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Some user needs can only be met by leveraging the capabilities of others to undertake particular tasks that require intelli-
gence and labor. Crowdsourcing such capabilities is one way to achieve this. But providing a service that leverages crowd
intelligence and labor is a challenge, since various factors need to be considered to enable reliable service provisioning. For
example, the selection of an optimal set of workers from those who bid to perform a task needs to be made based on their
reliability, expected reward, and distance to the target locations. Moreover, for an application involving multiple services,
the overall cost and time constraints must be optimally allocated to each involved service. In this paper, we develop a frame-
work, named CROWDSERVICE, which supplies crowd intelligence and labor as publicly accessible crowd services via mobile
crowdsourcing. The paper extends our earlier work by providing an approach for constraints synthesis and worker selection.
It employs a genetic algorithm to dynamically synthesize and update near-optimal cost and time constraints for each crowd
service involved in a composite service, and selects a near-optimal set of workers for each crowd service to be executed. We
implement the proposed framework on Android platforms, and evaluate its effectiveness, scalability and usability in both
experimental and user studies.

CCS Concepts: eInformation systems — Crowdsourcing; Collaborative and social computing systems and tools;
eHuman-centered computing — Collaborative and social computing systems and tools; Mobile computing;

Additional Key Words and Phrases: mobile crowdsourcing, collaboration, service composition, reliability

1. INTRODUCTION

A variety of user needs nowadays can be automated by calling computational services, either
remotely through a Web service or locally through a mobile application. These services are
used to construct personal applications using lightweight service composition techniques such as
mashup [Liu et al. 2007; Maximilien et al. 2008; Rosenberg et al. 2008]. However, not all user
needs can be accomplished only by computational services. For example, one may want to check
the validity of the description of a secondhand laptop by site inspection, and assess its market value
by consulting experts. Beyond pure computational services and their compositions, such needs can
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only be met by leveraging the intelligence and labor of others, e.g., those who are currently near to
the laptop or have the required expertise.

An emerging way of involving humans in information seeking and computation tasks is crowd-
sourcing, which enables a crowd of undefined size to be engaged in solving a complex problem
through an open call [Bozzon et al. 2013; Chatzimilioudis et al. 2012]. Existing crowdsourcing
platforms such as Amazon Mechanical Turk (AMT) ! allow a requester to hire a large number of
workers from Web-based online community to accomplish short and self-contained microtasks such
as tagging images or translating fragments of text. Web-based crowdsourcing, however, cannot sup-
port location-based crowdsourcing tasks such as site inspection, which require the workers to use
mobile devices to enable location-based worker selection.

To compose crowdsourcing tasks into user applications, additionally, it is required that crowd
intelligence and labor themselves be encapsulated and served as services, which could be invoked
in a similar way as computational services. Each time such a service is invoked, a set of workers
are selected to participate the crowdsourcing task and each of them gets instructions for his/her own
microtasks. After accomplishing their work, the results they returned are aggregated to generate the
output of the service invocation.

In this paper, we develop a framework named CROWDSERVICE which supplies crowd intelli-
gence and labor as publicly accessible crowd services. A crowd service satisfies specific individual’s
needs via mobile crowdsourcing and can be composed with other crowd services and computational
services. For each invocation of a crowd service, CROWDSERVICE launches a crowdsourcing task
and aggregates the results returned by workers into the output. To the best of our knowledge, we
are the first to investigate service composition that includes human services provided by mobile
crowdsourcing.

Our earlier work [Peng et al. 2016] presented basic concepts and framework of crowd services.
However, given the aim of crowd service composition, a technical challenge lies in how to ensure
reliable service provisioning by selecting an optimal set of workers for each involved crowd ser-
vice. The reliability and cost of a crowd service depend highly on how many potential workers are
available and how close they are to the target locations and how much reward they expect to receive.
Unlike classical service composition techniques where exactly one concrete service is selected for
each abstract service, in crowd service composition a consumer may expect that multiple workers
can finish their work and return their results in time. And to ensure a high probability of success the
platform often needs to employ even more workers from those who bid for each task. Under given
certain resource (i.e., cost and time) constraints, however, the execution can only employ a limited
number of workers.

Furthermore, to maximize the reliability of a composite service, it is required that the overall
resources be optimally allocated to each involved computational service and crowd service. To en-
sure this reliability, CROWDSERVICE actively estimates the likelihood of success in providing the
service based on parameters associated with a set of potential workers, and dynamically synthesizes
and updates the constraints on each involved computational or crowd service. When a crowd service
is to be executed, CROWDSERVICE generates an open call to potential workers and selects a near-
optimal set of responded workers based on the synthesized constraints to maximize the probability
of success.

The contributions of this paper are as follows: 1) we introduce the concept of crowd service and
propose a framework that can supply crowd intelligence and labor as publicly accessible crowd
services; 2) we develop an approach based on genetic algorithms [Forrest et al. 1993] that can
synthesize near-optimal cost and time constraints for each crowd service involved in a composite
service and select a near-optimal set of workers for a to-be-executed crowd service (Notice that
generating an optimal set of workers is NP-hard in the number of workers); 3) we implement the
proposed framework and algorithms on Android platforms and evaluate the effectiveness, scalability
and usability with experimental and user studies.

1 Amazon Mechanical Turk: http://www.mturk.com
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2. MOTIVATING EXAMPLE

Suppose that Bob would like to buy a secondhand laptop from an online market, which allows
registered users to sell personal items and supports online transactions only. Following the online
shopping process, Bob would first search for a desired laptop, examine its detailed information,
purchase it, and finally make the payment. However, Bob is worried that the description of the
laptop may be fraud. Furthermore, he is afraid that the price set by the seller might be unreasonably
high. Thus, Bob would like to find someone to check the validity of the description by site inspection
and take a picture of the laptop before he decides to buy it. Moreover, Bob wants to consult local
experts on the market value of the laptop. If the price set by the seller is much higher than the price
assessed by the experts, he would abort the transaction.

The above process could be accomplished by a series of activities. Apart from automated com-
putational services (e.g., a Web service for online bank transaction), the crowd services have to be
employed for site inspection and price assessment. We argue that in order to fully automate the
above process (and its alike), one needs to combine the framework to compose computational ser-
vices which has been investigated extensively [Alrifai and Risse 2009; Tan et al. 2013]) with crowd
services. Our CROWDSERVICE framework can be used to address Bob’s problem.

In the design of CROWDSERVICE, we maintain a set of workers, which can potentially provide
crowd services. Each worker is associated with a set of attributes, e.g., his/her location, past service
providing records, etc. For each invocation of a crowd service, CROWDSERVICE launches a crowd-
sourcing task and selects workers based on their attributes to accomplish the task. Then the selected
workers accomplish their work and submit their results.

CROWDSERVICE provides composition templates of crowd and computational services for com-
mon needs, such as purchasing secondhand items. To compose crowd services with computational
services, each crowd service is wrapped as a Web service and published on the platform in CROWD-
SERVICE. Developers of a crowd service need to define its input and output parameters and specify
its execution strategy such as result aggregation method. For example, the price assessment service
takes as input a series of descriptions and a picture of an item and returns as output an assessed
price. The results of price assessment from multiple workers will be aggregated based on the speci-
fied aggregation method (e.g., by taking the average) to generate the final output.

Furthermore, Bob hopes that the entire process of purchasing secondhand laptops can be accom-
plished within 10 minutes and the overall additional cost does not exceed 10 dollars. To maximize
the probability of completing Bob’s composite service, given the above constraints, CROWDSER-
VICE needs to compute how much money and time should be spent on each involved computational
or crowd service. The optimal allocation of cost and time constraints is complicated due to the
dynamic and uncertain nature of crowd services: the number of potential workers who are near to
the target locations (e.g., the seller’s address for the site inspection service), their expected rewards
and reliability are uncertain and dynamically changing. Intuitively, more cost and time need to be
allocated to the crowd service that has fewer potential workers close to the target location.

When a crowd service is to be executed, ideally an optimal set of workers should be selected. For
example, if the allocated cost and time constraints of the site inspection service are § dollars and 6
minutes respectively, and Bob hopes that at least two workers can return their results in time. This
implies the optimization objective of maximizing the probability of at least two workers returning
their results in 6 minutes while the money paid to all the selected workers does not exceed 8 dollars.

With a composite service and user specified constraints, CROWDSERVICE would first synthesize
constraints on each involved computational service and crowd service and calculate the feasibility
of composite service based on the likelihood of satisfying those constraints. Afterwards, CROWD-
SERVICE would automatically execute the composite service by invoking the services accordingly.
Whenever a service is finished, the constraints are updated. When a crowd service is to be executed
(e.g., site inspection of the laptop), CROWDSERVICE generates an open call to potential workers
based on, in this example, their physical locations. After receiving feedback from the workers (e.g.,
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whether a worker is willing to participate and for how much reward), CROWDSERVICE selects the
workers based on the constraints and keeps executing the composite service until its completion.

3. CROWD SERVICE

In this section, we first describe the conceptual model of crowd service and then introduce different
types of crowd services. Afterwards, we introduce the composition of crowd services.

3.1. Conceptual Model

A crowd service leverages human intelligence and labor via mobile crowdsourcing and is packaged
in the form of computational service (e.g., Web service). It can be used for acquiring information
(e.g., assessing the price of an item, querying availability of spaces/rooms in a specific building)
or accomplishing real-life tasks (e.g., performing site inspection of an item, booking a table in a
restaurant onsite).

The conceptual model of crowd services is shown in Figure 1. A crowd service declares zero or
more input parameters, each of which specifies the name and type of an input value provided by
the consumer, and one or more output parameters, each of which specifies the name and type of
an output value returned to the consumer. A crowd service defines one or more task fields, each
of which specifies the name and type of a result value provided by workers. Note that the output
parameters of a crowd service can be different from its task fields. For example, a crowd service
for price assessment has a personal price assessment and a confidence level as its task fields, but
has only an assessed price as its output parameter, whose value will be calculated based on its task
fields.

A crowd service has a text description specifying its task requirements for workers. For example,
the text description of a crowd service for site inspection can be specified as follows.

Please get to the designated location and inspect the item spec-
ified below. Check the physical item and evaluate whether it is
consistent with the item description given below. Take a picture
of the item and upload the picture.

This description and the input parameters such as seller address and item description constitute
task instructions for workers.

Each invocation of a crowd service results in the execution of a crowdsourcing task; that is, a
crowdsourcing task is an instantiation of a crowd service. It returns an output result which provides
a value for each of the output parameters of the crowd service. Depending on the crowd service def-
inition, a crowdsourcing task can be location independent, or be targeted at one or several locations.

A crowdsourcing task can be accomplished by one or more workers and a microtask is generated
for each worker. In each microtask, the worker accomplishes the assigned work and returns a result
which provides a value for each of the task fields of the crowd service. The results returned by the
workers will be aggregated into the output result of the task.

A crowdsourcing task has three operational parameters: C' specifies the maximal cost that can be
spent on the task (i.e., cost constraint); 7" specifies the maximal time that can be spent on the task
(i.e., time constraint); RN specifies the minimal number of workers who successfully return their
results, which is specified by the consumer and reflects his/her expectation of necessary redundancy.
For example, for a site inspection task, the consumer may expect that at least two workers return
their results (i.e., RN = 2).

3.2. Types of Crowd Services

There are different types of crowd services. According to the content of service, a crowd service can
be a query service or an actionable service. A query service requires workers to provide specific
information without taking any other actions, while an actionable service requires workers to take
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Fig. 1. Conceptual Model of Crowd Service

some real-life actions. For instance, a worker participating in an actionable task may need to move to
a target location (e.g., a restaurant) and accomplish some social interactions (e.g., booking a table).

A crowd service can be location based or location independent. This dimension is orthogonal to
the dimension of service content. A query service can be location based if the queried information is
associated with a specific location, for example querying availability of spaces/rooms in a specific
building. Otherwise, it is location independent, for example querying a reasonable price for a sec-
ondhand item. On the other hand, there are both location-based actionable services (e.g., booking a
table in a restaurant without online booking or phone booking) and location-independent actionable
services (e.g., paying a bill by third-party online payment).

3.3. Crowd Service Composition

Crowd services can be composed with computational services based on a predefined business pro-
cess. A business process consists of a series of activities, which can be accomplished by different
kinds of services such as follows.

— Web Service (WS): standard Web services or RESTful Web services provided by remote servers;

— App Service (APP): business services provided by mobile applications (e.g., Android App) which
can provide complex user interaction and encapsulate access to sensors (e.g., camera, audio
recorder) in mobile devices;

— UI Service (UI): simple user interaction services for users to examine returned results, make
choices, or input required information on their mobile devices.

— Crowd Service (CS): human powered services accomplished via mobile crowdsourcing;

Among the service types, Web service, App service, and Ul service are computational services.
Figure 2 shows a business process for the composite service of buying secondhand items using
an activity diagram. According to the process, a consumer first searches for and selects a desired
secondhand item with an App service, which can be provided by a mobile client of a secondhand
market. Based on the returned item and seller information, the process queries the price of the
corresponding new product with a Web service and requests a site inspection of the item with a
crowd service in parallel. Then the consumer examines the returned item information, site inspection
results and product price and determines whether to continue. If the consumer chooses to continue, a
crowd service is invoked to assess the price of the selected item. If the price set by the seller is lower
than certain threshold (e.g., 1.1 times of the assessed price), an order is generated and submitted via
a Web service.

A business process is implemented as a template that can be executed on mobile devices after be-
ing instantiated into a composite service by binding a concrete service for each activity. The process
template specifies the interaction flow and parameter passing among different services. We assume
that a process template can be defined by someone who knows well how to compose services for
specific goals (e.g., buying secondhand items) and shared among the users who want to achieve
the same goals. The CROWDSERVICE framework does not provide direct support for process tem-
plate definition, but supports crowd service composition from two aspects: making crowd services
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composable with each other as well as with computational services; synthesizing constraints and
selecting workers for each crowd service involved in a composite service.
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Fig. 2. Business Process for Buying Secondhand Items

4. FRAMEWORK

\

In this section, we first present an overview of CROWDSERVICE and then present details on the

underlying techniques.

4.1. Overview

An overview of our agent-based crowd service framework is presented in Figure 3. It shows the
software agents and other modules of the crowd service platform, consumer client, and worker
client, together with the interactions between them.
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Fig. 3. Overview of Crowd Service Framework

There are two major challenges for the crowd service platform. One challenge is the transfor-
mation between service invocation and crowdsourcing task execution. From the external view of a
crowd service, it is a publicly accessible Web service that can be invoked through standard service
interfaces. From the internal view of a crowd service, it is a crowdsourcing task that involves the
individual behaviors of a number of crowd workers. To bridge these two views, CROWDSERVICE
employs an agent-based architecture, which assigns a task agent for each crowd service invocation
to manage the task execution and generate the output result. This enables CROWDSERVICE to take
advantage of the techniques of scalable architecture in cloud computing such as load balancing and
container, which are popularly used in Internet services. The other challenge is the customization of
crowdsourcing task execution for different requirements. As a genetic platftorm, CROWDSERVICE
needs to support different kinds of crowdsourcing tasks for crowd services defined for different
requirements. To this end, CROWDSERVICE provides customizable microtask execution and result
aggregation based on crowd service description. Customizable microtask execution automatically
generates task instructions and interaction forms on worker clients to guide the workers to accom-
plish assigned microtasks. Customizable result aggregation automatically generates output results
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of crowd service invocations from personal results submitted by workers based on predefined ag-
gregation policies.

Basic information of registered workers such as age, sex, and ability is stored in the worker
profile database on the platform. This information is provided by the workers when they register.
There is also a reliability of each worker in the profile database, which reflects the likelihood that
the worker will accomplish a given task in time. It can be calculated as the percentage of finishing
the assigned work and returning the results in time based on past service providing records of each
worker. In order to report availability and update the real-time state (e.g., location), the worker agent
on the mobile device of a worker periodically (e.g., once 2 minutes) sends heartbeat messages to
the checkin agent on the platform. The checkin agent updates the real-time states of available work-
ers in the worker profile database. Sending heartbeat messages means that a worker shares his/her
location with the platform, thus raising the issue of location privacy. To protect privacy, a worker
can control when to report availability to the platform or choose to send heartbeat messages with-
out location information (which means only participating in location-independent tasks). Moreover,
privacy policies, regulatory strategies, and computational algorithms (e.g., anonymity and obfusca-
tion) [Krumm 2009; Yang et al. 2014; Barhamgi et al. 2016] could be used for protecting privacy
data, which will be employed in the future work.

To execute a composite service involving crowd services on a mobile device, the consumer needs
to specify the overall cost and time constraints of the composite service and the acceptable minimal
number of successfully returned worker results (i.e., RN) for each involved crowd service. The
execution engine on consumer client executes a composite service by invoking the crowd services
and computational services involved in it.

Each time right before a crowd service is invoked, the execution engine requests an execution
plan for the remainder of the composite service. The planner in CROWDSERVICE executes a plan-
ning process to produce an optimized execution plan, which allocates the resources (response time
and cost) to each unexecuted crowd service or computational service and estimates the feasibility
(probability of success) of the composite service (see Section 5). If the estimated feasibility is lower
than the threshold (e.g., 60%) specified by the consumer, the execution engine terminates the exe-
cution and reports a failure to the consumer. Otherwise, the execution engine sends a request of the
current crowd service with the allocated resources (i.e., cost and time) to the platform and gets a
service response from it.

Each time a crowd service request is received, the crowd service wrapper on the platform creates
a task agent and assigns the service request to it. The task agent gets input parameters from and
returns an output result to the wrapper. It executes a series of behaviors to accomplish the assigned
task (i.e., crowd service invocation).

— Open Call: The task agent sends an open call with task instructions (including task description,
target locations and input parameters) to all the available candidate workers who may satisfy
specific conditions (e.g., with the required capabilities or near the target locations).

— Worker Selection: The task agent receives responses from workers who are willing to participate
and selects a near-optimal subset of workers based on the cost and time constraints (see Section 5).
After that it sends a participation confirmation to each selected worker.

— Result Aggregation: The task agent receives results from workers and aggregates all the received
results to generate an output result (see Section 4.4).

Correspondingly, the worker agent on the mobile device of a worker executes a series of behaviors
to communicate with the task agent, and guides the worker to accomplish his/her microtask.

— Task Examination: The worker agent receives an open call from the platform and presents the
task instructions on the worker’s Ul (User Interface). The worker examines the task instructions
and inputs an offer (i.e., expected reward). Then the worker agent sends a response to the platform.

— Microtask Execution: The worker agent generates a microtask view presenting task instructions
and an interaction form to capture the result. The worker accomplishes the microtask and returns
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his/her result in the interaction form, for example, by typing in a text input, choosing in a drop-
down box, or taking a picture, etc. (see Section 4.3).

— Result Submission: The worker agent sends the worker’s result to the platform after he/she fin-
ishes the microtask.

4.2. Crowd Service Description

To develop and publish a crowd service, a developer only needs to specify a crowd service descrip-
tion and deploy it on the platform. A crowd service description includes input/output parameters,
location information, task fields, and an aggregation method. Based on this description, the platform
can automatically generate a Web service with the specified input/output parameters and execute the
specified execution strategy when the service is invoked.

The description of each input/output parameter includes its name and type. A parameter can be
of primitive data type (e.g., string, integer) or multimedia data type (e.g., image, audio).

Location information specifies whether a crowd service is location dependent or not and, if so, the
way to get the target locations (current location, direct input, input transformation). Current location
means to use the current location of the consumer (e.g., when ordering food from restaurants nearby)
as the target location. Direct input means to use a specified input parameter (e.g., the location of a
seller for the site inspection service) as the target location. Input transformation means to transform
a specified input parameter (e.g., the name of a restaurant) into target locations (e.g., the locations
of its branches) using coordinate transformation services.

Task fields specify the schema of worker results provided by workers. The name and type of each
task field is described in service description. The types of task fields include primitive data type,
choice type, and multimedia data type. A primitive data type can be string, integer, or float. For
a string field, its length needs to be specified. For a number field (integer or float), its range and
precision need to be specified. A choice field provides predefined options for a field. A multimedia
field can be an image, audio, or video that needs to be recorded by a worker using corresponding
sensors (e.g., camera) on his/her mobile device. Task field definition of a crowd service is used as
the schema of worker result representation and microtask view generation (see Section 4.3).

Aggregation method specifies how the value of each output parameter can be aggregated from
the workers’ results. CROWDSERVICE provides standard aggregation methods such as computing
the average or taking the result of the highest ranked expert. For an output parameter using a stan-
dard aggregation method, the developer can simply choose the corresponding aggregation method
provided by the template. In other cases, the developer can define his/her own aggregation method,
which can be either a standard aggregation or a customized computation (see Section 4.4).

4.3. Microtask Execution

For each assigned microtask, a worker agent generates a microtask view on the worker UI, showing
task instructions and an interaction form to guide the worker to accomplish the microtask.

Task instructions consist of a task description, an optional task map, and an input value panel.
The task description is the text description of the corresponding crowd service. For a location-based
task, the task map shows the target locations on an online map (e.g., Google Maps), which can be
used for navigating to the target locations. The input value panel shows the input values provided
by the consumer client.

The interaction form allows the worker to input the required result after accomplishing the mi-
crotask. It is generated based on the task field definition of a crowd service. For each task field,
a text label is generated to show its name and an input is generated based on its data type. For a
primitive data type, a text input is generated for the worker to input a value. For a choice type, a
drop-down box is generated for the worker to choose an option. For a multimedia data type, a button
is generated, which if clicked will open a specific recorder (e.g., camera or voice recorder) on the
worker’s mobile device based on the media type (e.g., image or audio), with a multimedia container
for preview.
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Table I. A Virtual Table of Worker Results

Worker | Level Time AssessedPrice | Confidence
Wi 9 2015-01-28 15:20:10 500 H
w2 7 2015-01-28 15:20:02 460 H
W3 7 2015-01-28 15:20:25 510 M
W4 5 2015-01-28 15:21:01 510 M
W5 6 2015-01-28 15:20:45 510 L

4.4. Result Aggregation

Worker results received from workers are stored in database and can be regarded as a virtual table.
As an example, five worker results for the price assessment service are shown in Table I. In the
table, each record corresponds to a worker result, including the worker, worker level, submission
time, and values of task fields.

To aggregate worker results into an output result, task agent needs to generate a value for each
output parameter. An output parameter can be generated based on worker results in two different
ways, i.e., simple aggregation and complex computation.

Simple Aggregation. Simple aggregation generates an output value by using standard aggregation
operations, which can be defined as an SQL query on the worker result table. It reports a failure
if the query returns no results. For example, the following query specifies an aggregation method
for output parameter assessedPrice, which computes the average price assessment returned by
workers as the assessed price.

select avg(perAssessment) from $WorkerResult$

The following query defines a more complex aggregation method, which selects price assess-
ments with the highest worker level from those with high confidence and computes their average.

select avg(perAssessment) from $WorkerResult$ T1 where con-
fidence="H’ and not exists (select * from $WorkerResult$ T2
where confidence="H’ and T2.level; T1.level)

Apart from returning a single value, simple aggregation can also return a list of values as an
output value. For multimedia data, simple aggregation can be used to select the best result. For
example, a picture that is submitted earliest or returned by a worker with the highest level. More
complex aggregation of multimedia data have to be implemented by more complex computations.

Complex Computation. Complex computation generates an output value by using service-specific
algorithm. For example, an algorithm can be used to select a picture of the best quality from all the
submitted results based on service-specific criteria. This kind of computation can be implemented
as service-specific plugin which can be registered to the crowd service platform and invoked by task
agent for result aggregation.

5. CONSTRAINTS SYNTHESIS AND WORKER SELECTION

We propose an approach based on genetic algorithms [Forrest et al. 1993] for constraints synthesis
and worker selection. It includes an algorithm that can be used with different settings. Each time
right before a crowd service is invoked, the algorithm is executed to synthesize and update cost
and time constraints for each unexecuted crowd service and computational service. When a crowd
service is to be executed, the algorithm is executed again to select a near-optimal set of workers
from those who bid for the current crowdsourcing task.

The algorithm takes the following parameters as input: the process model of a composite service
consisting of crowd services and computational services; the cost and time constraints; a result con-
straint on minimal number of workers who successfully return their results for each crowd service;
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a set of candidate workers for each crowd service and the cost, distance, and reliability of each
candidate worker.

The outputs of the algorithm are a set of workers for each crowd service and the likelihood of
successfully executing the composite service (hereafter reliability). We assume that each worker
has a reliability which can be calculated based on past service providing records. For a newly joined
worker without previous records, we assume a medium reliability (i.e., 50%). Without loss of gen-
erality, in this work, we assume that the cost and response time of a computational service (i.e.,
Web service, APP service, or Ul service) are fixed and thus the reliability of a composite service is
entirely on that of the involved crowd services.

For constraints synthesis, the input to the algorithm consists of the following: 1) Process model:
all the unexecuted crowd services and computational services; 2) Cost and time constraints: con-
sumer specified cost/time constraint minus the actual cost/time spent on all the executed services; 3)
Candidate workers: all the available workers who are currently near to the target locations of each
unexecuted crowd service; 4) Worker cost: an value estimated by the cost for walking to the target
location (proportional to the distance) and the cost for finishing the assigned work after arriving at
the target location (a fixed value for a crowd service). We remark the set of candidate workers is an
over-approximation as not all those who could provide the service are willing to. The synthesized
cost and time constraints of each crowd service can then be derived from the estimated cost and
time of its selected workers.

For worker selection, the input to the algorithm consists of the following: 1) Process model: the
crowd service that is to be executed; 2) Cost and time constraints: cost and time constraints allocated
to the current crowd service; 3) Candidate workers: those who respond to the open call; 4) Worker
cost: a worker’s expected reward in his/her offer.

In this section, we first define the problem of constraints synthesis and worker selection, then
present the genetic algorithm, and afterwards describe the calculation of reliability of workers.

5.1. Problem Definition

Assume there are n crowd services in the composite service CS. We use CR; to denote the ith crowd
service where 1 < ¢ < n, and use CR;.C', CR;.R and CR,;.T to denote the cost, reliability and
response time of CR; respectively. For each crowd service, without loss of generality, we assume all
workers perform their works in parallel. Given a crowd service CR;, suppose there are m candidate
workers, we use W; to denote the set of all candidate workers for CR;, and w;; to denote the
jth worker of CR;, where 1 < j < m. We use |W;| to denote the total number of workers in
W;. We use RN; to denote the result number constraint for CR;. Our goal is to select a subset of

candidate workers for each CR; (denoted by V/[7Z where 171\/, C W;), which would maximize the
overall reliability of CS.

We use w;;.C, w;j.R, and w;;.D to denote the cost, reliability, and distance of worker w;;.
His/her response time w;;.T" as shown in Equation 1 is divided into two parts: w;;.D/V is the
walking time to the target location where V' is a constant denoting human walking speed; T, is
a constant for a crowd service denoting the time for finishing the assigned work after arriving at
the target location. The cost of CR; is the sum of the cost of all selected workers W; as shown in
Equation 2. The response time of CR; as shown in Equation 3 takes the maximal response time
of workers because all selected workers run in parallel. The reliability of CR; is calculated as
Equation 4, which is the probability of having at least RN; workers returning their results.

wz]D

wi;. T = Vv + T (1)
CR,.C= Y w;C )
wijEV/ﬁi
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CRi.R= Y ([[ R+ [[ Q-w.R) “)

S, CW; si€S wi €W/S;

where |S;| > RN;,.

Similar to Web service composition, the Quality of Service (QoS) of a composite service can be
aggregated from the QoS of its component services, based on the service’s internal compositional
structure (i.e., sequential, parallel, loop, or conditional) and the type of QoS attributes (i.e., cost,
response time, or reliability). We refer interested readers to [Chen et al. 2013] for details of QoS
aggregation.

We assume that a worker can not be involved in two or more tasks at the same time, which means
that we do not need to consider the workload of workers. This limitation is reasonable in practice,
since a user usually can only focus on one thing at a time. But in our future work we may consider
to relax the limitation, for example, to allow a worker to accomplish a task on the way for another
task.

We assume that the sets of workers for different crowd services are disjoint. This assumption
is not that strict for candidate worker sets, since if a worker is included in the candidate workers
of different crowd services, he/she gets a unique identity for each crowd service. We denote the
disjoint union of all the candidate workers and selected workers for all crowd services as C,, and

n n o~
Sy respectively where C,, = '61 W, and S,, = _&Jl W;. Suppose that the cost and time constraints
1= 1=

of a composite service CS are Cg and T respec?ively. We use C'S(Sy,) to denote the instance of
CS where crowd services of CS only make use of workers given in .S,,. The objective is to maximize
the probability of success, which is shown as follows:

argmaxg o, CS(Sw).R %)
with

{CS(Sw).C < Cq ©

CS(Syp).T < Tc

Based on the set of selected workers I//IZ for each crowd service CR;, the synthesized cost and
time constraints for CR,; could be calculated by Equation 2 and Equation 3 respectively.

5.2. Genetic Algorithm

The complexity of the above-defined optimization problem is NP-hard (in the number of workers).
Thus CROWDSERVICE makes use of Genetic Algorithm (GA) [Forrest et al. 1993] to select workers.

First, we encode the worker selections of crowd services as chromosomes. We adopt the array-
based chromosomes. The chromosome is partitioned to several parts. Each part is assigned to a
crowd service. The length of the chromosome is the total number of candidate workers. Each gene
in the chromosome represents the boolean selection of a worker, whose value is O or 1. The corre-
sponding worker will be selected if and only if the value of a gene is 1.

Second, we define the fitness function F', which returns a fitness value representing the worthiness
of a candidate solution. Given a composite service C'S(S,,), the fitness function F'(CS(S,,)) is
computed using the Equation 7.

0.5%CS(Sy).R+0.5  if Constraint 6 satisfies

F(CS5(Sw)) = )

1
0.5%xCS(Sy).R— 3* (Qc + Q¢ + Q) otherwise
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where
0 it 0S(S.).C < Ce
@e=19C8(8).C~Cq otherwise ®)
CS(Cu).C —Ca
0 if CS(S,).T < Te
@ = { —OS(S“’)'T ~Ta otherwise ©)
CS(Co) T —To
0 if [W;| > RN; for all i
Q, = { 2 BNi— 3 [Wil (10)
=l = otherwise
'21 RN; — ; |Wil

The fitness value for C'S(.S,,) ranges from 0.5 to 1 if C'S(S,,) does not violate the cost and time
constraints, otherwise the value ranges from -0.5 to 0.5. Such a threshold is to guarantee that a plan
which does not violate the constraints always has a higher probability to be chosen for crossing
over. Chromosomes that violate the constraints may still be chosen as they may contain the correct
genes for mating. Q., @, and @), are penalty values for cost and time constraints, and the number
of selected works respectively, which range from O to 1 (see Equations 8, 9, and 10). Their values
reflect how seriously C¢, T, and RN, are violated.

Since the speed of convergence in GA depends largely on the quality of the seed solutions in
the initial population, we use an enhanced initialization method to generate a good initial set of
solutions. First, we sort the candidate workers of each crowd service based on their response time,
cost, or reliability. Second, for each crowd service C'R;, we select the first RN; candidate workers
that conform to the global time and cost constraints, and aggregate their cost and response time.
Subsequently, we divide the global time and cost constraints for each crowd service, according to
the ratio of the aggregated response time and cost over other crowd services. Third, for each crowd
service, we greedily select workers according to the sorted sequence, as long as they conform to
the allocated time and cost constraints. We repeat the process for other crowd services, and this
will result in an “enhanced” initial chromosome. Then we can have three “enhanced” chromosomes
by sorting the candidate workers by time, cost, and reliability, respectively. We include all of them
among the randomly generated chromosomes.

Lastly, to apply GA, one needs to define crossover and mutation operations to create new chro-
mosomes for the next generation of a population. In our approach, we use the typical one-point
crossover and mutation [Gen et al. 1997].

5.3. Reliability Calculation

Note that the computation of Equations 4 and 5 is exponential, since it requires the enumeration of
subsets of selected workers that have the size larger than R/N. In particular, the complexity of the
computation is O(2™), where m is the number of selected workers. We propose an effective way to
deal with the scalability of the calculation. Suppose there is a crowd service CR; with m candidate
workers, and let Rcp, be the probability where at least RN; workers run successfully. Rcrg, is
exactly the complement of the probability where at most RIN; — 1 workers run successfully. This is
illustrated using Equation 11, where s represents the number of workers who run successfully.

The probability of having at most RN; — 1 workers run successfully, is equal to the probability of
having at least m — RNN; + 1 workers fail, as shown in Equation 12, where f represents the number
of workers that fail.

Rer, =1 — Po<(rn,—1) (11)
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Ps<(rn;—1) = Pr>(m—RN,+1) (12)

Our goal is to improve the efficiency and the scalability of calculation of Rcg,. To achieve this
goal, rather than calculating R cr, precisely, we calculate the lower bound of R¢r,, which could be
derived from the upper bound of Pf> (,— rn,+1) using Equation 12. We use f;; = 1 —7;; to denote
the failure probability of the jth worker, where 7;; is the reliability of the worker. Assume f;1, fio,
... » fim are failure probabilities of candidate workers where f;1 > fi2 > ... > fim, an upper bound

of exactly n workers fail is C, = [] fij * [[ (1 — fi;). The final result is the summation of the
j=1 j=n+1

probabilities of exactly n € {m — RN; + 1,m — RN; + 2,...m} workers fail. The complexity of

the estimation is O(m?).

The estimation approach works well when the number of selected workers is not too small (e.g.,
m > 10). When m is sufficiently large, each individual combination of successful and failure
workers would result in smaller and similar probability. This makes the lower bound estimation
tight. In our work, we make use of the lower bound estimation when m > 15. When m < 15, we
enumerate all possibilities to get the precise reliability of workers.

6. IMPLEMENTATION

‘We have implemented the CROWDSERVICE framework on the Android platform using JADE, which
is an open source agent development framework 2. The implementation includes a crowd service
platform, a consumer client, and a worker client. Task agent and checkin agent on the platform and
worker agent on worker client are all implemented as JADE agents. These agents communicate via
ACL (Agent Communication Language) messages.

The consumer client is implemented on the Android platform using the OSGi * framework.
Specifically, we choose Apache Felix #, an open source implementation of OSGi. Both compos-
ite services and component services (local services or stubs to remote services) are implemented
as OSGi bundles. When a consumer chooses a composite service to execute, the execution engine
requests corresponding composite service bundle and required component service bundles from the
service repository, and dynamically installs and activates them. After that, the engine invokes the
execution method of the composite service defined in its base class.

Consumer Ul includes a composite service execution list view and an execution process view. To
execute a composite service, the consumer can click the plus (+) button on the execution list view
and choose a composite service on a pop-up dialog. The execution process view (see Figure 4(a))
provides user interaction for the consumer to specify execution settings and gets feedback of the
estimated probability of success. After the execution of a composite service starts, the execution
process view shows execution logs for the consumer to understand its execution process.

Worker client is also implemented on the Android platform, including worker agent and worker
UL Worker Ul includes a task examination view and a microtask view. When worker agent receives
an open call, it initiates a task examination view showing received task instructions. If the worker
chooses to participate, a pop-up dialog is shown for him/her to input an offer. When worker agent
receives a participation confirmation, it initiates a microtask view showing received task instructions
and an interaction form.

The task examination view and microtask view are dynamically generated based on received task
instructions and task field descriptions. A series of Android UI controls are used to show different
kinds of information and interaction fields, for example EditText (for primitive data type field),
Spinner (for choice field), ImageView (for image display). Figure 4(b) shows a microtask view of
the site inspection service, which asks the worker to confirm the description and take a picture of a
secondhand laptop.

2JADE: http://jade.tilab.com
30SGi: http://www.osgi.org
4 Apache Felix: http://felix.apache.org
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Consumer BACK Worker BACK

2 Please get to the designated location: Room 401,
Software Building and inspect the second-hand
PriceAssessment Service binds a Crowd Service computer specified below. Check it and evaluate
Please input your expected result number whether it is consistent with tis description given
below. Take a picture fo computer and upload the
picture.

5
Brand Lenovo Thinkpad

Series X240
Newness  90%

Please input your expected execution time(s) CPU Intel Core i
Memory 8G DDR3
Disk 5006 HDD

Take Picture

600
Please input your budget for this execution(¥)

15

Execution Settings: Expected Result Number = 2
(site inspection), 5 (price assessment); time =
600 seconds; budget = 15 yuan

Estimating probability of success.

Estimated probability of success is 75.13% 3
You can start execution or reset your settings. Consistency  NEASUBEEN v

M Time Remained to Submit: 58s
(a) Consumer Ul (b) Worker UI

Fig. 4. CROWDSERVICE Android Client UL
7. EVALUATION

To evaluate the proposed framework and algorithm, we conducted an experimental study and a user
study to answer the following three research questions:

— RQ1 (Effectiveness): Is the genetic algorithm effective in improving the reliability of composite
services?

— RQ2 (Scalability): How efficient is the genetic algorithm? Can it scale well with the result number
constraints and the number of candidate workers?

— RQ3 (Usability): Can crowd services be provided reliably in real life when sufficient workers are
available? How do the users think of crowd services?

7.1. Q1: Effectiveness

To evaluate the effectiveness of the genetic algorithm, we conducted an experimental study, which
compared the algorithm with naive algorithms in terms of success rate of composite services.

Given a composite service, a naive algorithm selects a set of workers for each crowd service
based on one of the workers’ properties (e.g., cost, time, reliability) in the following way: 1) sort the
candidate workers of each crowd service based on a single property; 2) for each crowd service CR;,
select the first RN; candidate workers that conform to the global time and cost constraints, and
aggregate their cost and response time; 3) divide the global time and cost constraints for each crowd
service according to the ratio of the aggregated response time and cost over other crowd services;
4) for each crowd service, greedily select workers according to the sorted sequence, as long as they
conform to the allocated time and cost constraints.

Considering different worker properties, we can have the following four naive algorithms: Naive-
C algorithm, which orders workers by cost (ascending order); Naive-R algorithm, which orders
workers by reliability (descending order); Naive-T algorithm, which orders workers by time (as-
cending order); Naive-U algorithm, which orders workers by utility (descending order). The utility
of a worker is the normalized sum of cost, time and reliability (equally weighted).

The experiment was based on a composite service with a sequential composition of three crowd
services. In the simulation, we created a pool of 2,000 candidate workers with independently gen-
erated cost, distance (time), and reliability, following normal distribution for cost and reliability,
uniform distribution for distance (time). We then randomly selected 10 sets of candidate workers
for the experiment and each set had 150 candidate workers (40, 50, 60 for the three crowd service
respectively).

We compared the genetic algorithm with the four naive algorithms under different combinations
of cost and time constraints (i.e., Cg and T;). We tested all the algorithms under each combination
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Fig. 5. Comparison of the Effectiveness of Different Algorithms

of high cost (100), medium cost (80), low cost (60) and long time (1300), medium time (1100),
short time (900). Given a cost constraint and a time constraint, we evaluated the success rates of the
algorithms with different result number constraints of the three crowd services from [1, 1, 1] (i.e.,
RN:=1, RNo=1, RN3=1)to [3, 3, 3] (i.e., RN1=3, RN>=3, RN3=3). For each result number con-
straint, we ran the five algorithms with the 10 sets of candidate workers and computed the average
success rate of each algorithm. Due to the heuristic nature of genetic algorithms, we ran the ge-
netic algorithm 50 times for each combination of inputs (cost, time, result number constraints, and
candidate workers) and reported the average success rate. We set the genetic algorithm to terminate
at 1,000 generations or when the fitness does not improve for 30 generations, whichever happens
earlier.

The success rate of a run of the composite service was computed based on the reliability of
the selected workers in the following way. For each selected worker, we treat its reliability as the
probability (p) of successfully returning the result for the crowd service. We then randomly generate
a value for the worker, which takes the value 1 (resp. 0) with a probability p (resp. 1 — p). A run is
successful if each crowd service C'R; has at least RN; workers whose values are 1. For each run,
we repeated the above simulation 1,000 times and computed its success rate as S/1000, where S is
the number of successes.

Figure 5 shows the success rates of the five algorithms under different constraints. The X axis is
the result number constraints (i.e., RN1, RNy, RN3) and the Y axis is the success rate. It can be
seen that the success rate decreases when the result number constraints increase. Among the four
naive algorithms, Naive-U has the best results most of the times. The genetic algorithm achieves the
highest success rate under all the settings. It is on average 6.2% more successful than the best naive
algorithm. The results show that the genetic algorithm can significantly improve the reliability of
composite services.
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7.2. Q2: Scalability

We evaluated the efficiency and scalability of the genetic algorithm by analyzing its execution time
with different numbers of candidate workers and result number constraints. The evaluation was
conducted based on the same composite service and candidate worker pool used in Section 7.1. The
main source of overhead of the approach comes from the selection of crowd workers based on their
attributes using the genetic algorithm (GA). We set the genetic algorithm to terminate when the
fitness does not improve for 30 generations. Given a set of candidate workers and a result number
constraint, we ran the genetic algorithm 100 times and computed the average execution time in
seconds. The experiments were conducted in Windows 7 on a machine with a Intel(R) Core(TM)
15-4200U, running with a dual core 1.60GHz CPU, 3M cache and 8 GB RAM.

The results are shown in Figure 6. The numbers of different curves (i.e., 50, 100, 150, 200,
250, 300) mean the numbers of candidate workers for each crowd service. The numbers on the X
axis mean the result number constraints (i.e., RN;, RNy, RN3). The overall tendency is that the
execution time increases when the result number constraints or the number of candidate workers
increases. But there are some exceptions, for example, the execution time does not always increase
with the result number constraints when the number of candidate workers of each crowd service
is 50. This could be due to the randomness of the genetic algorithm. In general, the execution
time increases significantly with the result number constraints, but only increases linearly with the
number of candidate workers when the result number constraints are fixed.

The results show that the genetic algorithm can conduct constraints synthesis and worker selection
with hundreds of candidate workers in a matter of seconds. It can complete a run in less than 3
seconds when the result number constraint of each crowd service is no greater than 8. We believe
the algorithm is sufficiently efficient and scalable as often in practice one would work with fewer
workers and smaller result number constraints.

9

8
g 7
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S —4—50
L5 100
(6]
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S 2 —o—300
X
w1 =

0
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[RN;, RN,, RN]

Fig. 6. Scalability Evaluation of the Genetic Algorithm

7.3. Q3: Usability

We conducted a user study to evaluate the usability of our framework and implementation. Our
user study was performed by executing the composite service of buying secondhand items (see
Figure 1) in a real-life scenario. We recruited 23 students (including 4 PhD, 17 master, and 2 senior
undergraduate students) from the school of computer science of Fudan University to play different
roles. Among them, three students played the role of secondhand laptop seller and were located in
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Table II. Execution Processes and Results of User Study

Constraint Crowd Service 1: Site Inspection Crowd Service 2: Price Assessment
Con. Worker Worker
T C | RN | ST SC | Pro. | Succ. | ET(s) FOF T 3SE | BWR RN ST SC | Pro. | Succ. | ET(s) FOF T #SE T #WR
600 | 25 3 388 | 17 | 0.99 Yes 145 13 6 6 3 100 8 0.99 Yes 47 17 7 7
c1 650 | 30 5 176 | 17 | 0.59 Yes 89 9 5 5 6 100 | 11 | 0.96 Yes 52 16 8 8
400 | 20 1 223 | 13 | 099 Yes 98 9 4 4 3 100 6 0.99 Yes 100 18 6 5
800 | 40 8 184 | 23 | 043 Yes 81 9 8 8 10 - - - No - - - -
750 | 35 3 310 | 17 | 0.99 Yes 310 9 8 7 3 100 | 21 | 0.99 Yes 89 16 12 12
I 800 | 30 2 176 | 20 | 0.99 Yes 82 11 6 6 2 100 | 10 | 0.99 Yes 50 19 8 8
200 10 2 120 5 0 No - 9 - - - - - - - - - - -
600 | 30 1 229 | 18 | 0.99 Yes 229 7 5 3 1 100 | 16 | 0.99 Yes 90 16 12 12
600 | 30 3 415 | 17 | 0.99 Yes 162 10 5 5 7 - - - No - - - -
3 500 | 25 1 367 | 10 | 0.99 Yes 143 7 4 4 5 100 | 14 | 0.99 Yes 63 17 10 10
600 | 35 3 388 | 24 | 0.99 Yes 136 9 7 7 3 100 | 10 | 0.99 Yes 53 17 7 7
1000 | 25 2 311 16 | 0.99 Yes 186 9 6 6 4 100 8 0.99 Yes 69 17 7 7

three different buildings in the campus; 20 students played the role of worker and three of them also
played the role of consumer. For the price assessment service, all the workers were set to be experts
who can be selected. The reliability of each worker was equally set to 0.9.

We deployed a crowd service platform on a server in our campus network and published the
two crowd services (site inspection, price assessment) on the platform. All the consumers installed
consumer clients with the composite service of buying secondhand items on their mobile phones.
All the workers installed clients on their mobile phones. In each execution, the consumer specified
an overall time, cost constraint and a number of returned personal results for each involved crowd
service.

Each consumer executed the composite service four times and was given 40 yuan (RMB) (about
7 USD) for each execution. He/she could decide the overall cost and time constraints and the result
number constraint of each crowd service by himself/herself, but was told to try different settings
in the executions. All the workers walked around the three buildings (within 10-500 meters) and
decided whether to participate in a crowdsourcing task and the expected reward by themselves.
They could get the expected rewards as bonus if they were selected and successfully finished their
work. Therefore, they were motivated to provide reliable service with reasonable cost as in the
real-world scenario.

After the experiments, we conducted a questionnaire survey and a group interview to get the
feedback of the users.

7.3.1. Execution Processes and Results. Table II shows statistics of the execution processes and
results of our user study. For each execution, it lists the consumer (Con.), consumer specified time
(T) and cost constraints (C), and execution information of the two crowd services. For each crowd
service, it lists the result number constraint (RN), synthesized time constraint (ST) and cost con-
straint (SC), estimated probability of success (Pro.), whether succeeded or not (Succ.), execution
time (ET), and the numbers of worker offers (#OF), selected workers (#SE), and workers who suc-
cessfully returned their results (#WR).

For Crowd Service 1 (site inspection), on average, each service execution had nine worker offers,
six selected workers, and six returned results, and was finished in 151 seconds. For Crowd Service 2
(price assessment), on average, each service execution had 17 worker offers, nine selected workers,
and eight returned results, and was finished in 68 seconds. The numbers of worker offers of Service
2 were usually larger and the expected rewards were usually lower than those of Service 1. This is
reasonable, since Service 2 is location independent and all the workers were qualified.

Among all the 12 executions of Service 1, 11 executions succeeded (i.e., the required number
of worker results were returned to the platform) and only one failed, making a success rate of
92%. Among all the 12 executions of Service 2, 9 executions succeeded and the other three failed,
making a success rate of 75%. After analyzing the execution results and logs, we found that there
are two main causes for failed executions. One cause is that constraints synthesis was unable to

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.




A:18

find a feasible resource allocation plan, which was usually due to high result number constraint,
insufficient workers available, low cost, or insufficient time. The other cause is that worker selection
was unable to select a set of workers, which was usually due to high result number constraint,
insufficient worker offers, or low cost.

The above analysis shows that crowd services can be provided as reliable services in real life
when sufficient workers are available.

7.3.2. User Feedback. We analyzed the feedback of the consumers and workers collected in the
survey and interview.

The consumers generally think crowd service provides a convenient and cost-efficient way to ful-
fill their needs by leveraging crowd intelligence and labor. Their main concerns include reliability,
result quality, and privacy. They regard the estimation of probability of success is useful for them
to establish confidence on crowd services and provides useful feedback for their execution settings.
They would usually have enough confidence to start the execution if the estimated probability of
success was higher than 75%. In 30% cases, they adjusted their execution settings (i.e., cost, time,
and result number constraints) to improve the probability of success. Some consumers mentioned
that they were not sure about the quality of the returned results, as they did not know whether the
workers had done their work properly. Some consumers were concerned about privacy issues, as
some tasks may involve private information such as home address. They suggested that CROWD-
SERVICE could allow consumers to set the scope of worker selection to specific groups of people
such as those in the same university.

Some workers think crowd service provides an opportunity for them to create value by making
use of their location conveniences and capabilities. They suggested to provide more transparency.
For instance, they often felt overwhelmed when considering expected rewards as they did not know
whether their expectations were too high or too low. This problem can be addressed by providing
a reference price based on historical data of similar tasks or estimation formula. The workers sug-
gested two improvements on the interaction modes supported by CROWDSERVICE. One suggestion
is to provide a negotiation process between consumers and workers. This is useful for some crowd
services with high cost and high quality requirements, but may introduce unnecessary disturbance
for other crowd services. The other suggestion is to provide a pull mode for task participation in-
stead of pushing tasks to them. The current task participation is push mode, i.e., the platform pushes
task invitations to workers, while by pull mode workers can search for interested crowdsourcing
tasks when they are available.

7.4. Threats to Validity

A major threat to the validity of the experimental study lies in the settings of worker parameters.
The assumed normal distribution of the reliability, distance, and cost of workers may not be realistic,
especially when the number of candidate workers is not so large (e.g., less than 10). The advantage
of our constraints synthesis and worker selection algorithm may vary in different settings, but we
believe it can improve the reliability of composite services in most cases.

Threats to the validity of the user study mainly lie in the setting of students as workers, the
incentive mechanism, and the activity region of workers. Although students can also participate in
crowd services in campus, they are not representatives of real typical workers in crowdsourcing. Our
incentive mechanism allows the selected workers to get the expected rewards as real bonus, which
can motivate the students to participate in crowdsourcing tasks. However, the students’ motivation of
participation was also influenced by the fact that they were invited to participate in a controlled user
study. The workers’ decisions of participation and offers in real life are influenced by more complex
factors related to job stability, experience and reputation. The study was conducted in campus and
the workers’ distance to target locations was usually small (hundreds of meters). The routes of
workers to target locations in real life are usually much more complex, for example, the traffic
conditions and the time of getting to a target location are more uncertain. Large-scale evaluation
in real life requires to deploy and operate CROWDSERVICE on mobile social network platforms.
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Howeyver, we think the current execution results and feedback collected from students are sufficient
as preliminary evidence for the practicability and usability of CROWDSERVICE.

8. DISCUSSION

As an emerging software paradigm for Internet computing, Internetware will orchestrate informa-
tion, processes, decisions, and interactions in this Internet environment [Mei et al. 2012]. An essen-
tial characteristic of Internetware is the seamless integration of computing devices, human society,
and physical objects. CROWDSERVICE facilitates the integration of human society with computing
devices by supplying crowd intelligence and labor as reliable and publicly accessible services. This
is achieved through its customizable framework and worker selection algorithm. The customizable
framework allows the crowd to participate in different kinds of tasks while ensures that the submit-
ted results can be aggregated into a standardized output. The worker selection algorithm ensures
the reliability of crowd services by optimally allocating overall time and cost constraints to each
involved service and selecting a set of responded workers for each involved crowd service based on
their reliability, expected reward, and distance.

The worker selection algorithm of CROWDSERVICE is based on the incentive model of worker
bidding, i.e., candidate workers bid for crowdsourcing tasks with expected reward. It may need to
be adapted if a different incentive model is adopted. For example, if the platform provides a price
when sending an open call, the worker selection algorithm can be adapted to select workers based
only on their distance and reliability.

The large-scale application of crowd services in real life requires a systematic operating platform
and ecosystem built on mobile social network. Reliability is the key for the wide acceptance of
crowd services. The willingness of candidate workers and quality of worker results are the two
major challenges.

Participation willingness of candidate workers is largely influenced by incentives and interaction
design. Incentives depend on consumers’ pricing on crowd services, which can be reasonably ad-
justed by a market mechanism. Interaction design may hinder candidate workers from participating
if it bothers them. To avoid budget overrun, currently CROWDSERVICE requires a worker to first
send an offer and then wait for the confirmation of being selected. This may cause a worker to
give up or shift his/her focus from the crowdsourcing task. Therefore, for a crowdsourcing task that
requires little effort (e.g., reporting empty seats in a building) the platform can allow a worker to di-
rectly submit his/her result with an offer. This means that workers who have submitted their results
would not get expected rewards if they were not selected, but their efforts could still be recognized
by their reputation.

A main challenge to the quality of worker results is worker cheating, which may reduce con-
sumers’ trust on crowd services. For example, a worker participating in a restaurant booking task
may cheat by submitting a fake table number and booking confirmation. It is reported that workers
recruited for financial rewards have more incentive to cheat the system [Quinn and Bederson 2011].
To assure the quality of crowd services, it is useful to provide additional verification of worker
results. Some simple verification could be done automatically, for example by checking the defini-
tion of a picture. For a location-based task, the platform can track the location of crowd workers
when they submit answers, and if the tracked location of a worker does not coincide with the target
location, his/her answer will be recognized as a fake one [Chen et al. 2014]. More sophisticated
verification may need to be done by crowdsourcing. For example, the verification of a restaurant
booking can be done by launching a crowdsourcing task for confirming the booking.

Apart from optimal resource allocation and worker selection, it is possible to further improve
the reliability of a crowd service by self-adaptive service provisioning. On the one hand, workers
could be adaptively selected in a multi-round mode. For example, if there are not sufficient candi-
date workers within a short distance who respond to an open call, the platform could send another
open call to available workers within a longer distance. On the other hand, the functionality of a
crowd service often could be provided in other alternative ways, including computational services
(e.g., automatic price assessment of secondhand laptops) and commercial services (e.g., site inspec-
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tion provided by a professional company). These alternative services may be less accurate or more
expensive, but could be used as backup of a crowd service.

9. RELATED WORK

In software engineering, crowdsourcing has been used for various software development tasks such
as programming and testing [Peng et al. 2014]. LaToza et al. [LaToza et al. 2014] developed an ap-
proach to decomposing programming work into microtasks. Stol and Fitzgerald [Stol and Fitzgerald
2014] presented an industry case study of crowdsourcing software development at a multinational
corporation. Mao et al. [Mao et al. 2013] empirically analyzed historical data from TopCoder crowd-
sourced software development tasks to identify potential price drivers. Saremi and Yang [Saremi and
Yang 2015] proposed a systems dynamic model for crowdsourced software development platforms
based on data gathered from Topcoder. They [Yang and Saremi 2015] also reported an empirical
study to develop further understanding about the relationship between tasks award and associated
worker behaviors.

In the database community, crowdsourcing has been used to develop crowdsourced query process-
ing systems. Franklin et al. [Franklin et al. 2011] developed CrowdDB, a relational query process-
ing system that uses microtask-based crowdsourcing to answer queries that cannot otherwise be an-
swered. Others investigated a variety of crowdsourced queries such as SELECT query [Trushkowsky
et al. 2013], MAX query [Guo et al. 2012; Venetis et al. 2012], and JOIN query [Demartini et al.
2012; Wang et al. 2013]. This kind of crowdsourced queries are location independent, thus can be
processed based on Web-based crowdsourcing platforms such as AMT.

Jarrett and Blake [Jarrett and Blake 2015] proposed a descriptive architecture for a general crowd-
sourcing infrastructure. Their work does not consider location-based crowdsourcing, nor does it
support the provisioning of crowdsourcing as services or optimal selection of workers.

There have been some researches on worker selection and quality control in crowdsourcing. Boz-
zon et al. [Bozzon et al. 2013] proposed a framework that supports reactive control of human com-
putations in crowdsourcing. Li et al. [Li et al. 2014] proposed a crowd targeting framework for auto-
matically discovering the specific group of high-quality workers. Ipeirotis and Gabrilovich [Ipeiro-
tis and Gabrilovich 2014] proposed to use existing Internet advertising platforms for targeting users
with the suitable expertise. Bernstein et al. [Bernstein et al. 2011] proposed to use synchronous
crowds to create real-time crowd-powered interfaces with dramatically lower crowd latency. Ye et
al. [Ye et al. 2015] proposed a trust evaluation model of crowdsourcing workers and an evolutionary
algorithm for trustworthy worker selection. Yu et al. [Yu et al. 2015] proposed a reputation aware
task sub-delegation approach to help workers decide when and to whom to sub-delegate tasks by
considering a workers reputation, workload, the price of its effort and its trust relationships with
others. Qiu et al. [Qiu et al. 2016] proposed an approach for the task assignment problem in crowd-
sourcing platforms, which offers a theoretically proven algorithm to assign workers to tasks in a
cost efficient manner while ensuring high accuracy of the overall task. These researches focus on
crowdsourcing tasks for collecting data and acquiring information and do not consider the locations
of workers and tasks that are essential in mobile crowdsourcing. Moreover, these researches do not
consider the optimal allocation of the overall cost and time constraints of a composite service over
its component services.

Current researches on mobile crowdsourcing focus on location-based information services with
crowd sensing. Ra et al. [Ra et al. 2012] proposed a crowd sensing programming framework which
can coordinate crowd sensing tasks between smartphones and a cluster on the cloud. Waluyo et
al. [Waluyo et al. 2013] presented a participatory mobile sensing system for estimating individual
exposure to environmental pollution. Zhou et al. [Zhou et al. 2012] presented a bus arrival time
prediction system based on bus passengers’ participatory sensing. Chen et al. [Chen et al. 2014]
developed a general spatial crowdsourcing platform, which implements a collection of related tech-
niques such as geographic sensing, worker detection, and task recommendation. These researches
do not consider the optimal selection of workers based on the cost and time constraints or the allo-
cation of the overall constraints over a set of component services.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:21

Our work is also related to the work on finding services with optimal Quality of Service (QoS)
for a composite service. Some researchers [Alrifai and Risse 2009; Alrifai et al. 2010; Tan et al.
2016] proposed service selection approaches that make use of mixed integer programming (MIP)
techniques, with other techniques such as skyline pruning, to find the optimal selection of services.
Canfora et al. [Canfora et al. 2005] proposed the usage of genetic algorithm for finding services with
optimal QoS. The selection of crowd workers has different characteristics from the selection of com-
putational services. First, the crowd workers might change their distance to the target venue, which
could make their response times change over time. We handle these by dividing the selection into
two phases - constraints synthesis and worker selection phase. Second, human workers are prone
to human errors; therefore given a crowd service, we allow users to specify the minimal number of
workers for redundancy. Tan et al. [Tan et al. 2013] proposed an approach to synthesize response
time constraints of component services that guarantee the global response time requirement. Our
work is on selecting crowd workers that could collectively maximize the chance of success of a
composite service.

10. CONCLUSION

In this paper, we have proposed the CROWDSERVICE framework to supply crowd intelligence and
labor as publicly accessible crowd services. To support their composition with computational ser-
vices, the framework wraps each crowd service as a Web service. The execution of these wrapped
crowd services launches mobile crowdsourcing tasks, and aggregates the results returned by indi-
vidual workers. For reliability, CROWDSERVICE dynamically synthesizes and updates near-optimal
cost and time constraints for each crowd service involved in a composite service and selects a
near-optimal set of potential workers for each to-be-executed crowd service. We have implemented
CROWDSERVICE on the Android platform and evaluated its effectiveness, scalability and usability.
In future work, we plan to improve CROWDSERVICE by providing more flexible user interaction,
result verification, and adaptive crowd service provisioning. On the other hand, we will try to es-
tablish a mobile crowdsourcing platform in the campus, which can cover a range of scenarios in the
students’ everyday lives and support the evaluation of crowd services in real life.
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