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A Survey on Wireless Indoor Localization from the Device Perspective

JIANG XIAO, ZIMU ZHOU, and YOUWEN YI, Hong Kong University of Science and Technology
LIONEL M. NI, University of Macau

With the marvelous development of wireless techniques and ubiquitous deployment of wireless systems
indoors, myriad indoor location-based services (ILBSs) have permeated into numerous aspects of modern life.
The most fundamental functionality is to pinpoint the location of the target via wireless devices. According
to how wireless devices interact with the target, wireless indoor localization schemes roughly fall into two
categories: device based and device free. In device-based localization, a wireless device (e.g., a smartphone)
is attached to the target and computes its location through cooperation with other deployed wireless devices.
In device-free localization, the target carries no wireless devices, while the wireless infrastructure deployed
in the environment determines the target’s location by analyzing its impact on wireless signals.

This article is intended to offer a comprehensive state-of-the-art survey on wireless indoor localization
from the device perspective. In this survey, we review the recent advances in both modes by elaborating on
the underlying wireless modalities, basic localization principles, and data fusion techniques, with special
emphasis on emerging trends in (1) leveraging smartphones to integrate wireless and sensor capabilities
and extend to the social context for device-based localization, and (2) extracting specific wireless features
to trigger novel human-centric device-free localization. We comprehensively compare each scheme in terms
of accuracy, cost, scalability, and energy efficiency. Furthermore, we take a first look at intrinsic technical
challenges in both categories and identify several open research issues associated with these new challenges.

Categories and Subject Descriptors: C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Wireless indoor localization, device based, device free, channel state
information
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1. INTRODUCTION

Indoor location-based services (ILBSs) have become an essential part of people’s ac-
tivities in living, working, and studying. Examples of such widespread ILBSs can be
classified into a couple of groups. To name a few, in places of interests, tourists will need
the guiding services or tools to find prestigious yet unfamiliar places; in large shopping
arcades, users usually want to look for the shop of a specific brand in a short time
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or restaurants with public praise; in hospitals and medical facilities, there is a need
for real-time monitoring the location of wandering patients for timely treatment; in
warehouses, staff need assert tracking services that detect the goods and inventory in
real time; in art exhibitions, there is a need for viewers to find out the most interesting
paintings in a large museum; and so forth. Obviously, these ILBSs have been bounded
up with social activities of humans, such that there is a pressing need to accurately
and effectively gain the location information. To this end, although outdoor localization
has been accurately and successfully completed by GPS technique, indoor localization
still leaves an open problem. More specifically, GPS cannot be guaranteed to work
well in a complex indoor area due to the blockage of satellite signals. In addition, it
requires higher location resolution to pinpoint the position of users in indoor environ-
ments than in outdoor. Consequently, it brings new challenges for designing indoor
localization systems based on the demands of high accuracy, time-critical constraints,
and energy efficiency.

Recent advances in mobile and wireless computing have begun a new era for indoor
localization. Nowadays, the adoption of smartphones has driven widespread develop-
ment of a variety of ILBSs: for example, Facebook Nearby to find friends nearby in a
fancy party or share current real-world locations, Yelp to help customers find nearby
recommended restaurants, Shopkick to verifies users’ present physical location so as
to earn check-in rewards of nearby retail, and so forth. These ILBSs associated with
social networking help people coordinate interactions, understand social patterns, and
meet new friends. More importantly, they trigger the research community to intro-
duce commodity smartphones for indoor localization. In this article, we comprehen-
sively study the corresponding smartphone-based techniques, which are divided into
single-modality and multimodality categories. Besides, a review of multiple specific
hardware-based technologies, including ultrawideband (UWB), ultrasonic, infrared,
RFID, and Zigbee, is also presented. However, all these techniques require special
hardware. In contrast, due to its increasing application-driven demand and commodity
access, smartphone-based indoor localization is growing with increasing interest in
recent research and the marketplace.

Despite that device-based techniques have made considerable progress to improve
localization performance, device-free techniques are more favorable when associated
with the following important applications. Intrusion detection and tracking identify
whether anomaly objects exist and locate them in an area of interest. Border pro-
tection prevents terrorists from entering a forbidden area. Safety precaution assists
lonely elders or disabled individuals in an emergency like empyrosis, fall, apoplexia,
and so forth. In these circumstances, there is an emerging need to seek a cost-effective
yet appropriate tool for device-free indoor positioning. First, we need to understand
the distinct features of device-free techniques. The key difference from device-based
techniques is that no device is attached to the entities in device-free systems, as de-
picted in Figure 1. Consequently, it brings in new challenges such as anomaly detection
and locating the entity. We then investigate existing device-free localization systems
that harness UWB radar, ultrasonic, infrared, camera, RFID, Zigbee sensor, and WiFi.
Afterward, we provide performance comparisons in multiple aspects.

There are numerous works falling into the category of wireless indoor localization,
but in this article, we only focus on some recent advances in this area. We restrict our
scope of “wireless” from the low-frequency FM signals to high-frequency (UWB) signals,
and also extend it to visible lights due to the increasing ubiquity and importance of
built-in cameras on smartphones. The main contributions are:

(1) To the best of our knowledge, this is the first survey on wireless indoor localiza-
tion from the device perspective, that is, with and without the device attached
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Fig. 1. An illustration of device-based and device-free indoor localization systems.

to the target, in contrast to most other surveys concentrating on techniques and
algorithms.

(2) We list the different requirements for both categories and the corresponding chal-
lenges, as well as provide a comprehensive comparison for each category.

(3) We also highlight the attraction of using a smartphone for developing device-based
indoor location systems because the abundant hardware integrated in it can be
leveraged for positioning.

(4) Finally, we discuss the open research issues.

The remainder of this survey is structured as follows. Section 2 introduces the dif-
ferent application scenarios categorized by device based and device free. Section 3
reviews device-based localization for indoor space. In Section 4, we introduce research
on device-free indoor positioning. Section 5 discusses open issues and future directions
in this vibrant field. Finally, the survey closes in Section 6.

2. APPLICATION SCENARIOS

ILBSs have emerged at incredible speed these years with the tremendous development
of wireless technologies. According to different application scenarios, we categorized
the existing techniques into two folds: device based and device free. In general, the
applications requiring specific devices on the entities to fulfill the localization function
belong to the device-based category. Otherwise, the ones whose subjects carry no device
pertain to the device-free category. To support adaptive and convenient indoor ILBSs
of variety, understanding the distinct requirements is critical for designing a quali-
fied localization system. Figure 2 provides the detailed taxonomy of wireless indoor
localization systems from the device perspective. This section introduces the diverse
application scenarios together with the corresponding demands ranging from device
based to device free. Also, the challenges for each category will be discussed.

2.1. Device Based

To begin with, a device-based indoor localization system needs to meet the following
key demands in varying degrees:

—Accuracy: High accuracy is the primary concern for a wide range of ILBSs, for ex-
ample, navigation and way-finding that help users determine their direction from
one place to another to find the destination using mobile devices. Another exam-
ple is assert tracking in which attached tags on products help to identify and lo-
cate the missing one. The accurate position information (physical or symbolic) of
entities is indispensable in these well-known applications and services. Note that
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Fig. 2. Taxonomy of wireless indoor localization.

different ILBSs have diverse accuracy needs. For instance, less precision is sufficient
for location-based advertisements like restaurant recommendations, as Yelp does,
and room-level accuracy is enough to find a specific shop in a large mall.

—Real time: To quickley estimate the location of lost or injured people is of the highest
priority for a certain time-critical ILBS. Emergency response is at one end of the
spectrum, and the user is nearly always motivated to disclose location information
as accurately and quickly as possible. In this way, ambulance staff can move quickly
to approach the victim location to conduct the search-and-rescue work. Real-time
action is also required in healthcare assistance for preventing medical negligence by
locating the patient promptly.

—Cost: To realize an indoor localization system, cost is one of the most important
factors for commercial success. Four major ingredients exist: (1) Hardware cost:
This includes terminals like tags and smartphones carried by users or objects to be
localized. (2) Infrastructure cost: Some localization systems can work with stand-
alone devices, but most systems need the support of extra infrastructure to construct
a network. For example, for a WLAN-based localization system, the device is required
to transmit or receive signals with AP to obtain the measurements for position
estimation. (3) Installation cost: Most of the localization systems require installation
and configuration before usage. For network-based systems, equipment should be
installed, powered, and connected to form a network, and related software may also
need to be installed on this equipment for management and data collection. Moreover,
for fingerprint-based systems, offline calibration is a prerequisite of localization,
which is known to be a tedious process. (4) Maintenance cost: For a positioning
system using a large set of devices (such as Zigbee sensors, active RFID tags), the
long-term maintenance process (e.g., battery replacement) can be complicated and
costly. All these costs need to be taken into consideration such that it will not be too
exorbitant to develop an indoor positioning system.

—Energy efficiency: Alleviating energy concerns is of high importance for the design of
localization methods. For vast ILBSs (e.g., social networking, advertising, and promo-
tion) enabled by context-aware smartphones, power consumption is a limiting factor.
This is because the capacity of the smartphone battery restricts proper function-
ing of these ILBSs. Nevertheless, power-limited wireless sensor networks encounter
the same problem. The numerous deployed sensor nodes need to be powered with a
dry cell for communication so as to fulfill the positioning duty. Since replenishment
of power resources might be impossible in some circumstances, an energy-efficient
strategy will be indispensable for these device-based approaches.

ACM Computing Surveys, Vol. 49, No. 2, Article 25, Publication date: June 2016.
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Fig. 3. Challenges for device-based indoor localization.

—Scalability: Scalability is a key element for an indoor location system, especially
for enterprise usage. The localization system can be overloaded with the increase of
user density, which results in inadequate latency in tracking. For some localization
systems that involve information exchange between the devices and the server, the
devices have to compete with each other for the transmission opportunity due to
limited number of wireless channels. The delay will increase as the competition
intensifies. In addition, since the transmission range of wireless signals using a
specific technique is limited, the wider the area of interest is, the more infrastructure
is needed. Therefore, the system should be scalable to cope with additional devices
and be able to cover a large area of interest without degrading the service.

—Privacy: Device-based indoor localization raises many privacy concerns if entities are
tracked by their positions or by analyzing their route history. Although such history
analysis may help many applications to get a perfect customer model, it can disclose
the location information of users, and the location information is closely related to
a user and reflects the user’s everyday life. To maintain privacy, the user should be
informed prior to collecting their information and be able to decide whether to provide
this information to the business communities or to hide their real identifications.

In order to meet the aforementioned requirements, several challenges exist:

—Signal reflection: The foremost source that brings difficulty for indoor localization is
the multipath effect. The complex indoor areas surrounded by equipment (i.e., furni-
ture) and human beings are the causes of the multipath effect in radio propagation
(Figure 3a). Thus, coordinating the location estimation of an entity is susceptible to
the presence of obstacles and humans due to multipath effect. The phenomenon be-
comes even worse when multiple entities exist between the transmitter and receiver
in radio-based techniques. It also serves as the major concern for Time of Arrival
(TOA) as a distance metric.

—Signal blocking: Most indoor localization techniques also suffer from Non-Line-of-
Sight (NLOS) propagation, which is known as radio based. These radio-based ap-
proaches depend on the Line-of-Sight (LOS) radio signal propagation path between
the transmitters and receivers. However, the ambient obstacles in indoor venues
commonly lead to NLOS that constrains the radio transmissions and results in erro-
neous location estimation (Figure 3b). In particular, the performance of the Angle-of-
Arrival (AOA)-based positioning system degrades greatly if the LOS signal is blocked
by obstructions.

—Environment dynamic: The indoor environment is more dynamic than outdoor for
localization. Human movement is one of the main reasons for the variance of the
measurements. Opening and closing the door and changing the position of large fur-
niture can also cause significant influence on the performance of indoor localization,
especially for fingerprint-based systems (Figure 3c). As a result, we need to update
the map, the position information of the infrastructure, or the fingerprint database
periodically.
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2.2. Device Free

As mentioned previously, device-free indoor positioning systems will take over the role
of device-based ones in some important application scenarios like intrusion detection
and burglary prevention. This is because device-based mechanisms will no longer be
suitable since there aren’t any trackable devices attached to entities. Hereby, we sum-
marize the requirements for the device-free category as follows:

—Accuracy: Similar to the device-based localization context, to accurately locate the
device-free object is important. It should be noted that here the accuracy includes
not only the localization accuracy but also the detection accuracy. Unlike device-
based techniques that naturally obtain the status of the subject, the foremost step
of device-free ones is to accomplish the detection function. The result of detecting
the appearance or movement of an entity will directly influence the localization
performance.

—Reliability: In a device-free location system, the prerequisites of localization include
detecting the motions and counting the coexisting entities. False alarm and miss
detection are two of the most commonly used metrics to evaluate the reliability of
the system, which, however, involve tradeoff and compromise. On the one hand, false
alarm will introduce unnecessary location computations and also has the potential
to divert responders away from legitimate emergencies. On the other hand, miss
detection will greatly degrade the localization accuracy and may also lead to property
or even life loss due to ignored emergencies.

—Real time: Real-time positioning and tracking have been recognized as of great im-
portance for many device-free ILBSs, for example, to monitor the status of an alone
elder person or to perceive the activity of an immature child at home. Timely re-
sponse will help to prevent certain dangerous situations like falls, cardiopathy, or
epilepsy.

—Robustness: For application scenarios like intrusion detection and border protection,
the targets are definitely noncooperative. Hence, to avoid intentional circumvention
of intruders, there should be as few dead spots as possible within the area of inter-
est. Moreover, the localization system should be robust enough to provide relatively
consistent performance in different conditions like weather, temperature, humidity,
light, and so on.

The interesting challenges in device-free indoor localization arise mainly as follows:

—Burstiness: Since the target is not able or willing to exchange information with the
location system, it is impossible to predict the appearance and disappearance of any
target. As the trigger of localization, the system needs to continuously monitor the
area of interest to detect the abnormal variance. Unfortunately, a larger scan interval
leads to a higher miss detection ratio, while a shorter scan interval is less energy
efficient and also results in a higher false alarm possibility.

—Anonymity: We can easily distinguish different targets in device-based location sys-
tems according to the identifications of the devices. Unfortunately, in the device-
free scenario, it is difficult to obtain the identification of the entities, even their
size or shape, and to discriminate each individual entity, which is essential for
tracking, because the measurement results are the combination from multiple
entities (Figure 4b).

—Mutuality: Unlike localizing multiple targets with devices, whose procedures are
nearly independent, the localization of one entity may be affected by the coexistence
of another if in device-free localization. This mutuality brings in difficulty to properly
locate multiple targets simultaneously. Take the fingerprint-based system as an
example: in a device-based scenario, all users can share the same fingerprints with no
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Fig. 4. Challenges for device-free indoor localization.

Fig. 5. Candidate sensing modalities on smartphones for indoor localization.

significant error. However, a fingerprint for each possible coexisting case is required
to localize multiple device-free entities accurately (Figure 4c).

3. DEVICE-BASED INDOOR LOCALIZATION

Device-based approaches are widely applied for localization to support numerous
ILBSs. With the proliferation of smartphones that are used for social communication
these days, smartphone-based indoor localization has become a popular method for pro-
viding a variety of ILBSs. Smartphones are known to be of easy programmability, large
storage capacity, and low price. Moreover, there are all kinds of modalities as shown in
Figure 5 (e.g., WiFi, cellular, FM radio, Bluetooth, microphone, inertial sensors, etc.)
embedded in smartphones today that can be used separately or integrally for localiza-
tion purposes. It should reinforce the point that leveraging the smartphone’s built-in
modalities can eliminate the need for additional hardware. In this circumstance, nu-
merous smartphone-based approaches are springing up to address the indoor local-
ization problem. Meanwhile, several candidates exist to achieve the same goal that
require specific hardware, including infrared, ultrasonic, RFID, and Zigbee, and we
categorize them as tag based. In this section, we review a large body of proposals and
systems in recent years, mainly in two folds: smartphone based and specific tag based.
Note that, although some works are not evaluated on a smartphone, we still classify
them as smartphone based if we can find the corresponding modules on a smartphone
that hold the potential to meet the technique requirements.

3.1. Smartphone Based

In this subsection, we introduce smartphone-based solutions according to different
modalities, including visible lights, WiFi, inertial sensors, acoustic, FM, Bluetooth,
cellular, and the combination of different modalities.

ACM Computing Surveys, Vol. 49, No. 2, Article 25, Publication date: June 2016.
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Fig. 6. Light based: Epsilon [Li et al. 2014a].

3.1.1. Camera. Cameras are one of the most important smartphone sensors and of-
fer to leverage computer vision for indoor localization. With photos as input, visual
features are extracted as spatial references, forming a 3D map. Werner et al. [2011]
introduce a camera-based positioning system by combining image recognition with a
flexible distance estimation. OPS [Manweiler et al. 2012] enables object localization by
constructing a 3D model of the object and mapping it to ground locations. Conversely,
Sextant [Tian et al. 2014] combines built-in inertial sensors to obtain relative position
measurements from visual reference points and computer-vision-based image match-
ing to triangulate user locations. Computer-vision-based approaches often achieve high
accuracy but are vulnerable to light conditions, require LOS propagations, and are rel-
atively computational extensive.

The increasingly widely used Light-emitting Diode (LED) lights have been proposed
for accurate localization. Based on the existing lighting infrastructure, any devices
with light-sensing capability (e.g., a smartphone) can be located in a highly accurate,
low-cost, and easy-to-use fashion. Li et al. [2014a] use LED lamps as anchors. Each bulb
acts as a landmark and broadcasts location beacons carrying information, such as the
position of the bulb. The receiver uses the light sensor to retrieve the beacon information
and measures the distances from these beacon lamps based on optical channel models.
It then determines its location via triangulation (Figure 6). Luxapose [Kuo et al. 2014]
further improves Visible Light Positioning (VLP) to support high light density without
coordination and to provide orientation with improved localization accuracy. Yang et al.
[2015b] enable VLP on smart glasses.

3.1.2. WiFi. Due to its wide availability and prevalent infrastructure, WiFi-based in-
door positioning has become an attractive approach of supreme importance. The discov-
ery of the position can be realized utilizing various measurements including TOA, AOA,
RSS, and CSI. Figure 7 illustrates the settings of WiFi-based localization systems.

TOA is a popular location estimation method commonly applied for ultrasonic-based
indoor localization. The feasibility of performing TOA on WiFi-based networks (i.e.,
802.11b) has been studied in Yamasaki et al. [2005] with a positioning accuracy of
2.4m at the 67th percentile with 10 APs and three-branch diversity. Giustiniano and
Mangold [2011] develop the CAESAR system with commodity hardware using a combi-
nation of time-of-flight (TOF) and signal-to-noise (SNR) measurements. However, the
performance of a TOA-based system will degrade significantly under NLOS conditions.
Besides, due to the high speed of the RF signal, it requires highly accurate time syn-
chronization. Sen et al. [2015] proposed CUPID2.0, a TOF-based localization system
achieving a mean localization error of 1.8 meters using commodity WiFi devices. It com-
bines the Energy of the Direct Path (EDP) and the Time-of-Flight of the Direct Path
(TFDP) to enable accurate ranging to deal with hardware noises and client diversity for
TOF-based ranging schemes. ToneTrack [Xiong et al. 2015] combines measurements
from multiple channels to derive a high-resolution channel impulse response and TOAs,
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Fig. 7. An overview of WiFi-based indoor localization systems. A WiFi-enabled device measures WiFi signal
features (e.g., TOA, AOA, RSS, CSI) from multiple access points to pinpoint its location.

and proposes a spectrum identification scheme to eliminate the impact of NLOS paths.
The system achieves a median accuracy of 90cm by combining three 20MHz channels.

AOA provides another way for indoor localization with submeter accuracy. To de-
termine the object’s position, AOA estimates the angle of the arrived signal from the
object with measurements of at least two APs. Xiong and Jamieson [2012] leverage the
MIMO techniques with multiple antennas in APs to enable fine-grained AOA-based
indoor localization. In ArrayTrack [Xiong and Jamieson 2013], there are two novel
heuristics: intra-AP triangulation for distinguishing LOS from the NLOS path and
pseudospectrum matching that eliminates multipath reflections. Based on the WARP
platform, ArrayTrack achieves a median accuracy of 23cm. However, such AOA-based
ArrayTrack prototypes are far from practice because neither the tailoring hardware
(i.e., 16 antennas for each AP with complicated arrangements) nor nontrivial collabo-
rative measurements by multiple APs are available. SpotFi [Kotaru et al. 2015] adopts
superresolution AOA estimation algorithms and proposes a set of filtering and esti-
mation techniques to derive the LOS AOA using commercial WiFi infrastructure. The
system achieves a median accuracy of 40cm and is robust to multipath propagation.

Received Signal Strength (RSS) is the most commonly used signal feature for WiFi-
based indoor localization [Bahl and Padmanabhan 2000; Youssef and Agrawala 2005;
Chintalapudi et al. 2010; Park et al. 2010; Goswami et al. 2011]. Theocratically, RSS
decreases monotonically with distance in free space [Rappaport 2002], so that the dis-
tance of the target can be calculated from RSS. Unfortunately, in indoor spaces with
severe multipath effects, the propagation model can fail and these RSS-based distance
measurements can be inaccurate. In this manner, an RSS-based fingerprinting ap-
proach is proposed. It consists of two phases: (1) offline training phase RSS fingerprint
(radio map) generation (site survey) and (2) online positioning phase localization by
matching the test point to a radio map. Although RSS-based fingerprinting has shown
to be comparatively accurate, it is still far from practical for the following reasons:

—It is labor intensive and time consuming to construct an RSS-based radio map.
—It is difficult to maintain and update this fingerprint database for a specific indoor

area since the environmental dynamics are inevitable.

Many researchers endeavor to reduce the overhead of fingerprinting. Chintalapudi
et al. [2010] ease the calibration task via a genetic algorithm that models the physical
constraints. The key finding is that WiFi-enabled devices like smartphones can obtain
the location fix of the edge of the indoor area, which provides the environment charac-
teristics. Park et al. [2010] design an Organic Indoor Location (OIL) system to release
the radio map construction efforts. The initial OIL fingerprints database is empty and
developed by user-provided information. To improve convergence rates, a Voronoi-based
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Table I. CSI Versus RSS

Measurement Temporal Frequency
Metric Band Layering Granularity Stability Diversity
CSI Base Band PHY Fine grained (per symbol) High Yes
RSS RF Band MAC Coarse (per packet) Low No

user promoting algorithm is applied in OIL. Goswami et al. [2011] bypass the laborious
fingerprint construction phase by proposing an unsupervised learning-based WiGEM
system. WiGEM can adapt to real time changes in environments by learning the param-
eters from the Gaussian Mixture Model (GMM). Therefore, the predeployment burden
of RSS-based fingerprinting can be relieved. On the other hand, fingerprinting-based
localization schemes may perform better at some locations than others. It is simply
difficult to expect consistent localization performances using an evenly sampled fin-
gerprint database. Some researchers proposed an algorithm to optimally approximate
the actual fingerprint database using both model-based virtual fingerprints and actual
fingerprints [Li et al. 2014b]. Therefore, scenario-catered calibration (e.g., fingerprint
database building) seems indispensable if the localization system were to be deployed
at scale.

Recently, an alternative to RSS has been suggested for indoor localization using the
ubiquitous WLAN infrastructure, known as Channel State Information (CSI) [Wu et al.
2012a, 2013]. CSI is used today (e.g., in IEEE 802.11a/g/n, WiMax, and LTE) and is
available on commercial products. It represents the channel conditions over individual
OFDM subcarriers across the physical (PHY) layer. Specifically, CSI (Ĥ = {hi}n

i=1)
represents the wireless channel at the granularity of subcarriers. For each subcarrier
i, hi represents its complex channel gain:

hi = |hi|e j·arg(hi ), (1)

where |hi| and arg(hi) denote its amplitude and phase, respectively.
Instead of only one RSS per packet, CSI values over multiple subcarriers can be

obtained at one time. The main differences between CSI and RSS are displayed in
Table I, which reveals the superiority of CSI compared to RSS.

The superiority of CSI was first proved in Halperin et al. [2010], and Halperin et al.
apply CSI for throughput improvement by adaptively adjusting the transmission rate.
Inspired by this work, FILA [Wu et al. 2012a] initiates the use of CSI for locating the
target in complicated indoor environments by extracting the LOS path for ranging. As
such, FILA is the first attempt at leveraging CSI for modeling-based indoor localiza-
tion. Even with a simple trilateration calculation for location coordinates, FILA can
achieve good performance. In Xiao et al. [2012a], a fine-grained CSI-based fingerprint-
ing scheme is proposed for indoor localization. It explores frequency diversity of CSI
to uniquely identify a location based on the fact that CSIs over multiple subcarriers
have different amplitudes and phases at multiple propagation paths. After building up
the radio map, FIFS applies a coherence bandwidth-enhanced probability algorithm
for matching the target object to the radio map. Likewise, Sen et al. [2012] develop a
spot indoor fingerprinting system, PinLoc, using CSI and achieve an accuracy of 89%
for 100 spots.

3.1.3. Inertial Sensors. With rapid technological developments, contemporary commer-
cial smartphones offer up a whole slew of embedded sensors, including accelerome-
ters, gyroscopes, proximity sensors, and ambient light sensors. Here, we will introduce
the indoor positioning solutions that rely on these low-power-consumption, low-cost
smartphone-based sensors only.
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Fig. 8. Dead-reckoning based: IndoorNav [Li et al.
2012] overview.

Fig. 9. Acoustic ranging: Peng et al. [2007].

CompAcc [Constandache et al. 2010] is an indoor localization system using an ac-
celerometer and digital compass. It fetches a local map (i.e., Google Map) over the sur-
rounding area of a user’s location by GPS. Then, the walking patterns, speed, and orien-
tation of this user will be recorded with the accelerometer and compass accordingly. By
mapping the walking patterns of user to the local map, the location of the smartphone
user can be approximately estimated without war-driving efforts. The IndoorNav [Li
et al. 2012] system collects sensor data as input for step detector and heading estimator
modules by using an accelerometer, compass, and gyroscope. In common sense, each
individual may have different body shapes like height and weight that influence the
step length estimation. IndoorNav proposes a reliable step model for step detection and
a personalization algorithm to adapt users’ stride length. By combining these modules
with an indoor floor map, IndoorNav can achieve meter-level accuracy without infras-
tructure, that is, a mean accuracy of 1.5m in a testbed of 31m×5m. Figure 8 provides the
work flow of Indoor Nav. We refer interested readers to Harle [2013] for a comprehen-
sive survey on inertial-based indoor localization using the dead-reckoning principle.

3.1.4. Acoustic. The acoustic ranging technique is newly adopted for indoor position-
ing. With the innate speaker and microphone in a commodity mobile phone, high-
accuracy acoustic ranging becomes achievable. Here we will review the research on
acoustic-based indoor localization.

BeepBeep [Peng et al. 2007] is a pioneer acoustic ranging system with high accuracy.
In BeepBeep, one smartphone A and its peer device B will perform “two-way sensing.”
Both devices will in turn send a “Beep” signal and record successive second-scale sound
signals from the microphone. Then, each device will count the elapsed time between two
TOA events. Noted that this sensing scheme can be extended to multiple devices. In this
way, the differential of elapsed times can be computed to realize TDOA for localization
(Figure 9). The Whistle [Xu et al. 2011] system introduces a synchronization-free TODA
framework for estimating the location of an object, which is a big breakthrough for the
previous TDOA-based approaches. In Whistle, two-signal (source signal and successive
signal) sensing is done in the first recording step. The second step comes to sample
the counting operation, which is done by the receiver. In the third step, AP will finish
TDOA calculation by receiving the counting results from the receiver. The experimental
results show that Whistle can achieve accuracy in the centimeter level, that is, 10–
20cm in a 3-dimensional 9 × 9 × 4m3 area. Qiu et al. [2011] extend acoustic-based TOA
ranging for real-time phone-to-phone localization to 3-dimensional spaces. Liu et al.
[2013] propose an accurate acoustic smartphone-based indoor localization system. The
acoustic communication between anchor nodes is realized by the standard speakers and
microphones on a mobile phone. EchoTag [Tung and Shin 2015] adopts an acoustic-
based fingerprinting approach to enable location tagging, achieving a resolution of 1cm
with 98% accuracy.
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Fig. 10. Battery life of different modes [Popleteev
et al. 2012].

Fig. 11. GSM: SkyLoc [Varshavsky et al. 2007].

3.1.5. FM. FM radio (88–108MHz) has been long integrated on smartphones for en-
tertainment like listening to music or news. The features of FM radio signals are in-
vestigated in Popleteev et al. [2012]. The advantages of FM for indoor localization are
as follows: (1) FM radio consumes less energy than WiFi, which is energy efficient for
positioning on a smartphone, as shown in Figure 10; (2) FM signals can penetrate walls
more easily than WiFi or GSM; and (3) FM radio is more robust to short-wavelength
obstacles than WiFi and GSM due to the long wavelength. Matic et al. [2010] first
propose the feasibility of using FM radio for smartphone-based indoor localization. In
their system, they introduce the spontaneous recalibration concept to automatically
update the fingerprint database. Besides, WiFi is synergetically integrated with FM
radio to enhance the performance of the positioning system.

An FM-based indoor fingerprinting system [Moghtadaiee et al. 2011] is also
devised to bypass the timing problem of FM signals and serious multipath effects. In
Moghtadaiee et al. [2011], RSS values of FM radio are measured by USRP2 (Universal
Software Radio Peripheral 2) and locations are decided by deterministic nearest-
neighbor (NN, KNN, KWNN) algorithms. The results show that applying the KWNN
algorithm will lead to a minimum mean distance error of 2.96m in an 11m × 23m
indoor area.

Recently, Chen et al. [2012] proposed adding physical layer information to FM RSS for
generating richer location fingerprints, and the accuracy can be improved by 5%. The
experimental results suggest that FM signals are more robust to temporal variations
compared to WiFi signals. Specially, human presence, multipath, and fading have less
influence on FM signals. Moreover, combining these two signals as a location fingerprint
can improve the localization accuracy.

The main disadvantage, however, is that FM radios are less popular than WiFi in
indoor environments. Smartphone users tend to turn on WiFi or cellular to get online
wherever possible, while fewer users would turn on an FM radio broadcast. This makes
FM-based solutions complementary and less mainstream.

3.1.6. Bluetooth. Bluetooth (IEEE 802.15.1), pervasively available on a smartphone, is
designated for short-range (i.e., 10m) wireless communication in the 2.4GHz range.
It can also be an attractive modality for locating and tracking people and assets
indoors. Dietrich et al. [2004] deploy a moving Bluetooth-enabled mobile device as
the transmitter, along with a dedicated correlation IC and microcontroller as two re-
ceivers. The position is calculated by TDOA measurement to achieve meter-level ac-
curacy. Chen et al. [2010] present an inquiry-based locating approach using Bluetooth
RSS measurements. There also exist several commercial Bluetooth-based indoor po-
sitioning systems, such as ZONITH [Teldio 2006], which is used to assist people who
work in hazardous environments. The Bluetooth chipsets exist in many products like
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mobile phones, tablets, and portable computers with low cost. However, a short-range
feature makes it suffer from dense deployment for ubiquitous positioning. This results
in relatively high capital investment for infrastructure support.

3.1.7. Cellular. Cellular networks are ideal for ubiquitous and seamless indoor and
outdoor localization, and are complementary to WiFi-based solutions. Various genera-
tions of cellular signals have been explored, including Global System for Mobile (GSM),
Code Division Multiple Access (CDMA), and Long-Term Evolution (LTE). Otsason et al.
[2005] propose the first accurate GSM-based indoor fingerprinting system achieving
a within-floor median accuracy in 2.48m to 5.44m. Figure 11 shows the interfaces of
SkyLoc, a GSM-based indoor localization system. Aside from GSM, CDMA proves to be
a reliable cellular positioning modality [ur Rehman et al. 2008]. Unlike GSM-based ap-
proaches that rely on RSS, CDMA leverages signal delay as location fingerprints, which
stays robust in frequent cell resizing. The experiments exhibit high accuracy (i.e., 4.5m
and 6.7m) in two indoor scenarios. To improve the localization capability of cellular
networks, the current LTE standard [3GPP 2010] has already specified a localization
scheme based on the Observed Time Difference of Arrival (OTDOA). Medbo et al. [2009]
evaluated the performance of LTE OTDOA-based positioning in urban scenarios us-
ing channel sounders. In del Peral-Rosado et al. [2014a], researchers present a joint
time-delay and channel estimator to assess the achievable localization performance of
LTE signals in the presence of multipath. Two software-defined radio (SDR)-based LTE
positioning receivers are implemented in del Peral-Rosado et al. [2014b] to assess the
localization performance in commercial LTE deployment. Experimental results show
the potential of accurate indoor localization using commercial LTE networks. The syn-
chronization problem when adopting LTE OTDOA is also addressed in del Peral-Rosado
et al. [2015] using time-delay and frequency-tracking loops and a priori known receiver
position. With the development of small cell and femtocell, which are specially designed
for home or small business regions, the cellular system will cover a wide range of indoor
environments and become a competitive indoor localization tool in the coming years.

3.1.8. Hybrid. Hybrid schemes have been developed by compromising the merits of
various modalities on smartphones to ponder the indoor localization problem. The aim
of these multimodality proposals is to enhance the overall positioning performance.
Here, we mainly introduce two mainstreams: (1) the integration of WiFi and inertial
sensors and (2) the integration of WiFi and acoustic.

WiFi + inertial sensors: Recently, the idea of combining WiFi and inertial sensors on
a smartphone for positioning has received considerable attention. Based on different
purposes, the incorporation can be collapsed into two categories:

—To ease the calibration efforts: Zee [Rai et al. 2012] is a “zero-effort” indoor localiza-
tion system via crowdsourcing. With the assistance of a floor plan, Zee can obtain
site-specific information like the pathways and barriers. Without any user participa-
tion, Zee utilizes crowdsourced sensor data (accelerometer, compass, and gyroscope)
to automatically infer locations. These sensor data are combined with WiFi and
processed by an augmented particle filter. Unloc [Wang et al. 2012] is another hybrid
indoor positioning system that eases the burden of site survey. The key observation is
that some locations can be identified as “landmarks” using inertial data, such as ele-
vator and corridor corner. To extract these landmarks, Unloc employs unsupervised
learning to enable dead-reckoning. Unloc can automatically update the landmarks
by increasing users without a floor plan. WILL [Wu et al. 2012b] proposed a “logical
map” to bypass site survey. In the training phase, the floor plan is constructed
logically instead of physically leveraging user trace. This logical map can reveal
the relative location relationship between virtual rooms and then be associated
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with physical rooms. In the serving phase, the user query (WiFi readings and
accelerometer data) will be sent to the WILL server. And the server will give
back the location information and update the database using newly added data.
LiFS [Yang et al. 2012] further reduces the manual cost of site survey by exploring
the connection of user motions and previous RSS fingerprints. It reforms a high-
dimensional logical floor plan and maps it to real locations by spatial similarity. In
a 1600m2 academic building, LiFS achieves an average location accuracy of 5.8m.

—To increase the positioning accuracy by data fusion: Azizyan et al. [2009] develop an
ambient fingerprinting SurroundSense system by combining the WiFi information
and sensing modalities (light, sound, color, and accelerometer). In SurroundSense,
these five-part fingerprints compose an ambience fingerprint to be accumulated into
a fingerprinting factory. By matching the test fingerprint to candidate ones in this
factory, the target logical location can be finally obtained. In Kemppi et al. [2010],
a hybrid angle-based indoor positioning system is associated with pedestrian dead
reckoning (PDR) and particle filter. Particularly, using a fusion filter, PDR move-
ments and angle-based location estimates are combined with a building vector map.
Evaluation of the system in different indoor environments shows that seamless posi-
tioning coverage and acceptable accuracy can be achieved. Kim et al. [2012] observe
that the location with maximum RSS is preserved regardless of the severe RSS vari-
ance. Thus, they develop a smartphone-based pedestrian tracking system by using
Peak-based WiFi Fingerprinting (PWF). In addition, digital compass and accelerom-
eter are combined with PWF for improving the accuracy.

WiFi + acoustic: Tarzia et al. [2011] present the idea of using an acoustic background
spectrum for room-level indoor localization. They design an ABS system that first
records the background sounds using commercial smartphones. After that, ABS ex-
tracts the noise-robust fingerprints by filtering out the transient noise and storing it in
a database. Finally, it guesses the current unlabeled location by finding the closest fin-
gerprint in this database. The ABS system is implemented as a free application called
“Batphone” on iPhones. Users can use Batphone to distinguish a pair of adjacent rooms
with 92% accuracy. However, the noise rejection problem remains unsolved. It cannot
cope with the noise introduced by tens of speaking occupants (the chatter state). Liu
et al. [2012] develop a WiFi-enabled smartphone indoor localization system. The key
observation is that there are abundant peer phones in public indoor places, which bring
in physical peer constraints. They thus apply the acoustic ranging technique to reduce
the WiFi similar signature error. Finally, peer-assisted localization can be achieved by
jointly using a WiFi signature map and acoustic ranging. The prototype results show
that it can reduce the maximum and 80% errors to as small as 2m and 1m. Argus [Xu
et al. 2015] proposed another assistant-based WiFi localization framework leveraging
geometric constraints extracted from photos.

Other systems target fast response time or energy efficiency. For instance,
CLIPS [Noh et al. 2013] considers that the region is infrastructure free but each user
has a received signal strength map for the area in reference by ray-tracing. Specifically,
CLIPS incorporates WiFi beacon messages with dead reckoning to drastically reduce
the convergence time. EnLoc [Constandache et al. 2009] proposes an energy-efficient
positioning system by integrating GPS, GSM, and WiFi. They quantify the tradeoff
between energy and accuracy that underlies a range of emerging services, and char-
acterize the optimal localization accuracy for a given energy budget. Gao et al. [2013]
exploit cross-technology interference signatures for indoor positioning. They design a
ZiFind system that records WiFi interference signals by low-power ZigBee devices.
By applying digital signal processing techniques, unique fingerprints can be extracted
from these interference signatures. Compared to previous WiFi-based fingerprinting
systems, ZiFind is more energy efficient.
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Fig. 12. UWB. Fig. 13. Ultrasonic [Itagaki et al. 2012].

3.2. Tag Based

In the previous section, we delineated various localization modalities embedded on
smartphones. This subsection presents means of localization using UWB, ultrasonic,
infrared, RFID, and wireless sensors. All these approaches require specific hardware
to fulfill the positioning functionality and are summarized as “tag based.”

3.2.1. UWB. UWB is a radio technology originally used for wireless communication
and later applied for in-building 2D or 3D localization systems [Li et al. 2007, 2009].
UWB has been issued as the radio wave whose fractional bandwidth is greater than
20% or at least 500MHz based on the Federal Communication Commission (FCC)
in 2002. This ultrashort (i.e., nanoseconds) impulse UWB with very large bandwidth
can suppress rich multipath effects and also result in a high time resolution, which
greatly improves positioning accuracy. In addition, UWB signals can penetrate through
obstacles easily with low power consumption. These favorable characteristics of UWB
account for high positioning accuracy in centimeter scale. Figure 12 depicts the common
setting for UWB-based localization system. In general, TOA or TDOA measurement
of the UWB signal is applied to obtain the location of the target [Fischer et al. 2010;
Zhang et al. 2006]. While NLOS is a challenge for UWB indoor positioning, a novel
probabilistic TDOA model is proposed to accommodate this NLOS in Prorok et al.
[2011]. In a nutshell, for positioning systems employing UWB devices, time-based
schemes provide very good accuracy due to the high time resolution (large bandwidth)
of UWB signals. Moreover, they are less costly than the AOA-based schemes, the latter
of which are less effective for typical UWB signals experiencing strong scattering.
With the new IEEE 802.15.4a standards, the cost of UWB chips is now reduced to
around only $ 20 USD [decaWave 2015], making UWB competitive with WiFi-based
indoor localization. The increasing popularity of indoor robots and quadrotors has
also attracted renewed interest in employing UWB for highly accurate ranging and
localization [Kempke et al. 2015]. However, metallic and liquid materials are sources
of interference to the UWB signal and the short communication range (less than 10m)
limits its applications except in exceptionally dense networks.

3.2.2. Ultrasonic. Ultrasonic [Fischer et al. 2008] is a well-known ideal candidate for
indoor positioning that relies on the TOA scheme. The key idea is to use an ultrasonic
transceiver to emit and detect ultrasonic signals. While recording the signal traveling
time between a pair of transmitter and receiver, it is possible to compute their separat-
ing distance given the medium traveling speed. In general, ultrasonic wave emission is
usually directional, which introduces difficulties in orienting the transceiver precisely.
The early Cricket system [Priyantha et al. 2000] utilizes the difference in propagation
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speeds and estimates the distance via coupled RF and ultrasonic signals. Although
Cricket exhibits high accuracy (i.e., 6cm) as well as privacy protection, it suffers from
the inherent narrowband disadvantage. Instead, Hazas and Hopper [2006] explore the
usage of broadband ultrasonic that has superior characteristics over the narrowband
counterpart. Such a broadband ultrasonic system is deployed using Dolphin units and
the ranging performance is 2cm. Itagaki et al. [2012] develop a moving object tracking
method based on spread spectrum ultrasonic (Figure 13). To handle the Doppler effect
brought by moving targets, a tracking method by limiting correlation calculation in
a defined range is proposed. Fercu et al. [2009] present an ultrasonic-based living
assistance system for people (i.e., elders or handicapped) who may accidentally fall in
residences.

Unfortunately, the presence of obstacles in the surrounding area may block the
ultrasonic wave due to its coverage limitations, leading to a decrease in the wave
traveling time measurement accuracy, along with high power consumption.

3.2.3. RFID. Radio-Frequency Identification (RFID)-based positioning has become
more and more popular, for example, in hospitals for locating patients [Cangialosi
et al. 2007]. LANDMARC [Ni et al. 2004] is the first attempt to apply active RFID tags
for localization. It uses reference tags with known locations to adapt to environmental
dynamics to enhance the accuracy of location estimation. Seco et al. [2010] present the
usage of Gaussian processes to model the RSS distribution of RFID tags. In Seco et al.
[2010], 71 tags are distributed in an area of 1600m2 to achieve median accuracy of
1.5m. Wang et al. [2007] propose an RFID-based 3D positioning approach to locate the
mobile user equipped with an RFID reader or tag. It applies the RSS proximity and
optimization to enhance the performance (i.e., 0.3–3 f t).

Another interesting application based on RFID is to localize and track the demanded
library books. Choi et al. [2006] introduce an RFID-based Library Information Man-
agement (R-LIM) system to determine the location of a book in search. R-LIM system
records the IDs (i.e., books and shelves) associated with location using RFID tags into
a database. Thus, the tagged book position can be effectively retrieved by the RFID
reader. Phase-based RFID ranging allows coherent signal processing and achieves bet-
ter performance than RSS-based schemes [Zhang et al. 2010]. However, simple phase
measurements have to deal with phase wrapping. It is thus necessary to perform
multiple measurements and use phase difference [Povalac and Sebesta 2011]. Nikitin
et al. [2010] proposed three-phase difference-based positioning techniques in the time,
frequency, and spatial domains with modeling and simulations. Hekimian-Williams
et al. [2010] adopted a maximum likelihood method for accurate phase difference-
based localization and prototyped an SDR-based positioning system. BackPos [Liu
et al. 2014] proposed a phase-based hyperbolic positioning technique and achieved a
mean accuracy of 12.8cm. MIMO techniques further pushed RFID-based localization
to centimeter-level accuracy using Synthetic Aperture Radar (SAR) [Wang and Katabi
2013], Inverse Synthetic Aperture Radar (ISAR) [Scherhaufl et al. 2014], and hologram
[Yang et al. 2014].

3.2.4. Sensors. Low-cost, low-power-consumption, multifunctional sensor nodes,
which consist of sensing, data processing, and communicating components, are widely
used tools for localization in wireless sensor networks (WSNs). In Kusy et al. [2007]
and Chang et al. [2008], the Doppler shift effect is leveraged to estimate the direction
of moving sensors. When a transmit sensor is moving toward a stationary received one,
the relative velocity between them determines the Doppler shift in the frequency do-
main. By using the knowledge of the transmitted frequency and the received frequency
at the known position, the translational velocity of mobile nodes can be calculated to
estimate the location. However, the limitation of the scheme is that it can only locate
moving objects.
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Table II. Judging Criteria in Terms of Accuracy, Cost, Scalability, and Energy

0 (Worst) 1 2 3 4 5 6 (Best)
Accuracy >100m 51m–100m 16m–50m 7m–15m 2m–6m 0.5m–2m <20cm
Cost (US$) >300k 101k–300k 31k–100k 10k–30k 6k–10k 1k–5k <1k
Scalability <10m2 11m2–50m2 51m2–100m2 101m2–500m2 501m2–1000m2 1001m2–0.1km2 >0.1km2

Energy >100w 20w–100w 5w–20w 1w–5w 0.1w–1w 1mw–0.1w < 1mw

Fig. 14. Performance comparison of all recent device-based approaches.

Chung et al. [2011] propose to use magnetic field distortion as location fingerprints
to develop an indoor geo-magnetism navigation system. Such a system can achieve high
accuracy of 90% within 1.64m. Pirkl and Lukowicz [2012] employ resonant magnetic
coupling for designing a 3D indoor positioning system. In this oscillating magnetic field
system, the accuracy resolution is within 1m2.

3.3. Performance Comparison

In summary, while the aforementioned technologies share some common traits, there
exist certain differences with respect to technological aspects such as accuracy, as well
as implementation details (cost, scalability, and energy consumption). The correspond-
ing judging criteria are first given in Table II, divided into seven levels. As shown
in Figure 14, the star chart consists of four directional axes representing the four-
category criteria. And for each criterion, there are seven different circular layers (i.e.,
corresponding to Table II Level 1–6). The innermost layer gives the lowest value of 0
and the outermost layer gives the highest value of 6. The higher the value is, the better
performance can be achieved. Thereby, a larger area indicates the overall performance
is better.

Accuracy is the key factor to describe how close the estimation from a positioning
technique is to match the actual position of users/devices. It is usually determined
by the mean distance error. The positioning systems have been developed over a few
decades and improved a lot. The measuring units of the positioning accuracy changed
from kilometers to meters. The most recent and finest positioning systems can even
have few centimeters of error. For this reason, the worst positioning accuracy is set to
larger than 100m and the best is set to smaller than 20cm.

Cost efficiency is evaluated under four mentioned expending costs like hardware,
infrastructure, installation, and maintenance costs. The figures can vary from less
than US$1k to greater than US$300k.

Scalability determines how large of a positioning system can be scaled up. We analyze
the possible coverage area of different positioning techniques. Due to the limitation of
signals or infrastructure, the measuring units could be largely deviated from less than
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10m2 to larger than 0.1km2. For instance, if a positioning technique makes use of a
Bluetooth signal, it can be only practical under a few square meters.

Energy efficiency is measured by how much energy of a positioning technique is
spent in an hour in watts (w). We estimate each positioning technique depending on
the usual operating power usage of its hardware. A green positioning system may have
less than 5w power, for instance, usages of low-power inertial sensors. This criterion
can vary from less than 1mw to larger than 100w.

For those infrastructure-based indoor localization approaches, infrastructure is the
main concern when evaluating cost, while device is the concern when evaluating energy,
because only the devices are battery limited. Take GSM for example: the power for the
base station is 20w, which is much higher than that of the smartphone backend, that
is, 2w. Unlike the GSM-based location system that can make use of an existing base
station, the FM-based system needs extra radio towers, which requires an additional
licensing fee for spectrum access. Note that for those modalities that work in the ISM
band such as WiFi, sensor, and RFID, this expense is exempted.

Due to the highly controlled and ad hoc evaluations of indoor localization systems,
Microsoft launched the Microsoft Indoor Localization Competition [Microsoft 2014]
to provide a relatively unified and practical venue for researchers from both academia
and industry to compare different indoor localization solutions. In Lymberopoulos et al.
[2015], the organizers summarized the main evaluation results during the 2014 Mi-
crosoft Indoor Localization Competition with 22 different solutions. They concluded
that while 1.6m accuracy is achievable with merely commercial WiFi access points,
the indoor localization problem is still not solved. The main hurdle is the deployment
cost. Out of the 22 solutions, the average setting and calibration time is 5 hours for
two rooms covering 300 square meters. This may be unrealistic and intrusive when
deploying these localization systems in large deployment sites like shopping malls.

4. DEVICE-FREE INDOOR LOCALIZATION

Device-based indoor localization systems are capable of providing location information
of the target who wears a specific smartphone-based or tag-based device. However,
this basic requirement does not hold in myriad scenarios. The potential applications
are many: in residence communities, emergency situations of elder people (i.e., falls,
stuns) can be timely detected for safety precautions; in hospitals, doctors can monitor
the status of patients to rescue them whenever they are in a paroxysm of disease; in
large warehouses and stores, security action is needed for surveillance of an anomalous
intrusion. Toward this end, device-free indoor positioning is certainly a better fit for
the previous ILBS that can mitigate the necessity of carrying it on devices. It serves as
an indispensable complement in the context of wireless indoor localization.

4.1. Existing Systems

In a similar fashion to Section 3, we will introduce the state-of-the-art device-free
systems categorized by the frequency in the following.

4.1.1. Camera. Cameras are common for device-free motion detection or localization
in a specific site. Shieh and Huang [2009] describe a video-surveillance system by
leveraging multiple cameras for time-efficient elder fall detection. The idea is to identify
accidental fall events with a human-shape retrieving algorithm and pattern recognition
approach. To reduce the complexity of multi-video-stream processing, pipeline and
multithreading methods are introduced. Experiments with four web cameras show
that the false detection rate is as low as 1% to 3%. In the EasyLiving Project, Krumm
et al. [2000] designed a visual person-tracking system using images from two sets of
color Triclops stereo cameras in a typical living room environment. A Stereo Module
records the images, which works along a Person Tracker program to produce the result
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Fig. 15. Camera DfP [Xu et al.
2012].

Fig. 16. Infrared DfP [Kemper
and Hauschildt 2010].

Fig. 17. UWB radar.

of location estimation and identity maintenance. However, the system is constrained
in coherent tracking of more than three people due to poor clustering through oc-
clusion. To handle this occlusion problem, Yang et al. [2007] implement a real-time
indoor surveillance and tracking system with 18AXIS210 network cameras in an office
building. A sensor camera SenCam [Xu et al. 2012] system was presented recently
for reducing privacy concerns over solely camera-based device-free indoor positioning.
Besides, camera-assisted recalibration in SenCam helps to lessen the time-consuming
RSS measurements. Figure 15 shows the deployment of SenCam.

4.1.2. Infrared. Passive infrared (PIR) techniques are widely adopted for device-free
indoor motion detection and localization. The basis relies on detecting changes of the
infrared spectrum in the monitoring region caused by human movements. Specifically,
there’s an obvious distinction between body temperature of a person and ambient tem-
perature. Such a difference makes it possible to develop a device-free infrared-based
positioning system based on the thermal radiation caused by people. Figure 16 shows
a representative setting of Infrared based DfP localization system. Several systems
[Hauschildt and Kirchhof 2010; Kemper and Hauschildt 2010] are proposed to lo-
calize entities. In Hauschildt and Kirchhof [2010], thermal radiation is measured by
thermopile arrays to determine the position of the object using the AoA scheme. Exper-
iments in a 4.9m to 5.2m area show that the system can achieve centimeter accuracy.
Kemper and Hauschildt [2010] suggest a probability hypothesis density filter to resolve
the problems for multitarget counting and data association. Even in noisy situations,
the mean position error of system is less than 30cm for discriminating and localizing
three people. The OPTEX company [OPTEX Passive Infrared Sensor] provides a large
amount of PIR products for detecting anomaly events. However, PIR sensors are limited
to LOS vision and thus the cost of covering a large area will be prohibitive. Moreover,
the additional radiation from the dynamic environment also brings in challenges for
PIR technology.

4.1.3. UWB Radar. UWB radar serves as a means for device-free LBAs such as indoor
through-wall detection and surveillance (Figure 17). Yang and Fathy [2005] propose a
UWB radar system operating at 10GHz. The system composes of a UWB double-ridge
horn antenna as the transmitter and a 16-element Vivaldi antenna as the receiver.
Since the short-pulse UWB has strong penetration ability and high power efficiency,
through-wall image reconstruction can be performed with high resolution. However,
the high sampling rate is challenging for the system of Yang and Fathy [2005] and also
is a crucial requirement for data acquisition. Yang and Fathy [2009] further developed
a real-time see-through wall system with customized FPGA firmware. This firmware
successfully deals with the challenging UWB signal acquisition problem that main-
tains high equivalent-time sampling resolution (i.e., 100Msamples/s). In addition, the
system enables motion tracking by integrating a set of analog-to-digital converters,
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Fig. 18. Ultrasonic DfP. Fig. 19. WiFi DfP.

memory, microcontroller, timing, and auxiliary circuit. To further reduce the complex-
ity of large-scale antennas, a three-dimensional imaging algorithm is presented by
Sakamoto et al. [2011] to estimate the moving target with five antennas. In their work,
a spheroidal model is constructed to approximate the shape of a target to determine
the translational motion. Lei and Ouyang alternatively apply the finite-difference time-
domain (FDTD) method to design a UWB-based surveillance system [Lei and Ouyang
2007]. The position of the target can be determined by measuring the round-trip time
of a UWB wave including the time traveling through the concrete wall.

4.1.4. Ultrasonic. Ultrasonic is well suited for supporting device-free ILBSs like pilfer-
age prevention and fall detection inside residences for security and safety purposes
(Figure 18). One typical example is indoor human presence detection [Caicedo and
Pandharipande 2012]. In Caicedo and Pandharipande [2012], consecutive ultrasonic
signals are periodically transmitted and the echoes caused by user movement will be
recorded by the receiver. Thus, the occurrence of human movement can be monitored
by a tracking algorithm with high detection probability. Another example is the Door-
jamb [Hnat et al. 2012] system, which aims at room-level tracking in dwelling places.
Ultrasonic range finders are used in each doorway to estimate the user’s height and
direction, as well as to record the passing sequence. Doorjamb achieves an average
tracking accuracy of 90%. However, to deploy ultrasonic in large indoor surroundings
will be very expensive.

4.1.5. WiFi. Although the previous approaches have contributed to device-free indoor
localization, they may not work well in terms of scalability due to either high special-
ized infrastructure cost like video cameras and RFID tags or maintainable costs (i.e.,
sensors). WiFi-based approaches [Youssef et al. 2007], on the other hand, leverage the
available infrastructure for device-free indoor localization.

To enable device-free indoor localization, a process of determining abnormal events—
anomaly detection or motion detection—is a prerequisite. Youssef et al. [2007] discuss
the challenges that lie in designing a reliable device-free passive (DfP) localization
system. In addition, two feature extraction algorithms are proposed for motion detec-
tion, namely, moving average (MA) and moving variance (MV). These two algorithms
exhibit very high detection performance (i.e., 100% recall and precision) but are con-
strained in a controlled environment. Moussa and Youssef [2009] instead apply the
Maximum Likelihood Estimator algorithm to enhance the performance of the DfP sys-
tem in real environments. Recently, the RSS-based RASID system [Kosba et al. 2012]
further improved the detection accuracy by analyzing the RSS features and adopting a
nonparametric technique for adapting to environment changes. In Xiao et al. [2012b],
the fine-grained metric CSI from the PHY layer is introduced for motion detection,
which proved to be sensitive to environment changes and resistant to temporal vari-
ance. Other CSI-based human detection schemes harness multipath propagation to
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extend the detection range of a single link [Zhou et al. 2013, 2015]. DeMan [Wu et al.
2015] further proposed a unified framework to detect both moving and static humans
via breath detection. In all, these works mainly focus on detecting or predicting the
movements of entities in a given area of interest.

After the anomaly event of an entity is detected comes the critical yet more chal-
lenging part: to ascertain the corresponding position of entities. Recently, Seifeldin
et al. [2013] developed a WiFi RSS-based Nuzzer system in a large-scale indoor space.
In Xiao et al. [2013], a fine-grained CSI-based device-free indoor localization system,
Pilot, is proposed (Figure 19a). CSI can be resistant to temporal variance and sen-
sitive to environment changes by exploiting the frequency diversity. In other words,
CSI can detect anomalies caused by environmental changes in the area of interest.
Another beneficial characteristic of CSI—frequency diversity—can reflect the varying
multipath reflections due to entities’ existence. Thus, Pilot processes CSI to generate
“passive” fingerprints for single-entity localization. Note that Pilot is the first work to
apply CSI from the PHY layer to improve localization performance.

In Wi-Vi [Adib and Katabi 2013], WiFi enables us to see moving objects through
walls and behind closed doors. By using MIMO interference nulling, the reflection from
static objects is eliminated, and moving targets can be detected. Using inverse synthetic
aperture radar (ISAR), Wi-Vi can track multiple moving objects simultaneously and
identify their directions with high probability (Figure 19b).

4.1.6. Wireless Sensors. Zhang et al. [2007] the synonym “transceiver-free” in WSNs.
A pioneer Zigbee-based transceiver-free tracking system is built up in Zhang et al.
[2007], relying on detecting the small-scale fading caused by human movement. Three
algorithms are applied to track the moving entities, including midpoint, intersection,
and best-cover algorithms. Evaluations in a 9m×12m empty room indicate that the
best-cover algorithm has the best tracking performance (i.e., average error 0.99m) in a
4×4 grid setting using MICAZ2 sensors. This work is subsequently improved by a dis-
tributed dynamic clustering approach [Zhang and Ni 2009] that ensures high accuracy
even in multiple-target scenarios. Other than signal dynamics, the distance between
sensor nodes along with the transmission power are taken account in Zhang and Ni
[2009]. Meanwhile, the proposed probabilistic cover algorithm can reduce the track-
ing latency to about 2seconds. Yang et al. [2010] develop a grid-based clustering over
K-neighborhood (GREEK) algorithm to diagnose the presence of intrusion. Integrated
with a multiple transmitter-receiver pair collaboration strategy, passive intrusion can
be accurately detected. Later, Zhang et al. [2011] make further improvement by de-
signing a real-time RASS system (Figure 20). Based on a Support Vector Regression
model, RASS enables comparative performance (i.e., tracking accuracy 4m) using a
much smaller set of sensor nodes (i.e., 10 TelosB nodes in two adjacent hexagon cells).

In Wilson and Patwari [2010], a radio tomographic imaging (RTI) technique is pre-
sented for imaging the passive moving entities by applying a linear model. Wilson
and Patwari [2011] make an improvement by leveraging motion-induced variance of
RSS measurements. Zhao and Patwari [2011] propose a subspace variance-based radio
tomography (SubVRT) algorithm for noise reduction. SCPL [Xu et al. 2013] adopts
a successive cancelation scheme to enable simultaneous counting and localization of
multiple static users.

4.1.7. RFID. The RFID technique is widely used in large shopping malls or warehouses
for preventing pilferage. Kuksa et al. [2010] propose a device-free geometric system
for estimating the location of human beings who move around a monitoring area. In
their work, a lines-intersecting-tiles strategy is used for detecting the motion event
between a set of RFID-based transmitted readers and received tags. Specifically, with
a low-density deployment (one for every 500 f t), this system demonstrates mobility
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Fig. 20. RASS [Zhang et al. 2011]
overview.

Fig. 21. FM DfP [Shi et al.
2012b].

Fig. 22. pRFID [Shi et al. 2012b].

localization accuracy of 20 f t. To ease the system maintenance, Shi et al. [2012b] replace
the active RFIDs with passive ones and a few active RFID reader antennas, and propose
a tomographic imaging algorithm that provides both low computational complexity and
highly accurate position estimates. The benefits of using passive RFIDs are twofold:
they are not only low cost but also easily deployed. Although they can achieve 30cm
mean accuracy, the authors place 36 transponders in a square with the length of 2.7m
in their experiment, and thus the scalability is much lower compared with that of using
active RFIDs. Tadar [Yang et al. 2015a] enables device-free object tracking by deploying
a group of RFID tags behind walls as an antenna array and tracking the reflections of
objects using a hidden Markov model. The system achieves a median tracking error of
below 20cm.

4.1.8. FM. Recently, FM radio [Shi et al. 2012a, 2012b] has proved to be an adequate
counterpart for a device-free application, specified as situation awareness. Shi et al.
[2012b] introduce the noncooperative FM radio for distinguishing various activities in
ambient environments, including empty room, opened door, people standing, and peo-
ple walking (Figure 21). They implement the prototype using a USRP3 device working
at 82.5MHz to extract the FM features, consisting of average amplitude, average mag-
nitude squared (AMS), and root of amplitude mean squared (RAMS). The subsequent
classification task is fulfilled by three well-known algorithms, which results in accuracy
as high as 90%. However, those activities are conducted only in a small restricted 1×2m
rectangle, which inflicts hardly predictable near-field effects at the receiver’s antenna,
thus making the system less practical.

4.2. Performance Comparison

In this section, a comparison summary of the aforementioned device-free systems is
given. Figure 22 gives you a quick view of the performance of each positioning modality.
The criteria we apply remain the same as the ones for device-based comparison, in
terms of accuracy, cost, scalability, and energy efficiency. Note that some systems only
provide results such as room-level or location distinction accuracy; we convert these
results to our criteria approximately.

In summary, every design of device-free indoor localization techniques possesses its
own propose and scope. To pick out a positioning scheme for a specified application
scenario, we can refer to this comparison diagram and choose the most suitable one.
In the next section, we will discuss the open research issues for both device-free and
device-based techniques.

As with device-based localization systems, it is hard to quantify the effectiveness of
a device-free localization system. Factors such as deployment cost, energy efficiency,
and scalability should also be taken into account when selecting the proper device-free
localization scheme. In addition, as device-free localization systems rely on the human
impact on wireless signals to detect and localize humans, they are more vulnerable

ACM Computing Surveys, Vol. 49, No. 2, Article 25, Publication date: June 2016.



A Survey on Wireless Indoor Localization from the Device Perspective 25:23

Fig. 23. Performance comparison of all recent device-free approaches.

to environmental interferences and dynamics. Few studies have explored issues such
as the RF interference from other existing wireless networks. Environmental changes
(e.g., furniture changes) may also require tedious recalibration for device-free localiza-
tion systems to retain satisfactory performance.

5. OPEN RESEARCH ISSUES OF THE FUTURE

The criticality of indoor localization has been admitted intimately and received a lot of
attention and research. Even so, many open issues still exist in the foreseeable future
to meet all kinds of applications’ requirements. In this section, we aim at presenting
these unfathomed issues faced when designing and implementing an indoor positioning
system. Specifically, we identify the corresponding ones in two categories: device based
and device free.

5.1. Device Based

Despite the considerable works that have been concerned about device-based indoor
localization, including both commercial products and research-oriented solutions, im-
portant issues need to be further studied and addressed to keep pace with the require-
ments of different applications.

—Modality selection: Many devices like smartphones support multiple technologies
that can be leveraged for localization. Utilizing them all with data fusion is not a bad
choice for high localization accuracy, but this is not necessary when energy efficient
is preferred over accuracy. Moreover, from the implementation perspective, the cost
of the devices and infrastructure is also a concern in system design. Therefore,
efforts should be made to provide adequate selection of a localization modality based
on application preference and requirements in order to balance the target among
accuracy, energy, cost, and scalability.

—Integration with device-free systems: Since users may not carry devices everywhere
in indoor environments, this can greatly improve user experience and provide conve-
nience for object tracking, for example, in supply chain management, if device-based
and device-free localization systems are seamlessly integrated. In fact, some projects,
for example, the SELECT project [SELECT 2007], have explored designing a smart
indoor wireless network where the detection, identification, and tracking of objects
are integrated leveraging RFID, UWB, radar, and various data fusion techniques.
This will facilitate future automatic identification, real-time localization and track-
ing, and user-friendly navigation and ambient intelligence on a unified platform.
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—Infrastructure placement: While techniques like WiFi and FM utilize signals of oppor-
tunities from already-deployed infrastructure, the placement of the infrastructure
may not primarily be planned for localization purposes. Consequently, the positions
of the infrastructure can affect the system performance, and optimization of the
infrastructure placement or additional assistant infrastructure deployment may be
required to boost localization accuracy while retaining the networking or communi-
cation performance of WiFi or FM devices.

—“Green” localization: Device-based approaches are dependent on hardware including
smartphones, RFID tags, Zigbee sensors, and so forth. While these devices have lim-
ited energy, frequent measurement will inevitably induce high power consumption.
In fact, much previous work concentrates on accurate localization while neglecting
the energy issue, or even achieves high accuracy by sacrificing power. However, such
a sacrifice is not affordable for systems that are not easy to recharge like wireless
sensor networks, or acceptable for devices that function otherwise like a smartphone.
Energy saving has recently drawn increasing attention driven by the trend of green
computing.

—Map construction: To localize and navigate a target in the real world, indoor maps are
required, which describe the topology and size of rooms, corridors, elevators, and so
on. Currently, most of this map construction job is done manually. However, since the
environment will change eventually, we have to continuously update the map, which
is time consuming and labor intensive. Crowdsourcing has proved to be a success in
outdoor map construction by Waze, and also has the potential to be used in indoor
scenarios. Currently, some works have been done by leveraging crowdsourcing to
generate the indoor radio map [Rai et al. 2012]. More efforts are still needed to ease
the process of physical map construction and updating.

5.2. Device Free

From the previous review, we can see that many advances have been made in various
research aspects on device-free indoor localization, including the well-studied wireless
radar system. However, there are still many open research issues that need to be solved
before the current technologies can be of practical use in not only military or industrial
scenarios but also daily life.

—Anomaly detection: While entities’ appearance or movement is usually not available
for device-free techniques in advance as for the device-based ones, anomaly detection
is a primary step for the subsequent localization. Plenty of works have been done to
address this problem, yet new approaches are still needed to better trade off between
false alarm and miss detection.

—Entity identification: It is challenging to figure out the type or identity of the entity
being detected, like the height, shape, and so forth. However, to track a specific target,
the system should be able to differentiate one target from all others. In computer
vision, pattern recognition is commonly used to distinguish different objects. If we
can connect each entity with a unique pattern extracted from the measurements, we
will be able to discriminate them.

—Multiple entities counting: The estimation problem of the number of entities arises in
many real-world applications, especially when no assistant device is installed on the
entities, for example, when conducting population statistics in retail and shopping
malls for strategic advertisement arrangement, monitoring crowds in museums or
residence communities for safety precaution or rescue operations, and performing
flow control in high-density vocal concerts for security enforcement. Some recent
works explored counting moving humans using the Percentage of nonzero Elements
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(PEM) metric in the CSI matrix [Xi et al. 2014], yet it is still an open issue to count
both static and moving targets using off-the-shelf wireless network infrastructures.

—Multiple-entities localization: It is of great demand for many indoor ILBSs to locate
multiple objects at the same time. However, this is known to be much more chal-
lenging than single-object localization. In the multiobject case, more changes will
be perceived in the indoor surroundings occupied by several objects. Consequently,
the severe multipath impression will give rise to many problems when applying
device-free approaches. Existing approaches for multiperson localization [Xu et al.
2013; Adib et al. 2015] mainly adopt a successive cancelation scheme to separate the
impact of each person, yet require either a network of multiple links [Xu et al. 2013]
or customized hardware [Adib et al. 2015].

—Equipment deployment: The deployment of the device-free localization equipment in
a specific indoor setting directly influences the positioning performance. For instance,
moving the sensing node from ceiling to floor will result in different detection and
localization accuracy. Therefore, the positions of the equipment should be optimized
to cover as large an area with as fewer dead spots as possible.

—Extending location contexts: While device-free localization systems are primarily de-
signed to localize humans without requiring the targets to carry any devices, such
a device-free sensing modality has extended from detecting locations to richer con-
texts such as keystrokes [Ali et al. 2015], location-aware activities [Wang et al.
2014], and daily activities [Wang et al. 2015]. However, it is still difficult to sense
location-independent activities without per-person training using commercial wire-
less networks in a device-free manner.

6. CONCLUSION

In wireless communications, increased attention and efforts foster improvement in a
wide range of indoor ILBSs. Indoor localization, which is one of the most essential mod-
ules of ILBS, has become an open problem without a universally appropriate solution.
In this article, we present the first in-depth analysis of the existing state-of-the-art
research, divided into device based and device free, from the device perspective. In
the device-based category, we mainly discuss different approaches that can be applied
on a commercial smartphone. In a similar fashion, various systems for device-free in-
door localization are reviewed. Correspondingly, a comprehensive comparison for each
category has been shown.
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