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a b s t r a c t 

Cross-site scripting and injection vulnerabilities are among the most common and serious security issues 

for Web applications. Although existing static analysis approaches can detect potential vulnerabilities in 

source code, they generate many false warnings and source-sink traces with irrelevant information, mak- 

ing their adoption impractical for security auditing. 

One suitable approach to support security auditing is to compute a program slice for each sink, which 

contains all the information required for security auditing. However, such slices are likely to contain a 

large amount of information that is irrelevant to security, thus raising scalability issues for security audits. 

In this paper, we propose an approach to assist security auditors by defining and experimenting with 

pruning techniques to reduce original program slices to what we refer to as security slices , which contain 

sound and precise information. 

To evaluate the proposed approach, we compared our security slices to the slices generated by a state- 

of-the-art program slicing tool, based on a number of open-source benchmarks. On average, our security 

slices are 76% smaller than the original slices. More importantly, with security slicing, one needs to audit 

approximately 1% of the total code to fix all the vulnerabilities, thus suggesting significant reduction in 

auditing costs. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Vulnerabilities in Web systems pose serious security and pri- 

vacy threats such as privacy data breaches, data integrity vio- 

lations, and denials of service. According to OWASP (2013) , in- 

jection vulnerabilities are the most serious vulnerabilities for 

Web systems. Among injection vulnerabilities, Cross-site scripting 

(XSS), SQL injection (SQLi), XML injection (XMLi), XPath injection 

(XPathi), and LDAP injection (LDAPi) vulnerabilities are the most 

commonly found in Web applications and Web services. These vul- 

nerabilities are usually caused by user inputs in security-sensitive 

program operations ( sinks ), which have no proper sanitization or 

validation mechanism. 

The majority of the approaches that deal with XSS, SQLi, XMLi, 

XPathi, and LDAPi issues are security testing approaches ( Antunes 

and Vieira, 2013; Appelt et al., 2014; Laranjeiro et al., 2014; Thomé

et al., 2014 ), and dynamic analysis approaches that detect attacks 

at runtime based on known attack signatures ( Mainka et al., 2013; 

Rosa et al., 2013; Razzaq et al., 2014 ) or legitimate queries ( Su and 

Wassermann, 2006; Halfond et al., 2008; Shahriar and Zulkernine, 

2012; Tao, 2013 ). However, a security auditor is typically required 
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to locate vulnerabilities in source code, identify their causes and 

fix them. Analysis reports from the above-mentioned approaches, 

though useful, would not be sufficient to support code auditing as 

they only contain information derived from observed program be- 

haviors or execution traces. 

Approaches based on taint analysis ( Livshits and Lam, 2005; Jo- 

vanovic et al., 2006; Tripp et al., 2009; Pérez et al., 2011; Tripp 

et al., 2013; Huang et al., 2014 ) and symbolic execution ( Kiezun 

et al., 2009; Zheng and Zhang, 2013 ) help identify and locate po- 

tential vulnerabilities in program code, and thus, could assist the 

auditor’s tasks. However, none of these approaches, except for the 

work reported in Pérez et al. (2011) , seems to explicitly address 

XMLi, XPathi, and LDAPi. Hence, adapting these approaches to de- 

tect these types of vulnerabilities is a major need. 

Furthermore, reports from taint analysis-based approaches only 

contain data-flow analysis traces and lack control-dependency in- 

formation , which is essential for security auditing. Indeed, condi- 

tional statements checks are often used to perform input valida- 

tion or sanitization tasks and, without analyzing such conditions, 

feasible and infeasible data-flows cannot be determined, thus caus- 

ing many false warnings. Symbolic execution approaches reason 

with such conditions, but have yet to address scalability issues 

due to the path explosion problem ( Yang et al., 2014 ). Other ap- 

proaches ( Yamaguchi et al., 2014 ) report analysis results without 

any form of pruning (e.g., the whole program dependency graph), 

http://dx.doi.org/10.1016/j.jss.2017.02.040 
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thus containing a significant amount of information not useful to 

security auditing. As a result, an auditor might end up checking 

large chunks of code, which is not practical. 

Program slicing ( Weiser, 1981 ) is one suitable technique that 

could help security auditors verify and fix potential vulnerabili- 

ties in source code. Like taint analysis, program slicing is also a 

static analysis technique, but it extracts all the statements that 

satisfy a given criterion, including control-flow and data-flow in- 

formation, whereas taint analysis techniques only consider data- 

dependencies. However, there are also precision issues with slices 

since a large proportion of their statements may not be relevant to 

security auditing. Thus, without dedicated support, security audit- 

ing can be expected to be laborious, error-prone, and not scalable. 

In this paper, our goal is to help security auditors, in a scalable 

way, to audit source code for identifying and fixing deficiencies 

in implemented security features. Our approach aims to system- 

atically extract relevant security features implemented in source 

code. More precisely, to facilitate security auditing of XSS, SQLi, 

XMLi, XPathi, and LDAPi vulnerabilities in program source code, 

we apply static analysis to first identify the input sources (program 

points at which user inputs are accessed), and the sinks. Then, we 

apply program slicing and code filtering techniques to extract min- 

imal and relevant source code that only contains statements re- 

quired for auditing potential vulnerabilities related to each sink, 

pruning away other statements that do not require auditing. 

The specific contributions of our approach include: 

- Sound and scalable security auditing. We define a specific se- 

curity slicing approach for the auditing of security vulnera- 

bilities in program source code. Like taint analysis, our ap- 

proach also uses static program analysis techniques, which 

are known to be scalable ( Tripp et al., 2013 ). However, our 

analysis additionally extracts control-dependency informa- 

tion, which is often important for the security auditing of 

input validation and sanitization procedures. On the other 

hand, it filters out irrelevant and secure code from the gen- 

erated vulnerability report. This ensures soundness and scal- 

ability. 

- Fully automated tool. A tool called JoanAudit , which fully au- 

tomates our proposed approach, has been implemented for 

Java Web systems based on a program slicing tool called 

Joana ( Hammer, 2009 ). We have published the tool and the 

user manual online ( Thomé, 2015 ) so that our experiments 

can be replicated. 

- Specialized security analysis. JoanAudit is readily configured for 

XSS, SQLi, XMLi, XPathi, and LDAPi vulnerabilities. In com- 

parison, current program slicing tools are not specialized for 

such security needs; furthermore, most of the existing taint 

analysis tools do not readily support XMLi, XPathi, and LDAPi 

vulnerabilities. 

- Systematic evaluation. We have evaluated our approach based 

on 43 programs from 9 Java Web systems, and analyzed 154 

sinks from these Web programs. For each of them, a conven- 

tional slice was computed using Joana and a security slice 

was computed using our approach. Compared to the sizes 

of conventional program slices, our security slices are sig- 

nificantly smaller with reductions averaging 76%. Thus, the 

results show that our security slices are significantly more 

precise in terms of information relevant to security auditing. 

Based on manual verification, we also confirmed that the se- 

curity slices are sound since all the information relevant to 

security auditing is extracted. From a practical standpoint, 

the results also show that by using our approach an auditor 

is required to audit approximately 1% of the total program 

code. 

This paper is an extension of our prior work ( Thomé et al., 

2015 ). The main extensions include: 

- Types of vulnerabilities. We address two more important types 

of vulnerabilities: XSS and LDAPi. XSS is currently the most 

common type of vulnerabilities in Web applications. LDAPi is 

also an important issue to address since LDAP directory ser- 

vices are increasingly used in enterprise Web applications. 

- Context analysis. We provide a lightweight static analysis tech- 

nique that extracts and analyzes path conditions from secu- 

rity slices to identify the context in which user inputs are 

used in a given sink and determine the appropriate sanitiza- 

tion procedures for securing those inputs. This information 

is used to fix some of the vulnerabilities automatically. 

- Experiments. We conduct experiments on four additional Web 

systems to cover a larger variety of application domains, a 

wider system size range and new, additional types of vul- 

nerabilities. 

- Detailed descriptions. We provide detailed descriptions of the 

techniques (information flow control and automated code 

fixing) that we use to support code filtering. We also pro- 

vide a detail description of the JoanAudit tool. 

The paper is organized as follows: Section 2 illustrates some 

preliminary concepts; Section 3 gives an overview of the pro- 

posed security slicing approach; Section 4 presents the approach 

in detail; Section 5 discusses our prototype tool; Section 6 re- 

ports on the evaluation results; Section 7 discusses related work; 

Section 8 concludes the paper. 

2. Preliminaries 

In this section, we present some concepts used in the rest 

of the paper. We first provide a short overview of the injection 

vulnerabilities we address based on the definitions provided by 

OWASP (2013) , and introduce the concepts of input sources and 

sinks. We then discuss the program slicing techniques applied in 

our approach. 

2.1. Injection vulnerabilities 

XSS : It is a code injection attack that injects client script code 

into the HTML code generated by the server program through user 

inputs, so that when a client visits the compromised Web page, 

the injected code is executed in the client’s Web browser, pos- 

sibly accessing and transmitting client’s confidential information 

such as cookies. The injection is performed by inserting meta- 

characters or keywords specific to client-side script interpreters, 

such as < script > and javascript . 
SQL injection : SQLi is an attack technique used to exploit ap- 

plications that dynamically construct SQL queries by using user in- 

puts to access or update relational databases. The attack makes use 

of meta-characters specific to SQL parsers, such as ’ , # , and % , to 

alter the logic of the query. 

LDAP injection : Similar to SQLi, LDAPi targets applications that 

dynamically build LDAP search filters using user inputs; the attack 

makes use of meta-characters specific to the LDAP search filter lan- 

guage ( Howes, 1997 ), such as ( and & , to alter the logic of the 

query. 

XML injection : XMLi is an integrity violation, where an attacker 

changes the hierarchical structure of an XML document by inject- 

ing XML elements through user inputs. 

XPATH injection : Similar to SQLi and LDAPi, XPathi is an attack 

technique used to exploit applications that construct XPath (XML 

Path Language) queries using user inputs to query or navigate XML 

documents. It can be used directly by an application to query an 
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Fig. 1. Secure servlet with sanitization functions. 

Fig. 2. The user file users.xml . 

XML document as part of a larger operation, such as applying an 

XSLT transformation to, or executing an XQuery on, an XML docu- 

ment. 

2.2. Input sources and sinks 

Input sources are operations that access external data that can 

be manipulated by malicious users. Specifically, in our approach, 

we define as input sources the accesses to: HTTP request parame- 

ters (e.g., getParameter() ), HTTP headers, cookies, session ob- 

jects, external files, and databases. 

Sinks are operations that are sensitive to XSS, SQLi, XMLi, 

XPathi, or LDAPi. Specifically, we define the following elements as 

sinks: 

• HTML document operations (e.g., javax.servlet.jsp. 
JspWriter.print() ); 

• SQLi queries (e.g., java.sql.Statement.executeQuery 
() ); 

• XML document operations (e.g., org.xml.sax.XMLReader. 
parse() ); 

• XPath queries (e.g., javax.xml.xpath.XPath.evaluate 
() ); 

• LDAPi queries (e.g., com.novell.ldap.LDAPConnection. 
search() ). 

We now illustrate XMLi and XPathi vulnerabilities and the con- 

cepts of input sources and sinks using the example in Fig. 1 , which 

we also use as running example throughout the paper. 

The Java code snippet illustrated in Fig. 1 grants or denies ac- 

cess to a Web application or service and/or creates a new user. The 

Java servlet interface implementation doPost() stores the values 

of three POST parameters ( account , password , and mode ) in 

variables that carry the same names. All the parameters are pro- 

vided by the user of the Web application. If the mode parameter is 

equal to the string login , function allowUser() is called with 

account and password as parameters, to allow the user to ac- 

cess the application; otherwise, a new user account is created by 

invoking function createUser() with account and password 
as parameters. We assume that users credentials are stored in the 

XML document shown in Fig. 2 and named users.xml . 
The accesses to HTTP parameters at lines 2–4 are input sources. 

The XPath query at line 18 and the XML document processing op- 

eration at line 26 are sinks. 

For granting or denying access, function allowUser() 
in Fig. 1 executes the XPath query (sink) at line 18. This query 

compares the password—stored in the XML attribute password —
for one of the entries in users.xml with the one accessed from 

an input source (the POST parameter password ). In the exam- 

ple, the user inputs are sanitized at lines 16 and 17 by invoking 

Fig. 3. The system dependence graph (SDG) of the program in Fig. 1 . 
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Fig. 4. The backward program slice with respect to the sink at line 18 in Fig. 1 . 

methods from the OWASP Enterprise Security API (ESAPI) ( OWASP, 

2015a ), which provides a rich set of sanitization functions for var- 

ious vulnerability types. If the user input was used directly in the 

sink without such sanitization, the sink could be subject to XPathi 

attacks. For example, in the case of users.xml , by just know- 

ing a user name, an attacker could launch a tautology attack using 

the value ‘ or ’1‘ = ’1 as password , gaining access to the 

user’s credential data. 

Likewise, in the absence of any sanitization, the operation at 

line 26 would be vulnerable to XMLi attacks. More specifically, at 

line 26 an XML tag is created with a user input using string con- 

catenation. If the user inputs stored in account and password 
were not sanitized, as they are at lines 22 and 23, a user could 

compromise the integrity of the XML file by using one of the fol- 

lowing meta-characters: < > / ’ = ”. 

2.3. Program slicing 

Our terminology and definitions regarding security slicing are 

based on those of Hammer (2009) since we rely on his program 

slicing approach and tool. Given a Web program, our security 

slices are extracted using program dependence graphs, system de- 

pendence graphs, backward program slices, and forward program 

slices of the program. The definitions for these concepts are pro- 

vided below. 

Definition 1. Program Dependence Graph ( Ferrante et al., 1987 ). A 

program dependence graph (PDG) is a directed graph G = (N, E) , 

where N is the set of nodes representing the statements of a given 

procedure in a program, and E is the set of control-dependence 

and data-dependence edges that induce a partial order on the 

nodes in N . 

Since a PDG can only represent an individual procedure, slicing 

on an PDG merely results in intraprocedural slices. For comput- 

ing program slices from interprocedural programs, Horwitz et al. 

(1990) defined system dependence graphs, which are essentially 

interprocedural program dependence graphs from which interpro- 

cedural program slices can be soundly and efficiently computed. 

Definition 2. System Dependence Graph ( Horwitz et al., 1990 ). A 

system dependence graph consists of all the PDGs in the program, 

which are connected using interprocedural edges that reflect calls 

between procedures. This means that each procedure in a program 

is represented by a PDG. The PDG is modified to contain formal-in 

and formal-out nodes for every formal parameter of the procedure. 

Each call-site in the PDG is also modified to contain actual-in and 

actual-out nodes for each actual parameter. The call node is con- 

nected to the entry node of the invoked procedure via a call edge. 

The actual-in nodes are connected to their corresponding formal-in 

nodes via parameter-in edges, and the actual-out nodes are con- 

nected to their corresponding formal-out nodes via parameter-out 

edges. Lastly, summary edges are inserted between actual-in and 

actual-out nodes of the same call-site to reflect transitive data- 

dependencies that may occur in the called procedure. 

Since an SDG provides an interprocedural model of a 

program—capturing interprocedural data-dependencies, control- 

dependencies, and call-dependencies—it is the ideal data structure 

for program analysis. Furthermore, program slices can be com- 

puted from it in a sound and efficient way in linear time ( Horwitz 

et al., 1990; Ottenstein and Ottenstein, 1984 ). More specifically, the 

worst-case complexity of building a program slice from an SDG of 

N nodes is O ( N ); the worst-case complexity of building an SDG it- 

self is O ( N 

3 ) ( Hammer, 2009 ). 

Fig. 3 depicts the SDG of the program in Fig. 1 . The en- 

try points of the methods allowUser() , createUser() , 
encodeForXpath() , encodeForXMLAttribute() and the 

main entry point doPost() are represented as SDG nodes 

(shaded boxes). The other nodes (white boxes), which represent 

the expressions of the program in Fig. 1 , are connected with 

control-dependence edges (black lines), data-dependence edges 

(black arrows) and summary edges (dotted black arrows). Call 

edges (dashed arrows with black arrowheads) connect call sites 

with their respective targets, whereas dashed arrows with white 

arrowheads denote parameter edges. Input sources are highlighted 

with a solid dashed frame, whereas sinks are highlighted with a 

blank dashed frame. 

Definition 3. Backward Program Slice ( Horwitz et al., 1990 ). Given 

an SDG G = (N, E) , let K ⊆ N be the set of identified sinks. The 

backward program slice of G with respect to a target criterion k 

∈ K , denoted with bs ( k ), consists of all the statements that influ- 

ence k , and is defined as bs (k ) = { j ∈ N | j 
∗−→ k } , where j 

∗−→ k 

denotes that there exists an interprocedurally-realizable path from j 

to k , so that k is reachable through a set of preceding statements 

(possibly across procedures). The detailed algorithms for comput- 

ing interprocedurally-realizable paths and backward slice are given 

in Horwitz et al. (1990) . 
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Fig. 5. Forward slice with respect to the slicing criterion at line 2 in Fig. 1 . 

As illustrated in Fig. 4 , the backward program slice with respect 

to the sink at line 18 in Fig. 1 contains all the program statements 

that influence (both intraprocedurally and interprocedurally) the 

operation of the sink. 

Definition 4. Forward Program Slice ( Bergeretti and Carré, 1985 ). 

Given an SDG G = (N, E) , let I ⊆N be the source criterion. The for- 

ward program slice of G with respect to I consists of all the nodes 

that are influenced by I , and is defined as f s (I) = { j ∈ N | i ∗−→ 

j ∧ i ∈ I} 
The program in Fig. 1 contains three input sources at lines 2–4; 

Fig. 5 shows the forward program slice with respect to the input 

source account at line 2. 

Definition 5. Program Chop ( Jackson and Rollins, 1994; Reps and 

Rosay, 1995 ). The program chop of an SDG G = (N, E) with the 

source criterion I and the target criterion k is defined as c(I, k ) = 

bs (k ) ∩ f s (I) . 

Note that program chopping is defined as the intersection 

of backward slicing and forward slicing. It allows us to identify 

security-relevant nodes that are on the paths from I to k and, thus, 

involved in the propagation of potentially malicious data from in- 

put sources to a sink. 

For example, Fig. 6 shows a chop between the input sources 

getParameter() on line 2-4 and the sink xpath.evaluate() 
on line 18. 

3. Overview of the approach 

Our fully-automated approach mainly targets Java-based Web 

applications, since the type of vulnerabilities it supports are com- 

monplace in such systems. We emphasize that a specialized ap- 

proach is necessary to provide practical support for the security 

auditing of Web applications and services developed using a spe- 

cific technology. 

When extracting security slices, we aim to achieve the follow- 

ing objectives: 

1. Soundness: A security slice shall contain all the relevant pro- 

gram statements enabling the auditing of any security violation. 

2. Precision: A security slice shall contain only the program state- 

ments relevant to minimizing the auditing effort. 

3. Performance: The security slicing algorithm shall handle Web 

applications of realistic size. 

Achieving all these objectives is desirable but in practice there 

is a trade-off between soundness and precision, depending on the 

analysis goal. In our context, we prioritize soundness because find- 

ing all the possible security violations is a priority for security au- 

diting; nevertheless, we also try to optimize precision to the extent 

possible. 

The pseudocode of the algorithm realizing our security slicing 

approach is shown in Fig. 7 . The algorithm takes as input: the byte- 

code W of a Java program; a set M 〈 IR, KG 〉 of methods (custom func- 

tions or library API) that are either irrelevant to security analysis 

of XSS, SQLi, XMLi, XPathi, and LDAPi, or that may be relevant to 

security but are known (or assumed) to be correct or free from 

security issues; a set �〈 I, K, D 〉 of sources, sinks, and declassifiers 

(nodes in the SDG that represent sanitization procedures). The al- 

gorithm returns the set SS of security slices and associated path 

conditions extracted from W . 

The algorithm works as follows. After initializing SS to the 

empty set, it constructs the SDG from the bytecode W of the input 

program; this step is realized by using the API of Joana ( Hammer, 

2009 ). The resulting SDG is then filtered by pruning nodes that 

contain methods belonging to M 〈 IR, KG 〉 ; the details of this step are 

described in Section 4.3 . The next step identifies the set of input 

sources I and sinks K from the SDG. Afterwards, the algorithm iter- 

ates through the set K ; for all sinks k ∈ K , it performs the following 

steps: 

1. Computing the program chop c ( I, k ), to extract the program 

slice that contains the statements influenced by the set of in- 

put sources I , which lead to sink k through possibly different 

program paths. This step is realized using the API of Joana . 

2. Performing information flow control (IFC) analysis to identify 

how insecure the information flows along the paths in c ( I, 

k ) are. This step, partially supported by Joana , is described 

in Section 4.1 . 

3. Performing context analysis to identify the context of sink and 

to understand whether input data is used in an insecure way 

in a sink. This analysis automatically patches vulnerable sinks 

with sanitization procedures if it is able to identify adequate 

procedures from the extracted path conditions PC . If this is not 

possible, the extracted information can still be used to facilitate 

manual security auditing (e.g., checking feasible conditions for 

security attacks). This step is detailed in Section 4.2 . 

Each of the last three steps is combined with a filtering pro- 

cedure, based on the extracted information flow traces and path 

conditions; the filtering procedures are explained in Section 4.3 . 

Furthermore, each iteration terminates by computing a security 

slicess ( I, k ) and its path conditions PC , which are then added to set 

SS . 

4. Detailed steps 

4.1. Information flow control analysis 

Information Flow Control Analysis (IFC) analysis is a technique 

that checks whether a software system conforms to a security 

specification. Relying on the work of Hammer (2009) , we adapt 

his generic flow-, context-, and object-sensitive interprocedural IFC 

analysis framework to suit our specific information flow problem 

with respect to XSS, SQLi, XMLi, XPathi, and LDAPi. Our goal is to 

trace how information from an input source can reach a sink, and 

then to analyze which paths in the chops are secure and which 

ones may not be secure. 

We specify allowed and disallowed information flow based 

on a lattice called security lattice , i.e., a partial-ordered set that 

expresses the relation between different security levels. We use 

the standard diamond lattice L LH ( Myers et al., 2006 ), depicted 
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Fig. 6. The chop with the source criterion {2, 3, 4} and the target criterion {18} of the example program in Fig. 1 . 

Fig. 7. Security slicing algorithm. 

Fig. 8. The security lattice used in our information flow control analysis. 

in Fig. 8 , which expresses the relation between four security levels 

HL, HH, LL , and LH . Every level l = L 0 L 1 contains two components: 

L 0 denotes the confidentiality level while L 1 denotes the integrity 

level. Confidentiality requires that information is to be prevented 

from flowing into inappropriate destinations or sinks, whereas in- 

tegrity requires that information is to be prevented from flowing 

from inappropriate input sources ( Sabelfeld and Myers, 2003 ). The 

element HL represents the most restricted usage, since any data 

labeled with it cannot flow to any destination that has a different 

security label. Data labeled with HH are confidential and cannot be 

manipulated by an attacker, whereas data labeled with LH are non- 

confidential and also cannot be manipulated by an attacker. The LL 

label is used for data that are non-confidential but could be altered 

by an attacker. 

All input sources and sinks are annotated with a security la- 

bel that enables the detection of allowed and disallowed informa- 

tion flow. This annotation step is done automatically based on our 

predefined sets of input sources and sinks (see Section 2.2 ). Input 

sources are labeled with HL because data originating from them 

are supposed to be confidential but could be manipulated by an 

attacker. Sinks are labeled either with LH or with HH . The value 

of the confidentiality label is either L or H , depending on whether 

the sink is allowed or not to handle user confidential data. In any 

case, the integrity label for sinks is always H , because only high- 

integrity data should be allowed to flow into the sinks, to prevent 

the flow of malicious input values causing security attacks. More 

specifically, in our approach we label as HH the sink functions that 

update or modify databases—since it is common to store highly- 

confidential data in back-end databases—as well as the functions 

that access server environment variables, read data from config- 

uration files or other sources. Moreover, we label as LH the sink 

functions that generate outputs to external environments, such as 

exception handling functions, as well as functions that read time 

and date such as getTime() from java.util.Calendar . Fi- 

nally, an example of function labeled with LL is a function that 

monitors mouse-clicks. 

Based on these annotations, the IFC analysis traces information 

flow from one node in the chop to another and detects disallowed 

information flow and, therefore, security violations. For example, 

a security violation is detected if there exists an information flow 

from an LL input source to an HH sink. 

Notice that the annotation procedure must also take into ac- 

count the fact that program developers might use sanitization pro- 

cedures to properly validate data from an input source before using 

it in a sink. For instance, this is the case for our running example 

in Fig. 1 , where proper sanitization procedures (lines 16 and 17 

and 22 and 23) taken from the OWASP security library ( OWASP, 

2015a ) are used between the input sources and a sink. Such cases 

can be considered secure and do not need to be reported to an 



772 J. Thomé et al. / The Journal of Systems and Software 137 (2018) 766–783 

auditor. To support the use of these functions, we rely on the con- 

cept of declassification ( Sabelfeld and Sands, 2005 ). In our context, 

declassifiers are nodes in the SDG that represent sanitization pro- 

cedures. The integrity level of such nodes is annotated with an H 

label since the sanitization procedure ensures the integrity of data. 

As we address five different vulnerability types, only the declas- 

sifiers relevant to the vulnerability type of a sink k are annotated 

with the integrity level H . Other declassifiers in the chop c ( I, k ) and 

irrelevant for the vulnerability type of k are ignored. For example, 

the declassifier at lines 16 and 17 in Fig. 1 is relevant for the XPath 

function xpath.evaluate() at line 18, but is inappropriate for 

a sink of a different vulnerability category, e.g., an SQL query oper- 

ation. 

In addition to annotating the integrity level of declassifier nodes 

with H , we also change the integrity level of the data that reach 

these nodes to H . For example, as shown in Fig. 3 , the input sources 

account and password (lines 2 and 3 in Fig. 1 ) are annotated 

with the label HL . Since these input values pass through the de- 

classifiers at line 16 and 17 (highlighted in bold in Fig. 3 ), their 

security labels are changed to HH . When performing IFC analysis, 

the use of these variables in the sink node xpath.evaluate() 
at line 18 will be considered secure, because the information 

flow from HH to HH is allowed. Our tool is configured with the 

declassifiers (mainly encoding and escaping functions) from two 

widely-used security libraries—Apache Common ( Apache, 2015b ) 

and OWASP (2015a ). It also recognizes the PreparedStatement 
function from the java.sql package as a declassifier correspond- 

ing to SQL sinks. 

Consider now the same example above, but without san- 

itization functions. In such a case, we would have at least 

two illegal flows (from account and password to the 

xpath.evaluate() call) from HL to HH . Hence, their corre- 

sponding paths would be determined as potentially insecure and 

will be subject to context analysis , explained in the next subsec- 

tion. 

4.2. Context analysis 

The IFC analysis illustrated above can tell if data from input 

sources may reach sinks. However, from a security auditing stand- 

point it is also necessary to understand the context of a sink, i.e., 

how the input data is used in a sink and if it is used in an insecure 

way. 

In this section, we present context analysis , a lightweight tech- 

nique for identifying the context (within a sink) in which the data 

of an input source is used. Based on the identified context, this 

technique is able to automatically fix a vulnerable input source by 

applying the most appropriate sanitization function to it. 

Table 1 lists, for each type of vulnerability that we consider, the 

possible contexts (in the form of patterns, where input correspond 

to the data from an input source). For each context, we indicate 1 

the most appropriate security API (provided by OWASP, 2015a ) that 

should be used in that specific context to sanitize the input data. 

Context analysis is lightweight compared to symbolic evalua- 

tion and constraint solving approaches ( Kiezun et al., 2009; Zheng 

and Zhang, 2013 ) because it traverses only the paths leading to 

the sink rather than the whole program, and does not attempt to 

precisely reason about the operations performed in the path (e.g., 

by performing constraint solving). Instead, the analysis merely ex- 

amines the path conditions, i.e., the necessary conditions for the 

presence of information flow from input sources I to a sink k via 

a program path. More specifically, context analysis relies on path 

1 Table 1 shows the mapping between context patterns and security API s as con- 

figured in our tool. Nevertheless, users can provide a different mapping. 

condition analysis to rule out infeasible paths, and to reconstruct 

the string values in the sink, needed to identify the context of the 

input source. The identified context is matched with the context 

patterns of Table 1 . In case of a match, context analysis applies the 

corresponding fix, by wrapping the input source causing the vul- 

nerability with the proper security API. Otherwise, in case there is 

no match and the input source cannot be fixed automatically, the 

procedure yields the path conditions, which represent a valuable 

asset for security analysts to understand the cause of a vulnerabil- 

ity. 

To explain this analysis, we use the code snippet shown 

in Fig. 9 and extracted from one of our test subjects WebGoat 

/ MultiLevelLogin1 (see Section 6 ). The code is vulnerable to 

XSS because the input data, which is accessed from a database 

(source at line 12) and displayed as content of an HTML page (sink 

at line 27), could be tampered with by an attacker before the data 

is stored in the database. 

Context analysis uses static single-assignment (SSA) 

form ( Cytron et al., 1991 ), a standard intermediate represen- 

tation used in program analysis. In SSA form, every variable in a 

program is assigned exactly once and every variable is defined 

before it is used. For join points, i.e., points in the program where 

different control flow paths merge together, a �-operation is 

added to represent the different values that a variable can take 

at that point. Fig. 9 (b) shows the equivalent SSA form for the 

program in Fig. 9 (a). 

The pseudocode of our context analysis function is shown 

in Fig. 10 . It takes as input a security slice ss in a dependence 

graph form; it uses two local variables: PC , representing the set of 

preconditions analyzed, and P V , representing the set of potentially 

vulnerable paths. 

First, the input security slice ss is transformed by function 

genICFG into its equivalent interprocedural control flow graph 

(ICFG) form ( Sinha et al., 2001 ), which shows the order of control 

flow executions across procedures. In this form, the control flow 

paths in the slice become explicit and can be easily extracted. 

Afterwards, function collectPaths extracts the control flow 

paths by traversing the ICFG in a depth-first search manner. For 

practicability (to avoid path explosion), loops and recursive func- 

tion calls are traversed only once; both our experience and the 

evidence gathered during our experiments confirm that analyzing 

one iteration of loops and recursive calls is sufficient to detect vul- 

nerabilities. To illustrate this step, we use the ICFG of the program 

from Fig. 9 (b), shown in Fig. 11 . Every control flow edge is labeled 

with a sequence number; outgoing predicate edges are annotated 

with TRUE or FALSE . In the figure, three control flow paths can be 

observed: {(1, 8), (1, 2, 3, 6, 7, 8), (1, 2, 3, 4, 5, 7, 8)}. However, for 

this program, the IFC analysis described in Section 4.1 would have 

already pruned the paths {(1, 8), (1, 2, 3, 6, 7, 8)} from the security 

slice, since there is no insecure information flow in those paths. 

Hence, function collectPaths will return, in variable P V , only one 

potentially vulnerable path: P V = { (1 , 2 , 3 , 4 , 5 , 7 , 8) } . 
The next step of the context analysis procedure is a loop that 

iterates over the set P V . For each path p ∈ P V , function evalPath 

tries to automatically fix the vulnerability contained in p , if pos- 

sible. Function evalPath , which takes in input a path p , works as 

follows. First, the path conditions pc and the context of the input 

source ctx of path p are extracted with the eval procedure, de- 

scribed further below. Afterwards, function autoFix identifies the 

required sanitization procedure by matching the extracted context 

ctx against one of the context patterns shown in Table 1 . If there 

is a match for ctx , the security API corresponding to the matched 

context pattern is applied to the input source; this automated fix- 

ing procedure is further explained in Section 4.3 . If function aut- 

oFix returns a fix, procedure removePath is invoked to prune the 

fixed path from the security slice ss , and evalPath terminates 
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Table 1 

Mapping between contexts and security APIs for data sanitization. 

Vulnerability type No. Context pattern Security API 

XSS 1 HTML element content: ESAPI.encoder().encodeForHTML() 
< tag > input < /tag > 

2 HTML attribute value: ESAPI.encoder().encodeForHTMLAttribute() 
< div attr = ‘ input ’ > 

3 URL parameter value: ESAPI.encoder().encodeForURL() 
< a href = ’’http://... ?param = input ’’ > 

4 JavaScript variable value: ESAPI.encoder().encodeForJavaScript() 
< script > var a = ‘ input ’... < /script > 

< div onclick = ’’var a = ‘ input ’’’ > ... < /div > 

5 CSS property value: ESAPI.encoder().encodeForCSS() 
< style > selector {property: input ;} < /style > 

< span style = ’’property: input ’’ > ... < /span > 

SQLi 6 SQL attribute value: ESAPI.encoder().encodeForSQL() 
SELECT column From table WHERE 
row = ‘ input ’ 

XMLi 7 XML element content: ESAPI.encoder().encodeForXML() 
< node > input < /node > 

8 CDATA content: ESAPI.encoder().encodeForXML() 
< ![CDATA[ input ]] > 

9 XML attribute value: ESAPI.encoder().encodeForXMLAttribute() 
< node attr = ‘ input ’/ > 

XPathi 10 XPath attribute value: ESAPI.encoder().encodeForXPath() 
//table[column = ‘ input ’] 

LDAPi 11 LDAP distinguished name: ESAPI.encoder().encodeForDN() 
LdapName dn = new LdapName( input ) 

12 LDAP search: ESAPI.encoder().encodeForLDAP() 
search = ’’(attr = input )’’ 

Fig. 9. The Java source code (a) and the equivalent SSA form (b) of a sample program. 

Fig. 10. Context analysis algorithm. 
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Fig. 11. The control flow graph of the program in Fig. 9 . 

returning null. If fixing the vulnerability in p is not possible, the 

evalPath function returns the path condition pc corresponding to 

path p . The path conditions returned after executing the loop over 

P V are available in the set PC , which can be used by security audi- 

tors for manual inspection. 

The extraction of the path conditions and of the context of a 

path is done through function eval , which works as follows. It 

traces, in reverse control-flow order starting from the sink, all the 

statements (in the SSA form) on which the sink variable is data- or 

control-dependent. Function traceBackwards collects all the vari- 

ables, their assignments and their interdependencies (stored in the 

map Vmap ), including the conditions Cond imposed on the vari- 

ables at predicate statements. Function resolveVariables resolves 

all variables until a fixed point is reached; the variables used in 

the sink are resolved as a concatenation of the program-defined 

values and the input variables. The result of the fix-point iteration 

is stored in the map Vmap ′ , which is then used by the getSrc- 

SnkParams function to determine: 1) the variables that are associ- 

ated with the input source srcpar , i.e., the value that is returned by 

the source operation; 2) the sink parameter snkpar , i.e., the string 

that is passed to the operation in the sink. With this information, 

function getContext extracts the context of the input source with 

respect to the sink. The context is returned together with the con- 

joined conditions in Cond to the evalPath procedure and stored in 

variables ctx and pc . 

For example, after applying the eval procedure 

on the path p = (1 , 2 , 3 , 4 , 5 , 7 , 8) in Fig. 11 , vari- 

able out 8 at the sink at line 27 is resolved to 

‘ < html >< p > 0 u 1 .toUpperCase() < /p >< /html > ’ , 
where u 1 represents the input variable assigned with the 

data from the input source at line 12. By matching this con- 

text against the context patterns of Table 1 , it is identified as 

an input used as the content of an HTML element . The corre- 

sponding security API ESAPI.encoder.encodeForHTML() 

is then used to patch the input source at line 12 

in Fig. 9 , resulting in the new statement String u = 

ESAPI.encoder.encodeForHTML(r.getString(1)) . 
Consider now the case in which the above vulnerable path 

p = (1 , 2 , 3 , 4 , 5 , 7 , 8) could not be fixed by function autoFix . The 

following path condition pc would be reported: 

DriverManager.getConnection(DB). 
prepareStatement(‘‘SELECT ∗...’’).executeQuery(). 
next() ∧ ¬u .isEmpty() . 

Based on this information, a security auditor may easily iden- 

tify that the path is feasible as long as there are user data in the 

database. Hence, she may conclude that a security attack is feasible 

since there is no sanitization of the user input. 

Note that our approach filters known-good classes (explained 

in the next subsection) such as those belonging to database 

drivers and database queries from the SDG. During SDG con- 

struction, those classes are replaced with stub nodes. Therefore, 

for the example above, the paths in the methods called by the 

DriverManager are not explored in our analysis. The consider- 

able reduction of the number of analyzed path improves the scal- 

ability of our approach, and results in a simplified path condition, 

from which an auditor can still assess its feasibility. 

4.3. Filtering 

In this section, we describe the five filtering mechanisms ap- 

plied to generate minimal slices for security auditing. For efficiency 

reasons, the filters are applied at different stages of our approach 

(as shown in our security slicing algorithm in Fig. 7 ). Filters 1 and 

2 are applied concurrently during the SDG construction. Filter 3 is 

applied during program chopping. Filters 4 and 5 are applied to the 

program chops in sequence. We mentioned earlier that the goal of 

our work is to achieve the highest possible precision while preserv- 

ing soundness so that security auditing is scalable. 

The original program chops c ( I, k ) without filters are sound with 

respect to the types of input sources and sinks we consider, since 

all the statements related to those sources and sinks are extracted. 

It is straightforward to prove that by applying the filtering rules 

illustrated below, which remove statements that cannot be rele- 

vant to security auditing, we achieve better precision compared to 

the original program chops. However, we also need to demonstrate 

that we maintain soundness by not removing any statement that 

might be relevant to security auditing when filtering rules are ap- 

plied. Therefore, when defining the filtering rules below, we pro- 

vide arguments on how we preserve soundness . Further, we empir- 

ically demonstrate the soundness in Section 6 . 

The five filtering mechanisms used in JoanAudit are: 

Filter 1: Irrelevant. It filters functions (custom functions or li- 

brary APIs) that are irrelevant to the security analysis of XSS, SQLi, 

XMLi, XPathi, and LDAPi. Let M IR be the set of irrelevant functions. 

During the SDG construction, upon encountering a node that cor- 

responds to a function f ∈ M IR , a stub node is generated instead 

of the PDG that represents f . By doing so, all the nodes and edges 

that correspond to f are filtered while not affecting the construc- 

tion of the SDG. For security auditing purposes, the stub node is 

annotated with the name of the function and labeled as irrelevant . 

Filter 2: Known-good. It filters functions with known-good secu- 

rity properties. Let M KG be the set of known-good functions. During 

the SDG construction, upon encountering a node that corresponds 

to a function f ∈ M KG , a stub node is generated instead of the PDG 

that represents f . Therefore, like the filter above, all the nodes and 

edges that correspond to f are filtered in such a way as not to af- 

fect the construction of SDG. For security auditing purposes, the 

stub node is annotated with the name of the function and labeled 

as known-good . 
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Basically, the above two filters correspond to 1) functions that 

are known to be irrelevant to the auditing of XSS, SQLi, XMLi, 

XPathi, and LDAPi issues; and 2) functions that may be relevant 

to security but are known (or assumed) to be correct or free from 

security issues. Hence, it is clear that filtering such functions does 

not affect the soundness of our approach. 

For example, we observed that Java methods be- 

longing to classes responsible for retrieving the HTTP 

GET and POST parameters (e.g., those implementing the 

javax.servlet.ServletRequest interface) are commonly 

present in the original program chops; however — differently 

from the parameters they retrieve — these methods are irrelevant 

for our security analysis purpose because they contain neither 

input sanitization operations nor security-sensitive operations 

concerning XSS, SQLi, XMLi, XPathi, and LDAPi vulnerabilities. 

Example functions excluded by the known-good filter are the ones 

provided by widely-used security libraries, such as Apache (2015b ) 

and OWASP (2015a ) (e.g., the methods of the classes implementing 

the org.owasp.esapi.Encoder interface); these functions are 

assumed to be correct and thus do not require auditing. 

In our tool, we predefine 12 functions as irrelevant and 50 func- 

tions as known-good . Program developers or security auditors may 

need to extend these sets of functions based on their domain 

knowledge; these sets can be easily defined in our tool through 

a configuration file. 

Filter 3: No input. It filters sinks that are not influenced by any 

input source. This filtering is easily done by performing the pro- 

gram chopping with the source criterion I and the sink criterion k . 

The resulting chop c ( I, k ) would be empty. 

The sinks that are not influenced by any input sources cannot 

cause any security issues; thus, they are not relevant to security 

auditing. This implies that the resulting code, after applying Filter 

3, is still sound and yet more precise. 

Filter 4: Declassification. It filters out the secure paths from chop 

c ( I, k ). Let D k ⊆N be the set of declassifier nodes in SDG that cor- 

responds to the type of sink k . Let P be a set of paths from input 

sources I to k . If there is a declassifier node d ∈ D k on a path p ∈ 

P , then the path p is removed from c ( I, k ). 

The presence of a declassifier on a path p in c ( I, k ), which 

is adequate for securing the sink, ensures that values from input 

sources are properly validated and sanitized before being used in 

k , as far as path p is concerned. Hence, the resulting code after 

filtering such paths is still sound and yet more precise. 

This filter is applied using the IFC analysis discussed 

in Section 4.1 . We use information flow control to filter out— from 

the set of paths that are returned to the security auditor—the paths 

that do not contain any violation according to the L LH lattice. 

Filter 5: Automated fixing. It automatically fixes the paths from 

input sources I to sink k that can be identified as definitely vul- 

nerable and that can be properly fixed without user intervention. 

Let P be the set of remaining paths from chop c ( I, k ) after applying 

Filter 4 . If a path p ∈ P identified as vulnerable can be fixed by ap- 

plying an adequate security API, then the path p is removed from 

c ( I, k ). This filter corresponds to the autoFix procedure described 

in Section 4.2 . 

Automated fixing is not possible for all cases, especially 

when an input passes through complex string operations, like 

substring() and replace() , which are not addressed by our 

analysis. This is because there might be custom sanitization on 

the path using operations like replace() and in that case, ap- 

plying another sanitization procedure on the path could affect the 

integrity of the input data and may not fix the security issue as in- 

tended. Therefore, automated fixing is only applied for the inputs 

directly used in the sink or for the inputs that only pass through 

simple string operations like concat() , toUpperCase() , and 

trim() , which do not have any (sanitization) effect on the input. 

For example, as discussed in Section 4.2 , for the program in Fig. 9 , 

the fixing is applied to the input at line 12 because it only passes 

through the concat() and toUpperCase() operations before 

it is used in the sink. Fixing is also not possible when our analy- 

sis cannot determine the appropriate sanitization procedure to use, 

for example when it cannot identify the matching context due to 

complex code. 

Anyway, since we apply the filter only on the paths that can 

be appropriately fixed, the resulting report after this filter is still 

sound and yet more precise for security auditing. 

5. Implementation 

We implemented our approach in a command-line tool called 

JoanAudit , written in Java and publicly available ( Thomé, 2015 ). It 

comprises approximately 11 kLOC, excluding library code. The tool 

is based on Joana ( Hammer, 2009 ), which is based on IBM’s Wala 

framework ( IBM, 2013 ). Joana provides APIs for SDG generation 

from Java bytecode, program slicing, and IFC analysis. Our tool also 

directly uses Wala ’s APIs for some functionalities like ICFG genera- 

tion and code optimization. 

The tool is configured with two XML files, config.xml and 

lattice.xml . The first file contains a list of Java bytecode sig- 

natures for 74 input sources, 58 sinks, and 27 declassifiers; this 

list corresponds to the set �〈 I,K,D 〉 in the security slicing algo- 

rithm shown in Fig. 7 . The config.xml file also specifies the list 

of bytecode signatures for 50 known-good APIs and 12 irrelevant 

APIs; this list corresponds to the set M 〈 IR, KG 〉 in Fig. 7 , used in Fil- 

ter 1 and Filter 2 . The lattice.xml file specifies a configuration 

for the security lattice explained in Section 4.1 . Both files are con- 

figurable by users to suit their security analysis needs. For exam- 

ple, based on their domain knowledge, developers can specify in 

config.xml additional input sources, sinks, and custom declas- 

sifiers used in their applications. Thanks to this user-defined addi- 

tional configuration, the tool will not skip analyzing other security- 

sensitive operations, and will not falsely report as insecure the 

paths containing custom declassifiers. Similarly, different security 

lattices (e.g., with finer-grained security levels) can be defined in 

lattice.xml . 
Fig. 12 illustrates the architecture of the tool. Given a Java 

Web application, JoanAudit performs the analysis steps presented 

in Sections 3 and 4 . The bytecode of the application is converted 

to an intermediate representation based on the SSA form, which 

is then processed by the analysis steps. However, to facilitate se- 

curity auditing, the tool outputs the security slice in source code 

format. The block labeled SDG Builder corresponds to the step at 

line 3 in Fig. 7 , which generates the SDG of the input program. The 

block labeled Annotator corresponds to the step at line 5 in Fig. 7 , 

which annotates the SDG with input sources, sinks, and declassi- 

fiers. Based on the annotations in SDG, the tool generates a pro- 

gram chop for each sink (line 7 in Fig. 7 ). Sinks that are not influ- 

enced by any input source are filtered upon chopping ( Filter 3 ). The 

block labeled IFC Analyzer performs on each chop the IFC analysis 

described in Section 4.1 . After computing 2 the ICFG from the an- 

notated SDG by means of the ICFG builder block (based on Wala ’s 

API), for each chop, JoanAudit extracts the corresponding ICFG sub- 

graph, from which the secure paths determined from the IFC anal- 

ysis are filtered ( Filter 4 ). The block labeled Context Analyzer per- 

forms context analysis (described in Section 4.2 ) on the remaining 

paths. As part of this analysis, the block Autofix Engine attempts 

to patch, when feasible, the source code with the required security 

2 The tool keeps the mapping of the nodes between the SDG and the ICFG be- 

cause, in ICFG, the control flow execution paths are explicit whereas in SDG, the 

control- and data-dependencies are explicit. Hence, both types of models are com- 

plementary and required by our analysis. 
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Fig. 12. The architecture of our tool JoanAudit . 

Fig. 13. Excerpt of the report generated by JoanAudit . 

Fig. 14. Path conditions retuned by JoanAudit . 

API, as described in Section 4.3 ( Filter 5 ). As output, the tool gen- 

erates a report that guides the security auditor in auditing poten- 

tially vulnerable parts of the program. An excerpt of report gener- 

ated for one of our test subjects ( WebGoat , see Section 6 ) is shown 

in Fig. 13 . 

The report contains potentially vulnerable paths (denoted as se- 

quences of line numbers) and highlights the control-flow, data- 

dependencies, control-dependencies, and path conditions along 

these paths. The scopes (i.e., the classes to which the line numbers 

refer to) are parenthesized with squared brackets. The path condi- 

tions extracted during context analysis are returned in the format 

shown in Fig. 14 , in which sink and source variables are denoted 

with snk and input , respectively. 

6. Evaluation 

6.1. Research questions 

To evaluate whether our approach achieves precision, sound- 

ness and run-time performance when providing assistance to secu- 

rity auditing, we aim to answer the following research questions: 

RQ1 (Precision) How much reduction can be expected from secu- 

rity slicing in terms of source code to be inspected? Is the 

reduction practically significant? 

RQ2 (Soundness) Do we extract all the statements that are rele- 

vant to auditing XSS, SQLi, XMLi, XPathi, and LDAPi vulnera- 

bilities? 

RQ3 (Performance) Does the tool scale to realistic systems in 

terms of run-time performance? 

6.2. Test subjects 

Table 2 shows the 9 Web applications/services that we used 

in our evaluation. WebGoat ( OWASP, 2015b ) is a deliberately in- 

secured Web application/service for the purpose of teaching se- 

curity vulnerabilities. It contains various realistic vulnerabilities 

that are commonly found in Java Web applications. Apache Roller 

( Apache, 2015a ) and Pebble (2015) are blogging applications that 

also expose a Web service APIs. Regain (2015) is a search engine 

that allows users to search for files over a Web front-end. PubSub 

( PubSubHubbub, 2015 ) is the implementation of the open proto- 

col PubSubHubbub for distributed publish/subscribe communication 

( Network Working Group, 2014 ), which is supported by many blog- 

ging applications and also used to access newsfeeds on the Inter- 

net. rest-auth-proxy is an LDAP-based Web service that authenti- 

cates users against an LDAP directory. 

We selected WebGoat , Apache Roller , and Pebble since they are 

commonly used as benchmarks for security ( Livshits and Lam, 

20 05; Tripp et al., 20 09 ; Liu and Milanova, 2009 ; Xie et al., 2011; 

Tripp et al., 2013; Møller and Schwarz, 2014 ). The choice of Re- 

gain was driven by the fact that it is used in a production-grade 

system by dm , one of the biggest drugstore chains in Europe. TPC- 

App, TPC-C , and TPC-W are the benchmarks used by Antunes and 

Vieira (2015) for evaluating vulnerability detection tools for Web 

services; these benchmarks contain a set of Web services accepted 

as representative of real environments by the Transactions process- 

ing Performance Council ( http://www.tpc.org ). The PubSub tool was 

chosen because it is the most popular Java project related to the 

PubSubHubbub protocol in the Google Code archive ( Google, 2017 ). 

Similarly, we selected rest-auth-proxy because it was one of the 

first Java projects returned by a query on Github.com with the 

search string ldap rest . 
Table 2 also reports the sizes of the test subjects in terms of 

lines of code (LOC), excluding the library code. The test subjects 

http://www.tpc.org
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Table 2 

Test subjects. 

Java #Prog. #Sources #Sinks #Declassifiers 

LOC XML XPath XSS LDAP SQL Others XML XPath XSS LDAP SQL Others 

WebGoat 5.2 24,608 14 34 1 1 35 0 29 2 0 0 0 0 21 0 

Roller 5.1.1 52,433 3 14 10 0 13 0 0 0 8 0 3 0 0 0 

Pebble 2.6.4 36,592 3 6 0 0 6 0 0 1 0 0 0 0 0 3 

Regain 2.1.0 23,182 1 3 0 0 1 0 0 0 1 0 2 0 0 0 

PubSub 0.3 1964 3 3 10 2 0 0 0 0 2 0 0 0 0 0 

TPC-App 2082 6 22 0 0 2 0 7 0 0 0 0 0 11 0 

TPC-C 9184 6 16 0 0 0 0 24 0 0 0 0 0 58 0 

TPC-W 2470 6 6 0 0 0 0 6 0 0 0 0 0 6 0 

rest-auth-proxy 442 1 2 0 0 0 4 0 0 0 0 0 0 0 0 

Total 152,957 43 106 21 3 57 4 66 3 11 0 5 0 96 3 

have an average size of 17 kLOC, and the largest one has 52 kLOC, 

which is fairly typical for that type of systems. The third column 

in Table 2 shows the numbers of Web programs ( #Prog. ), i.e., JSP, 

Java servlets and classes, contained in each test subject and an- 

alyzed by our tool JoanAudit . The table also reports the numbers 

of input sources ( #Sources ), sinks ( #Sinks ), and declassifiers ( #De- 

classifiers ) that JoanAudit identified. For sinks and declassifiers, the 

numbers are shown separately with respect to XSS, SQLi, XMLi, 

XPathi, and LDAPi. Some sinks are very general and are exploitable 

in various ways (e.g., sinks that allow attackers to load arbitrary 

classes server-side). Due to their universality, we also considered 

them in our evaluation and their number is listed in column oth- 

ers in Table 2 . 

All these test subjects can be obtained from the tool web- 

site ( Thomé, 2015 ). 

6.3. Results 

We ran our evaluation on a Apple MacBook Pro with an Intel 

Core i7 (2 GHz) and 8 GB of RAM, running Mac OS X 10.11, JVM 

version 25.31-b07, Joana rev. 688, Wala v.1.1.3, and OWASP ESAPI 

2.0. 

6.3.1. Precision 

To answer RQ1, we compared the size of the slices produced by 

JoanAudit (hereafter referred to as “security slices”) with the size 

of the slices produced by the state-of-the-art chopping implemen- 

tation provided by Joana (hereafter referred to as “normal chops”) 

extended with source/sink identification capabilities; in terms of 

size, we considered both the number of nodes and the number of 

edges. More specifically, for each sink k , we computed a security 

slice using our approach and a normal chop with the criterion ( I, 

k ). We used the Wilcoxon signed-rank test over the slice sizes across 

Web programs in order to determine whether the differences in 

sizes of the two types of slices were statistically significant. We 

also discuss whether this difference is of practical significance in 

terms of auditing effort. 

As shown in Table 2 , we analyzed 43 Web programs from the 9 

test subjects. For each Web program, an SDG was constructed. We 

computed normal chops and security slices from each SDG. The 

results are shown in Table 3 . Overall, we computed 154 normal 

chops ( #ch ) and 39 security slices ( #ss ) from 106 sources and 154 

sinks. The size (in terms of #nodes and #edges) of SDGs, normal 

chops, and security slices are shown in columns SDG, Chopping , and 

SecuritySlicing , respectively. Column #ss reports the final output of 

JoanAudit , i.e., the numbers of remaining security slices that require 

auditing after filtering has been performed. Some of the computed 

security slices are completely filtered (i.e., #ss = 0) when, for exam- 

ple, all the paths in a slice are detected to be secured because of 

the presence of declassifiers. Furthermore, the last four columns 

in Table 3 show the effectiveness of the five different filters pre- 

sented in Section 4.3 , in terms of the number of nodes that are 

filtered. 

To determine the amount of reduction achieved by security slic- 

ing when compared to normal chopping, we computed the relative 

size reduction of security slices with respect to (unfiltered) normal 

chop. The results (in percentage) are given in the columns (N%) and 

(E%) in Table 3 . These results show that our security slices are sig- 

nificantly smaller than their counterparts obtained through normal 

chopping, in terms of both the number of nodes and the number 

of edges. As shown in the last two rows of the table, our approach 

achieved mean and median reductions of 76% and 100%, respec- 

tively, in terms of the number of nodes, and 79% and 100%, re- 

spectively, in terms of the number of edges. More importantly, 115 

chops were completely dropped by the filters, meaning that only 

39 out of total 154 chops require manual auditing (see columns 

#ch and #ss ). Hence, one can expect significant practical benefits 

by adopting our approach. The Wilcoxon signed-rank tests over 43 

observations ( #Prog. ) show that the size reductions achieved with 

security slices are statistically significant at a 99% level of signifi- 

cance. 

From the last four columns in Table 3 , we can also observe how 

much each type of filters contributed. The known-good and irrele- 

vant library-code-filters (F1 + F2) significantly reduced the SDG size 

for all the test subjects. This can be explained by the fact that ap- 

plications typically contain a large chunk of library code. The no in- 

put filter (F3) also significantly pruned many nodes (74,776 nodes 

in total) since those nodes are not influenced by any input source. 

The declassification filter (F4) significantly pruned many nodes from 

the standard chops (36 45 nodes in total), for all the test subjects 

except rest-auth-proxy . The automated fixing filter (F5) was signifi- 

cant for WebGoat, PubSub , and TPC-W (751 nodes were pruned in 

total). 

To conclude, by comparing the security slice sizes and the SDG 

sizes in Table 3 , we can observe that on average security slic- 

ing would require the audit of approximately 1% of the code for 

all the sinks in a given Web application. Since the security slices 

computed by our approach are based on the control-flow paths 

between sinks and sources, the size reduction of security slicing 

achieved with JoanAudit is directly correlated to the reduction of 

the manual effort required from security auditors for verifying vul- 

nerable paths in the source code. Hence, these results answer RQ1 

by clearly suggesting that a significant reduction in code inspection 

can be expected when using our approach. 

We also remark that the above comparison shows the benefit 

of security slicing over normal chopping, with the latter performed 

by using a tool ( Joana ) that is also not easy to configure and use 

for standard engineers. Furthermore, for situations where security 
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Table 3 

Comparison between the size of the slices obtained with normal chopping and the size of the slices obtained with security slicing (#ch: number of normal chops; N%: 

reduction of nodes in percentage; E%: reduction of edges in percentage; #ss: number of security slices; F1–F5: numbers of nodes filtered by each of the proposed five 

filters). 

SDG Chopping SecuritySlicing Filtering 

Program name Nodes Edges Nodes Edges #ch Nodes (N%) Edges (E%) #ss F1 + F2 F3 F4 F5 

WebGoat 160,573 923,709 16,359 19,405 68 3902 76 3916 80 21 133,389 21,007 1746 529 

1. BackDoors 11,196 63,350 210 229 1 171 19 172 25 1 10,367 658 0 0 

2. BlindNumericSqlInjection 9573 52,262 721 813 6 0 100 0 100 0 7637 1600 211 125 

3. BlindScript 21,558 140,134 1072 1296 3 318 70 322 75 3 20,634 606 0 0 

4. BlindStringSqlInjection 9616 52,580 721 813 6 0 100 0 100 0 7654 1626 211 125 

5. InsecureLogin 11,998 68,257 2205 2630 5 673 69 673 74 2 9864 1410 51 0 

6. MultiLevelLogin1 13,525 80,281 969 1341 4 0 100 0 100 0 11,918 1126 481 0 

7. MultiLevelLogin2 12,546 71,773 1696 2172 6 670 60 676 69 1 9263 2504 109 0 

8. SqlAddData 10,565 58,219 1535 1756 8 169 89 170 90 2 8617 1365 336 78 

9. SqlModifyData 10,623 58,350 1606 1827 12 233 85 234 87 3 8549 1386 343 112 

10. SqlNumericInjection 13,576 77,717 1712 2028 5 376 78 376 81 2 11,845 1354 1 0 

11. SqlStringInjection 12,155 69,502 2134 2479 5 567 73 567 77 3 9923 1664 1 0 

12. WsSAXInjection 8075 45,164 833 940 3 352 58 352 63 2 4 4 48 3274 1 0 

13. WsSqlInjection 9191 49,232 820 940 3 373 55 374 60 2 7338 1479 1 0 

14. XPATHInjection 6376 36,888 125 141 1 0 100 0 100 0 5332 955 0 89 

Roller 16,361 142,811 2562 3110 23 353 86 353 89 1 12,614 2812 582 0 

15. CommentDataServlet 11,119 115,398 1354 1607 12 353 74 353 78 1 9242 1298 226 0 

16. AuthorizationServlet 752 3578 101 120 1 0 100 0 100 0 97 651 4 0 

17. OpenSearchServlet 4490 23,835 1107 1383 10 0 100 0 100 0 3275 863 352 0 

Pebble 1605 7824 560 717 7 3 99 2 100 1 529 986 87 0 

18. ImageCaptchaServlet 829 4033 536 697 1 0 100 0 100 0 470 293 66 0 

19. SecurityUtils 236 1128 21 18 5 0 100 0 100 0 28 187 21 0 

20. XmlRpcController 540 2663 3 2 1 3 0 2 0 1 31 506 0 0 

Regain 43,197 622,748 474 568 1 0 100 0 100 0 28,562 14,458 177 0 

21. FileServlet 43,197 622,748 474 568 1 0 100 0 100 0 28,562 14,458 177 0 

PubSubHubbub 3313 17,281 207 208 12 0 100 0 100 0 2209 899 142 63 

22. Discovery 160 726 63 63 2 0 100 0 100 0 0 97 0 63 

23. Publisher 1896 10,097 45 44 5 0 100 0 100 0 1405 446 45 0 

24. Subscriber 1257 6458 99 101 5 0 100 0 100 0 804 356 97 0 

TPC-App 190,177 1,198,618 1125 1309 9 99 91 97 93 2 161,378 28,459 198 43 

25. ChangePaymentMethod_Vx0 9671 56,074 166 179 2 0 100 0 100 0 9368 165 138 0 

26. ChangePaymentMethod_VxA 10,151 58,890 49 48 1 49 0 48 0 1 9773 329 0 0 

27. ProductDetails_Vx0 10,330 59,197 420 506 2 0 100 0 100 0 10,103 183 44 0 

28. ProductDetails_VxA 10,554 60,414 434 522 2 50 88 49 91 1 10,316 185 3 0 

29. NewProducts_Vx0 74,609 481,203 13 12 1 0 100 0 100 0 60,803 13,793 13 0 

30. NewProducts_VxA 74,862 482,840 43 42 1 0 100 0 100 0 61,015 13,804 0 43 

TPC-C 92,559 56 8,6 80 1860 1932 24 1044 44 1048 46 10 87,424 3471 620 0 

31. Delivery_Vx0 13,606 81,511 266 276 7 0 100 0 100 0 12,577 775 254 0 

32. Delivery_VxA 16,130 97,431 493 503 3 405 18 408 19 3 14,903 822 0 0 

33. OrderStatus_Vx0 18,963 120,016 287 301 5 0 100 0 100 0 18,083 614 266 0 

34. OrderStatus_VxA 20,395 129,702 476 490 5 455 4 457 7 5 19,287 653 0 0 

35. NewStockLevel_Vx0 11,266 67,071 127 139 2 0 100 0 100 0 10,871 295 100 0 

36. NewStockLevel_VxA 12,199 72,949 211 223 2 184 13 183 18 2 11,703 312 0 0 

TPC-W 63,290 365,728 213 209 6 0 100 0 100 0 60,698 2383 93 116 

37. DoSubjectSearch_Vx0 10,347 59,748 26 25 1 0 100 0 100 0 9947 374 26 0 

38. DoSubjectSearch_VxA 10,549 60,854 40 39 1 0 100 0 100 0 10,132 377 0 40 

39. DoAuthorSearch_Vx0 10,541 60,790 49 50 1 0 100 0 100 0 10,118 378 45 0 

40. DoAuthorSearch_VxA 10,549 60,854 40 39 1 0 100 0 100 0 10,132 377 0 40 

41. GetCustomer_Vx0 10,551 61,187 22 21 1 0 100 0 100 0 10,092 437 22 0 

42. GetCustomer_VxA 10,753 62,295 36 35 1 0 100 0 100 0 10,277 440 0 36 

rest-auth-proxy 655 2838 354 378 4 332 6 343 9 4 22 301 0 0 

43. LdapAuthService 655 2838 354 378 4 332 6 343 9 4 22 301 0 0 

Total 571,730 3,850,237 23,714 27,836 154 5773 5759 39 486,825 74,776 3645 751 

Mean 13,296 89,540 551 647 4 133 76 134 79 1 11,322 1739 85 17 

Median 10,551 60,790 287 301 3 0 100 0 100 0 9923 651 21 0 

auditors have no access to program chopping tools, our approach 

can also indicate the percentage of the entire program code that 

has to be audited with security slices. 

6.3.2. Soundness 

To answer RQ2, we manually inspected all the security slices 

(39) returned by JoanAudit and compared them to their normal 

chop counterparts, to determine whether our security slicing ap- 

proach had pruned any information relevant to auditing XSS, SQLi, 

XMLi, XPathi, and LDAPi vulnerabilities. 

To illustrate this manual inspection process, we use the sim- 

plified code excerpt below, which corresponds to a security slice 

extracted from the rest-auth-proxy / LdapAuthService program 

by JoanAudit . 
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In the code above, function authenticatePost() can be 

called by a user to request authentication with the rest-auth- 

proxy web service; its inputs are the username ( user , line 2) 

and the password ( pass , line 3). Function getLdap() cre- 

ates an LdapAuthentication object, which manages all the 

communications with the LDAP backend server and stores con- 

figuration attributes that are important for user authentication 

(e.g., distinguished name, search filter, LDAP host address, port). 

First, the pre-configured search filter is loaded from the con- 

figuration file (line 14); then, an LdapAuthentication ob- 

ject is created (line 15). The pre-configured search filter can 

contain placeholders surrounded by curly brackets that are re- 

placed with concrete values. For example, given the search 

filter (&(objectClass = inetOrgPerson)(uid = {user})) , 
the placeholder {user} is replaced with the value pro- 

vided with parameter user at line 18, and then the result 

is stored in the LdapAuthentication object through the 

setSearchFilter() method. 

We started our manual inspection process at the sink (line 18), 

to determine the variables it uses ( sfilter in the example 

above). Then, we tracked back its dependent statements to identify 

how the variables were processed. We determined that there was 

an unsanitized input at line 2 on which the sink in line 18 is data 

dependent. Hence, a user could alter the semantics of the search 

filter sfilter by injecting LDAP filter fragments such as () ∗ & 
| through the user variable at line 2. There was no known LDAPi 

vulnerability reported before for rest-auth-proxy ; by using our tool, 

we detected a new LDAPi vulnerability and reported it to the de- 

velopers. 

In addition to inspecting security slices, we also manually in- 

spected all the normal chops (154 chops) to determine if our se- 

curity slicing had incorrectly dropped the whole chop from being 

reported (i.e., generating a false negative). Following a similar pro- 

cess, we verified that our security slicing approach neither missed 

any information important for security auditing nor incorrectly 

dropped any chop: this answers RQ2. The chops and their security 

slice counterparts are available on the tool website ( Thomé, 2015 ). 

6.3.3. Performance 

To answer RQ3, we measured the time taken for performing 

each step in the generation of security slices and normal chops; 

the results are shown in Table 4 . JoanAudit took an average of 

27s to analyze individual test subjects and required a maximum 

of 124s to analyze the largest one. These results show that JoanAu- 

dit exhibits good run-time performance, which makes it suitable to 

analyze Java Web applications similar in size to our test subjects, 

which is the case for many such systems. 

Furthermore, we remark that the sum of the values in 

the columns “SDG Generation”, “Source/Sink Identification”, and 

“Chopping” corresponds to the execution time of the state-of-the- 

art chopping implementation provided by Joana extended with 

source/sink identification capabilities (i.e., normal chopping ). The 

difference between this approach and ours lies only in the extra 

time taken by the filtering step, which on average accounts for 33% 

of the total time. 

6.4. Threats to validity 

Our empirical evaluation is subject to threats to validity. The 

results were obtained from 9 selected Web applications, and hence, 

they cannot necessarily be generalized to all Web applications. We 

minimized this threat by choosing test subjects that vary in sizes 

and functionalities, and by picking realistic Java projects, which in 

many cases represent well-known benchmarks in the context of 

security. 

We compared our approach, in terms of size reduction and per- 

formance, with a state-of-the-art chopping implementation pro- 

vided by Joana extended with source/sink identification capabili- 

ties. Note that we expect, however, to achieve similar results when 

comparing with other Java program slicing/chopping tools (e.g., In- 

dus ( Jayaraman et al., 2005 )) since our approach works on top of 

program chopping and is independent from the specific chopping 

tool we use. 

Lastly, since our security slicing approach and tool are targeted 

towards Java Web applications, the approach may not produce 

the same results for Web applications written in other languages. 

Nevertheless, the fundamental principles of our approach are not 

language-specific and can be adapted to other languages using the 

corresponding program slicing tools (e.g., CodeSurfer ( Teitelbaum, 

20 0 0 ) for C ++ ). 

7. Related work 

Related work that deal with the security auditing of XSS, SQLi, 

XMLi, XPathi, and LDAPi vulnerabilities can be broadly catego- 

rized into two areas: static taint analysis and program slicing ap- 

proaches. 

7.1. Static taint analysis 

Static taint analysis approaches label data from input sources 

as tainted data and then detect vulnerabilities if the tainted data 

flows into sinks — which may be exploited by tainted data — with- 

out passing through any sanitization function (declassifier). Imple- 

mentation of static taint analysis are available for Java Web sys- 

tems ( Almorsy et al., 2012; Livshits and Lam, 2005; Pérez et al., 

2011; Tripp et al., 2009; 2013; Huang et al., 2014 ), for PHP Web 

systems ( Jovanovic et al., 20 06; Xie and Aiken, 20 06; Wassermann 

and Su, 2008; Nunes et al., 2015; Medeiros et al., 2016 ), and for 

Android systems ( Arzt et al., 2014 ). 

In general, there are three key differences between static taint 

analysis approaches and our security slicing approach. First, static 

taint analysis approaches tend to focus on data-flow based tainting 

only, and do not consider control-dependency information. This in- 

formation is often essential for correctly identifying vulnerabilities 

or auditing the correctness of input sanitization procedures, since 

selection statements are often used to check user inputs. For exam- 

ple, consider the code snippet below, corresponding to a sampled, 

simplified slice, extracted from WebGoat : 

In the above example, a taint analysis approach would falsely 

report a vulnerability. More specifically, it would detect a data- 

flow from the input source at line 1 to the sink at line 3, with- 
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Table 4 

Execution time of the individual steps in JoanAudit (in ms). 

SDG Source/Sink Chopping Filtering Total 

Generation identification 

WebGoat 21,774 201 59,427 42,278 123,680 

Roller 5079 64 16,125 1241 22,509 

Pebble 2949 21 234 40 3244 

Regain 4315 20 758 354 5447 

PubSub 2876 41 367 224 3508 

TPC-App 16,297 112 2157 4349 22,915 

TPC-C 8089 63 3931 6664 18,747 

TPC-W 7590 31 313 3044 10,978 

rest-auth-proxy 945 6 6220 25,765 32,936 

Mean 7768 62 9948 9329 27,107 

out considering that the sanitization achieved through the call to 

parseInt() at line 2 would have an impact on the value of 

employeeId itself. By contrast, our approach correctly identifies 

the path from line 1 to line 3 as secure due to the presence of the 

parseInt() declassifier; hence, it does not report a vulnerability. 

In general, lack of support for control-flow dependencies can be 

the source of many false positive results: Jovanovic et al. ’s taint 

analysis tool ( Jovanovic et al., 2006 ) reported five false positives; 

Tripp et al. (2013) reported 40% false positives on analyzing We- 

bGoat ; Shar and Tan (2012) also reported that Livshits and Lam’s 

taint analysis approach ( Livshits and Lam, 2005 ) yielded 20% false 

positives due to missing control-dependency information. Although 

there are some taint analysis approaches ( Clause et al., 2007; King 

et al., 2008; Schwartz et al., 2010; Kang et al., 2011; Zhu et al., 

2015 that analyze control-dependency information, but they sup- 

port programming languages different from Java and/or do not ad- 

dress injection vulnerabilities (with the exception of Clause et al. 

(2007) , which addresses SQLi in the context of dynamic taint anal- 

ysis for ×86 code). 

Second, declassification is the only form of filtering provided by 

taint analysis approaches (e.g., as in Nunes et al., 2015 ) whereas 

our approach additionally filters irrelevant and known-good library 

functions and also fixes some of the vulnerabilities automatically. 

Last, our approach specifically targets XSS, SQLi, XMLi, XPathi, 

and LDAPi vulnerabilities. Current taint analysis-based approaches 

address only SQLi and/or XSS. To the best of our knowledge, only 

Pérez et al. (2011) readily address XMLi, XPathi, and LDAPi for Java 

Web systems. However, since Pérez et al. ’s work is not evaluated, 

it is difficult to verify its effectiveness. Medeiros et al. (2016) read- 

ily address XPathi and LDAPi but for PHP Web systems. It is pos- 

sible to adapt existing approaches to support XMLi, XPathi, and 

LDAPi and even equip them with our proposed filtering mecha- 

nisms. However, since developers are often not security experts, 

these tasks may not be trivial. By contrast, our tool is already con- 

figured with an extensive library of input sources, sinks, and de- 

classifiers specific to these vulnerabilities and thus, it can be used 

out-of-the-box. 

7.2. Program slicing 

Krinke (2004) proposes barrier slicing approaches that could al- 

low auditors to filter specific parts of the program that are known 

to be correct. Our approach makes use of this idea to prune Java 

libraries that are irrelevant to our security auditing purposes. 

Despite the various slicing approaches proposed in the litera- 

ture, in practice there are only two slicers that can handle all Java 

features: Indus ( Jayaraman et al., 2005 ) and Joana ( Hammer, 2009 ). 

Indus is built on top of Soot ( Vallée-Rai et al.,1999 ), a Java bytecode 

analysis framework, and is less precise than Joana , since it does not 

fully support interprocedural slicing ( Hammer, 2009 ). As discussed 

in Section 3 , Joana provides a sound and precise approach for com- 

puting slices and chops. As our approach and tool are built on top 

of Joana , we have the same advantages. However, Joana only gen- 

erates slices for generic tasks like checking information flow and 

debugging. By contrast, we provide additional techniques for prun- 

ing statements in the slices produced by Joana and target security 

auditing of vulnerabilities. Therefore, Joana represents our baseline 

for comparison. 

Shar and Tan (2012) propose a program slicing-based approach 

for auditing the implemented defense features to prevent XSS. 

The approach of Yamaguchi et al. (2013) and Yamaguchi et al. 

(2014) extracts abstract syntax trees and program dependence 

graphs relevant to auditing buffer overflow vulnerabilities in C/C++ 

code. The key difference between these approaches and ours is 

that they do not focus on minimizing the size of the extracted 

code, because their main objective is to extract all the possible 

defense features. By contrast, we extract all the features relevant 

for security auditing and yet, we also minimize the size of the ex- 

tracted code by filtering irrelevant or secure code, making security 

auditing scalable and practical. 

Backes et al. (2014) present a program slicing-based approach 

for auditing privacy data leakage issues in Android code. Similarly 

to our approach, they also reduce SDG size by filtering known- 

good and irrelevant library code. But unlike our approach, they do 

not consider declassification and automated fixing. Further, as our 

objectives are different, the specifications of sources, sinks, and li- 

brary APIs are also different. Hassanshahi et al. (2015) propose an 

approach for detecting Web-to-App Injection (W2AI) attacks, an at- 

tack type where an adversary can exploit a vulnerable app through 

the bridge that enables interaction between the browser and apps 

installed on Android phones. Like our approach, they also make 

use of program slicing based on the ICFG in conjunction with a 

pre-defined set of sources and sinks. However, the main objective 

of their work is the detection of 0-day W2AI vulnerabilities rather 

than helping security analysts to audit source code for finding and 

fixing vulnerabilites of various kind. 

8. Conclusion and future work 

Injection vulnerabilities are among the most common and seri- 

ous security threats to Web applications. A number of approaches 

have been developed to help identify many of those vulnerabilities 

in source code, such as taint analysis. However, they still generate 

too many false alarms to be practical, or miss some vulnerabili- 

ties. Therefore, they cannot effectively support security auditing by 

identifying and fixing vulnerabilities in source code in a scalable 

manner. 

In this paper, we have presented an approach based on state- 

of-the-art program slicing, to assist the security auditing of com- 

mon injection vulnerabilities, namely XSS, SQLi, XMLi, XPathi, and 

LDAPi. For every security-sensitive operation in the program, the 

approach extracts a sound and precise slice, along with path con- 
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ditions, to help analysts perform security auditing on minimal 

chunks of source code. This is meant to complement current vul- 

nerability detection approaches, by helping the auditor identify 

false positives and negatives. We implemented our approach in the 

JoanAudit tool, which we evaluated on 43 Web applications, gener- 

ating 39 security slices. In comparison with conventional program 

slices, we observed that our security slices are 76% smaller on av- 

erage, while still retaining all the information relevant for verifying 

common vulnerabilities. The tool and the test subjects used for the 

evaluation are available online ( Thomé, 2015 ). 

As part of future work, we plan to enhance our approach by au- 

tomating the verification of vulnerabilities. In particular, we aim to 

develop techniques that can make symbolic execution scale up, so 

that it can be applied for the feasibility analysis of the conjunction 

of path conditions with security threat conditions. 
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