exploited web page, the client’s browser not being aware of
the presence of malicious scripts shall execute all the scripts sent
by the application resulting in a successful XSS attack. The mali-
cious script used in an XSS attack can be any kind of client side
scripts (e.g., HTML, JavaScript, VBScript, and Flash) that can be
interpreted by web browsers. XSS attacks may cause severe secu-
rity violations such as account hijacking, data theft, cookie theft
and poisoning, web content manipulation, and denial of service [3].

Popular real world XSS vulnerabilities include Microsoft .NET
Framework 2.0’s vulnerability reported in 2006 [5]. It was caused
by improper validation of HTTP request data allowing the attackers
to manipulate data in web pages. If any web application is imple-
mented using this framework, attackers may launch a variety of
XSS attacks depending on the nature of the application. Recently,
the web site of a giant telecommunication company Vodafone has
been reported to contain an XSS hole that allows a fake survey form
to be injected using crafted URLs such as https://surveys.vodaf-
one.com/Checkbox/Survey.aspx?surveyid=1234==<script>
stealData()</script> [6]. Its flaw is that Vodafone’s Sur-
vey.aspx page does not filter malicious characters such as ‘‘<script>’’.
Hence, an attacker may exploit this flaw and steal the sensitive infor-
mation submitted by Vodafone’s clients via the injected survey form.

To mitigate the threats posed by XSS attacks, several solutions
have been proposed. They can be classified into defensive coding
practices [3,4,7], input validation and XSS testing techniques
[19–22], vulnerability detection techniques [23–33], and attack
prevention techniques [34–39]. However, apart from defensive
coding practices, none of the current techniques focuses on remov-
ing the XSS vulnerabilities (XSSVs) that exist in program source
code. On the other hand, defensive coding practices could in prin-
cipal ensure that a program is free from XSSVs. The known

0950-5849/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2011.12.006

⇑ Corresponding author.
E-mail addresses: shar0035@ntu.edu.sg (L.K. Shar), ibktan@ntu.edu.sg (H.B.K.

Tan).

Information and Software Technology 54 (2012) 467–478

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://www.surveys.vodafone.com/Checkbox/Survey.aspx?
http://www.surveys.vodafone.com/Checkbox/Survey.aspx?
http://www.surveys.vodafone.com/Checkbox/Survey.aspx?
http://dx.doi.org/10.1016/j.infsof.2011.12.006
mailto:shar0035@ntu.edu.sg
mailto:ibktan@ntu.edu.sg
http://dx.doi.org/10.1016/j.infsof.2011.12.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

defensive coding approach for effective prevention of XSSVs is to
escape all the user inputs used in HTML documents according to
the contexts in which these inputs are referenced (e.g., JavaScript
context if the input is used in a JavaScript code; HTML element con-
text if the input is used in an HTML element). Escaping (a.k.a
encoding) is the process of transforming the characters that have
special meanings to a client-script interpreter into the representa-
tions such that the special meanings are removed [3,4,7]. However,
this method if performed manually is prone to human errors and
hard to be enforced in existing web applications. Therefore, auto-
mation of this task would be beneficial.

This paper proposes an automated approach that statically
removes XSSVs from program source code. This approach is differ-
ent from existing approaches which mainly concern with either
locating XSSVs in program source code or preventing real time
XSS attacks. The proposed method consists of two phases: (1) XSSV
detection and (2) XSSV removal. XSSV detection phase identifies
potential XSSVs in the program source code using static analysis.
XSSV removal phase first determines the context of each user input
referenced in the identified potential XSSVs. It then secures the po-
tential XSSVs by applying the appropriate escaping methods using
an escaping library provided by ESAPI [8]. We also developed a tool
called saferXSS to automate the proposed approach. Both the ap-
proach and the tool are targeted to the web applications written
in Java language due to the frequent occurrences of XSS issues in
Java-based web applications. However, the proposed idea can be
easily extended to fit the syntax of other programming languages.
Using saferXSS, we conducted experiments on five applications. Re-
sults show that the approach was effective in securing all the
XSSVs found in the test subjects.

The major contribution of this paper is that it proposes an ap-
proach to identify and remove the potential XSSVs in web applica-
tions, presents a tool that automates the proposed approach, and
evaluates it based on the experiments on five open source web
applications. The remainder of the paper is organized as follows.
Section 2 provides the background information on XSS injection
techniques, XSS prevention rules based on proper escaping meth-
ods, and ESAPI’s security mechanisms. Section 3 proposes our
XSS vulnerability detection and removal approach. Section 4 eval-
uates the proposed approach and Section 5 reviews the current
techniques that mitigate XSS attacks. Section 6 concludes the
paper.

2. Background

In this section, we provide information on XSS injection, XSS
prevention rules proposed by OWASP [4], and escaping APIs pro-
vided by ESAPI [8] which can be used to enforce OWASP’s XSS pre-
vention rules in vulnerable web applications.

2.1. XSS injection

XSS can be classified into three types: stored, reflected, and
DOM-based. Stored XSS hole appears when a web server program
stores an unrestricted user input in a persistent data store such as
database and then the program accesses and references the stored
data in a web page viewed by different users. This type of XSS is
commonly found in forums, blogs, and other social networking
sites. Reflected XSS hole appears when a server program references
an unchecked data accessed from incoming HTTP request parame-
ters in an immediate web page sent back to the user. This type of
XSS is commonly found in error messages and search results. Both
of these XSS types result from improper handling of user inputs in
server side scripts. By contrast, DOM-based XSS hole appears when
a client side script itself references a user input dynamically ob-

tained from the DOM (document object model) structure without
proper validation and thus, malicious script injected via DOM-
based XSS needs not appear on server programs [9]. In this paper,
only the issues of stored and reflected XSS shall be further
discussed.

Regardless of different types of XSS, code injection techniques
are the same. In an HTML document which is a combination of data
and code, user inputs are often referenced as data. As such inputs
are the cause of XSS injection, we may also address them as
untrusted data depending on the context. In an HTML document,
there are many contexts in which user input may be referenced.
Different client side interpreters may also be used for different
types of contexts. Therefore, to prevent XSS injection, it is impor-
tant to be aware of the context in which user input is referenced
and understand how an XSS injection is possible in that context.

As an illustration, Fig. 1 shows an example of a vulnerable web
page through which multiple XSS attacks can be conducted via the
user inputs referenced. As shown in line 5–7, the web page refer-
ences an untrusted data as a text paragraph (i.e., untrusted_data4).
If the data is <script>hack();</script>, the HTML output be-
comes <p style=. . .><script>hack();</script></p>. The tag
‘‘<script>’’ indicates the beginning of a JavaScript code and invokes
the JavaScript interpreter. As a result, although the intended docu-
ment structure is a block of text, it becomes a block of JavaScript
code causing the JavaScript interpreter to execute the malicious
function ‘‘hack()’’. In this case, the user input is referenced in the
context of HTML element and the special character ‘‘<’’ is used to
illegally switch into a code (in this case, JavaScript) context where
all kinds of malicious scripts can be executed; thereby, causing an
XSS scenario. Fig. 1 also shows other HTML contexts where user
inputs are commonly referenced: HTML attribute (line 9), JavaScript
(line 2), Cascading style sheets or CSS (line 5), and URL parameter
(line 8). Similar to the above HTML element context example, the
fitting special characters may be used for switching into a code
context. For example, the HTML attribute value at line nine refer-
ences untrusted_data6 within the opening and closing quotes.
This context can be broken out by injecting the quote ‘‘ ’ ’’ into
the untrusted data. In the scenarios where untrusted data is not
quoted at all, many characters such as [space], ‘‘;’’, ‘‘,’’, and ‘‘<’’
can be used for code switching. There are also complex HTML con-
texts where user inputs may be referenced. They are worst-case
scenarios in which no special character is required to cause context
switching. For example, as shown in line 4, the web page refer-
ences untrusted_data2 as a value for the HTML attribute src.
If the data is http://www.hackersite.com/hack.js, the output
becomes: <img src= ‘http://www.hackersite.com/hackv.

js’/>. In this case, a JavaScript file ‘‘hack.js’’ from a hacker’s
web site is introduced within the original HTML attribute context
and no special character is used. Some HTML attributes such as
src and href, event handlers such as onclick and onload, and
complex functions such as expression and eval are such com-
plex contexts. No user input should be directly referenced in these
contexts as there are simply many possibilities to inject malicious
scripts via such an input.

2.2. XSS prevention rules

As discussed in Section 2.1, XSS injection is generally achieved
by switching to a code context illegally from a data context by
using special characters (e.g., ‘‘‘’’, ‘‘‘‘’’, ‘‘;’’, ‘‘<’’) which are significant
to a targeted client side interpreter. OWASP [4] specified system-
atic XSS prevention rules to follow to ensure that any user input
referenced in an HTML output is only treated as a data. The rules
condition that appropriate escaping mechanism be applied to the
user input according to the HTML context in which the input is ref-
erenced. Escaping disables the effect of special characters con-

468 L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478

http://www.hackersite.com/hack.js
http://www.hackersite.com/hack.js
http://www.hackersite.com/hack.js

tained in user input and prevents them from invoking client side
interpreters. Therefore, as long as user inputs are to be referenced
in typical HTML contexts as data, XSSVs can be completely avoided
by following OWASP’s rules and there is also no harm in escaping
the referenced untrusted data even if the HTML output is not actu-
ally vulnerable.

Hence, our proposed approach is built on following the rules
defined by OWASP [4] to remove the XSSVs in server programs.
We shall briefly review these rules in this section. Interested read-
ers may refer to OWASP [4] for more detail.

� Rule#0: Do not reference user inputs in any other cases except
the ones defined in Rule#1–Rule#5. As discussed in Section
2.1, in some contexts, no special character may be required to
perform XSS injection; and therefore, escaping rules could
become complex or insufficient. Thus, escaping rules in
Rule#1–Rule#5 only apply to the typical contexts where user
inputs are commonly referenced. This Rule#0 conditions that
no user input is to be directly referenced in any other cases. This
rule is the most important among all XSS prevention rules as it
implies a whitelist approach (blacklist approaches are com-
monly known as weak and insufficient).
� Rule#1: Use HTML entity escaping for the untrusted data refer-

enced in an HTML element. For example, <body><div>htmlEs-
cape(untrusted_data)</div></body>, where
‘‘htmlEscape()’’ is the HTML entity escaping method, conforms
to this rule.
� Rule#2: Use HTML attribute escaping for the untrusted data ref-

erenced as a value of a typical HTML attribute such as name and
value. This rule does not apply to the two dangerous attri-
butes—href and src. The only allowable way to reference
untrusted data as values of href and src attributes is stated
in Rule#5. Any other cases of untrusted data referenced in the
contexts of href and src are disallowed under OWASP’s escap-
ing rules and OWASP recommends the use of only programmer-
defined data in such cases because the referenced untrusted
data may simply point to a JavaScript source without the use
of special characters. This rule also does not apply to all
event-handler attributes such as onclick. Event-handler attri-
butes should be handled according to Rule#3. For example,
<input value=‘htmlAttrEscape(untrusted_data)’>,
where ‘‘htmlAttrEscape()’’ is the HTML attribute escaping
method, conforms to this rule; however, <a href=‘htmlAttr-
Escape(untrusted_data)’> does not.
� Rule#3: Use JavaScript escaping for the untrusted data refer-

enced as a quoted data value in a JavaScript block or an event-
handler. This rule does not apply to the untrusted data refer-
enced as any other ways in a code block except as a quoted data
value. For example, <bodyonload=‘‘x=‘javascriptEs-

cape(untrusted_data)’’’>, where ‘‘javascriptEscape()’’ is
the JavaScript escaping method, conforms to this rule. In this
paper, we shall only discuss XSS injection using JavaScript.
However, this rule applies to other client side scripts such as
VBScript and Flash.

� Rule#4: Use CSS escaping for the untrusted data referenced as a
value of a property in a CSS style. For example, <table

style=‘‘width:cssEscape(untrusted_data)’’>, where
‘‘cssEscape()’’ is the CSS escaping method, conforms to this rule.
� Rule#5: Use URL escaping for the untrusted data referenced as a

HTTP GET parameter value in a URL. For example, <a

href=‘http://www.site.com?name=urlEscape(untrust-

ed_data)’> and <img src=‘http://www.site.com?imgid=

urlEscape(untrusted_data)’>, where ‘‘urlEscape()’’ is the
URL escaping method, conform to this rule.

Note that the last two rules, Rule#6 and Rule#7, of OWASP [4]
are omitted by our proposed approach because those rules are
not related to escaping of user inputs in server programs. They
also do not conflict with the above Rule#0–Rule#5 used by our
approach.

2.3. ESAPI’s escaping APIs

ESAPI [8] implemented the escaping APIs that can be used to
enforce the above XSS prevention rules in vulnerable web applica-
tions. As these APIs are used in our proposed approach and our
implementation, we shall briefly review the ESAPI project in the
following.

ESAPI is a security project that facilitates users to enforce secu-
rity in both developed and developing web applications. The pro-
ject is implemented for different web languages such as Java,
.NET, and PHP. It provides a variety of security mechanisms such
as authentication, validation, encoding, encryption, security wrap-
pers, filters, and access control to mitigate various web security is-
sues. As such, with ESAPI, users have a choice of implementing any
of these mechanisms in their applications.

To utilize the security controls provided by ESAPI, users must
first install ESAPI project into their applications. The documenta-
tion on ESAPI installation and configuration procedures can be
found in ESAPI package downloadable from <code.google.com/

p/owasp-esapi-java/>. The Java documentation on ESAPI’s
escaping/encoding APIs can be found in <owasp-esapi-

java.googlecode.com/svn/trunk_doc/latest/org/owasp/

esapi/Encoder.html>.
Once ESAPI is installed, a user could secure an untrusted data by

wrapping it with a proper escaping API before it is referenced in an
HTML output. The proper API is to be determined based on the cor-
responding HTML context and the XSS prevention rules from Sec-
tion 2.2. For example, if the context is HTML element, Rule#1
applies and thus ESAPI’s HTML escaping API is to be used as shown
in the following: <div>ESAPI.encoder().encodeForHTML

(untrusted_data)</div>.

It ensures that the untrusted data is unable to cause context
switching from its residing HTML element context. The appropriate
APIs for the remaining Rule#2–Rule#5 are ‘‘encodeForHTMLAttrib-
ute()’’, ‘‘encodeForJavaScript()’’, ‘‘encodeForCSS()’’, and ‘‘encod-
eForURL()’’ respectively.

Fig. 1. Example of a vulnerable web page generated by a Java Servlet program. Bold words show the locations at which an untrusted data is referenced.

L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478 469

http://www.site.com?name=urlEscape(untrusted_data)
http://www.site.com?name=urlEscape(untrusted_data)
http://www.site.com?imgid=urlEscape(untrusted_data)
http://www.site.com?imgid=urlEscape(untrusted_data)

3. Proposed approach

The proposed approach consists of two major phases: XSS vul-
nerability detection and XSS vulnerability removal. The first phase
identifies potential XSS vulnerabilities in server programs. The sec-
ond phase first identifies the code locations where the untrusted
data can be adequately escaped, second determines the required
escaping mechanisms, and then escapes the untrusted data using
ESAPI’s APIs. Our approach strictly follows OWASP’s XSS preven-
tion rules [4] presented in Section 2.2. That is; it applies ESAPI’s
escaping mechanisms if and only if the case belongs to Rule#1–
Rule#5. If the case belongs to Rule#0 (any other cases not belong-
ing to Rule#1–Rule#5), the proposed algorithm provides two op-
tions to user in order to secure the concerned statement: (1)
Lenient mode – it requests the user to input an appropriate saniti-
zation method; (2) Strict mode – it unconditionally removes the
untrusted data from the code location it is referenced. Therefore,
our XSSV removal algorithm is sound and complete in terms of
removing all the XSS vulnerabilities in the server programs. In
the following, we provide the details of the approach.

3.1. XSS vulnerability detection

This phase is based on the taint-based analysis technique
adapted from our previous work [10]. This section reviews the pre-
vious work and presents the method for extracting XSS vulnerabil-
ity information from a server program.

The basic definitions of the control flow graph (CFG), such as
control and data dependence, defined by Sinha et al. [11] shall be
adopted in this paper. As defined in the previous work [10], in a
CFG, a node x is transitively data dependent on a node y if there
exists a sequence of nodes, y0 = y, y1, y2, . . . ,yn = x, in the control
flow graph such that n P 2 and yj is data dependent on yj�1 for
all j, 1 6 j 6 n. The input node is a node i at which the data that
may be controlled by an external user is accessed. Thus, input
nodes include all the nodes which access untrusted data from di-
rect input sources, such as HTTP request parameters, HTTP head-
ers, and cookies; and indirect input sources, such as session
variables, persistent objects, and database records. Direct input
sources are known as sources of reflected XSS. Indirect input
sources are known as sources of stored XSS.

A node o is called an HTML output node if o produces an HTML
response output. We define the HTML output node o as a poten-
tially vulnerable output node (pv-out) if o satisfies at least one
of the following conditions:

(1) o is also an input node (e.g., out.print(req.getParame-
ter (‘‘input’’))).

(2) o is data dependent on an input node i.
(3) o is transitively data dependent on an input node i.

In this paper, a node in a CFG represents one program statement
and we shall use the term ‘‘node’’ and ‘‘statement’’ interchangeably
depending on the context. Based on the above definitions, in our
previous work [10], we have implemented the identification of
pv-outs by tracking the flow of untrusted data between input
nodes and HTML output nodes. We made use of this previous work
to extract the potential XSSV information from a given program
and pass the extracted information to the next phase.

As an illustration, in Fig. 2a, statement 1 and 2 define the vari-
ables memID and pwd respectively with the data from a direct input
source—HTTP request GET. Statement 5 defines the variable name

with the data from an indirect input source— Database. Statement
11 references the untrusted data through the variable html. Each
node in the CFG shown in Fig. 2b represents each statement in

Fig. 2a. Therefore, nodes 1, 2, and 5 in Fig. 2b are input nodes. Node
11 is a pv-out because it satisfies the third condition of the defini-
tion of pv-out.

Note that the term ‘‘potentially vulnerable’’ is used because the
HTML output statement may not be actually vulnerable to XSS at-
tacks if the untrusted data referenced is not controllable by exter-
nal users. For example, in our approach, data read from indirect
input sources is considered as untrusted although it may also be
defined by the programmer or the database. However, there is no
harm in securing the data that may be manipulated by an external
user because our escaping approach does not affect the resulting
HTML outputs or other program operations as long as the untrust-
ed data is intended to be referenced as a data in an HTML
document.

3.2. XSS vulnerability removal

This phase contains two major steps—HTML context discovery
and secure source code replacement. The first step first identifies
the statements at which the untrusted data referenced in an HTML
output statement can be escaped without compromising intended
HTML outputs and security aspects. Then it extracts the HTML doc-
ument structure surrounding each untrusted data from the source
code and identifies the HTML context using pattern matching. The
required escaping mechanism for each untrusted data is then
determined based on the context identified and the XSS prevention
rules [4]. The second step generates secure code structures using
ESAPI’s escaping APIs as replacements for original code structures.

The algorithms are mainly based on data flow analysis and pat-
tern matching. Therefore, static program analysis tools such as
Soot [12] can be used to implement them. Next, we shall provide
the detail of the two algorithms.

3.2.1. HTML context discovery
When an HTML output statement is identified as vulnerable, the

untrusted data referenced in that statement must be escaped
according to the HTML context the referenced data is in. However,
in some scenarios, escaping should not be done in the vulnerable
statement itself because the variable containing the untrusted data
may also contain programmer-defined HTML document structures.
Escaping may not be done in the input statements as well because
the variables defined in the input statements may involve in more
than one HTML context depending on different program paths.
Therefore, for each pv-out, the algorithm first finds the statements
at which the untrusted data can be properly escaped (we shall ad-
dress such statements as escaping statements and the nodes rep-
resenting them in a CFG as escaping nodes). Then, the algorithm
identifies the HTML context by analyzing the HTML document
structure surrounding the escaping statements. This technique is
further explained in the following:

Let o be a pv-out in the CFG of a program. The following three
conditions ensure that there is always an escaping statement for
each pv-out.

� If o satisfies the first condition of the definition of pv-out,
the algorithm marks o as escape_stmt and also marks the
method that retrieves the untrusted data (e.g., req.getPa-
rameter(‘‘input’’)) as to_be_ escaped.

� If o satisfies the second condition of the definition of pv-out,
there is an input node i and a variable v defined in i and used
in o. The algorithm marks o as escape_stmt and also marks v
as to_be_escaped.

� If o satisfies the third condition of the definition of pv-out,
there is at least one sequence of nodes, {i = x0, x1,. . .,
xn = o}, such that o is transitively data dependent on an
input node i (note: there may be more than one sequence

470 L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478

of nodes because untrusted data may flow from input
node(s) to pv-out through different program paths). For
each sequence of nodes, the algorithm tracks the flow of
untrusted data from the input node i to the node xj,
1 6 j 6 n; while tracking, if a node xj performs a string oper-
ation which concatenates that untrusted data with another
variable or a raw string data, the algorithm (1) computes the
nodes on which xj is (transitively) data dependent and
extracts any raw string data found in those nodes; and (2)
marks the node xj as escape_stmt and the untrusted data
(i.e., the variable containing the untrusted data) referenced
in xj as to_be_escaped, if the extracted data contains any
HTML special character such as ‘‘<’’. If there is no such xj

exists, the algorithm simply marks o as escape_stmt and also
marks the untrusted data referenced in o as to_be_escaped.
This is because there is no node from i to xn that could inte-
grate any legal or programmer-defined HTML document
structure into the untrusted data.

After an escaping statement is identified for a pv-out, the algo-
rithm examines any raw string data used in the escaping node and
applies pattern matching to extract any identifiers found in those
data that can be identified as HTML document structure. For pat-
tern matching, the algorithm uses an HTML pattern library which
stores the patterns of HTML document structures. The document
patterns are defined according to HTML 4.01 specification from
W3C recommendation [13] (note: as XHTML 1.0 and HTML 4.01
are basically the same language in terms of the definitions of ele-
ments and attributes addressed in Rule#1–Rule#5 [14], our de-
fined patterns could also be used for matching scripts written in
XHTML). Any document structure extracted is matched against
those patterns from the library and identified with an HTML

context. If no identifier is found or the context is not recognized,
the algorithm continues explore (1) the nodes on which the
escaping node is (transitively) data dependent and (2) the HTML
output nodes surrounding the escaping node and the nodes on
which those output nodes are (transitively) data dependent; and
analyze the raw string data found in those nodes in order. Once
the context is identified for the untrusted data referenced in the
escaping node, the appropriate escaping mechanism for the vari-
able containing the untrusted data or the method which accesses
untrusted data is determined based on the XSS prevention rules
discussed in Section 2.2. For example, if the HTML context is iden-
tified as HTML element, according to Rule#1, HTML entity escaping is
required. If the algorithm cannot identify the HTML context until a
preset timeout or there is no further node to explore, it assumes
that the case belongs to Rule#0. Therefore, this algorithm ensures
that any untrusted data referenced in an HTML output statement
shall be secured by applying one of the XSS prevention rules de-
scribed in Section 2.2.

Note that there may be more than one escaping statement for a
pv-out because (1) it may satisfy more than one condition of the
definition of pv-out; (2) there may be more than one input node
influencing the pv-out. The above pattern matching procedure is
to be performed for each escaping statement.

As an illustration, Fig. 3 shows the pattern matching analysis per-
formed for the pv-out in the Login Servlet program from Fig. 2. The
sequences of nodes {1,9,10,11} and {5,6,10,11} shown in shaded
color in Fig. 3 are the two sequences of nodes on which the pv-out,
node 11, is transitively data dependent, and nodes 1 and 5 are the in-
put nodes. According to the above HTML context discovery algo-
rithm, for each sequence of nodes, the algorithm traverses the
nodes starting from the input node and extracts any identifiers
found. As shown in Fig. 3a, for the nodes {1,9,10,11}, the HTML doc-

Fig. 2. (a) Code snippet of a sample Login Servlet program. (b) CFG of the program.

L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478 471

ument structure after analyzing node 10 is ‘‘<input type=‘hid-
den’ name=‘member_id’ value= ‘’’+memID+‘‘’>’’. The algo-
rithm marks node 10 as escape_stmt and the variable memID as
to_be_escaped as the algorithm tracks that the untrusted data ac-
cessed in node 1 has been assigned to memID. The document pattern
extracted at node 10 is then matched against the patterns from the
library and it is identified as HTML attribute context which corre-
sponds to Rule#2. Similarly, as shown in Fig. 3b, for the nodes
{5,6,10,11}, when the algorithm traverses node 6, it identifies some
HTML special characters; thus it marks node 6 as escape_stmt and the
variable name as to_be_escaped. During pattern matching step, after
analyzing the escaping node, node 6, the algorithm continues to ana-
lyze the nodes on which the escaping node is (transitively) data
dependent. Therefore, node 3 is analyzed next. From node 6 and 3,
the document structure extracted is ‘‘<HTML><BODY><h1>’’+

name + ‘‘! </h1>’’. It is then identified as HTML element context
which corresponds to Rule#1.

3.2.2. Secure source code replacement
As an input, from the previous step, this algorithm receives the

information of escape_stmts, to_be_escapeds, and to_be_escapeds’
escaping rules and corresponding escaping methods. Firstly, it de-
clares the required ESAPI packages above the class declaration
statement of the input program. Next, for each escape_stmt in each
pv-out o, the algorithm wraps the untrusted data referenced in es-
cape_stmt with appropriate escaping APIs using the following three
steps:

(1) Identify the appropriate escaping API escape_api from ESAPI
library that corresponds to the required escaping mecha-
nism of the variable or the method marked as to_be_escaped
in escape_stmt. For example, if the required escaping mech-
anism is HTML entity escaping, the appropriate API to use is
ESAPI.encoder().encodeForHTML(). The corresponding
APIs for other escaping mechanisms are discussed in Section
2.3.

(2) Modify escape_stmt by wrapping the object marked as
to_be_escaped with escape_api.

(3) Remove (comment out) the original statement and insert the
modified statement into the same code location.

If the pv-out corresponds to Rule#0 (i.e., either the identified
HTML context does not belong to the contexts stated in Rule#1–

Rule#5 or no context could be identified), the algorithm provides
two options to user. If the lenient option is chosen, the algorithm
reports the corresponding XSSV information to user, requests the
appropriate sanitization/escaping scheme, and sets the user’s input
as escape_api. If the strict option is chosen, the algorithm sets a de-
fault sanitization method which returns an empty string as esca-
pe_api. Secure source code replacement is then performed in the
same procedure as the above steps 2 and 3 using this escaping
API escape_api. For example, as discussed in Section 2.1, in Fig. 1,
the untrusted data at line 4 is referenced in a complex HTML con-
text which does not belong to any of the contexts stated in
Rule#1–Rule#5. For such case, this algorithm in strict mode per-
forms the following:

<img src= ‘<%=saferXSS.emptyStrAPI(untrusted_vari-

able)%>’/>.
The resulting HTML output is:
.
Therefore, our algorithm in strict mode shall produce unin-

tended HTML outputs for the cases belonging to Rule#0. However,
as we discussed, such cases always involve high security risks and
no escaping or sanitization is often possible to avoid the risks.

Hence, removal of all XSSVs from input programs is fully auto-
mated by the above algorithms. And code modification required is
very minimal because only objects containing untrusted data are
wrapped with escaping API calls. To facilitate software mainte-
nance and further security auditing purposes, the algorithm feed-
backs the source line numbers of modified statements, input
statements, and pv-outs; and the escaped data and its associated
escaping mechanism used to user. For the Login Servlet program
in Fig. 2, the algorithm will produce the output as shown in
Fig. 4 (for brevity, only the necessary statements are shown). The
modified statements are shown in bold.

4. Evaluation

We developed a prototype tool called saferXSS to implement
the proposed approach. Using the tool, we evaluated the proposed
approach on five open-source web applications. In the evaluation,
we sought to answer the following questions: Does the approach
compromise the required HTML outputs of the programs? Is the
approach effective in removing the XSSVs of real-world

(a) (b)

Fig. 3. Sequences of Nodes that are analyzed and HTML document structures collected from string objects while identifying the HTML contexts of untrusted data referenced
in a vulnerable node. Both CFGs represent the Login Servlet program from Fig. 2a. (a) Nodes analyzed while tracking the flow of untrusted data from the input node 1 to the
HTML output node 11. (b) Nodes analyzed while tracking the flow of untrusted data from the input node 5 to the HTML output node 11.

472 L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478

applications? In the following, we discuss the implementation and
evaluation of our proposed approach in detail.

4.1. Implementation

The prototype tool, saferXSS, was developed through the use of
program analysis tool, Soot [12]. Fig. 5 shows the architecture of
saferXSS and of the proposed approach. The tool consists of three
modules; Program Analyzer, XSSV Detector, and XSSV Remover. It
receives Java Servlet files as inputs. For each input program, pro-
gram analyzer uses Soot’s APIs to build the control flow graph
(CFG) and stores the properties of each control flow node in glo-
bal variables. XSSV Detector includes two major modules: data
tracer and identifier. The two modules combine together to
implement the XSSV detection phase discussed in Section 3.1.
Data tracer traverses each node in the CFG and finds the HTML
output nodes which reference untrusted data. Then, for each node
found, identifier performs data dependency analysis to determine
the nodes where escaping is to be performed. XSSV Remover con-
sists of two major modules: context finder and code wrapper.
These two modules implement the two algorithms discussed in
Section 3.2. Code wrapper provides a user interface for user to
set lenient or strict mode. In lenient mode, whenever the code
wrapper encounters a vulnerable statement belonging to Rule#0,
the interface shows the vulnerability information to user and re-
quests the name of preferred sanitization/escaping method from
user. As outputs, the tool produces modified Java Servlet pro-
grams and vulnerability report containing information of the po-
tential XSS vulnerabilities found in the program. As a final step,
user has to install ESAPI into the application and re-compile the
modified programs.

4.2. Test subject

For evaluation, we selected five Java-based open source applica-
tions, Events, Classifieds, Roomba, PersonalBlog, and JGossip, as test
subjects. Events and Classifieds are downloaded from GotoCode
[16]. Roomba, PersonalBlog, and JGossip are downloaded from
Sourceforge [15]. Events (3817 lines of code or LOC) is an event
management system where users may participate or organize
events. Classifieds (5744 LOC) is an online classifieds system where
users may advertise various items or visit the system for online
shopping. Roomba (3438 LOC) is a room booking system for small
to medium-sized hotels. PersonalBlog (17,149 LOC) is an online
blogging system where various users can publish their contents
online. JGossip (79,685 LOC) is a forum system for discussion of var-
ious topics among users and it is a large-scale application. Person-
alBlog and JGossip have also been used as benchmark applications
in a related work [29]. The LOC counts do not include library clas-
ses. All these applications differ in functionality and usage. Yet,
contributions or inputs from anonymous users are common in
these applications. Therefore, XSS vulnerability is a serious security
concern since a malicious user may easily trick many innocent
users through exploiting an XSS hole.

4.3. Experiment

We conducted experiments on each test subject by performing
the following procedure. First, we specified the directory of the
subject’s source folder for saferXSS, set the tool in strict mode,
and ran it. The tool analyzed all the Java files and modified the pro-
grams with potential XSSVs. It also produced the XSS vulnerability
report which contains information about modified program state-

Fig. 4. Login Servlet program secured with ESAPI’s security APIs and the report produced by the algorithm.

L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478 473

ments (such as the one shown in Fig. 4). Independently, we also in-
spected the source code of each subject to confirm the potential
XSSVs reported by the tool. Table 1 shows the results of the tasks
performed by the tool. One potential XSSV corresponds to one pro-
gram statement (i.e., a pv-out). Table 2 shows the statistics ob-
tained from our code inspection and the tool. It shows the
numbers of real XSSVs (inspected by us) and potential XSSVs (re-
ported by the tool) corresponding to each type of HTML context
where untrusted data is referenced. We observed that the real
XSSVs present in the test subjects are mainly caused by improper
input sanitization (Classifieds, Events), total absence of sanitization
(Roomba), or failure to identify all the input sources (PersonalBlog,
JGossip). Note that potential XSSVs include both real XSSVs and
false positives.

Second, we installed ESAPI project into the modified subject, set
up both the original and modified subjects on Eclipse,1 and de-
ployed them on Tomcat 6.0 server.2 We also configured the database

connections with MySQL 5.03 and ran the subject’s SQL files on MyS-
QL database to create the required tables.

Third, based on the XSS vulnerability report produced by the
tool, we manually created a test suite, called functional test, in
which a test case was formed for each modified program state-
ment. This test suite was designed to test if the modified state-
ments still produce the HTML outputs as intended. We then
manually executed the test cases on both the original and modified
subjects and compared the results (i.e., the resulting HTML docu-
ments). If the modified subject produces the same output as the
original subject for a given test case, it is counted as one test passed
(we did not consider the actual functional requirements of the sub-
ject). Otherwise, it is counted as one test failed.

Fourth, based on the real XSSV information inspected by us, we
created another test suite, called XSS test, in which a set of test
cases was formed for each real XSSV. Each test case set was con-
structed with a variety of XSS attack vectors designed to exploit
a specific XSSV. The attack vectors were crafted based on the HTML
context and escaping statement information reported by the tool.
The attack patterns were also referenced from RSnake [17] and
Kie _zun et al.’s attack library [33]. They were crafted in such a
way that a successful attack results in an alert message or a mal-
formed web page. If no attack from a given set of test cases suc-
ceeds, it is counted as one test passed. If one of the attacks from
the set succeeds, it is counted as one test failed. We again manually
executed the test cases on both the original and modified subjects,
and verified the results. As an illustration, some XSS attack pat-
terns and the results of their executions on both the original and
modified codes are shown in Table 3. The web pages shown in
the first column are the places the attacks occurred. The attack vec-
tors were injected into the input parameters shown in the third
column. The injection may not take place in the same web page
where the attack occurred depending on the stored and reflected
XSS scenarios. For example, to expose the XSSV in the web page
‘‘bookings.step3’’ of Roomba, the attack vector ‘‘’; alert(‘XSSed’);’’
was injected into the HTTP request GET parameter ‘‘firstname’’ in
the web page ‘‘bookings.step1’’ where the data was then stored
into the database.

Finally, we recorded the results of functional and XSS test cases
executed on both original and modified test subjects. The results
are listed in Table 4.

4.4. Result and discussion

4.4.1. Functional integrity
As shown in Tables 1 and 2, we observed false positives pro-

duced by the tool in all the test subjects (#Potential XSSVs – #Real
XSSVs) because some of the statements are not exploitable by
manipulating the values of user inputs. We found that some data
retrieved from the database are actually defined by the program-

Java
Files

XSSV Remover

Context Finder

saferXSS

Program Analyzer

Soot

Preprocessor

XSSV Detector

Data Tracer

Identifier

Modified
programs

CFG

XSSV
information

 Output

ESAPI

Code Wrapper

XSSV
report

Fig. 5. Architecture of saferXSS.

Table 1
XSS vulnerabilities removed by saferXSS tool.

Test subject #Potential XSSVs #Modified statements #Modified files

Events 81 81 11
Classifieds 123 123 10
Roomba 153 153 28
PersonalBlog 84 84 14
JGossip 312 312 40

Table 2
Real XSS vulnerabilities found in the test subjects and potential XSS vulnerabilities
reported by saferXSS tool, which correspond to each HTML context type.

HTML context #Real XSSVs/#Potential XSSVs

Events Classifieds Roomba PersonalBlog JGossip

HTML element 0/0 0/85 62/78 0/35 12/85
HTML attribute 9/28 9/17 42/45 0/12 12/37
JavaScript 0/0 0/0 2/2 0/0 0/3
CSS 0/0 0/0 0/0 0/0 0/83
URL 11/53 10/21 18/23 1/11 4/101
Rule#0 0/0 0/0 5/5 0/26 0/3
Total 20/81 19/123 129/153 1/84 28/312

1 http://www.eclipse.org
2 http://www.tomcat.apache.org 3 http://www.mysql.com

474 L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478

http://www.eclipse.org
http://www.tomcat.apache.org
http://www.mysql.com

mer or the database (e.g., auto-increment primary key). Those data
are not exploitable. Such false positives are expected because the
XSSV detection phase of our proposed approach tends to be conser-
vative (discussed in Section 3.1). As shown in Table 2, 5 cases from
Roomba, 26 cases from PersonalBlog, and 3 cases from JGossip cor-
respond to Rule#0. From our code inspection, we observed that
the five cases from Roomba are real XSSVs whereas all the cases
from PersonalBlog and JGossip are false positives. Regardless, all
those 34 cases were secured with the tool’s default sanitization
method which returns an empty string. Therefore, as shown in
the functional test results in Table 4, the tests corresponding to
those cases failed for the modified test subjects. In a real scenario,
a user may also choose the lenient mode; and based on the vulner-
ability information provided by the tool, he may decide whether to
sanitize the untrusted data or to ignore the risk. For all other test
cases, we confirmed that the resulting HTML documents of both
the original and modified subjects were the same. Therefore, the
results show that the proposed escaping procedure performed on
the cases belonging to Rule#1–Rule#5 does not affect the intended
HTML outputs of the programs.

4.4.2. Effectiveness
As the numbers of modified statements in Table 1 show, the

saferXSS tool secured all the potential XSSVs identified by the tool.
From our manual inspection, the potential XSSVs reported by the
tool include all the real XSSVs found in the test subjects. As the
XSS test results in Table 4 show, the attacks from XSS test suite
successfully exploited all the real XSSVs in all the original subjects.
None of the attacks was successful against the modified subjects.
These results confirm that the real XSSVs inspected by us are actu-
ally exploitable. Quantitatively, the saferXSS tool removed 100%
(197/197) of the real XSSVs in the test subjects with the precision
of 26.2% (#real/#potential = 197/753). More importantly, this
experiment demonstrates that the proposed approach is effective
in completely removing all the real XSSVs.

4.5. Limitation

Among the three types of XSS attacks, our current approach
does not prevent DOM-based XSS as it would require the analysis
of client side scripts. Our current tool is only able to analyze server
side scripts. If such analysis is possible in future work, the same
XSSV removal approach proposed by us can be used to address
DOM-based XSS. Also, our tool applies ESAPI’s escaping APIs only
when the HTML context corresponds to the contexts defined in
Rule#1–Rule#5. Untrusted data referenced in any other contexts
are unconditionally removed by the tool when set as strict mode.

Our approach does not track information flow across web pages.
Thus the tool loses precision when an untrusted variable is first
stored in a data store such as session objects and later referenced
in an HTML output statement in a different web page. However,
in order to prevent stored XSS, our proposed approach treats data
accessed from such indirect input sources as untrusted and then
indiscriminately applies escaping procedures to all untrusted data.
As discussed in Section 3.1, this method causes no harm as long as
the input is to be referenced as a data in an HTML document.

Our current approach is only targeted at Java-based web appli-
cations though its logic can be easily extended to other program-
ming languages. Furthermore, our method modifies program
source code instead of rewriting program bytecode. This is ineffec-
tive when the application source code is not available. However,
our approach not only performs XSSV removal but also reports
the statements modified and the statements that have security
risks (in lenient mode) so that user can take further actions. As
such, source code access is still required. It could though be futureTa

bl
e

3
Ex

am
pl

e
of

X
SS

at
ta

ck
s

pe
rf

or
m

ed
on

or
ig

in
al

an
d

m
od

ifi
ed

te
st

su
bj

ec
ts

.

W
eb

pa
ge

H
TM

L
co

n
te

xt
A

tt
ac

k
ve

ct
or

O
ri

gi
n

al
C

od
e

R
es

u
lt

M
od

ifi
ed

C
od

e
R

es
u

lt

R
oo

m
ba

/
vi

ew
Ta

bl
e

R
u

le
#

0
(U

R
L

in
si

de
Ja

va
Sc

ri
pt

>
c
h
o
s
e
n
T
a
b
l
e
=
’
’
;
!
–
‘
‘
<
X
S
S
>
=

<
s
c
r
i
p
t
>
v
a
r
n
e
w
U
r
l

=
‘
‘
v
i
e
w
T
a
b
l
e
.
j
s
p
?
t
a
b
l
e
I
d
=
’
’

+
<
%
=
c
h
o
s
e
n
T
a
b
l
e
%
>
<
/
s
c
r
i
p
t
>

M
al

-f
or

m
ed

w
eb

pa
ge

<
s
c
r
i
p
t
>
v
a
r
n
e
w
U
r
l

=
‘
‘
v
i
e
w
T
a
b
l
e
.
j
s
p
?
t
a
b
l
e
I
d
=
’
’

+
<
%
=
s
a
f
e
r
X
S
S
.
e
m
p
t
y
S
t
r
A
P
I

(
c
h
o
s
e
n
T
a
b
l
e
)
%
>
<
/
s
c
r
i
p
t
>

N
o

m
al

-f
or

m
ed

w
eb

pa
ge

JG
os

si
p/

js
pf

.
m

es
sa

ge
Fo

rm
H

TM
L

el
em

en
t

n
a
m
e
=
<
S
C
R
I
P
T
>
a
l
e
r
t

(
‘
X
S
S
e
d
’
)
<
/
S
C
R
I
P
T
>

<
t
d
>
<
%
=
r
e
q
u
e
s
t
.
g
e
t
P
a
r
a
m
e
t
e
r

(
‘
‘
n
a
m
e
’
’
)
%
>
<
/
t
d
>

A
le

rt
m

es
sa

ge
‘‘X

SS
ed

’’
<
t
d
>
<
%
=
E
S
A
P
I
.
e
n
c
o
d
e
r
(
)
.
e
n
c
o
d
e
F
o
r
H
T
M
L

(
r
e
q
u
e
s
t
.
g
e
t
P
a
r
a
m
e
t
e
r
(
‘
‘
n
a
m
e
’
’
)
)
%
>
<
/
t
d
>

N
o

al
er

t
m

es
sa

ge
Ev

en
ts

/L
og

in
H

TM
L

at
tr

ib
u

te
q
u
e
r
y
s
t
r
i
n
g
=
’
’
;
!
–
‘
‘
<
X
S
S
>
=

<
i
n
p
u
t
t
y
p
e
=
‘
h
i
d
d
e
n
’
n
a
m
e

=
‘
q
u
e
r
y
s
t
r
i
n
g
’
v
a
l
u
e
=
<
%

=
g
e
t
P
a
r
a
m
(
r
e
q
u
e
s
t
,

‘
‘
q
u
e
r
y
s
t
r
i
n
g
’
’
)
%
>
>

M
al

-f
or

m
ed

w
eb

pa
ge

<
i
n
p
u
t
t
y
p
e
=
‘
h
i
d
d
e
n
’
n
a
m
e
=
‘
q
u
e
r
y
s
t
r
i
n
g
’
v
a
l
u
e

=
‘
’
’
+
E
S
A
P
I
.
e
n
c
o
d
e
r
(
)
.
e
n
c
o
d
e
F
o
r
H
T
M
L
A
t
t
r
i
b
u
t
e

(
g
e
t
P
a
r
a
m
(
r
e
q
u
e
s
t
,
‘
‘
q
u
e
r
y
s
t
r
i
n
g
’
’
)
%
>
>

N
o

m
al

-f
or

m
ed

w
eb

pa
ge

R
oo

m
ba

/
bo

ok
in

gs
.s

te
p3

Ja
va

-S
cr

ip
t

f
i
r
s
t
n
a
m
e
=
’
;
a
l
e
r
t
(
‘
X
S
S
e
d
’
)
;

<
s
c
r
i
p
t
>
v
a
r
f
i
r
s
t
n
a
m
e

=
<
%
=
r
s
.
g
e
t
S
t
r
i
n
g

(
‘
‘
f
i
r
s
t
n
a
m
e
’
’
)
%
>
;
<
/
s
c
r
i
p
t
>

A
le

rt
m

es
sa

ge
‘‘X

SS
ed

’’
<
s
c
r
i
p
t
>
v
a
r
f
i
r
s
t
n
a
m
e
=
<
%
=
E
S
A
P
I
.
e
n
c
o
d
e
r
(
)
.

e
n
c
o
d
e
F
o
r
J
a
v
a
S
c
r
i
p
t
(
r
s
.
g
e
t
S
t
r
i
n
g

(
‘
‘
f
i
r
s
t
n
a
m
e
’
’
)
)
%
>
;
<
/
s
c
r
i
p
t
>

N
o

al
er

t
m

es
sa

ge

Pe
rs

on
al

B
lo

g/
de

le
te

po
st

U
R

L
i
d
=
‘
‘
;
<
S
C
R
I
P
T
>
a
l
e
r
t

(
‘
X
S
S
e
d
’
)
<
/
S
C
R
I
P
T
>

<
a
h
r
e
f
=
’
’
d
e
l
e
t
e
P
o
s
t
.
d
o
?
m
e
t
h
o
d

=
e
x
e
c
u
t
e
F
i
n
i
s
h
&
p
o
s
t
I
d
=
<
%
=
i
d
%
>
’
’
>

A
le

rt
m

es
sa

ge
‘‘X

SS
ed

’’
<
a
h
r
e
f
=
’
’
d
e
l
e
t
e
P
o
s
t
.
d
o
?
m
e
t
h
o
d
=
e
x
e
c
u
t
e

F
i
n
i
s
h
&
p
o
s
t
I
d
=
<
%
=
E
S
A
P
I
.
e
n
c
o
d
e
r
(
)
.

e
n
c
o
d
e
F
o
r
U
R
L
(
i
d
)
%
>
’
’
>

N
o

al
er

t
m

es
sa

ge

L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478 475

work to include this feature (bytecode rewriting) into our tool so
that users could choose the preferred modification method.

5. Related work

Based on the way the XSS threat is mitigated, related ap-
proaches can be classified into three types— input validation and
XSS testing, vulnerability detection, and attack prevention. These
existing approaches focus on finding vulnerabilities present in
applications or preventing XSS attacks with runtime monitors. By
contrast, our approach focuses on removing XSSVs by using escap-
ing mechanisms that prevent special characters contained in user
inputs from invoking client script interpreters. This method is sim-
ilar to Thomas et al.’s method [18] which removes SQL injection
vulnerabilities by using prepared statements. However, their
approach is not designed to remove XSSVs. Unlike securing a SQL
statement with a prepared statement, the technique of securing
an HTML output statement with an escaping API is more complex
as it has to take into consideration the HTML context and the
appropriate API to use.

5.1. Input validation and XSS testing

In software testing, both specification-based [19] and code-
based [20,21] input validation testing approaches have been pro-
posed. As input validation is often used as a key to enforce security,
test cases that test the adequacy of input validation schemes could
expose some XSSVs. However, these approaches are not suitable
for finding all the XSSVs in the programs. And it is hard to deter-
mine the adequacy of test suite for the coverage of the XSSVs.
Shahriar and Zulkernine [22] proposed a fault-based XSS testing
approach which creates mutants for potential XSSVs using 11
mutation operators. Only test cases which contain adequate XSS
attack vectors could induce different program behaviors between
original and mutated program statements. However, their method
is not yet practical as it requires users to identify all potential
XSSVs and generate mutants by hand.

5.2. Vulnerability detection

These approaches are mainly based on static analysis tech-
niques. Static approaches could in principal prove the absence of
vulnerabilities. However, as they tend to generate many false
alarms, later approaches incorporate dynamic analysis techniques
to improve the accuracy.

5.2.1. Static taint analysis
These approaches track the flow of user inputs and check if any

of them reaches sensitive program points (e.g., HTML output state-
ments) without being properly sanitized. For tracking information
flow, flow-sensitive, interprocedural, and context-sensitive data

flow analysis techniques are used [23–25]. Livshits and Lam’s ap-
proach [23] is based on points-to analysis using binary decision
diagrams. Users are required to specify vulnerability patterns in a
programming query language. Xie and Aiken’s approach [24] is
based on symbolic execution. Pixy [25] enhances the precision of
data flow tracking by alias analysis. However, these approaches
lose precision in the presence of custom sanitization functions.
Some approaches conservatively assume that all those functions
return unsafe data [25] or some request users to explicitly state
the correctness of those functions [23,24]. Hence, false positives
are inherent in this type of approaches.

5.2.2. Static string analysis
These approaches use formal languages to conservatively char-

acterize the set of possible values a string variable may contain at
sensitive program points [26,27]. Minamide [26] models the effects
of string operations using finite state automata and language trans-
ducers, and checks the presence of ‘‘<script>’’ tags in untrusted
data. Wassermann and Su [27] adapted Minamide’s work and en-
hanced the detection of JavaScript contents in untrusted data by
checking the possible values of untrusted data against the policies
which specify various ways of invoking the JavaScript interpreter.
However, these approaches still have limitations in modeling
complex string operations such as character manipulation. Thus,
these approaches also adopt overly conservative assumptions
which often result in false alarms.

5.2.3. Combined static and dynamic taint analysis
These approaches adopt dynamic analysis phase to reduce the

false positive rate inherent in static analysis phase. In Huang
et al. [28], users are required to specify pre-conditions of sensitive
functions (i.e., functions which contain HTML output statements)
and post-conditions of sanitization functions. During runtime,
these conditions are checked for conformance before executing
any sensitive function. Martin and Lam [29] and Lam et al. [30]
combine static analysis and dynamic monitoring to perform opti-
mized information flow analysis that finds user-specified vulnera-
bility patterns and apply model checking for generating attack
vectors that expose real vulnerabilities. However, the effectiveness
of these approaches depends on the completeness of vulnerability
specification provided by user. Saner [31] checks the adequacy of
sanitization functions motivated by the fact that existing static
analysis approaches do not identify the faulty sanitization func-
tions. Wassermann et al.’s approach [32] models the semantics of
string operations based on Minamide’s work [26], and performs
concolic execution on PHP programs to collect path constraints
and generate concrete test inputs that expose vulnerabilities. Sim-
ilarly, Kie _zun et al. [33] performs concolic execution to capture
program path constraints and uses a string constraint solver to
generate test inputs that explore various program paths. At sensi-
tive program points, Kie _zun et al. exercise two sets of test inputs—

Table 4
Results of functional and XSS test cases executed on original and modified test subjects.

Subject Test suite Original subject Modified subject

Events Functional All passed All passed
XSS 20 tests failed All passed

Classifieds Functional All passed All passed
XSS 19 tests failed All passed

Roomba Functional All passed 5 tests failed
XSS 129 tests failed All passed

PersonalBlog Functional All passed 26 tests failed
XSS 1 test failed All passed

JGossip Functional All passed 3 tests failed
XSS 28 tests failed All passed

476 L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478

one set contains valid inputs and another set contains XSS attack
vectors. Then it checks the difference between the resulting HTML
outputs.

In general, dynamic analysis-based approaches provide more
accuracy than static analysis-based approaches but come at the
cost of potentially complex frameworks to enable dynamic execu-
tion. Furthermore, concolic methods are known to suffer from state
space explosion problem and thus, these methods may not cover
all the code space (e.g., Kie _zun et al. [33] only achieved maximum
50% of the code in their experiments). This weakness might result
in false negatives. By contrast, although our method identifies po-
tential vulnerabilities using static analysis-based approach, it auto-
matically secures all identified potential vulnerabilities (with very
minimal user interaction required for lenient mode) by inserting
escaping routines in appropriate code locations.

5.3. Attack prevention

These techniques use dynamic monitoring systems, which are
deployed on either server-side or client-side, to prevent real time
XSS attacks.

In server-side methods, XSSDS [34] and XSS-Guard [35] set up a
proxy between client and server, and check whether the input
parameters in an HTML request become part of the client side
scripts in the HTML response page and whether those scripts are
actually intended by the application. Robertson and Vigna [36]
proposed a web application framework that enforces strong typing
of HTML documents so that intended document structures and in-
puts referenced in the documents can be separated and violations
of intended document structures can be checked at runtime. Resin
framework [37] provides programmers with interfaces for generat-
ing code assertions that define security policies while writing
application code; and the framework checks for conformance of
the defined security policies during runtime.

Client-side methods are mainly intended for clients. Beep [38]
enhances the client’s browser with the capability to detect mali-
cious scripts based on the security policy provided by the client
and prevent any malicious scripts from being executed. Similarly,
Noxes [39] detects potential XSS attacks using the filter rules in-
ferred from the web-browsing actions of the client.

In general, these approaches are effective at preventing real
time attacks as they could intercept actual runtime values and
check against security policies. However, these approaches are
runtime-based and some approaches require programmers to de-
velop applications in accordance with the requirements of the pro-
posed runtime monitoring frameworks. By contrast, we provide a
static program analysis method that removes XSSVs from applica-
tions before deployment.

6. Conclusion

In this paper, we presented a two-phase approach for finding
and removing potential XSSVs in server programs. The first phase
adopts a taint-based analysis approach to track the flow of user in-
puts into HTML output statements and identify potentially vulner-
able statements. The second phase uses pattern matching and data
dependency analysis to identify the HTML contexts in which the
user inputs are referenced and the required escaping mechanisms
that prevent code injection. Then it performs source code genera-
tion and replacement to secure potentially vulnerable statements
with proper escaping APIs. Some of the existing XSS mitigation
techniques are effective at detecting XSSVs or preventing XSS at-
tacks; however they do not remove XSSVs. As more and more
sophisticated attack patterns are discovered, vulnerabilities if not
removed could be exploited anytime. We presented that the pro-

posed approach is fully focused on removing XSSVs with minimal
user intervention. We also developed the saferXSS tool that auto-
mates the proposed approach. In our evaluation, the tool was suc-
cessful in removing all the real XSSVs found in five test subjects.

In future work, we intend to enhance both the current approach
and the tool: (1) add client side script analysis in our proposed ap-
proach to prevent DOM-based XSS; (2) develop an analysis tech-
nique that tracks the flow of user inputs stored into persistent
data structures and across web pages to accurately detect the influ-
ence of user inputs in HTML output statements; (3) discover up-to-
date and new escaping mechanisms that could secure the untrust-
ed data referenced in other HTML contexts not specified in Rule#1-
Rule#5. Furthermore, we would like to explore the applicability of
proposed approach in other security issues by making full use of
ESAPI’s capabilities.

References

[1] OWASP, November 2009, OWASP Top Ten project 2010. <http://
www.owasp.org> (accessed January 2010).

[2] CWE/SANS, 2010, Top 25 Most Dangerous Programming Errors. <http://
www.applicure.com/blog/cwe-sans-top-25-dangerous-programming-errors>
(accessed June 2010).

[3] CWE, June 2010, CWE-79: Improper Neutralization of Input During Web Page
Generation (‘Cross-site Scripting’). <http://cwe.mitre.org/data/definitions/
79.html> (accessed June 2010).

[4] OWASP, June 2010, XSS (Cross Site Scripting) Prevention Cheat Sheet. <http://
www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet> (accessed January 2010).

[5] US-CERT, Microsoft .NET Framework Contains a Cross-Site Scripting
Vulnerability, October 2006. <http://www.kb.cert.org/vuls/id/455604>
(accessed January 2010).

[6] </xssed>, May 2010, Vodafone.com XSS helps you trace unregistered ‘‘Pay As
You Go’’ subscribers. <http://www.xssed.com/newslist> (accessed June 2010).

[7] A. Mueller, Cross Site Scripting (XSS), May 2009. <http://elegantcode.com/
2009/05/28/cross-site-scripting-xss/> (accessed January 2010).

[8] ESAPI, OWASP Enterprise Security API, 2009. <http://www.owasp.org/
index.php/ESAPI#tab=Project_Details> (accessed February 2010).

[9] A. Klein, July 2005, DOM based Cross Site Scripting or XSS of the Third Kind.
<http://www.webappsec.org/projects/articles/071105.shtml> (accessed April
2010).

[10] L.K. Shar, H.B.K. Tan, Auditing the defense against cross site scripting in web
applications, in: Proceedings of the 5th International Conference on Security
and Cryptography (SECRYPT’10), 2010, pp. 505–511.

[11] S. Sinha, M.J. Harrold, G. Rothermel, Interprocedural control dependence, ACM
Trans Softw Eng Methodol 10 (2) (2001) 209–254.

[12] Soot, June 2008. Soot: a Java Optimization Framework. <http://
www.sable.mcgill.ca/soot/> (accessed February 2009).

[13] W3C, 1999, HTML 4.01 Specification. <http://www.w3.org/TR/html401/>
(accessed April 2010).

[14] W3C, 2002, XHTML 1.0 Specification. <http://www.w3.org/TR/xhtml1/>
(accessed August 2011).

[15] Sourceforge, Open source website. <http://www.sourceforge.net> (accessed
February 2009).

[16] GotoCode, Open source website. <http://www.gotocode.com> (accessed
September 2009).

[17] RSnake, XSS (Cross Site Scripting) Cheat Sheet. <http://ha.ckers.org/xss.html>
(accessed March 2010).

[18] S. Thomas, L. Williams, T. Xie, On automated prepared statement generation to
remove SQL injection vulnerabilities, Inform. Softw. Technol. 51 (3) (2009)
589–598.

[19] J.H. Hayes, A.J. Offutt, Input validation analysis and testing, Empirical Softw.
Eng. 11 (4) (2006) 493–522.

[20] H. Liu, H.B.K. Tan, Testing input validation in web applications through
automated model recovery, J. Syst. Softw. 81 (2) (2008) 222–233.

[21] H. Liu, H.B.K. Tan, Covering code behavior on input validation in functional
testing, Inform. Softw. Technol. 51 (2) (2009) 546–553.

[22] H. Shahriar, M. Zulkernine, MUTEC: mutation-based testing of cross site
scripting, in: Proceedings of the 5th International Workshop on Software
Engineering for Secure Systems (SESS’09), 2009, pp. 47–53.

[23] V.B. Livshits, M.S. Lam, Finding security errors in Java programs with static
analysis, in: Proceedings of the 14th Usenix Security Symposium (USENIX
Security’05), 2005, pp. 271–286.

[24] Y. Xie, A. Aiken, Static detection of security vulnerabilities in scripting
languages, in: Proceedings of the 15th USENIX Security Symposium (USENIX
Security’06), 2006, pp. 179–192.

[25] N. Jovanovic, C. Kruegel, E. Kirda, Pixy: a static analysis tool for detecting web
application vulnerabilities, in: Proceedings of the IEEE Symposium on Security
and Privacy (S&P’06), 2006, pp. 258–263.

L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478 477

http://www.owasp.org
http://www.owasp.org
http://www.applicure.com/blog/cwe-sans-top-25-dangerous-programming-errors
http://www.applicure.com/blog/cwe-sans-top-25-dangerous-programming-errors
http://www.cwe.mitre.org/data/definitions/79.html
http://www.cwe.mitre.org/data/definitions/79.html
http://www.owasp.org/index.php/
http://www.owasp.org/index.php/
http://www.kb.cert.org/vuls/id/455604
http://www.xssed.com/newslist
http://www.elegantcode.com/2009/05/28/cross-site-scripting-xss/
http://www.elegantcode.com/2009/05/28/cross-site-scripting-xss/
http://www.owasp.org/index.php/
http://www.owasp.org/index.php/
http://www.webappsec.org/projects/articles/071105.shtml
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/xhtml1/
http://www.sourceforge.net
http://www.gotocode.com
http://www.ha.ckers.org/xss.html

[26] Y. Minamide, Static approximation of dynamically generated web pages, in:
Proceedings of the 14th International Conference on World Wide Web
(WWW’05), 2005, pp. 432–441.

[27] G. Wassermann, Z. Su, Static detection of cross-site scripting vulnerabilities,
in: Proceedings of the 30th International Conference on Software Engineering
(ICSE’08), 2008, pp. 171–180.

[28] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, S.-Y. Kuo, Securing web
application code by static analysis and runtime protection, in: Proceedings of
the 13th International Conference on World Wide Web (WWW’04), 2004, pp.
40–52.

[29] M. Martin, M.S. Lam, Automatic generation of XSS and SQL injection attacks
with goal-directed model checking, in: Proceedings of the 17th USENIX
Security Symposium (USENIX Security’08), 2008, pp. 31–43.

[30] M.S. Lam, M. Martin, B. Livshits, J. Whaley, Securing web applications with
static and dynamic information flow tracking, in: Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, 2008, pp. 3–12.

[31] D. Balzarotti, et al., Saner: composing static and dynamic analysis to validate
sanitization in web applications, in: Proceedings of the IEEE Symposium on
Security and Privacy, 2008, pp. 387–401.

[32] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, Z. Su, Dynamic test
input generation for web applications, in: Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA’10), 2008, 249–260.

[33] A. Kie _zun, P.J. Guo, K. Jayaraman, M.D. Ernst, Automatic creation of SQL
injection and cross-site scripting attacks, in: Proceedings of the 31st
International Conference on Software Engineering (ICSE’09), 2009, pp. 199–
209.

[34] M. Johns, B. Engelmann, J. Posegga, XSSDS: server-side detection of cross-site
scripting attacks, in: Proceedings of the Annual Computer Security
Applications Conference (ACSAC’08), 2008, pp. 335–344.

[35] P. Bisht, V.N. Venkatakrishnan, XSS-Guard: precise dynamic prevention of
cross-site scripting attacks, in: Proceedings of the 5th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’08), 2008, pp. 23–43.

[36] W. Robertson, G. Vigna, Static enforcement of web application integrity
through strong typing, in: Proceedings of the 18th USENIX Security
Symposium (USENIX Security’09), 2009, pp. 283–298.

[37] A. Yip, X. Wang, N. Zeldovich, M.F. Kaashoek, Improving application Security
with Data Flow Assertions, in: Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP’09), 2009, pp. 291–304.

[38] T. Jim, N. Swamy, M. Hicks, Defeating script injection attacks with browser-
enforced embedded policies, in: Proceedings of the 16th International
Conference on World Wide Web (WWW’07), 2007, pp. 601–610.

[39] E. Kirda, C. Kruegel, G. Vigna, N. Jovanovic, Client-side cross-site scripting
protection, Comput. Security 28 (2009) 592–604.

478 L.K. Shar, H.B.K. Tan / Information and Software Technology 54 (2012) 467–478

	Automated removal of cross site scripting vulnerabilities in web applications
	Citation

	Automated removal of cross site scripting vulnerabilities in web applications
	1 Introduction
	2 Background
	2.1 XSS injection
	2.2 XSS prevention rules
	2.3 ESAPI’s escaping APIs

	3 Proposed approach
	3.1 XSS vulnerability detection
	3.2 XSS vulnerability removal
	3.2.1 HTML context discovery
	3.2.2 Secure source code replacement

	4 Evaluation
	4.1 Implementation
	4.2 Test subject
	4.3 Experiment
	4.4 Result and discussion
	4.4.1 Functional integrity
	4.4.2 Effectiveness

	4.5 Limitation

	5 Related work
	5.1 Input validation and XSS testing
	5.2 Vulnerability detection
	5.2.1 Static taint analysis
	5.2.2 Static string analysis
	5.2.3 Combined static and dynamic taint analysis

	5.3 Attack prevention

	6 Conclusion
	References

