Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

11-2014

Web application vulnerability prediction using hybrid program
analysis and machine learning

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Lionel BRIAND

Hee Beng Kuan TAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

6‘ Part of the Information Security Commons, and the Programming Languages and Compilers
Commons

Citation

SHAR, Lwin Khin; BRIAND, Lionel; and TAN, Hee Beng Kuan. Web application vulnerability prediction using
hybrid program analysis and machine learning. (2014). IEEE Transactions on Dependable and Secure
Computing. 12, (6), 688-707.

Available at: https://ink.library.smu.edu.sg/sis_research/4895

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

688

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

Web Application Vulnerability Prediction Using
Hybrid Program Analysis and Machine Learning

Lwin Khin Shar, Member, IEEE, Lionel C. Briand, Fellow, IEEE, and
Hee Beng Kuan Tan, Senior Member, IEEE

Abstract—Due to limited time and resources, web software engineers need support in identifying vulnerable code. A practical
approach to predicting vulnerable code would enable them to prioritize security auditing efforts. In this paper, we propose using a set of
hybrid (static+dynamic) code attributes that characterize input validation and input sanitization code patterns and are expected to be
significant indicators of web application vulnerabilities. Because static and dynamic program analyses complement each other, both
techniques are used to extract the proposed attributes in an accurate and scalable way. Current vulnerability prediction techniques rely
on the availability of data labeled with vulnerability information for training. For many real world applications, past vulnerability data is
often not available or at least not complete. Hence, to address both situations where labeled past data is fully available or not, we apply
both supervised and semi-supervised learning when building vulnerability predictors based on hybrid code attributes. Given that
semi-supervised learning is entirely unexplored in this domain, we describe how to use this learning scheme effectively for vulnerability
prediction. We performed empirical case studies on seven open source projects where we built and evaluated supervised and
semi-supervised models. When cross validated with fully available labeled data, the supervised models achieve an average of 77
percent recall and 5 percent probability of false alarm for predicting SQL injection, cross site scripting, remote code execution and file
inclusion vulnerabilities. With a low amount of labeled data, when compared to the supervised model, the semi-supervised model
showed an average improvement of 24 percent higher recall and 3 percent lower probability of false alarm, thus suggesting
semi-supervised learning may be a preferable solution for many real world applications where vulnerability data is missing.

Index Terms—Vulnerability prediction, security measures, input validation and sanitization, program analysis, empirical study

1 INTRODUCTION

EB applications play an important role in many of our

daily activities such as social networking, email,
banking, shopping, registrations, and so on. As web soft-
ware is also highly accessible, web application vulnerabil-
ities arguably have greater impact than vulnerabilities in
other types of software. Web developers are directly respon-
sible for the security of web applications. Unfortunately,
they often have limited time to follow up with new arising
security issues and are often not provided with adequate
security training to become aware of state-of-the-art web
security techniques.

According to OWASP’s Top 10 Project [1], SQL injection
(SQLD), cross site scripting (XSS), remote code execution
(RCE), and file inclusion (FI) are among the most common
and serious web application vulnerabilities threatening the
privacy and security of both clients and applications nowa-
days. To address these security threats, many web vulnera-
bility detection approaches, such as static taint analysis,
dynamic taint analysis, modeling checking, symbolic and

LK. Shar and L.C. Briand are with the Interdisciplinary Centre for ICT
Security, Reliability and Trust, University of Luxembourg, 4 rue Alphonse
Weicker, L-2721, Luxembourg.

E-mail: {lwinkhin.shar, lionel.briand |@uni.lu.

H.B.K. Tan is with the Department of Information Engineering, School of
Electrical & Electronic Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798. E-mail: ibktan@ntu.edu.sg.

Manuscript received 24 Oct. 2013; revised 24 Aug. 2014; accepted 22 Oct.
2014. Date of publication 19 Nov. 2014; date of current version 13 Nov. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TDSC.2014.2373377

4

concolic testing, have been proposed. Static taint analysis
approaches are scalable in general but are ineffective in
practice due to high false positive rates [11], [21]. Dynamic
taint analysis [11], model checking [22], symbolic [27] and
concolic [21] testing techniques can be highly accurate as
they are able to generate real attack values, but have scal-
ability issues for large systems due to path explosion prob-
lem [30]. There are also scalable vulnerability prediction
approaches such as Shin et al. [23]. But the granularity of
current prediction approaches is coarse-grained: they iden-
tify vulnerabilities at the level of software modules or com-
ponents. Hence, alternative or complementary vulnerability
detection solutions that are scalable, accurate, and fine-
grained would be beneficial to web developers.

From the perspective of web developers, input validation
and input sanitization are two secure coding techniques that
they can adopt to protect their programs from such common
vulnerabilities. Input validation typically checks an input
against required properties like data length, range, type,
and sign. Input sanitization, in general, cleanses an input
string by accepting only pre-defined characters and reject-
ing others, including characters with special meaning to the
interpreter under consideration. Intuitively, an application
is vulnerable if the developers failed to implement these
techniques correctly or to a sufficient degree.

Hence, from the above observation, in this paper, we
hypothesize that code attributes that characterize validation
and sanitization code implemented in the program could be
used to predict web application vulnerabilities. Based on
this hypothesis, we propose a set of code attributes called
input validation and sanitization (IVS) attributes from which

1545-5971 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 689

we build vulnerability predictors that are fine-grained,
accurate, and scalable. The approach is fine-grained because
it identifies vulnerabilities at program statement levels. We
use both static and dynamic program analysis techniques to
extract IVS attributes. Static analysis can help assess general
properties of a program. Yet, dynamic analysis can focus on
more specific code characteristics that are complementary
to the information obtained with static analysis. We use
dynamic analysis only to infer the possible types of input
validation and sanitization code, rather than to precisely
prove their correctness, and apply machine learning on
these inferences for vulnerability prediction. Therefore, we
mitigate the scalability issue typically associated with
dynamic analysis. Thus, our proposed IVS attributes reflect
relevant properties of the implementations of input valida-
tion and input sanitization methods in web programs and
are expected to help predict vulnerabilities in an accurate
and scalable manner. Furthermore, we use both supervised
learning and semi-supervised learning methods to build
vulnerability predictors from IVS attributes, such that our
method can also be used in contexts where there is limited
vulnerability data for training.

This work is an extension of our previous work [33],
which is a pattern mining approach based on static and
dynamic analyses that classify input validation and saniti-
zation functions through the systematic extraction of their
security-related properties. The extraction is based on static
property inference and analysis of dynamic execution
traces. The enhancements and additional contributions of
this paper are as follows:

e In our previous work that only targeted SQLI and
XSS vulnerabilities, we stated that the proposed
method could be adapted to other, similar types of
vulnerabilities. In this paper, we address two
more, frequent types of vulnerabilities, which are
remote code execution and file inclusion vulnerabil-
ities. Hence, we propose additional attributes to
mine the code patterns associated with these new
types of vulnerabilities.

e We had only made use of data dependency graphs to
identify input validation and sanitization methods.
But some of these methods may be identified from
control dependency graphs, e.g. input condition
checks, which ensure that valid inputs are often
implemented through predicates. Therefore, in this
work, to better identify those methods, we leverage
control dependency information.

e We propose static slicing and dynamic execution
techniques that effectively mine both data depen-
dency and control dependency information and
describe the techniques in detail.

e We modified our prototype tool, PhpMiner, to mine
the control dependency information and to extract
additional attributes.

e We explore the use of semi-supervised learning
schemes. To the best of our knowledge, we are the first
to build vulnerability prediction models that way,
which makes such models more widely applicable.

e We conducted two sets of experiments on a set of
open source PHP applications of various sizes using

PhpMiner. First, we evaluated supervised learning
models built from IVS attributes. Based on cross vali-
dation, the model achieves 77 percent recall and 5
percent probability of false alarm, on average over
15 datasets, across SQLI, XSS, RCE, and FI vulner-
abilities. From a practical standpoint, the results
show that our approach detects many of the above
common vulnerabilities at a very small cost (low
false alarm rate), which is very promising consider-
ing that the existing approaches either report many
false warnings or miss many vulnerabilities.

e Second, we compared supervised and semi-super-

vised learning models with a low sampling rate of
20 percent (i.e., only 20 percent of the available
training data are labeled with vulnerability infor-
mation). On average, the supervised model
achieves 47 percent recall and 8 percent probability
of false alarm, whereas the semi-supervised model
achieves 71 percent recall and 5 percent probability
of false alarm. However, when compared to the
supervised model based on complete vulnerability
data, on average, the semi-supervised model
achieves the same probability of false alarm but a
6 percent lower recall. Therefore, our results sug-
gest that when sufficient vulnerability data is
available for training, a supervised model should
be favored. On the other hand, when the available
vulnerability data is limited, a semi-supervised
model is probably a better alternative.

The outline of the paper is as follows. Section 2 provides
background information. Section 3 presents our classifica-
tion scheme that characterizes input validation and saniti-
zation methods. Section 4 describes our vulnerability
prediction framework. Section 5 evaluates our vulnerability
predictors. Section 6 discusses related work. Section 7 con-
cludes our study.

2 BACKGROUND

This paper targets SQLI, XSS, RCE, and FI vulnerabilities.
These security risks, if exploited, could lead to serious
issues such as disclosure of confidential, sensitive informa-
tion, integrity violation, denial of service, loss of commercial
confidence and customer trust, and threats to the continuity
of business operations. According to CVE [6], 55,504 vulner-
abilities were found in web applications within 1999-2013.
Among them, 34 percent belong to RCE, 13.2 percent to
XSS, 10.3 percent to SQLI, and 3.8 percent to FI. Thus, these
four common vulnerabilities are responsible for 61.3 percent
of the total number of vulnerabilities found. All these types
of vulnerabilities are caused by potential weakness in web
applications regarding the way they handle user inputs.
They are briefly described using PHP code examples in the
following.

2.1 SAQL Injection

SQLI vulnerabilities occur when user input is used in data-
base queries without proper checks. It allows attackers to
trick the query interpreter into executing unintended com-
mands or accessing unauthorized data. Consider the follow-
ing code:

690 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

mysql_query (“SELECT * FROM user WHERE
uid='#.$_GET[‘id’]."'");

As the validity of input parameter $_GET is not checked,
an SQLI attack can be conducted by providing the parame-
ter id with the following values:

/login.php?id =xxx’'+0R+’'1"%3D"1

The query becomes SELECT * FROM user WHERE uid =
‘xxx’ OR ’1’ = *1’. Effectively, the attack changes the
semantics of the query to SELECT * FROM user, which pro-
vides the attacker with unauthorized access to the user
table. Like mysql_query, any other language built-in func-
tions such as mysqgl_execute that interact with the data-
base can cause SQLI.

2.2 Cross Site Scripting

XSS flaws arise when the user input is used in HTML out-

put statements without proper validation or escaping. It

allows attackers to execute scripts in the victim’s browser,

which can hijack user sessions, deface web sites, or redirect

the user to malicious sites. Consider the following code:
echoWelcome. $_GET[‘new_user’];

Similar to the above SQLI example, as the input
parameter $_GET is not checked, an XSS attack can be
conducted by providing the parameter new_user with
the following values:

<script>alert (document.cookie) ; </script>

When the victim’s browser executes the script sent by the
server, it shows the new user’s cookie values instead of the
intended user information. Using a more malicious script, a
redirection to the attacker’s server is also possible and sensi-
tive user information could be redirected. Like echo, any
other language constructs or functions such as print that
generate HTML output could cause XSS.

2.3 Remote Code Execution

RCE vulnerability refers to an attacker’s ability to execute
arbitrary program code on a target server. It is caused by
user inputs in security sensitive functions such as file sys-
tem calls (e.g., fwrite), code execution functions (e.g.,
eval), command execution functions (e.g., system), and
directory creating functions (e.g., mkdir).

It allows a remote attacker to execute arbitrary code in
the system with administrator privileges. It is an
extremely risky vulnerability, which can expose a web
site to different attacks, ranging from malicious deletion
of data to web page defacing. The following code depicts
an RCE vulnerability.

$comments = $_POST[‘comments’];

Slog = fopen (‘comments.php’, ‘'a’);

fwrite($log, '
'.'
'.’'<center>"‘.

‘Comments::’.’
‘.$comments) ;

The above code retrieves user comments and logs them
without sanitization. This means that an attacker can exe-
cute malicious requests, ranging from simple information
gathering using phpinfo() to complex attacks that
obtain a shell on the vulnerable server using shell_exec
() . Other sensitive PHP functions and operations associ-
ated with this vulnerability type include header,
preg_replace () with #/e” modifier on, fopen, $_GET
[“func_name’], S$_GET[’argument’], vassert,
create_function, andunserialize.

2.4 FileInclusion
FI vulnerability refers to an attacker’s ability to include a file
that originates from a remote (possibly an attacker’s) server
or access/include a local file that is not intended to be
accessed without proper authorization. It is caused by user
inputs being part of filenames or the use of un-initialized
variables in file operations. Consider the following code:

include (S_GET[‘file’]);

An attack may conduct a file inclusion attack using the
following values:

/include.php?file=http://evil.com/mali-
cious.php

This attack causes the vulnerable PHP program to include
and execute a malicious PHP file that may cause dangerous
program behaviors. Similar PHP commands that may cause
FI vulnerability include include_once and require.

Moreover, an FI vulnerability may also appear with PHP
operations that involve file accesses and file operations in
which the attacker may be able to view restricted files, or
even execute malicious commands on the web server that
can lead to a full compromise of the system. For example,
consider the following code:

Shandle = fopen ($S_GET[‘newPath’], "r”);

In the above case, the input newPath is received from the
HTTP GET parameter. An attacker could provide a value like

newPath—*../../../../../etc/passwd%00.
txt” in order to access the password file from the file sys-
tem. The expression ‘dot-dot-slash (../)" instructs the system
to go one directory up. The attacker has to guess how many
directories he has to go up to find the user confidential
folder on the system, but this can be easily done by trial and
error. Note that this vulnerability is known as directory tra-
versal, but we group this vulnerability together with FI as it
can also be seen as a local file inclusion.

3 CLASSIFICATION SCHEME

Before presenting our proposed approach, in this section,
we first describe the IVS attributes (listed in Table 1) on
which vulnerability predictors shall be built. Basically, these
attributes characterize various types of program functions
and operations that are commonly used (collected from var-
ious sources like [1], [17], [18]) as input validation and sani-
tization procedures to defend against web application
vulnerabilities. Using these attributes, functions and opera-
tions are classified according to their security-related prop-
erties (i.e., the type of validation- and sanitization-effects
these functions and operations may enforce on the inputs
being processed). For example, the PHP function str_re-
place(‘<’, * *, $input) removes HTML tags from the
input. Since the presence of HTML tags in $input could
cause XSS, the function has a security property that filters
HTML tags and prevents XSS.

In Table 1, static analysis-based attributes are attributes to
be extracted using static analysis alone. Hybrid analysis-based
attributes are attributes to be extracted combining static
analysis and dynamic analysis. The term ‘filter’ in Table 1
indicates a validation or sanitization process that allows
only valid strings or that performs character removal,
replacement, or escaping. All these attributes are numeric
(positive integers) and are presented next.

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 691

TABLE 1
Input Validation and Sanitization Attributes

ID

Name

Description

Static analysis-based attributes

Input accessed from HTTP request parameters such as HTTP Get

Input accessed from persistent data object such as HTTP Session
Function that returns predefined information or information not influenced by

Custom function that has caused security issues in the past
Language built-in function that has caused security issues in the past

1 Client
2 File Input accessed from files such as Cookies, XML
3 Text-database Text-based input accessed from database
4 Numeric-database Numeric-based input accessed from database
5 Session
6 Uninit Un-initialized program variable
7 Un-taint
external users
8 Known-vuln-user
9 Known-vuln-std
10 Propagate

Function or operation that propagates partial or complete value of a string

Hybrid analysis-based attributes

11 Numeric Function or operation that converts a string into a numeric

12 DB-operator Function that filters query operators such as (=)

13 DB-comment-delimiter Function that filters query comment delimiters such as (-)

14 DB-special Function that filters other database special characters different from the above, such
as (\x00) and (\x1a)

15 String-delimiter Function that filters string delimiters such as (‘) and ()

16 Lang-comment-delimiter Function that filters programming language comment delimiter characters such as (/")

17 Other-delimiter Function that filters other delimiters different from the above delimiters such as (#)

18 Script-tag Function that filters dynamic client script tags such as (<script>)

19 HTML-tag Function that filters static client script tags such as (<div>)

20 Event-handler Function that disallow the use of inputs as the values of client side event handlers
such as (onload =)

21 Null-byte Function that filters null byte (%00)

22 Dot Function that filters dot (.)

23 DotDotSlash Function that filters dot-dot-slash (../) sequences

24 Backslash Function that filters backslash (\)

25 Slash Function that filters slash (/)

26 Newline Function that filters newline (\n)

27 Colon Function that filters colon (,) or semi-colon (;)

28 Other-special Function that filters any other special characters different from the above
special characters such as parenthesis

29 Encode Function that encodes a string into a different format

30 Canonicalize Function that converts a string into its most standard, simplest form

31 Path Function that filters directory paths or URLs

32 Limit-length Function or operation that limits a string into a specific length

Dependent attribute

33 Vuln? Indicates a class label—Vulnerable or Not-Vulnerable

3.1 Static Analysis-Based Classification
Attributes 1-10 in Table 1 characterize the functions and the
program operations to be classified by static analysis only.
The first six attributes in Table 1 characterize the classifica-
tion of user inputs depending on the nature of sources. The
reason for including input sources in our classification
scheme is that most of the common vulnerabilities arise
from the misidentification of inputs. That is, developers
may implement adequate input validation and sanitization
methods but yet, they may fail to recognize all the data that
could be manipulated by external users, thereby missing
some of the inputs for validation. Therefore, in security
analysis, it is important to first identify all the input sources.
The reason for classifying the inputs into different types
is that each class of inputs causes different types of vulner-
abilities and different security defense schemes may
be required to secure these different classes of inputs. For

example, Client inputs like HTTP GET parameters should
always be sanitized before used in sinks whereas it may not
be necessary to sanitize Database inputs if they have been
sanitized prior to their storage (double sanitization might
cause security problems depending on the context). Uninit
variables are variables that are un-initialized at the point of
its usage, which could cause security problems (e.g., an
attacker could inject malicious values in HTTP parameters
having the same name as un-initialized variables by
enabling the register_global parameter in PHP config-
uration files). The reason for two types of Database inputs—
Text-database (string-type data) and Numeric-database
(numeric-type data) is to reflect the fact that string-type
data retrieved from data stores can cause second order
security attacks such as second order SQLI and stored XSS,
while it is difficult to conduct those attacks with numeric-
type data.

692 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

Un-taint refers to functions or operations that return
information not extracted from the input string (e.g.,
mysgl_num_rows). It also corresponds to functions or
logic operations that return a Boolean value. The reason for
this attribute is that since the outcome values are not
obtained from an input, the taint information flow stops at
those functions and operations and thus, a sink would not
be vulnerable from using those values.

Known-vulnerable-user corresponds to a class of custom
functions that have caused security issues in the past.
Known-vulnerable-std characterizes a class of language built-
in functions that have caused security issues in the past. For
example, according to vulnerability report CVE-2013-3238
[6], preg_replace function with the “/e” modifier
enabled has caused security issues. These functions are to
be predefined by users based on their experiences or the
information obtained from security databases (we referred
to CVE [6] and PHP security [47]).

Clearly in S;, there would also be functions and oper-
ations that do not serve any security purpose. They may
simply propagate the input. Consequently, we use the
attribute Propagate to characterize functions and opera-
tions (e.g., substring, concatenation) that do not serve
any security purpose and that simply propagate (part of)
the input.

Since the above functions and operations either have
clear definitions with respect to security requirements or
are associated with known vulnerability issues, they could
be predefined in a database and classifications can be made
statically. This database can be expanded as and when new
vulnerability analysis information is available.

3.2 Hybrid Analysis-Based Classification

Attributes 11-32 listed in Table 1 characterize the functions
to be classified by either static or dynamic analysis. This
hybrid analysis-based classification is applied for validation
and sanitization methods implemented using both standard
security functions (i.e., language built-in or custom func-
tions with known and tested security properties) and non-
standard security functions. If there are only standard secu-
rity functions to be classified, we classify them based on
their security-related information (static analysis); other-
wise, we use dynamic analysis.

In a program, various input validation and sanitization
processes may be implemented using language built-in
functions and/or custom functions. Since inputs to web
applications are naturally strings, string replacement/
matching functions or string manipulation procedures like
escaping are generally used to implement custom input val-
idation and sanitization procedures. A good security func-
tion generally consists of a set of string functions that accept
safe strings or reject unsafe strings.

These functions are clearly important indicators of vul-
nerabilities, but we need to analyze the purpose of each
validation and sanitization function since different
defense methods are generally required to prevent differ-
ent types of vulnerabilities. For example, to prevent SQLI
vulnerabilities, escaping characters that have special
meaning to SQL parsers is required whereas escaping
characters that have special meaning to client script inter-
preters is needed to prevent XSS vulnerabilities. Thus, it

is important to classify these methods implemented in a
program path into different types because, together with
their associated vulnerability data, our vulnerability pre-
dictors can learn this information and then predict future
vulnerabilities.

In Table 1, the attribute Numeric relates to 1) numeric-
type casting built-in functions or operations (e.g., $a =
(double) $b/$c); 2) language built-in numeric type
checking functions (e.g., is_numeric); and 3) custom func-
tions that return only numeric, mathematic, and/or dash ‘-’
characters (e.g., functions that validate inputs such as math-
ematic equation, postal code, or credit card number). When
an input to be used in a sink is supposed to be a numeric
type, the sink can be made safe from this input through
such functions or operations because various alphabetic
characters are typically required to conduct security attacks.

DB-operator, DB-comment-delimiter, and DB-special basi-
cally reflect functions that filter sequence of characters that
have special meaning to a database query parser. For exam-
ple, mysql_real_escape_string is one such built-in
function provided by PHP. Clearly, these attributes could
predict SQLI vulnerability.

String-delimiter reflects functions that filter single quote
() and double quote (“) characters. Lang-comment-delimiter
reflects functions that filter comment delimiters such as (/™)
that are significant to script interpreters such as JavaScript.
Other-delimiter reflects functions that filter any other com-
ment delimiters such as (#). All these attributes could be sig-
nificant vulnerability indicators because they could disrupt
the syntax of intended HTML documents, SQL queries, etc.

Script-tag reflects functions that filter sequences of char-
acters, which could invoke dynamic script interpreters such
as JavaScript, Flash, and Silverlight. HTML-tag reflects func-
tions that filter sequences of special characters such as
<body>, which have special meaning to the static HTML
interpreter. Since Script-tag and HTML-tag filter special
characters that may cause XSS, these attributes could pre-
dict XSS vulnerability. Event-handler reflects functions that
disallow the use of inputs as values of event handlers (e.g.,
onload) or other dangerous HTML attributes (e.g., src).
Inputs used as the values of event handlers can easily cause
XSS. For example, consider the following code:

If a malicious value, such as http://hackersite.
org/xss.js, is assigned to Suser_input, XSS arises.
Since the exploit does not necessarily use special characters
like <script, filtering special characters is insufficient to
prevent XSS. Instead, in such cases, only Event-handler type
functions can safely prevent XSS. Hence, Event-handler attri-
bute could predict XSS flaw.

Null-byte, Dot, DotDotSlash, Backslash, Slash, Newline,
Colon, and Other-special reflect functions that filter different
types of meta-characters. Filtering Dot (.) character is impor-
tant to handle unintended file extensions or double file
extension cases, which may cause file inclusion attacks (see
real world example at CVE-2013-3239). NullByte (%00)
characters can be used to bypass sanitization routines and
trick underlying systems into interpreting a given value
incorrectly. For example, a file value like script.
php%00. txt can trick a PHP program to see it as a non-
malicious text file but the underlying web server or the

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 693

-
| 1 e !
: o — - E
i Predictive accuracy i

Fig. 1 Proposed vulnerability prediction framework.

Fisd
o

operating system may interpret it as a PHP program. Hence,
it can be used to perform many security attacks such as file
inclusion and remote code execution.

DotDotSlash include “dot-dot-slash (../)” sequences.
These sequences can be used to conduct local file inclusion
attacks. Backslash (\) is typically used as escape character in
most escaping processes and therefore, if an input actually
contains this character, it has to be escaped first to avoid
confusion for the entire escaping process.

Like the above special characters, Slash, Newline, Colon,
and Other-special characters could also force an interpreter
to misinterpret the input data. Other-special characters
include characters such as leading and trailing spaces,
parenthesis, (|), (%), (L), ("), and ([). For example, the new-
line character (\n) could break a string into two parts where
the second part could become unintended code. The charac-
ters (*) and ([) could cause a regular-expression function to
misinterpret a regular expression. The character (%) used
in an ‘SQL-LIKE’ clause could cause unintended database-
record matches.

Hence, since the above meta-characters could cause un-
intended program behaviors and security issues, the pres-
ence or absence of functions that escape or remove those
characters from the inputs could indicate vulnerabilities.

Encode reflects functions that encode an input string into
a different format. An input may be properly sanitized
using encoding functions. For example, in <a href =
‘login.php?name = ‘ .urlencode ($input) >, the var-
iable $input is properly sanitized to be safely included in a
sink that generates a URL reference. Inversely, Canonicalize
reflects functions that transform an input string, which may
have more than one possible representation into a standard,
normal form so that malicious data disguised in a different,
possibly encoded, form can be detected. For example, given
a disguised malicious input./../../etc/passwd, PHP’s
realpath function returns the canonicalized path /etc/
passwd removing symbolic links and extra (/) characters
from the input. Path reflects functions that filter directory
paths or URLs (e.g., <a href=‘www.hack.com/hack.
js’). These functions can detect the inclusion of external or
illegitimate URLs in sensitive program locations, preventing
potential XSS, remote code execution, and file inclusion
attacks. Limit-length reflects functions that limit the length of
an input string. Such functions can limit the possibilities of

attacks to a certain extent since the number of malicious
characters that can be used is limited.

We believe that the above attributes reflect the types of
input validation and sanitization methods that are com-
monly used to prevent SQLI, XSS, RCE, and FI attacks. We
note that our list of attributes may not be exhaustive. Users
should refine and update them on a regular basis to reflect
latest vulnerability reports. As our vulnerability detection
approach is based on machine learning, it is not difficult to
re-train vulnerability predictor to learn new vulnerability
information.

4 VULNERABILITY PREDICTION FRAMEWORK

Our vulnerability modeling is based on the observations
from the analysis of many vulnerability reports in
security databases such as CVE [6] and from the study of
typical security defense methods. Our vulnerability pre-
diction framework is depicted in Fig. 1. It comprises two
main activities:

1) Hybrid program analysis. For each sink, a backward
static program slice is computed with respect to the
sink statement and the variables used in the sinks.
Each path in the slice is analyzed using hybrid (static
and dynamic) analysis to extract its validation and
sanitization effects on those variables. The path is
then classified according to its input validation and
sanitization effects inferred by the hybrid analysis.
Classifications are captured with IVS attributes
described in Section 3.

2) Building vulnerability prediction models. We then build
vulnerability prediction models from those attributes
based on supervised or semi-supervised learning
schemes and evaluate them using robust accuracy
measures.

The details of these activities are described in the follow-

ing sections.

4.1 Hybrid Program Analysis
4.1.1 Terms and Definitions Used

Our analysis is based on the control flow graph (CFG), the
program dependence graph (PDG), and the system depen-
dence graph (SDG) of a web application program. Each
node in the graphs represents one source code statement.
We may therefore use program statement and node inter-
changeably depending on the context.

A sink is a node in a CFG that uses variables defined from
input sources and thus, may be vulnerable to input manipu-
lation attacks. This allows us to predict vulnerabilities at
statement levels. Input nodes are the nodes at which data
from the external environment are accessed. A variable is
tainted if it is defined from input nodes.

As described earlier, the first step of our approach is to
compute a backward static program slice for each sink k
and the set of tainted variables used in k. According to the
original definition given by Weiser [31], backward static
slice .Sy, with respect to slicing criterion <k, V> consists of all
nodes (including predicates) in the CFG that may affect the
values of V at node k, where V is a subset of variables used
in k. We compute 5, using Horwitz et al.’s interprocedural

694 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

<?php

1 SerrMsg =
2 $id = $ POST['id'];

3 Spwd = $ POST['password'];
4 Sname = $ POST['name'];

'userID must be provided!';

//language built-in validation function
5 if(is numeric($id)) {
//language built-in sanitization function

6 Spwd = mysql real escape string(Spwd);
7 Sname = mysgl query ("SELECT name FROM user
WHERE id=$id AND pass='$pwd'");//sink
8 Sname = 'Welcome '. S$name;
} else {
9 Sname = sanitize ($name). S$errMsg;

}
10 echo $name;//sink

//custom sanitization function
11 function sanitize ($data) {
12 Sdata = preg replace('/["A-Za-z0-9 .-1/",
' ', $data);

13 return $data;
}

?>

Fig. 2. Sample PHP program with custom and language built-in valida-
tion and sanitization functions.

slicing algorithm based on the SDG [32]. We first construct
the PDG for the main method of a web application program
and also construct PDGs for the methods called from the
main method according to the algorithm given by Ferrante
et al. [8]. We then construct the SDG. A PDG models a pro-
gram procedure as a graph in which the nodes represent
program statements and the edges represent data or control
dependences between statements. SDG extends PDG by
modeling interprocedural relations between the main pro-
gram and its subprograms.

To illustrate, Fig. 2 shows an interprocedural slice of
the sink at line 10 (denoted as S;¢) with respect to variable
$name. Fig. 3a shows the CFG for the slice of the sink at line
7 (denoted as S;) and Fig. 3b shows the CFG for the slice of S;.

4.1.2 Hybrid Analysis

Typically, a web application program accesses inputs and
propagates them via tainted variables for further processing
of the application’s logics. These processes may often
include sensitive program operations such as database
updates, HTML outputs, and file accesses. If the program
variables propagating the input data are not properly
checked before being used in those sinks, vulnerabilities
arise. Therefore, to prevent web application vulnerabilities,
developers typically employ input validation and input san-
itization methods along the paths propagating the inputs to
the sinks. By default, inputs to web application programs
are strings. As such, input validation checks and sanitiza-
tion operations performed in a program are mainly based
on string operations. These operations typically include lan-
guage built-in validation and sanitization functions (e.g.,
mysgl_real_escape_string), string replacement and
string matching functions (e.g., str_match), and regular-
expression-based string replacement and matching func-
tions (e.g., preg_replace).

Basically, our approach attempts to answer the following
research question: “Given a slice of sink, from the types and

$name=
$_POST

sanitize
($name)

($pwd)

(@) (®)

Fig. 3. CFG of a program slice on tainted variables (a) $id and $pwd at
sink 7 and (b) $name at sink 10.

numbers of inputs, and the types and numbers of input vali-
dation and sanitization functions identified from each path
in the slice, can we predict the sink’s vulnerability?”

Therefore, our objective is to infer the potential effects of
validation checks and sanitization operations on tainted
variables using static and dynamic analyses, and classify
those operations based on these inferences. For every path
in S;, that propagates the values of tainted variables into k,
we carry out this analysis.

Our hybrid (static and dynamic) analysis includes the
techniques proposed by Balzarotti et al. [11]. Basically, for
each function in a data flow graph, Balzarotti et al. first ana-
lyze the function’s static program properties in an attempt
to determine the potential sanitization effect of the function
on the input. If this static analysis is likely to be imprecise,
then they simulate the effect of the sanitization functions on
the input by executing the code with different test inputs,
containing various types of attack strings. The execution
results are then passed to a test oracle, which evaluates the
functions’ sanitization effect by checking the presence of
those attack strings.

Building on Balzarotti et al.’'s work, we model the same
information using IVS attributes to enable machine learning
and vulnerability prediction. Another difference is that our
analysis is performed on program slices rather than data
flow graphs. As we discussed earlier, since input validation
and sanitization can be performed using predicates, the
analysis of data flow graphs may be insufficient. A detailed
comparison of our work with Balzarotti et al.’s work is pro-
vided in the related work section. In the following, we
explain how we made use of Balzarotti et al.’s analysis tech-
nique in our context.

Step 1. We first extract all possible paths from S;. To
avoid infinite paths, we use Balzarotti et al.’s solution that is
to traverse each loop only once. For example, as shown in
Fig. 3, S; has only one path and S;, has two paths.

Step 2. Each extracted path P is classified according to
the IVS attributes (Table 1). As described next, classification
is performed with compulsory static analysis first followed
by optional dynamic analysis.

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 695

Compulsory static analysis. We classify each path P, accord-
ing to our classification scheme (Section 3) using static analy-
sis first. Standard security functions and some of the
language built-in functions/operations can be statically and
precisely classified based on their known specific security
requirements or their functional properties. We classify such
functions and operations into different types according to
their security-related properties and store that classification
in a database. If a node 7 in P, processes a tainted variable
that is also used by sink k, we analyze its static properties
such as the language parameters and operators used by #,
and also the functions with known, specific security pur-
poses that are invoked by 7. Then, if there is any match to
our predefined classifications, 1 is classified accordingly.

To illustrate, recall the code snippet in Fig. 2:

4 Sname = $_POST [‘name’];
8 $name = ‘Welcome ‘. $name;

In statement 4, $ POST is a language parameter which
we can predefine as a type of input. In statement 8, the lan-
guage operator that performs string concatenation (.) is
used. As this operation only propagates the values of
tainted variables to the next operation, we could classify (.)
as a taint propagation type.

Likewise, as shown in Fig. 3, standard security functions
can be identified from P; of both sink 7 and sink 10. As sink
7 has only one path, it would only require static analysis for
the whole classification process. For P; of sink 7, we would
identify two standard validation and sanitization functions
that process $id, which is also used in sink 7. These func-
tions are:

5if (is_numeric($id)) {

6 S$pwd=mysqgl_real_escape_string(Spwd) ;

7 $name =mysgl_qguery (“SELECT name FROMuser

WHERE id = SidANDpass = ‘Spwd’ ") ;

In statement 5, is_numeric () is used to validate that
$id is a numeric. In statement 6, mysgl_real_escape_-
string is used to escape MySQL database special charac-
ters. As these functions are language built-in validation and
sanitization functions, we could classify them statically. We
classify them into different validation and sanitization types
according to their specifications.

Optional dynamic analysis: If P, contains non-standard
security functions or language built-in functions involving
complex string manipulations such as preg_replace, the
type or purpose of the function cannot be easily inferred
using static analysis alone. In this case, we perform dynamic
analysis on P;.

We maintain a database containing different test suites.
Test cases are made of various types of attack strings contain-
ing malicious characters and benign strings. Attack strings
are derived from the security attack vectors provided by
OWASP [1] and RSnake [10]. These two security specialists
provide a comprehensive coverage of security attack vectors
that could bypass various types of input validation and sani-
tization routines. Each test suite T is designed to test each
hybrid analysis-based attribute (discussed in Section 3.2).
For example, a test case: <script>alert () ;</script>
could discriminate functions that accept or reject JavaScript
tags and we would use it to test the attribute Script-tag. Our
test suite contains such a test case and its variants generated
using different combinations of special characters or

1 S$errMsg='userID must be provided!';
2 $id = '<script>alert();</script>';

3 S$pwd = '<script>alert();</script>';
4 $name = '<script>alert();</script>';

5 1if(false) {

} else
9 Sname=sanitize ($name) . $errMsg;
10 echo oracle($name, 'Script-tag'); //sink

Fig. 4. Code to be exercised to test for attribute Script-tag.

different encoding schemes. We acknowledge that our test
suite may be incomplete. However, our test-suite database
can be updated and extended as and when new, sophisti-
cated attack vectors are available.

For dynamic execution and analysis, we first extract the
code according to the sequence of instructions in P; and
then generate the test code C; by instrumenting the
extracted code. Each input source is replaced with a
desired test input. For each test execution, the same test
input is used for every input source in P;. We also handle
predicates like statement 5, in which the predicate checks
a variable not used in sink 10. We want to ensure that the
path under test is exercised until the sink is reached, in the
presence of such irrelevant predicate checks. For example,
for P, of Sy9, predicate 5 does not validate the variable
$name. Instead, it validates another variable used in
another sink. To ensure that P, is exactly followed, the
standard solution is to solve a path condition involving
the constraint of $id and find its appropriate value. But as
this solution is not scalable, we simply set the predicate to
be false (see Fig. 4). Or we set it to be true if P; of Sy is to
be tested. Note that our solution which forces a predicate
to be true or false could cause our classification of P; to be
inaccurate if P is an infeasible path. But this is a necessary
trade-off between scalability and accuracy.

However, we do not perform the above instrumentation
if the predicate validates the variable used in the sink.
Instead, we generate a piece of code as an alternative branch
of the predicate that P; follows. The code invokes the test
oracle function with an empty string indicating that the vali-
dation method successfully found and rejected the invalid
test input. An oracle function accepts two arguments. The
first argument is the final values at the sink and the second
one specifies the type of test suite used. An example of such
a case is provided in the following:

$id='xxOR ‘1’ ="1;
if (is_numeric($id)) {

oracle(”...id=$id...”, ‘String-delimiter’) ;
} else {

oracle(’’,’String-delimiter’);

exit;

Finally, we instrument the sink such that the final values
reached into the sink can be analyzed by a test oracle. The
oracle function evaluates whether the malicious values con-
tained in test input variables have been filtered in the final
values of the variables. If so, P, is classified according to the
type of test case used.

For each test suite T that is designed to test a hybrid attri-
bute a, we execute the code C; with a test input t; from T

696

function oracle ($data, S$type) {
if ($type=='Script-tag') {
if (isFiltered($data, '<script'))
incrementAttrValue ('Script-tag');
else if ..

B W NP

o

} else if ($type=='String-delimiter"') {

if (isEscaped ($data, "'")
7 incrementAttrValue ('String-delimiter"');
else if ..

[

} else if ..

8 return S$data;

}

Fig. 5. A test oracle function.

and check if P, can be classified as a from the execution
result. If P; cannot be classified as a, we choose a different
test input ¢, and repeat the process until it is classified as a
(i.e., increase the value of a by one) or all the test inputs
from T have been used. This whole process is iterated for all
test suites, excluding those that are irrelevant to the type of
sink. For example, if the sink is a class of HTML outputs
such as echo, the test suites for attributes such as DB-opera-
tor, DB-comment-delimiter, and DB-special (see Section 3.2)
are irrelevant.

For our running example in Fig. 2, we have identified
that P; of S; and P; of Sq9 require only static analysis for
classification. Only P, of S;p needs to be classified using
dynamic analysis. Fig. 4 shows the instrumented code snip-
pet to test P, of S;p. Fig. 5 shows a sample test oracle func-
tion that evaluates if an execution result relates to attribute
Script-tag. In the example, the oracle verifies if the input
string contains the value <script. After executing the
code in Fig. 4, P, of 519 would be classified as Script-tag since
the value <script has been filtered from $name before
being used in the sink.

4.2 Building Vulnerability Prediction Model

Many machine learning techniques can be used to build vul-
nerability predictors. Regardless of the specific technique
used, the goal is to learn and generalize patterns in the data
associated with sinks, which can then be efficiently used for
predicting vulnerability for new sinks. As more sophisti-
cated security attacks are being discovered, it is important
for a vulnerability analysis approach to be able to adapt.
With machine learning, it is possible to adapt to new vulner-
ability patterns via re-training.

4.2.1 Data Representation

Our unit of measurement, an instance in machine learning
terminology, is a path in the slice of a sink and we character-
ize each path with IVS attributes. The attribute values may

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

range from zero to an upper bound that depends on the
number of classified program operations or functions. Since
we propose 33 IVS attributes (Table 1), each path would be
represented by a 33-dimensional attribute vector. To illus-
trate, Fig. 6 shows the attributes for sink 7 and sink 10
extracted from the paths in their respective slices. The last
column is the class attribute to be predicted, that is whether
a sink is vulnerable or not in a given path. In our case stud-
ies, this comes from existing vulnerability data.

4.2.2 Data Preprocessing

Data balancing. As shown in Table 3, in most of our datasets,
the proportion of vulnerable sinks to non-vulnerable ones is
small. This is an imbalanced data problem and should be
expected in many such vulnerability datasets. Prior studies
have shown that imbalanced data can significantly affect
the performance of machine learning classifiers [19], [49]
because some of the data might go unlearned by the classi-
fier due to their lack of representation, thus leading to
induction rules which tend to explain the majority class
data and favoring its predictive accuracy. Since for our
problem, the minority class data capture the ‘vulnerable’
instances, we need a high predictive accuracy for this class
as missing a vulnerability is far more critical than reporting
a false alarm. To address this problem, we use a sampling
method called adaptive synthetic oversampling [48]. It bal-
ances the (unbalanced) data by generating synthetic, artifi-
cial data for the minority class instances, thus reducing the
bias introduced by the class imbalance problem. It does not
require modification of standard classifiers and thus, can be
conveniently added as an additional data preprocessing
step [49].

Given an imbalanced data ds with majority class data
ds;.; and minority class data ds,,,,, the algorithm to gener-
ate synthetic data, given by He et al. [48], can be summa-
rized as follows:

1) Compute the total number of instances to be gener-
ated for the minority class data: G = (ds;e —
dsmin) * B, where B € (0,1] is the desired balance
level after generating synthetic data. We use g =1 to
achieve a fully balanced dataset.

2) For each instance z; in ds;,,, K nearest neighbors are
searched in ds based on the Euclidean distance in the
attribute space and the ratio y; is calculated as:
v; = Kpnej/ K where K,,,; is the number of instances
from K that belong to the majority class. A high ratio
value indicates that z; is mostly surrounded with
majority class instances and thus, has a high risk of
misclassification.

3) Normalize y; according to y; = y;/ Zfi’f”” y; so that
7; is a density distribution (}_ y; = 1).

Attribute Client | Text- Propagate | Numeric | DB- String- Script- | Vuln?
database special | delimiter | tag (tagged
<Pathiq, Sinkig by user)
<Py, Sink7> 1 0 0 1 1 1 0 No
<P, Sinkyo> 0 1 1 0 0 0 0 Yes
<P, Sinkyo> 1 0 1 0 0 1 1 No

Fig. 6. Attribute vectors (instances).

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 697

4) Compute the number of synthetic instances that
need to be generated for each minority instance x;:
9i =7 xG.

5) Finally, g; instances for each minority instance z; are
generated using the formula: ., = z; + (& — x;) * §
where 2; is one of the K nearest neighbors of z; and
8 € (0,1] is a random number.

Hence, the idea of adaptive synthetic oversampling is to
focus on generating more synthetic data for borderline
minority class instances in the attribute space that have a
high risk of misclassification, rather than blindly generating
new minority class instances to balance the data, which, for
some minority class instances, could result in over-fitting
while still under-representing the borderline instances. It
ensures the adequate representation of minority class data
by systematically generating synthetic data where learning
is expected to be more difficult.

Attribute selection. Some of the IVS attributes are only rel-
evant for a specific type of vulnerability (for example, Dot-
DotSlash is only relevant for detecting FI vulnerability) and
some attributes may be correlated. We use an attribute
selection technique called correlation-based feature subset
selection with a greedy stepwise backward search algorithm
[50] to filter the irrelevant or redundant attributes and thus,
to reduce the potential negative impact they may have on
the learning process. This technique selects the best subset
of attributes by performing a greedy backward search
through the space of attribute subsets. It starts with a subset
of attributes and deletes each attribute one by one. It then
evaluates the worth of a subset of attributes by considering
the individual predictive ability of each attribute along with
the degree of redundancy between them. Subsets of features
that are highly correlated with the class while having low
inter-correlation are preferred. The algorithm stops when
the deletion of any remaining attributes results in a decrease
in predictive accuracy.

4.2.3 Supervised Learning

Classification is a type of supervised learning methods
because the class label of each training instance has to be
provided. In this study, we build logistic regression (LR)
and RandomForest (RF) models from the proposed attrib-
utes. There are two reasons for choosing these two types of
classifiers: 1) These classifiers were benchmarked as among
the top classifiers in the literature [14], 2) LR-based pre-
dictor achieved the best result in our initial work [33] and
yields results that are easy to interpret in terms of the
impact of attributes on vulnerability predictions.

LR [38] is a type of statistical classification model. It can
be used for predicting the outcome (class label) of a depen-
dent attribute based on one or more predictor attributes.
The probabilities describing the possible outcomes of a
given instance are modeled, as a function of the predictor
attributes, using a logistic function:

1

.,an)zm,

T (ai, ..
where 7 is a conditional probability: the probability that a
sink in a path is vulnerable as a function of the path’s secu-
rity-related properties reflected through predictor attrib-
utes. A(= B, + Ba; + -+ + B,a,) is a linear combination of n

predictor attributes that are statistically significant in terms
of their association with the dependent attribute and thus,
are selected by the LR modeling process. §, is a constant. g;
is the regression coefficient estimated using a maximum
likelihood estimation method for attribute a;.

The curve between 7 and any attribute a;, assuming that
all other attributes are constant, takes a flexible ‘S’ shape
which ranges between two extreme cases:

a) When q; is not a significant predictor of vulnerabil-
ity, then the curve approximates a horizontal line,
that is, 7 does not depend on q;
b) When a; strongly indicates vulnerability, then the
curve approximates a step function.
As such, logistic regression analysis is flexible in terms of
the types of monotonic relationships it can model between
the probability of vulnerability and predictor attributes.

RF [37] is an ensemble learning method for classification
that consists of a collection of tree-structured classifiers. In
many cases the predictive accuracy is greatly enhanced as
the final prediction output comes from an ensemble of learn-
ers, rather than a single learner. Given an input sample, each
tree casts a vote (classification) and the forest outputs the
classification having the majority vote from the trees. At an
intuitive level, the forest construction procedure is as follows:

1) Select K bootstrap samples from the training set.
Bootstrapping, i.e., sampling with replacements,
ensures that about one-third of the training set is left
out, which can be used as a test set.

2) Fit a classification tree to each bootstrap sample,
resulting in K trees. Each tree is grown to the largest
extent possible without pruning.

3) Each instance i left out in the construction of the kth
tree is classified by the kth tree. Due to bootstrap-
ping, ¢ can be classified by about one-third of the
trees. Taking c¢ to be the class that got most of the
votes across these classifications, the proportion of
times that c is not equal to the true class of i averaged
over all instances is the so-called out-of-bag error esti-
mate. This estimate can be used as an estimate of the
generalization error and is used to guide the forest
construction process.

4.2.4 Semi-Supervised Learning

As discussed above, for supervised learning, we use LR
and RF, the latter being a type of ensemble learning
method that has achieved high accuracy in the literature
[14]. However, as ensemble learning works by combining
individual classifiers, it typically requires significant
amounts of labeled data for training. In certain industrial
contexts, relevant and labeled data available for learning
may be limited.

Semi-supervised methods [39] use, for training, a small
amount of labeled data together with a much larger amount
of unlabeled data. This method that exploits unlabeled data
can enable ensemble learning when there are very few
labeled data. As explained by Zhou [43], combining semi-
supervised learning with ensembles has many advantages.
Unlabeled data is exploited to help enrich labeled training
samples allowing ensemble learning: Each individual learner

698 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

TABLE 2

Test Subjects
Test Subject Description LOC Security Advisories
SchoolMate 1.5.4 School administration system 8,145 Vulnerability information in [21]
FaqForge 1.3.2 Document creation and management system 2,238 Bugtraq-43897
Utopia News Pro 1.1.4 News management system 5,737 Bugtraq-15027
Phorum 5.2.18 Message board system 12,324 CVE-2008-1486 CVE-2011-4561
CuteSITE 1.2.3 Content management system 11,441 CVE-2010-5024 CVE-2010-5025
PhpMyAdmin 3.4.4 MySQL database management system 44,628 From PMASA-2011-13 to PMASA-2013-4
PhpMyAdmin 3.5.0 MySQL database management system 102,491 From PMASA-2011-13 to PMASA-2013-4

is improved with unlabeled data labeled by the ensemble
consisting of all other learners. As listed in Lu et al. [41], a
few different types of semi-supervised methods, such as EM-
based, clustering-based, and disagreement-based learning,
have been proposed in literature. But none of these techni-
ques has been explored for vulnerability prediction so far.

Hence, based on these motivations, we explore the use of
an algorithm called CoForest, Co-trained Random Forest,
(CF), which applies semi-supervised learning on RF. It is a
disagreement-based, semi-supervised learner initially pro-
posed by Li and Zhou [42]. CF uses multiple, diverse learn-
ers, and combines them to exploit unlabeled data (semi-
supervised learning), and maintains a large disagreement
between the learners to promote the learning process.

CF is based on RF and its procedure is as follows:

1) Construct a random forest H with K trees with the
available labeled data L.

2) For each tree k in H, repeat the following steps 3 ~ 6.

3) Construct a new random forest H_; by removing k
from H.

4) Use H_, to label all the unlabeled data U and esti-
mate the labeling confidence based on the degree of
agreements on the labeling, i.e., the number of classi-
fiers that vote for the label assigned by H_.

5) Generate a new labeled dataset L' by combining L
with the unlabeled data labeled with the confidence
levels above a preset confidence threshold.

6) Refine k with L.

7) Repeat the above steps 2 ~ 6 until none of the trees in
H changes.

For detail information on CF, please refer to [40] and [42].

5 EXPERIMENTAL EVALUATION

5.1 Research Questions
This paper aims to investigate the following two research
questions:

Question 1 (Q1). Can our proposed IVS attributes, when
fed to a machine learner, accurately predict SQLI, XSS, RCE,
and FI vulnerabilities?

High accuracy is expected to translate into high recall
and low probability of false alarm when predicting vulner-
abilities. Although classifiers can be effective, as discussed
above, a sufficient number of instances with known vulner-
ability information is required to train a classifier (super-
vised learning). As a result, in certain situations, supervised
learning is either infeasible or ineffective. In the context of
defect prediction, some studies [40], [41] have endorsed

the use of semi-supervised learning instead of supervised
learning if there are few defects reported. But no perfor-
mance comparison between semi-supervised learning
and supervised learning has yet been investigated in the
context of vulnerability prediction. This leads us to our next
research question.

Question 2 (Q2). Even if the availability of vulnerability
data is limited, can vulnerabilities be predicted using
semi-supervised learning? Further, will the performance
of a semi-supervised learner be superior to that of a
supervised learner when the availability of vulnerability
data is limited?

5.2 Experiment Subjects

To evaluate the effectiveness of our vulnerability prediction
framework, we perform experiments on seven, real-world
PHP web applications, with known vulnerabilities and
benchmarked for the evaluation of many vulnerability
detection approaches [3], [4], [21], [28]. These applications
can be obtained from SourceForge [5]. Table 2 shows rele-
vant statistics for these applications. The vulnerability infor-
mation can be found in security advisories such as CVE [6].
Securities advisories typically report only vulnerable web
pages, which is too coarse-grained for our purpose. And its
vulnerability information can typically be traced to multiple
vulnerabilities appearing in different program statements.
Therefore, we still had to manually inspect the reported vul-
nerable web pages and analyze the server programs to
locate the vulnerable program statements.

For data collection, we enhanced the prototype tool
PhpMiner used in our previous work [33]. PhpMiner basically
implements the steps shown in Fig. 1. It is a fully automated
data collection tool. Given a PHP program, it generates con-
trol flow graphs, program dependence graphs, and system
dependence graphs of the program. It then computes back-
ward static program slices of the sinks found in the program,
according to the interprocedural slicing algorithm given by
Horwitz et al. [32]. Then, it uses a depth-first search strategy
to extract the paths in the slices. We also implement the tech-
niques discussed in Section 4 to automate the static and
dynamic analysis-based classifications of the paths. For
static-based classification, we classify over 330 PHP built-in
functions and 30 PHP operators into various input valida-
tion and sanitization types and store them in a database.
As output, PhpMiner produces the attribute vectors like the
ones shown in Fig. 6, without the vulnerability labels, which
were manually tagged by us for the experiment. Our tool
also implements the evaluation procedures (Fig. 7) for
supervised and semi-supervised learners. For learning

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 699

Procedure cross validate (Dataset ds, Learner C) f{

Prediction model M
Accuracy acc € 0
repeat 10 times {
B € Randomly divide ds into 5 equal bins
for each bin b; in B {
dStest < b;
dStrain € B - {bsi}
dSirain pay € adaptive synthetic
- oversampling of dStrain
bestAttr € correlation-based feature
subset selection from dStrain pa:
M € Train C on dStrain pai
and bestAttr
Test M on dStest
acc € acc + predictive accuracy of M
}
}

return acc € acc / 50

Fig. 7. Prediction model evaluation procedure.

supervised learners, it relies on the Weka 3.7 Java package
with default options provided by Witten et al. [9]. For learn-
ing CoForest, we use the Java package from Li et al. [40].

Table 3 shows the datasets extracted from the test sub-
jects by PhpMiner. The dataset name myadminl refers to
PhpMyAdmin 3.4.4 and myadmin2 refers to PhpMyAdmin
3.5.0. The rest is self-explanatory. Because we have the RCE
and FI vulnerability data available for only PhpMyAdmin
systems, we used two versions of PhpMyAdmin to
avoid having only one dataset for these two types of vulner-
abilities. As shown in Table 3, we extracted four different
sets of datasets, each corresponding to a different type of
vulnerabilities. In total, we collected 15 datasets. Table 4
shows descriptive statistics for the values of IVS attributes
extracted from those datasets. On our web site [7], we pro-
vide the implementation of PhpMiner and the datasets.

TABLE 4
Data Distributions of Attributes Across Instances
Across Datasets

Attribute Mean StdDev Min Max
Client 043 0.80 0 17
File 0.11 0.21 0 3
Text-database 0.30 0.46 0 11
Numeric-database 0.02 0.08 0 3
Session 0.36 0.69 0 16
Uninit 0.10 0.23 0 5
Un-taint 1.08 1.35 0 30
Known-vuln-user 0.05 0.16 0 10
Known-vuln-std 0.08 0.14 0 3
Propagate 3.23 4.19 0 99
Numeric 0.10 0.32 0 8
DB-operator 0.00 0.01 0 1
DB-comment-delimiter 0.20 0.22 0 8
DB-special 0.20 0.23 0 8
String-delimiter 0.05 0.23 0 6
Lang-comment-delimiter 0.00 0.01 0 1
Other-delimiter 0.00 0.02 0 2
Script-tag 0.03 0.14 0 6
HTML-tag 0.03 0.14 0 6
Event-handler 0.00 0.01 0 2
Null-byte 0.01 0.07 0 5
Dot 0.01 0.05 0 2
DotDotSlash 0.01 0.05 0 2
Backslash 0.00 0.04 0 2
Slash 0.01 0.05 0 4
Newline 0.01 0.04 0 2
Colon 0.00 0.02 0 3
Other-special 0.01 0.06 0 2
Encode 0.02 0.12 0 5
Canonicalize 0.10 0.22 0 4
Path 0.00 0.04 0 2
Limit-length 0.02 0.10 0 2

5.3 Accuracy

We assess the predictive accuracy of our models in terms of
probability of detection or recall, probability of false alarm,
and precision. We can use the following contingency table
to define these standard measures.

TABLE 3

Datasets
Dataset #Instances #Vuln. instances
(a) Datasets with SQL injection vulnerabilities
schmate-sqli 189 152
faqforge-sqli 42 17
phorum-sqli 122 5
cutesite-sqli 63 35
(b) Datasets with cross-site scripting vulnerabilities
schmate-xss 172 138
faqforge-xss 115 53
utopia-xss 86 17
phorum-xss 237 9
cutesite-xss 239 40
myadminl-xss 305 20
myadmin2-xss 425 14
(c) Datasets with remote code execution vulnerabilities
myadminl-rce 221 3
myadmin2-rce 297 5
(d) Datasets with file inclusion vulnerabilities
myadmin1-fi 139 5
myadmin2-fi 121 2

Actual
Vulnerable Non-Vulnerable
Vulnerable True positive False positive
Prediction (tp) (fp)
Non-Vulnerable False negative True negative
(fn) (tn)

Recall (pd = P /(tp + fn)) Measures how complete our
model is in correctly predicting vulnerable sinks. Probabil-

ity of false alarm (pf = Ip / (fp+ tn)) is generally used to

measure the cost of using the model. Precision (pr=
/ (tp + fp)) measures the extent to which vulnerable sinks

are correctly predicted. Ideally, the model should neither
miss actual vulnerabilities (pd ~ 1) nor throw false alarms
(pf ~0,pr ~ 1) As this is, however, difficult to achieve in
practice, our aim is to achieve the highest possible recall
with a very low probability of false alarm. The model would
then be very useful in our context as it would detect many
vulnerabilities at a very low cost. We prefer to focus on the

700 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

Dataset
schmate-sqli

Attributes (IDs)
1,2,4,5,7,10,11, 13,14, 15, 18, 29, 30, 32

fagforge-sqli 3,4,6,7,10,30
phorum-sqli 1,7,10,11,13
cutesite-sqli 1,3,6,7,13
schmate-xss 1,3,5,7,10,11, 16, 29, 32
faqgforge-xss 6,7,10,30

1,2,3,4,56,7,10,13,15,18, 32
1,3,56,7,10,11, 15,30
1,2,3,4,6,7,9,10,11, 15, 18, 19, 25, 29,
30,32
1,5,6,7,10,18,30
1,5,6,7,8,10,11, 18,19, 30
1,5,7,8,10,11, 15, 23, 24, 25, 26, 29, 30
1,2,9,10,15,21, 23
1,2,5,7,9,10,15,21,23,29
1,2,579,10,21,29,30

utopia-xss
phorum-xss
cutesite-xss

myadminl-xss
myadmin2-xss
myadminl-rce
myadmin2-rce
myadminl-fi
myadmin2-fi

Fig. 8 Attributes (IDs) selected in logistic regression models.

probability of false alarm rather than precision because,
in security, there are typically few vulnerable sinks in a
dataset and thus, even a small number of false alarms could
result in low precision, though the model would actually
still be useful.

5.4 Supervised Learning Experiments

To investigate our first research question (Q1), supervised
learning experiments were conducted on the 15 datasets
described above. We use two types of supervised prediction
models, LR and RF (Section 4.2.3), to evaluate if our pro-
posed IVS attributes can accurately predict SQLI, XSS, RCE,
and FI vulnerabilities. Using logistic regression analysis, we
also discuss the relative importance of each proposed attri-
bute in vulnerability prediction.

5.4.1 Experimental Design

We evaluate the supervised models using the procedure
shown in Fig. 7. Each model is cross validated on each data-
set. We follow a fivefold, standard cross validation proce-
dure, repeated ten times (i.e., training and testing 50 times
for each model) [9]. As discussed in Section 4.2.2, oversam-
pling is included in the procedure to address the imbal-
anced data problem. Attributes selection is also included to
filter irrelevant, redundant, or correlated attributes. But, to
prevent data sampling bias, oversampling and attribute
selection is only applied to training instances. Repeating the
procedure ten times reduces possible sampling bias due to
random splits in cross validation. The randomization also
defends against ordering effects [36].

5.4.2 Attribute Relevancy Analysis

One major advantage of using machine learning approaches
is that it can select the most informative and significant
attributes in such a way as to optimize prediction. It would
not be straightforward to assess vulnerability by just
inspecting attribute values in the presence of highly com-
plex relationships. It is also expected that different attrib-
utes will exhibit widely varying levels of importance in
vulnerability prediction. Machine learning algorithms aim

ID | Attribute Frequency
1 Client 450
2 File 182
3 Text-database 140
4 Numeric-database 110
5 Session 173
6 Uninit 258
7 Un-taint 482
8 Known-vuln-user 63
9 Known-vuln-std 168
10 | Propagate 508
11 | Numeric 91
12 | DB-operator 0
13 | DB-comment-delimiter 81
14 | DB-special 47
15 | String-delimiter 159
16 | Lang-comment-delimiter 11
17 | Other-delimiter 0
18 | Script-tag 148
19 | HTML-tag 920
20 | Event-handler 0
21 | Null-byte 70
22 | Dot 0
23 | DotDotSlash 10
24 | Backslash 5
25 | Slash 21
26 | Newline 18
27 | Colon 0
28 | Other-special 0
29 | Canonicalize 62
30 | Encode 173
31 | Path 0
32 | Limit-length 91

Fig. 9. Frequencies of the attributes selected in logistic regression
models.

at identifying such relationships and assessing the effect of
attributes on vulnerability prediction.

Logistic regression selects attributes for vulnerability
classification based on their statistical significance and uses
regression coefficient values to weigh the effect of attributes
on vulnerability prediction. For example, the following
shows a logistic regression model obtained through maxi-
mum likelihood estimation obtained during cross validation
on the phorum_xss dataset:

1
Vuln? =

1+ e~ (=5.349.6Client+7.7Uninit—37.6Un—taint—40String—delimiter) *

Such an equation can be informally interpreted as “a path
in a sink is highly likely to be vulnerable if it accesses
user inputs from input sources of Client and Uninit, but the
odds of being vulnerable decrease significantly if the path
also contains String-delimiter and Un-taint -type input vali-
dation and sanitization functions.” Quantitatively, the
above logistic regression equation can account for non-lin-
ear relationships between the probability of vulnerability
and the predictor attributes.

In total, 750 LR models (50 cross validations x 15 data-
sets) were built. Fig. 8 shows the union of the attributes
selected by the LR models during cross validation of each
dataset. Fig. 9 shows the frequency with which they were
selected during cross validation.

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 701

Dataset Learner | pd pf pr
schmate-sqli LR 91 4 98
RF 93 4 98
fagforge-sqli LR 82 21 51
RF 87 3 89
phorum-sqli LR 100 2 42
RF 100 1 46
cutesite-sqli LR 8 6 95
RF 89 8 94
Mean results on | LR 920 8 72
SQLI prediction | RF 92 4 82
Dataset Learner | pd pf pr
myadminl-rce LR 67 1 43
RF 67 1 53
myadmin2-rce LR 60 1 47
RF 60 1 56
Mean results on | LR 64 1 45
RCE prediction | RF 64 1 55

Dataset Learner | pd pf pr
schmate-xss LR 72 19 94
RF 84 18 95
faqforge-xss LR 76 21 79
RF 89 10 90
utopia-xss LR 67 14 61
RF 69 21 53
phorum-xss LR 79 3 53
RF 69 2 56
cutesite-xss LR 83 4 78
RF 7% 5 75
myadminl-xss LR 77 11 35
RF 68 4 56
myadmin2-xss LR 56 5 29
RF 48 1 62
Mean results on | LR 73 11 61
XSS prediction | RF 72 9 70
Dataset Learner | pd pf pr
myadminl-fi LR 62 1 79
RF 52 2 60
myadmin2-fi LR 100 1 65
RF 100 0 94
Mean results on | LR 81 1 72
FI prediction RF 76 1 77

Fig. 10. Cross validation results of the supervised learners—Logistic Regression (LR) and RandomForest (RF).

First, we can observe, as we expected, that frequencies
vary significantly across attributes, thus showing their
widely different importance in terms of predicting vulnera-
bility. The most selected attributes include Client, Uninit,
Un-taint, and Propagate. We note that a few attributes,
namely DB-operator, Other-delimiter, Event-handler, Dot,
Colon, Other-special, and Path, were not selected at all,
although those attributes reflect functions that could sani-
tize potentially dangerous meta-characters like (.) and (,).
This is not surprising since, as observed in Table 4, the data
distributions of those attributes are sparse, indicating that
they are not present in most instances. The attributes like
Dot and Path are not relevant for most datasets since they
are designed for detecting FI and RCE vulnerabilities and
our experiment only contains two datasets that correspond
to each of these vulnerabilities. We also manually checked
that some of the rarely-selected attributes are actually pres-
ent in some of our datasets, but they were not selected by
logistic regression as they were found to be not statistically
significant. Lastly, the overall key observation is that most
of the proposed attributes are selected by different models
with varying frequencies, suggesting that the set of pro-
posed attributes reflects the various vulnerability patterns
in the selected datasets.

5.4.3 Prediction Results

Fig. 10 shows the predictive accuracy of LR and RF models
learnt from IVS attributes, in terms of recall, precision, and
probability of false alarm, based on cross validation. On
average, RF performed slightly better than LR. Thus, this
study allows us to recommend a better supervised learning
scheme (RandomForest) than the one used (Logistic

Regression) in our previous work [33], for our vulnerability
prediction context. We focus our discussion below on pre-
dictive accuracy based on RF’s results.

Averaging over all 15 datasets, the RF models achieved
the result (pd = 77%, pf = 5%), which is better than the
result generally benchmarked (pd > 70%, pf < 25%) by
many prediction studies [23], [34]. This implies that our pre-
diction approach detects 77 percent of the top four web
application vulnerabilities at the cost of filtering a few false
positives. Given that, in practice, web application projects
typically have many software modules containing many
sinks, and undergo many versions over a long lifespan,
such models can be very useful in practice to predict vulner-
abilities in new versions based on vulnerability data from
past versions.

For all the datasets, the RF models achieved low pf
results. And for most datasets, the RF models also achieved
high pd results. But we also note that, for a few datasets,
the models achieved pd results lower than our benchmark
pd result (pd > 70 percent). If we take myadmin2-xss as a
representative example, our model only achieved
pd = 48%, but still, achieving a very low pf (1 percent)
makes such a model useful in practice. Looking more
closely at the numbers, myadmin2-xss contains a total of 425
instances, including 14 vulnerable instances (Table 3).
Thus, the model catches nearly half of the vulnerabilities at
the expense of only four false warnings, which are not
costly for developers to filter.

Hence, to answer Q1, the supervised prediction models
built from IVS attributes can predict SQLI, XSS, RCE, and FI
vulnerabilities in most datasets, with a sufficient level of
accuracy to be useful. And even in the few cases where the

702 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,

Dataset Learner | pd pf pr
schmate-sqli CF 98 5 98
RF 94 12 94
fagforge-sqli CF 80 5 81
RF 67 6 73
phorum-sqli CF 48 1 32
RF 261 19
cutesite-sqli CF 89 12 91
RF 76 17 87
Mean results on | CF 79 6 76
SQLI prediction | RF 66 9 68
Dataset Learner | pd pf pr
myadminl-rce CF 53 0 70
RF 7 1 20
myadmin2-rce CF 62 0 73
RF 36 1 38
Mean results on | CF 58 0 72
RCE prediction | RF 22 1 29

VOL. 12, NO.6, NOVEMBER/DECEMBER 2015

Dataset Learner | pd pf pr
schmate-xss CF 98 23 95
RF 79 23 94
fagforge-xss CF 94 10 91
RF 73 21 80
utopia-xss CF 77 8 77
RF 40 12 56
phorum-xss CF 68 1 70
RF 38 3 38
cutesite-xss CF 8 3 83
RF 57 10 54
myadminl-xss | CF 8 1 85
RF 42 8 34
myadmin2-xss CF 51 1 63
RF 23 2 33
Mean results on | CF 80 7 81
XSS prediction | RF 50 11 56
Dataset Learner | pd pf pr
myadmin]-fi CF 58 1 85
RF 18 2 25
myadmin2-fi CF 25 0 32
RF 25 1 27
Mean results on | CF 42 1 59
FI prediction RF 22 2 26

Fig. 11. Cross validation results of the semi-supervised learner—CoForest (CF) and the supervised learner—RandomForest (RF) at a sampling rate

n=20%.

learnt classifiers cannot effectively detect vulnerabilities,
given that our approach consistently achieved low pf results
for all the datasets, we can confidently claim that detected
vulnerabilities always come at an acceptable cost.

5.5 Semi-Supervised Learning Experiments

In this second case study, based on the same 15 datasets,
we compare the accuracy of semi-supervised and super-
vised prediction models (CF and RF) in the presence of
low amounts of labeled data. We wish to determine if the
semi-supervised model should be preferred for vulnerabil-
ity prediction when there is limited vulnerability data
available (Q2).

5.5.1 Experimental Design

The model evaluation procedure is similar to the one used
in the above supervised learning experiments (Fig. 7),
except that the training data is now split into two—the
labeled training set L and the unlabeled training set U.
From the training set, a small percentage (denoted as data
sampling rate u) of training data is randomly sampled as L.
Like case study 1, adaptive synthetic sampling and correla-
tion-based feature subset selection is then applied to L
before training. The remaining training data is used as unla-
beled training set U for the semi-supervised learner. For
example, given a dataset containing 100 instances and
w = 20%, for each trial during fivefold cross validation, the
test set contains 20 instances, L contains 16 instances (20 per-
cent of available training samples), and U contains 64
instances. The supervised learner RF is trained on L and
tested on T whereas the semi-supervised learner CoForest
(CF) is trained on L and U, and tested on T.

5.5.2 Prediction Results

We compared the predictive accuracy of RF and CF at dif-
ferent sampling rates and observed that CF clearly outper-
forms RF with data sampling rates below 40 percent in
terms of recall and precision. Here, we discuss the results
based on accuracy with a sampling rate u = 20%. Fig. 11
shows the results.

On average, over all 15 datasets, even though only a
small amount of labeled data is used, the CF model
showed good accuracy (pd=71%, pf=>5%, pr="75%),
thus outperforming the RF model (pd =47%, pf = 8%,
pr = 51%). To test for statistical significance of the differ-
ence between CF and RF, as suggested by Demsar [20],
we conducted one-tailed Wilcoxon signed-ranks tests on
the results. With a significance level equal to 0.01, the
tests show that CF performs better than RF in terms of all
the accuracy measures we used.

Comparing with the average result (pd = 77%, pf = 5%,
pr =T72%) of the RF models trained with fully available
labeled data (Section 5.4.3), it is interesting to note that
the CF models achieved comparable predictive accuracy.
However, as can be observed in Figs. 10 and 11, the semi-
supervised learner shows larger variations in accuracy
across the 15 datasets than the supervised learner. Across
the 15 datasets, the CF models’ accuracy (Fig. 11) shows a
larger standard deviation of (pd=22%, pf=6%,
pr = 20%) than the RF models’ accuracy (Fig. 10) with a
standard deviation of (pd = 17%, pf = 6%, pr = 19%). This
implies that supervised learning with sufficient labeled
data performs more consistently compared to semi-super-
vised learning and thus, should be preferred when there
is sufficient labeled data available for training. On the
other hand, to address Q2, when labeled data is rare,

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 703

TABLE 5
Runtime Performance of PhpMiner

Test Subject Static Analysis Time (s) Dynamic Analysis Time (s) Average Learning Time (s) Total time (s)
SchoolMate 1.5.4 8,211 792 99 9,102
FaqForge 1.3.2 6,789 511 84 7,384
Utopia News Pro 1.1.4 7,699 1,250 87 9,036
Phorum 5.2.18 10,592 2,134 132 12,858
CuteSITE 1.2.3 9,205 1,977 105 11,287
PhpMyAdmin 3.4.4 17,549 3,104 141 20,794
PhpMyAdmin 3.5.0 28,700 4,570 160 33,430

semi-supervised learning should be favored to supervised
learning.

5.6 Discussion on Data Collection and Model
Learning Performance

We showed above that both static analysis- and dynamic
analysis-based attributes contribute to achieving sufficient
predictive accuracy for the models to be useful in practice,
that is, for vulnerabilities to be detected at reasonable cost.
Still, it is required that we also analyze the scalability of these
analyses. Table 5 shows the runtime performance of
PhpMiner. Since our hybrid analysis technique is based on the
work of Balzarotti et al. [11], the runtime performance of our
tool also showed similar results. That is, PhpMiner actually
spent most of the time on static analysis in extracting slices
and their paths. The time spent on running the test suites
(dynamic analysis) was considerably less. Although the total
time taken was up to a maximum of nine hours, we believe
that it is reasonable considering that some of the test subjects
are widely-used, real world applications and thus, our per-
formance results suggest that our tool can be applicable in
practice. Also, while implementing our tool, performance
optimization was not as much a focus as would be expected
in an industry strength tool and there is probably significant
room for improvement. Average learning time in Table 5
refers to time spent on training and testing a learner with one
specific setting. We did not differentiate the time spent on
supervised learning and semi-supervised learning because
the time difference between these machine learning processes
is insignificant. It took a maximum of three minutes for train-
ing and testing a learner (including 50 trials for each setting).

5.7 Threats to Validity
Our current work targets PHP web applications because the
vulnerabilities we address are very common and serious for
PHP applications [51]. However, though this is a practical
limitation, it is possible to extend the logic presented in this
paper to other programming languages. For example, to
adapt our approach to Java, the same classification schemes
described in this work could be used. One could predefine
Java built-in functions and operations to perform static anal-
ysis-based classification. And to perform static and dynamic
analyses, there are readily available Java program analysis
tools such as Chord [44]. Furthermore, despite these neces-
sary adaptations to other languages, it is important to note
that the overall approach would be similar.

Data sampling bias is one of our threats to validity. Our
results here may not generalize well to other types of

applications in commercial sectors since all our test applica-
tions are open source. But it is difficult to conduct experi-
ments on commercial applications since their vulnerability
data is not publicly accessible. Also, the implicit assumption
of our approach that all the application code is available for
analysis is clearly a limitation in some application contexts.
Some (especially commercial) applications might use plug-
ins or third-party software components, which may be only
known at runtime or for which the source code is unavail-
able. We also consider that a security-sensitive program
operation is vulnerable if it uses an input read from an
external environment with unknown security controls.
Hence, our result would be incorrect if the application is
run inside a framework that provides a layer of safeguards
that properly validate all the incoming inputs.

Our data only reflect the vulnerability patterns of those
that are reported in vulnerability databases. Hence, our
vulnerability predictions may not detect vulnerabilities
having different characteristics in terms of our proposed
attributes. But, considering the wide variability in charac-
teristics of the test subjects (see Table 2), our results
should be widely applicable. It is also noteworthy that
our underlying hybrid analysis may produce classifica-
tion errors affecting the prediction results. For example,
dynamic analysis may incorrectly flag a function as Java-
Script tag filtering function. But since our predictors are
learnt on past data, if the same function is causing a num-
ber of sinks to be vulnerable, machine learning algorithms
learn from it and the presence of such function in the pro-
gram slices will indicate vulnerabilities.

The use of additional or different machine learning tech-
niques might alter our results. For data balancing, we
also tried other sampling techniques like undersampling
(remove majority class data) [49], but adaptive synthetic
oversampling provided better results. Regarding attribute
selection, we also evaluated learners without any attribute
selection and with different attribute selection methods such
as gain ratio [9]. But correlation-based method provided
slightly better results. For supervised learning, we used two
very different classification algorithms which are statistical-
based and ensemble-based, respectively. We also tried other
types of classifiers like multi-layer perceptron and C4.5 that
are neural network-based and tree-based, respectively. But
RandomPForest’s results were superior. We have not tried
other algorithms for semi-supervised learning. We did not
focus our attention on fine-tuning the prediction models and
therefore, better results might be obtained.

Like all other empirical studies, our results are limited to
the applied machine learning processes, the test subjects,

704 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

and the experimental setup used. One good solution to
refute, confirm, or improve our results is to replicate the
experiments with new test subjects and probably with fur-
ther machine learning strategies. This can be easily done
since we have clearly defined our empirical methods and
setup, and we also provide the data used in the experiments
and the data collection tool on our web site [7].

6 RELATED WORK

Our work applies machine learning for the prediction of
vulnerabilities in web applications. Hence, its related work
falls into three main categories: defect prediction, vulnera-
bility prediction, and vulnerability detection.

Defect prediction. In defect prediction studies, defect
predictors are generally built from static code attributes
such as object-oriented design attributes [12], LOC counts,
and code complexity attributes [14], [34], [35] because
static attributes can be cheaply and consistently collected
across many systems [34]. However, it was quickly real-
ized that such attributes can only provide limited accu-
racy [13], [15], [25]. Arisholm et al. [13] and Nagappan
et al. [25] reported that process attributes (e.g., developer
experience and fault history) could significantly improve
prediction models. On the other hand, as process attrib-
utes are difficult to measure and measurements are often
inconsistent, Menzies et al. [15] showed that static code
attributes could still be effective if predictors are tuned to
user-specific goals.

In many real world applications, defect data is often lim-
ited, which makes supervised learning infeasible or ineffec-
tive. Li et al. [40] and Lu et al. [41] showed that semi-
supervised learning can be used to address this problem
and that semi-supervised learners could also perform well
in software defect prediction. Li et al. [40] used the CoForest
method, which is also used by our work.

The similarity with these defect prediction studies is that
our work also uses machine learning techniques in building
vulnerability predictors. However, the major difference is
that our study targets security vulnerabilities in web appli-
cations. Since these studies show that existing set of attrib-
utes do not work everywhere, we define specific attributes
targeted at predicting vulnerabilities based on automated
and scalable static and dynamic analysis.

Vulnerability prediction. Shin et al. [23] used code com-
plexity, code churn, and developer activity attributes to pre-
dict vulnerable programs. They achieved pd =80% and
pf = 25%. Their assumption was that, the more complex the
code, the higher the chances of vulnerability. But from our
observations, many of the vulnerabilities arise from simple
code and, if a program does not employ any input valida-
tion and sanitization routines, it would be simpler but nev-
ertheless contain many vulnerabilities. Walden et al. [24]
investigated the correlations between security resource indi-
cator (SRI) and numbers of vulnerabilities in PHP web
applications. SRI is derived from publicly available security
information such as past vulnerabilities, secure develop-
ment guidelines, and security implications regarding sys-
tem configurations. Neuhaus et al. [26] also predicted
vulnerabilities in software components from the past vul-
nerability information, and the imports and function calls

attributes. Their work is based on the concept that software
components similar to known vulnerable ones, in terms of
imports and function calls, are likely to be vulnerable as
well. They achieved pd = 45% and pr = 70%.

Yamaguchi et al. [45] and [46] use natural language
processing techniques to identify and extract API usage
patterns from abstract syntax trees [45] or dependency
graphs [46], which are then represented as attributes for
machine learning. The numbers of attributes are not
bounded. Whereas, we propose 32 code attributes, each
of which is specifically designed to reflect a specific type
of input validation and sanitization code pattern and
thus, is an important indicator of vulnerability. Also, we
use program analysis techniques—both static and
dynamic analyses to accurately extract those attributes for
machine learning.

The above vulnerability prediction approaches generally
target software components or program functions. By con-
trast, our method targets specific program statements for
vulnerability prediction. Another major difference is that
we use code attributes that characterize input validation
and sanitization routines.

Shar and Tan [2], [16] predicted vulnerabilities using static
analysis. Similar to this extension work, they classify the
types of validation and sanitization functions implemented
for the sinks and reflect those classifications on static code
attributes. Although their supervised learners built from
static attributes achieved good accuracies, they observed that
static analysis could not precisely classify the types of some
of the validation and sanitization functions. Later, Shar et al.
[33] predicted vulnerabilities using hybrid code attributes.
Dynamic analysis was incorporated into static analysis to
improve the classification accuracy. Although these earlier
works only targeted SQLI and XSS vulnerabilities, they
stressed that the work should be extended to address other
types of vulnerabilities as well. This work extends the prior
ones by addressing two additional types of common vul-
nerabilities. We propose new attributes and analyze code
patterns related to these additional vulnerabilities. More
importantly, this work also introduces semi-supervised
learning in the domain of vulnerability prediction.

Vulnerability detection. Jovanovic et al. [3] and Xie and
Aiken [4] showed that many XSS and SQLI vulnerabilities
can be detected by static program analysis techniques. They
identify various input sources and sensitive sinks, and deter-
mine whether any input data is used in those sinks without
passing through sanity checks. Such static taint tracking
approaches often generate too many false alarms as these
approaches cannot reason about the correctness and the ade-
quacy of those sanity checks. Thus, these approaches are not
precise in general.

To improve precision, Fu and Li [27] and Wassermann
and Su [28] approximated the string values that may appear
at sensitive sinks by using symbolic execution and string
analysis techniques. More recent approaches incorporate
dynamic analysis techniques such as concolic execution
[21], and model checking [22]. These approaches reason
about various paths in the program that lead to sensitive
sinks and attempt to generate test cases that are likely to be
attack vectors. All these approaches reduce false alarm
rates. But symbolic, concolic, and model checking

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 705

techniques often lead to path explosion problem [30]. It is
difficult to reason about all the paths in the program when
the program contains many branches and loops. Further,
the performance of these approaches also depends very
much on the capabilities of their underlying string con-
straint solvers in handling a myriad of string operations
offered by programming languages. Therefore, these
approaches typically suffer from scalability issues.

Our static and dynamic analysis technique builds on
Balzarotti et al. [11]. But, similar to the above techniques,
Balzarotti et al. apply static and dynamic analysis to deter-
mine the correctness of custom sanitization functions identi-
fied on data flow graphs, thus leading to scalability issues as
well. The difference or the contribution of our work is that
we leverage machine learning techniques to mitigate this
scalability problem. That is, a predictor can learn correct and
incorrect custom functions based on historical data. Though
we apply Balzarotti et al.’s static and dynamic analysis tech-
nique, we do not do so to precisely compute the correctness
of custom functions, but rather to infer their security pur-
poses and apply these inferences in machine learning. As a
result, our approach also does not require string solving and
reasoning of (potentially infinite) program paths like con-
colic execution and model checking techniques.

However, symbolic, concolic, and model checking
approaches could possibly yield high vulnerability detec-
tion accuracy, which may never be matched by machine
learning-based methods. Thus, our objective is not to pro-
vide a replacement for such techniques but rather to pro-
vide a complementary approach to combine with them and
to use when they are not applicable. One could, for exam-
ple, first gather vulnerability predictions on code sections
using machine learning and then focus on code sections
with predicted vulnerabilities using the more accurate tech-
niques mentioned above. Thereafter, ideally, the confirmed
vulnerabilities should be removed by manual audits or by
using automated vulnerability removal techniques such as
Shar and Tan [29].

7 DiscussiONS AND CONCLUDING REMARKS

The main goal of this paper is to achieve both high accuracy
and good scalability in detecting web application vulner-
abilities. In principle, our proposed approach leverages all
the advantages provided by existing static and dynamic
taint analysis approaches and further enhances accuracy by
using prediction models developed with machine learning
techniques and based on available vulnerability informa-
tion. Static analysis is generally sound but tends to generate
many false alarms. Dynamic analysis is precise but could
miss vulnerabilities as it is difficult or impossible to exercise
every test case scenario. Our strategy consisted in building
predictors using machine learners trained with the informa-
tion provided by both static and dynamic analyses and
available vulnerability information, in order to achieve
good accuracy while meeting scalability requirements.

Our static analysis only involves computing program sli-
ces. Dynamic analysis is only used to infer security-check-
ing types of validation and sanitization functions and we
use this inferred information for prediction rather than cor-
rectness analysis. This approach is scalable since it does not

require constraint solving and model checking to reason
about correctness as in existing dynamic techniques, e.g.,
concolic execution. Our analysis is also fine-grained since it
identifies vulnerabilities at the program statement level as
opposed to the component level, as in existing vulnerability
prediction approaches.

In our experiments on seven PHP web applications, we
first showed that the proposed IVS attributes can be used
to detect several types of vulnerabilities. On average, the
RandomForest models, built on IVS attributes, achieved
(pd= 92%, pf=4%), (pd="72%, pf=9%), (pd=64%,
pf =1%), (pd = 76%, pf = 1%) when predicting SQL injec-
tion, cross site scripting, remote code execution, and file
inclusion vulnerabilities, respectively. We also showed
that, when a limited number of sinks with known vulner-
abilities are available for training the prediction model,
semi-supervised learning is a good alternative to super-
vised learning. We compared RandomForest (supervised)
and CoForest (semi-supervised) models with a low data
sampling rate of 20 percent, that determine the amount
of labeled training data. The CoForest model achieved
(pd =T71%, pf =15%), on average over 15 datasets, out-
performing the RandomForest model that achieved (pd =
47%, pf = 8%).

To generalize our current results, our experiment can be
easily replicated and extended as we made our tool and
data available online [7]. We also intend to conduct more
experiments with industrial applications. While we believe
that the proposed approach can be a useful and comple-
mentary solution to existing approaches, studies need to be
carried out to determine the feasibility and usefulness of
integrating multiple approaches.

ACKNOWLEDGMENTS

The authors would like to thank Hongyu Zhang [40] for
providing us with the Java implementation of CoForest
algorithm. This work was partially supported by the
National Research Fund, Luxembourg (FNR/P10/03). Lwin
Khin Shar is the corresponding author.

REFERENCES

[1] OWASP. (2012, Jan.). The open web application security project
[Online]. Avaialble: http:/ /www.owasp.org

[2] L. K. Shar and H. B. K. Tan, “Predicting SQL injection and
cross site scripting vulnerabilities through mining input saniti-
zation patterns,” Inf. Softw. Technol., vol. 55, no. 10, pp. 1767-
1780, 2013.

[3] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis
tool for detecting web application vulnerabilities,” in Proc. IEEE
Symp. Security Privacy, 2006, pp. 258-263.

[4] Y.Xieand A. Aiken, “Static detection of security vulnerabilities in
scripting languages,” in Proc. USENIX Security Symp., 2006,
pp- 179-192.

[5] (2012, Mar.). SourceForge. [Online]. Available: http://www.sour-
ceforge.net

[6] (2013, May). CVE: Distributions of vulnerabilities by types
[Online]. Available: http:/ /www.cvedetails.com/vulnerabilities-
by-types.php

[7]1 PhpMiner [Online]. Availble: http://sharlwinkhin.com/
phpminer.html, 2013.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans. Pro-
gramm. Languages Syst., vol. 9, pp. 319-349, 1987.

[91 I H. Witten, E. Frank, and M. A. Hall, Data Mining, 3rd ed. San
Mateo, CA, USA: Morgan Kaufmann, 2011.

706

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]
[31]

[32]

[33]

[34]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.12, NO.6, NOVEMBER/DECEMBER 2015

(2012, Mar.). RSnake [Online]. Available: http:/ /ha.ckers.org

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in web applications,” in Proc.
IEEE Symp. Security Privacy, 2008, pp. 387—401.

L. C. Briand, J. Wiist, J. W. Daly, and D. V. Porter, “Exploring the
relationships between design measures and software quality in
object-oriented systems,” J. Syst. Softw., vol. 51, no. 3, pp. 245-273,
2000.

E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and evalu-
ate fault prediction models,” . Syst. Softw., vol. 83, no. 1, pp. 2-17,
2010.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: a proposed
framework and novel findings,” IEEE Trans. Softw. Eng., vol. 34,
no. 4, pp. 485-496, Jul./ Aug. 2008.

T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: current results, limi-
tations, new approaches,” Automated Softw. Eng., vol. 17, no. 4,
pp. 375-407, 2010.

L. K. Shar and H. B. K. Tan, “Predicting common web application
vulnerabilities from input validation and sanitization code
patterns,” in Proc. Int. Conf. Automated Softw. Eng., 2012, pp. 310-
313.

C. Anley, Advanced SQL Injection in SQL Server Applications, Next
Generation Security Software Ltd., White Paper, 2002.

S. Palmer, Web application vulnerabilities: Detect, exploit, pre-
vent, Syngress, 2007.

Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K. Matsu-
moto, “The effects of over and under sampling on fault-prone
module detection,” in Proc. Int. Symp. Empirical Softw. Eng. Meas.,
2007, pp- 196-204.

J. Demsar, “Statistical comparisons of classifiers over multiple
data sets,” . Mach. Learning Res., vol. 7, pp. 1-30, 2006.

A. Kiezun, P.]. Guo, K. Jayaraman, and M. D. Ernst, “Automatic
creation of SQL injection and cross-site scripting attacks,” in Proc.
Int. Conf. Softw. Eng., 2009, pp. 199-209.

M. Martin and M. S. Lam, “Automatic generation of XSS and SQL
injection attacks with goal-directed model checking,” in Proc.
USENIX Security Symp., 2008, pp. 31-43.

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indica-
tors of software vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37,
no. 6, pp. 772-787, Nov./Dec. 2011.

J. Walden, M. Doyle, G. A. Welch, and M. Whelan, “Security of
open source web applications,” in Proc. Int. Symp. Empirical Softw.
Eng. Meas., 2009, pp. 545-553.

N. Nagappan, T. Ball, and B. Murphy, “Using historical in-process
and product metrics for early estimation of software failures,”
in Proc. Int. Symp. Softw. Rel. Eng., 2006, pp. 62-74.

S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proc. ACM Conf. Comput.
Commun. Security, 2007, pp. 529-540.

X. Fu and C.-C. Li, “A string constraint solver for detecting web
application vulnerability,” in Proc. Int. Conf. Softw. Eng. Knowl.
Eng., 2010, pp. 535-542.

G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proc. ACM SIGPLAN
Conf. Program. Language Des. Implementation, 2007, pp. 32—41.

L. K. Shar and H. B. K. Tan, “Automated removal of cross site
scripting vulnerabilities in web applications,” Inf. Softw. Technol.,
vol. 54, no. 5, pp. 467-478, 2012.

K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed sym-
bolic execution,” in Proc. Int. Conf. Static Anal., 2011, pp. 95-111.
M. Weiser, “Program slicing,” in Proc. Int. Conf. Softw. Eng., 1981,
pp- 439-449.

S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” ACM Trans. Program. Languages Syst.,
vol. 12, no. 1, pp. 26-61, 1990.

L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining SQL injection
and cross site scripting vulnerabilities using hybrid program ana-
lysis,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 642-651.

T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 2-13, Jan. 2007.

[35]

[36]
[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general soft-
ware defect-proneness prediction framework,” IEEE Trans. Softw.
Eng., vol. 37, no. 3, pp. 356-370, May/Jun. 2011.

D. Fisher, L. Xu, and N. Zard, “Ordering effects in clustering,”
in Proc. Int. Workshop Mach. Learning, 1992, pp. 163-168.

L. Breiman, “Random forests,” Mach. Learning, vol. 45, no. 1,
pp- 5-32,2001.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied
Logistic Regression, 3rd ed. New York, NY, USA: Wiley, 2013.

O. Chapelle, B. Scholkopf, and A. Zien, Eds., Semi-Supervised
Learning. Cambridge, MA, USA: MIT Press, 2006.

M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, “Sample-based software
defect prediction with active and semi-supervised learning,”
Automated Softw. Eng., vol. 19, pp. 201-230, 2012.

H. Lu, B. Cukic, and M. Culp, “Software defect prediction using
semi-supervised learning with dimension reduction,” in Proc. Int.
Conf. Automated Softw. Eng., 2012, pp. 314-317.

M. Li and Z.-H. Zhou, “Improve computer-aided diagnosis with
machine learning techniques using undiagnosed samples,” IEEE
Trans. Syst., Man Cyberne., Part A: Syst. Humans, vol. 37, no. 6,
pp- 1088-1098, Nov. 2007.

Z.-H. Zhou, “When semi-supervised learning meets ensemble
learning,” in Proc. Int. Workshop Multiple Classifier Syst., 2009,
pp- 529-538.

Chord: A versatile platform for program analysis. (2011). Proc.
Tutorial ACM Conf. Program. Language Des. Implementation
[Online]. Available: http:/ /pag.gatech.edu/chord

F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnera-
bility extrapolation using abstract syntax trees,” in Proc. Annu.
Comput. Security Appl. Conf., 2012, pp. 359-368.

F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck,
“Chucky: Exposing missing checks in source code for vulnerabil-
ity discovery,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secu-
rity, 2013, pp. 499-510.

PHP Security [Online]. Available: http:/ /www.php.net/manual/
en/security.php, 2013.

H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive syn-
thetic sampling approach for imbalanced learning,” in Proc. Int.
Joint Conf. Neural Netw., 2008, pp. 1322-1328.

H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.

M. A. Hall, “Correlation-based feature selection for machine
learning,” Ph.D. thesis, Dept. Comput. Sci., Univ. Waikato, Hamil-
ton, New Zealand, 1998.

PHP Top 5 [Online]. Available: https:/ /www.owasp.org/index.
php/PHP_Top_5, 2014.

Lwin Khin Shar received the PhD degree in
electrical and electronic engineering from the
Nanyang Technological University of Singapore.
He is a research associate in software verification
and validation at the SnT centre for Security, Reli-
ability, and Trust, University of Luxembourg. His
research interests include software security and
privacy analysis using program analysis and
machine learning techniques. He is a member of
the IEEE.

SHAR ET AL.: WEB APPLICATION VULNERABILITY PREDICTION USING HYBRID PROGRAM ANALYSIS AND MACHINE LEARNING 707

Lionel C. Briand is a full professor and a vice-
director of the Interdisciplinary Centre for ICT
Security, Reliability, and Trust (SnT), University
of Luxembourg. He was granted the IEEE Com-
puter Society Harlan Mills award in 2012 for
contributions to Model-based Verification and
Testing, and elected Reliability Engineer of the
year (2013) by the IEEE Reliability Society. His
research interests include software testing and
verification, model-driven engineering, quality
assurance and control, and applications of
machine learning and evolutionary computation to software engineering.
He is a fellow of the IEEE (2010) and a Canadian professional engineer
(P. Eng.) registered in Ontario, Canada.

Hee Beng Kuan Tan received the PhD degree in
computer science from the National University
of Singapore. He is an associate professor in
the Division of Information Engineering in the
School of Electrical and Electronic Engineering,
Nanyang Technological University. He has
13 years of experience in IT industry before mov-
ing to academic. He was also a lecturer in the
Department of Information Systems and Com-
puter Science in the National University of Singa-
pore. His research interests include software
testing and analysis, software security, and software size estimation. He
is a senior member of IEEE and a member of the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

	Web application vulnerability prediction using hybrid program analysis and machine learning
	Citation

	untitled

