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Design and Implementation of a CSI-Based
Ubiquitous Smoking Detection System

Xiaolong Zheng, Member, IEEE, ACM, Jiliang Wang, Member, IEEE, Longfei Shangguan, Member, IEEE, ACM,
Zimu Zhou, Member, IEEE, ACM, and Yunhao Liu, Fellow, IEEE, ACM

Abstract— Even though indoor smoking ban is being put into
practice in civilized countries, existing vision or sensor-based
smoking detection methods cannot provide ubiquitous detection
service. In this paper, we take the first attempt to build a
ubiquitous passive smoking detection system, Smokey, which
leverages the patterns smoking leaves on WiFi signal to identify
the smoking activity even in the non-line-of-sight and through-
wall environments. We study the behaviors of smokers and
leverage the common features to recognize the series of motions
during smoking, avoiding the target-dependent training set to
achieve the high accuracy. We design a foreground detection-
based motion acquisition method to extract the meaningful
information from multiple noisy subcarriers even influenced by
posture changes. Without the requirement of target’s compliance,
we leverage the rhythmical patterns of smoking to detect the
smoking activities. We also leverage the diversity of multiple
antennas to enhance the robustness of Smokey. Due to the
convenience of integrating new antennas, Smokey is scalable
in practice for ubiquitous smoking detection. We prototype
Smokey with the commodity WiFi infrastructure and evaluate
its performance in real environments. Experimental results show
Smokey is accurate and robust in various scenarios.

Index Terms— Smoking detection, non-intrusive, channel state
information, ubiquitous.

I. INTRODUCTION

IT IS well recognized that smoking is not only a significant
reason of death and disease worldwide, but also a leading

cause of fire hazards. According to the report of the U.S.
Fire Administration, there are about 7,600 smoking-related
fires in homes each year, accounting for 17 percent of fire
deaths in residential area [1]. More seriously, the death rate per
1,000 fires in smoking related indoor fires is seven times higher
than that in nonsmoking related fires. Given the harms of
smoking, public policies such as prohibiting smoking in public
spaces, are put into practice in many countries. To ensure
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the polices really beneficial, an efficient ubiquitous monitoring
system, which is able to automatically and accurately detect
the smoking activities is imperative.

Unfortunately, to the best of our knowledge, a ubiquitous
smoking monitoring system is still absent. Sensor-based detec-
tion [2], [3] is one of the most widely adopted passive detec-
tion methods. However, smog sensors are not sensitive enough
to detect the tobacco smog when the room is large or the
ceiling is high. For rooms without smog sensor based detection
system, it is also costly to install such a detection system
and it may even need to partially re-decorate the rooms after
installation. Even the cost can be reduced, each smog sensor
has limited sensing range, leading to detection blind point and
detection delay [2], [3]. Vision-based detection is another type
of passive detection method. Applying computer vision (CV)
technique to surveillance video can analyze human gestures
for smoking detection [4]. Nevertheless, vision-based methods
are restricted to Line-of-Sight (LOS) environments, hindering
its applicability in a ubiquitous monitoring system. When
smoking actions are blocked by obstacles, CV technique loses
efficacy. Besides, due to the cost and privacy concerns, many
blind spots exist in the areas without camera such as the
stairwell and toilets.

We think of the question: can we build a practical smoking
detection system that (1) automatically and accurately detects
the smoking activities without deploying special devices,
(2) is non-intrusive for detection targets, and (3) works effi-
ciently in a wide range of environment conditions including
both LOS and Non-Line-of-Sight (NLOS) conditions? In this
paper, we leverage the commercial off-the-shelf (COTS) WiFi
infrastructures to detect smoking activity. The WiFi infrastruc-
ture is widely available in indoor environments and low-cost
to use. Leveraging the wireless signals does not require any
device on the targets. We analyze the impact of smoking
gestures on WiFi signal propagations and conduct preliminary
experiments to validate the feasibility of detecting the smoking
activity by its impacts on WiFi signals.

It has been shown that wireless signal provides an informa-
tion carrier for gesture recognition through the channel charac-
teristics such as Received Signal Strength (RSS) and Channel
State Information (CSI) [5]–[9]. However, existing gesture
recognition approaches based on wireless signals cannot be
directly used in our scenario. Existing approaches assume
relative simple or special gestures or a well-defined gesture
training set. Meanwhile, existing approaches adopt various
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methods to improve input data quality. For example, existing
approaches may need to specify the start and end of gesture
recognition period in which users are required to perform
gestures, so as to increase the detection accuracy. How-
ever, those requirements may not hold for smoking detection
scenario.

To address above challenges, we take the first attempt to
build a novel non-intrusive smoking detection system, namely
Smokey, that is able to accurately detect the smoking activities
by exploiting the impact of smoking on the CSI of WiFi.
The design of Smokey is inspired by the following findings.
First, instead of recognize a special gesture with carefully
trained classifier, we exploit the periodical pattern for event
detection. We find that smoking is a rhythmic activity that
periodically affects the CSI of WiFi signals. This significantly
reduces the impact of individual difference and the detection
error comparing with gesture recognition approaches. Second,
smoking is a composite activity that contains a series of
motions of the arms and chest in the exact order, which is
helpful to be distinguished from the daily activities. To avoid
the dependency of a good training set, Smokey elaborately
uses the temporal features such as the order of motions in
smoking and the transition duration between motions.

The implementation of Smokey also faces several chal-
lenges. First, since smoking consists of a sequence of motions,
its impact on CSI is dynamically scattered across different
subcarriers. What’s worse, even in a single subcarrier, the noise
is also very high due to the passive detection method for
uncooperative users in dynamic environments. We design a
motion acquisition method, based on the foreground detection
in image processing community, to extract useful information
from the noisy CSI traces. We also leverage the spatial
diversity of multiple antennas on the receiver to improve
the robustness of Smokey. We design the antenna selection
and result fusion components to use the multiple antennas
appropriately for performance improvement. We also propose
event-driven sampling mechanism to avoid congesting the
wireless channel and save energy.

We implement Smokey on the commercial WiFi devices
and evaluate its performance in real environments. The results
show that Smokey can detect the smoking activities with a
high TPR of 0.976 (0.919), along with a low FPR of 0.008
(0.097) using a single pair of transceivers in the relatively
static (dynamic) environments. We also extensively evaluate
the robustness of Smokey under various scenarios.

The contributions are summarized as follows.
• We investigate the characteristics of wireless signal

impacted by smoking and validate the feasibility of using
wireless signal for smoking detection.

• We take the first attempt to build a non-intrusive ubiq-
uitous smoking detection method, Smokey. We avoid
relying on good training data, which is commonly used
by existing gesture recognition methods, to detect the
unknown smoking persons.

• To strength the robustness of Smokey in practice,
we extend our design by using multiple antennas and
propose antenna selection and result fusion to improve
the accuracy. We also propose the event-driven sampling

to avoid wireless channel congestions and unnecessary
energy consumption.

• We implement Smokey with commercial hardware
and evaluate its performance. The experimental results
demonstrate the effectiveness of Smokey.

In the rest of this paper, we will present the preliminary
findings in Section II. Then we elaborate the design details
of Smokey in Section III and evaluate its performance in
Section IV. We present the related work in Section V and
finally conclude our work in Section VI.

II. PRELIMINARY FINDINGS

It has been shown that the environment changes such as
the presence and motions of human can affect the commu-
nications between two wireless devices. The impacts can be
captured and utilized for device-free human detection and
localization [5]. For example, the variations of Received Signal
Strength Indicator (RSSI) caused by motions can be used to
track the location of the object even behind the wall [10].
By learning the characteristics of RSSI variations, body
motions such as gestures can be recognized in [8].

Existing gesture recognition methods rely on repeatable
impacts of motions on wireless signal. They are usually able to
work well in the cases of simple or well-defined gestures near
the transceivers. It is unclear how unrestricted activities such
as smoking performed away from the transceivers affects the
WiFi signal and whether it is possible to recognize smoking
by its impacts on WiFi signal. In this section, we conduct
the preliminary experiments to investigate the feasibility of
recognizing smoking activities using WiFi signal.

A. Smoking Steps

We first introduce the smoking steps of a typical smoker.
Normally, smoking a cigarette can be divided into holding
phase and smoking phase. After lighting up a cigarette,
a smoker usually holds the cigarette in hand and puts up the
cigarette to mouth to suck the smoke intermittently. We can
further decompose the smoking into six detailed steps [11],
as Fig. 1 shown.

• (a) Holding the cigarette. Most of the time, a smoker
holds the cigarette in hand.

• (b) Putting up the cigarette to mouth. A smoker puts up
the cigarette to the mouth for the subsequent inhalation.

• (c) Sucking the smoke in mouth. Note that a smoker
usually does not inhale the smoke into lung directly.
Instead, the smoker suck the smoke into the mouth.

• (d) Putting down the cigarette. After sucking enough
smoke, the smoker will put down the cigarette.

• (e) Inhaling the smoke. And then, the smoker inhales
the smoke into the lung.

• (f) Exhaling the smoke. At last, the smoker exhales the
smoke and returns to the holding phase.

Smoking is a rhythmic activity. Step (a), i.e., holding phase,
occupies most of the time of smoking. Step (b)-(f) compose
the smoking phase which occurs intermittently. We call one
round from Step (b) to Step (f) as one smoking motion. Several
smoking motions together with the holding phases constitute
a smoking activity. The durations of the holding and smoking
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Fig. 1. Typical smoking steps: (a) holding the cigarette, (b) putting up the
cigarette to mouth, (c) sucking the smoke in mouth, (d) putting down the
cigarette, (e) inhaling the smoke, (f) exhaling the smoke.

motions are relatively stable because the smoker’s smoking
behavior usually remain unchanged.

B. How Smoking Affects Wireless Signal

Step (b) and (d) are performed with arm motions.
In Step (e) and (f), the inhalation and exhalation are performed
with chest motions. In this section, we investigate how these
motions affect WiFi signal.

Existing commercial WiFi devices provide two channel
indicators: Received Signal Strength Indicator (RSSI) and
Channel State Information (CSI). RSSI is a common indi-
cator that represents the strength of received signal. When
human motions block or unblock the signal transmission path,
received signal strength may vary due to severe or weak attenu-
ation. CSI is a fine-grained indicator that measures the channel
for Orthogonal Frequency Division Modulation (OFDM). With
OFDM, WiFi (IEEE 802.11a/g/n) sender transmits bits through
multiple orthogonal subcarriers in parallel. With existing WiFi
Network Interface Cards (NICs) such as Intel 5300, a WiFi
receiver can obtain a group of 30 subcarrier channel measure-
ments in the form of CSI [12]:

Hk =‖ Hk ‖ ej sin(∠Hk) (1)

where Hk is the CSI at subcarrier k, ‖ Hk ‖ is the amplitude
and ∠Hk denotes the phase. Each measured CSI sample on a
subcarrier is a complex number. The real part and imaginary
part specify the gain and phase of the signal path between
transmitter and receiver. We use the amplitude information to
observe the influences of human motions.

We deploy a TP-Link WR742N router and a mini PC with
Intel 5300 NIC equipped with one antenna as the generators of
WiFi signal. The PC is five meters from the router. We collect
the measurements of RSSI and CSI from the received packets.
We ask a person to smoke a cigarette between the transmitter
and receiver, one meter away from the receiver.

1) Smoking Affects CSI Instead of RSSI: In Fig. 2, we plot
the RSSI and CSI sequences obtained during smoking. Smok-
ing motions are recorded in video in this smoking activity.
The results clearly show RSSI varies over the time. However,
the variation happens in both holding and smoking phases.
There is no clear correlation between RSSI variation and the
smoking motions. Then we investigate whether CSI is affected
by the smoking activity. We find that CSI not only varies
during smoking but also shows a very close correlation with
smoking motions. This is because CSI is more informative
than RSSI [13], [14] and hence more sensitive to smoking
motions. The results demonstrate that CSI is more sensitive

Fig. 2. The RSSI and CSI sequences collected during smoking. Ground truth
is obtained by the video record.

Fig. 3. The CSI sequences of subcarrier #5, #14, and #23. Light gray areas
are the periods of smoking phase from (b) to (d) with arm motions. Dark gray
areas are the periods of smoking phase (e) and (f) with chest motions.

to smoking motions, shedding light on detecting smoking
activities by CSI information.

Smoking affects CSI instead of RSSI because CSI is more
sensitive to human activities. RSSI is only affected when the
signal propagation path is significantly altered. The arm and
chest movements are hard to change the signal propagation
path to the extent of affecting RSSI significantly, especially
when the human is in the NLOS transmission path. On the
other hand, CSI is a more detailed description of channel state
which is able to capture the multipath changes of the signal
propagation path [15]. During smoking, the arm and chest
motions will changes transmission path. Then the changed
mutlipath can be captured by the CSI amplitude.

2) The Impacts of Smoking Are Subcarrier-Dependent:
In Fig. 3, we plot the CSI sequences of subcarrier #5, #14,
and #23 during smoking. We can find that subcarrier #23 is
affected from phase (b) to (d) but not during phase (e) and (f).
On the contrary, subcarrier #14 is affected only during
phase (e) and (f). For other subcarriers, similar observa-
tions also exist. The reason behind these observations is
that subcarriers have different sensitivities for the motions
of different parts of human body. During smoking motions,
a portion of subcarriers may be sensitive to the motions of
arms while another portion may be sensitive to the motions of
chest. Therefore, different subcarriers are affected in different
smoking phases.

3) The Impacts of Smoking on CSI Vary Dynamically on
a Single Subcarrier: We find that the impacts of smoking
on CSI vary dynamically across different subcarriers and the
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Fig. 4. The CSI sequences collected during smoking and three other daily activities that may be confused with smoking. (a) Smoking. (b) Eating.
(c) Drinking. (d) Deep Breathing.

Fig. 5. The CSI sequences on subcarrier #27 when the target is (top) deep
breathing and (bottom) smoking.

impacts are not stable even in a single subcarrier. Subcar-
rier #5 is affected from phase (b) to (f) in the first smoking
motion ([11.7s, 22.8s]). However, in the second smoking
motion ([60.2s, 68.0s]), subcarrier #5 is only affected from
phase (b) to (d) but not in phase (e) and (f). This is because
the smoker usually does not exactly repeat the same smoking
motion. When the environment changes such as smoker pos-
ture changes, the sensitivities of subcarriers change, leading
to the dynamic impacts on subcarriers even for the same
motion.

4) Smoking Is a Composite Activity That Contains a Series
of Motions in a Certain Order: Smoking is a composite
activity consisting of a series of arm and chest motions in
a certain order. We investigate three daily activities: eating,
drinking, and deep breathing, which are considered to be
confused with smoking. We collect the CSI traces when a
person is smoking, eating a hamburger, drinking a cup of
coffee and breathing deeply at the same location. Fig. 4
presents how these activities affects CSI. We can find that
the CSI sequences show separate peaks when performing
confusing activities, while the peaks during smoking appear
in pairs. This is because smoking activity consists of a series
of arm and chest motions in a certain order while other daily
activities do not. Daily motions does not usually happen in
the exact order as smoking.

We also find that the order of chest motions during smoking
is unique. We plot the CSI amplitudes of subcarrier #27 during
deep breathing and smoking in Fig. 5. Normally, the inhalation
duration and exhalation duration in one respiration cycle
are nearly the same, as shown in the top figure of Fig. 5.

However, we find that the exhalation duration is obviously
longer than the inhalation duration in smoking, as shown
in the bottom figure of Fig. 5 (b). Such a phenomenon is
also observed in previous work [16]. Ali et al. [16] use a
wearable chest whist to monitor the chest motions and obtain
those duration features to recognize the smoking activities.
Such information can also be captured by CSI to help detect
smoking activities.

C. Summary

According to the preliminary study, we find smoking is a
rhythmic composite activity that contains a series of motions in
a certain order. This makes smoking distinguishable for daily
motions such as putting arms up or down. The rhythm/order
of motions is important information of the common behaviors
of most smokers. Using rhythm/order information to detect
smoking does not require to “decode” the precise information
on a single motion, making it more resilient to detection errors
in a single motion. However, we also find that (1) the impact to
CSI is dynamic across different subcarriers, and (2) the impact
on CSI is also time-varying, making it difficult to extract useful
information for detection. Hence, how to extract and leverage
rhythm/order information for smoking detection, from time-
varying and subcarrier-dependent CSI, needs delicate designs.

III. SYSTEM DESIGN

In this section, we elaborate the designs of Smokey. Based
on the preliminary findings, we propose to leverage the
rhythmic pattern and the certain order of smoking motions
to detect the smoking activities. Fig. 6 presents the overview
of Smokey. To make Smokey practical, we design an event-
driven sampling mechanism that adaptively changes the CSI
sampling rate according to the presence of potential targets.
First of all, the sampled CSI traces are processed to eliminate
outliers and interpolate the irregular data to align time to
get time information. Then the motion acquisition compo-
nent extracts the interested motions that are suspected to
be smoking. The extracted suspicious motions are further
analyzed by activity analysis component from the aspect of
periodicity to decide whether a smoking activity exists. Last
but not the least, we leverage the spatial diversity of multiple
antennas to enhance the robustness of Smokey. We propose
antenna selection and fusion methods to use multiple antennas
appropriately to improve the performance.
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A. Event-Driven Sampling

Though a high CSI sampling rate provides detailed informa-
tion about human motions, it consumes too much additional
bandwidth and energy. Note that CSI information is extracted
from the received WiFi packets. Hence, when the number of
the off-the-shelf WiFi packets such as the beacons and packets
generated by customer use is less than required, we have to
inject dedicated WiFi packets to obtain enough CSI samples.
But the injected packets will congest the wireless channel.
Therefore, a high sampling rate is risky to bring about side
effects on the WiFi communication. Besides, transmitting
injected packets on embedded devices such as samrthphones
will consume additional energy.

To save energy and alleviate wireless congestion, we pro-
pose an event-driven sampling mechanism that adaptively
adjusts the CSI sampling rate. In our application scenario,
the presence of human is the prerequisite of potential smoking
violation. Therefore, we use the human presence as the event
that triggers sampling rate adjustment. By the event-driven
sampling, we can keep the system running under low sampling
rate sL when there is no person around and dynamically
increase the sampling rate to sH , to provide enough CSI
samples for smoking detection.

It is well known that the presence of human will bring
significant changes of CSI. Previous studies [5], [6] have
already shown the presence of human will cause significant
CSI changes. We borrow the idea from existing work and
propose a deviation-based detection method. We monitor the
average standard deviation of CSI on all subcarriers, σp, during
a time window Tp. If σp is larger than a preset threshold σpt,
Smokey detects the presence of human and starts the high
sampling rate. If no human is detected during in K windows,
Smokey turns to a low sampling rate. In our current implemen-
tation, we set the low sampling rate sL = 100ms/sample and
the high sampling rate sH = 30ms/sample. The time window
Tp is 3000ms and K is 3. We will show the effectiveness of
our method in the evaluation.

B. Data Processing

Raw CSI data are intrinsically noisy and need processing
to improve the accuracy and robustness of further analysis.

1) Outlier Elimination: Since human motions usually alter
certain propagation paths and lead to variations in multiple
subcarriers, it is unlikely to cause jitters on a single sub-
carrier. Hence, such jitters are outliers. We adopt Hampel
identifier [17], a simple univariate outlier detection method
in Smokey. Based on Hampel identifier, any valid sample x
should follow |x − μ| ≤ ε · σ̄, where μ and σ̄ are the median
and the median absolute deviation (MAD) of the data sequence
respectively. ε is a coefficient that defines normal ranges. It is
application-dependent and we set it to 10 according to the
characteristics of human motions. We apply Hampel identifier
to 30 subcarriers respectively and eliminate the outliers in each
subcarrier.

2) Interpolation: Even though we configure the transmitter
sends packets with a fixed rate, the collected CSI sequences
on receiver are non-uniformly sampled because we cannot

Fig. 6. Overview of Smokey.

guarantee that the receiver gets packets with the same rate
due to packet loss, transmission delay and other processing
delays. However, as explained in preliminary findings, we need
time information to recognize the respirations of smoking.
Therefore, interpolation is necessary to obtain the accurate
time durations for further analysis. In Smokey, We adopt
linear interpolation by adding samples with value equals to
the previous sample in the missing sampling slots,to construct
the CSI sequence with samples evenly spaced in time.

C. Motion Acquisition

Human motions are not the only factor affecting wireless
signal. Consequently, some subcarriers may be more sensitive
to human motions. Leveraging all the subcarriers is therefore
not wise because the intrinsic noise on some subcarriers can
be too serious to conceal the meaningful information about
motions if the subcarriers are sensitive to noise but insensitive
to human motions. Selecting the subcarriers can improve the
accuracy. However, according to our observations, different
subcarriers are sensitive to the motions of different body parts
and the sensitivity of even a single subcarrier is dynamic
due to the subtle environment changes. Hence, it is infeasible
to select some certain subcarriers in advance, as previous
methods usually do.

In designing Smokey’s motion extraction method for cap-
turing the dynamic impacts from various subcarriers, we are
facing the challenges that combining the information from
informative subcarriers without the distractions caused by
the uninformed subcarriers with intrinsic noise. To solve this
challenge, we are inspired by the foreground detection problem
in the image processing community. This problem aims to
separate the foreground pixels in continuous image frames
with the varying background caused by illumination changes
and shadows swing [18]. In the context of Smokey, we want
to separate the variations of CSI caused by motions (the
foreground pixels) with dynamic noises (varying back-
ground). Having understood the similarity of two problem,
we propose a foreground detection based method for motion
acquisition.
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Fig. 7. Constructing CSI frames from CSI sequences.

Fig. 8. The distributions of noises on different subcarriers.

1) Bulid CSI Frame: Smokey first projects the CSI
sequences to CSI frames. As shown in Fig. 7, we partition
time into consecutive windows with length T , containing N
samples for each subcarrier. Then each frame contains M ×N
pixels, where M is the number of subcarriers. The pixel Pm,n

in a frame is the CSI amplitude of subcarrier m collected
within the n-th time window (tn). In Smokey, we have M =
30 subcarriers and we set N = 1 and T = 30ms which is
same to the sampling period.

2) Foreground Detection: After constructing the CSI
frames, Smokey analyzes the pixel values in each frame. The
pixels which do not fit the background distribution will be
considered as foreground pixels caused by human motions.

a) Constructing the background model: it is well known
that the background noise on a single subcarrier usually
follows a Gaussian distribution. In the context of analyzing
background by the whole frequency band, each pixel in the
scene should be modelled by a mixture of K Gaussian distri-
butions. We collect the CSI under static environments without
human motions and plot the distributions of CSI samples
on different subcarriers in Fig. 8. A mixture of Gaussian
distributions is suitable to model the background noise.

The probability that a pixel has value xt at time t can be
written as:

p(xt) =
K∑

i=1

wi,tη(xt, μi,t, Σi,t) (2)

where K is the number of Gaussian distributions, wi,t and μi,t

are the estimated weight and the mean value of the
i-th Gaussian in the mixture at time t respectively. Σi,t are
and covariance matrix of the i-th Gaussian in the mixture at
time t, which is assumed as:

Σi,t = σ2
i I (3)

η is a Gaussian probability density function:

η(xt, μ, Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (xt−µ)T Σ−1(xt−µ) (4)

At time t, the Gaussian distributions are ordered by the
fitness value wi,t/σi,t. Then the first B distributions are chosen
as the background model, where

B = arg min
b

( b∑

i=1

wi,t > P
)

(5)

P is the minimum prior probability that background noise is
in the trace.

b) Foreground extraction: after obtaining the background
model, foreground pixels are extracted by marking any pixel
that is more than 2.5 standard deviations away from the
B distributions. Fig. 9 (b) presents the results of extracted
foreground of the CSI frames in Fig. 9 (a).

c) Online updating model: self-adaptation to the envi-
ronment changes is one of the advantages of our foreground
detection method. The wireless channel is time-varying. And
the posture changes of humans such as in Fig. 9 (a) can
also affect the background distribution. Using a model with
pre-defined parameters is not appropriate to describe the
background. We then propose online updating the background
model to adapt to the background environment changes.

If current pixel value does not match any of the K distrib-
utions, the distribution with smallest weight is replaced with
a distribution with current value as the mean, a high initial
variance and low prior weight. In Smokey, the initial variance
is 10 and prior weight is 1/K .

The weight of the K distributions are adjusted as follows

ŵi,t = (1 − α)ŵi,t−1 + αp̂(ωi|xt) (6)

where p̂(ωi|xt) is 1 if ωi is the first Gaussian distribution that
xt matches, or 0 otherwise.

The μ and σ remain the same for unmatched distributions.
For the distributions match the pixel value, the μ and σ are
updated as follows

μ̂i,t = (1 − α)μ̂i,t−1 + ρxt (7)

Σ̂i,t = (1 − α)Σ̂i,t−1 + ρ(xt − μ̂i,t)(xt − μ̂i,t)T (8)

ρ = αη(xt, μ̂i,t−1, Σ̂i,t−1) (9)

In foreground detection algorithm, only the learning rate α
and prior probability of background noise T are parameters
needed to be set for the system. Based on our application
scenario, α is set to 0.002 and T is set to 0.25.

3) Motion Extraction: To avoid missing meaningful infor-
mation, foreground detection component aggressively extracts
all the foreground CSI variations possibly caused by human
motions. Some counterfeit foregrounds that are not caused by
human motions may exist, as shown in Fig. 9 (b).

We leverage the temporal correlation and the frequency
correlation to filter out the counterfeit foregrounds. Human
motions usually alter certain propagation paths for a period of
time, leading to the temporal correlation. The altered propaga-
tion paths usually affects multiple subcarriers simultaneously,
leading to the frequency correlation. Therefore, we filter out
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Fig. 9. (a) The original CSI trace during smoking; (b) after foreground detection; (c) after motion extraction; (d) after composite motion detection.

the foregrounds with short time durations or the foregrounds
that affects limited number of subcarriers. If a foreground
segment has a duration shorter than TF seconds or affects
less than SF subcarriers, it is removed from the foreground.
The filtered foreground is shown in Fig. 9 (c).

4) Composite Motion Detection: The single motions need
to be removed from the set of extracted motions because
we only care smoking which is a composite motion. If a
foreground segment does not have any segment Tc seconds
before or after it, as the example in Fig. 9 (c), it is considered
as a single motion and therefore removed. Then we get the
foreground consisted of only composite motions as shown
in Fig. 9 (d).

After getting the set of composite motions, we leverage the
unique respiration pattern of smoking to judge each composite
motion is smoking or not. We analyze the second motion
of each composite motion, the inhalation duration is from
the beginning of the motion to the peak and the exhalation
duration is from the peak to the end of the motion. Then
we calculate the difference between exhalation and inhalation
durations. If the difference is larger than Tr, the composite
motion is regarded as smoking.

D. Activity Analysis

As a monitoring system, false alarm is desired to be as less
as possible. Hence, we design activity analysis which leverages
the rhythmic pattern of smoking to reduce false positives.

1) Periodicity Analysis: In preliminary studies, we find
smoking is a rhythmic activity. Therefore, we use periodicity
analysis to verify whether a smoking-like rhythm exists for
the suspect activity. In Smokey, we partition the time into
detection windows with a fixed length equaled to time of
smoking a cigarette which is 300s typically. Then we use
autocorrelation to analyze the periodicity of the composite
motions in each detection window. First, we integrate the
information from all subcarriers by simply adding up the
values in the foreground since we have obtained only mean-
ingful information after motion acquisition component. Then
we analyze the periodicity by detecting the peaks in the
autocorrelation function of the integrated foreground sequence.
After obtaining the periods, Smokey calculates the standard
deviation of the periods to represent for the period’s stability.

In our current implementation, we use autocorrelation to
perform periodicity analysis. In fact, frequency analysis is
another common method to find periodicity. Fourier transform
will provide all the individual frequency components of the
waveform. The position of the biggest peak should be the
fundamental frequency. If the peaks are harmonically related,

Fig. 10. The autocorrelation of the foreground in Fig. 9 (d).

but missing the fundamental, there won’t be a peak at the
fundamental frequency. Then we have to further process the
positions of the harmonics to find the fundamental frequency.
On the other hand, autocorrelation is a measure of the similar-
ity between the signals at different lags and the signal itself.
When the fundamental frequency is missing, autocorrelation
can still find the it by finding the greatest common divisor of
the harmonics. In our application, smoking is only an activity
that is rhythmic but not strictly periodical. By autocorrelation,
we can easily get each period between two adjacent peaks of
the autocorrelation function. It is more convenient to observe
the period¡¯s stability, which is important for our method to
make the judgement. Hence, in our current implementation,
we use autocorrelation to perform the periodicity analysis.

2) Activity Recognition: Smoking recognition is based on
following intuitions. (1) The smoking period is at least longer
than the normal breathing, which is about three seconds.
(2) The smoking period can be longer than the normal duration
of smoking a cigarette, which is about five minutes typically.
(3) The smoking period is decided by the smoker’s habit and
usually remains stable during a single cigarette. Based on
these institutions, we set a valid range of smoking period,
[Tmin, Tmax], where Tmax is 300s, Tmin is 3.3s since an
adult breaths 12∼18 times per minute. We also set a threshold
for the standard deviation of periods, σT = 5, consistent
to the maximum period of normal breathing. As an exam-
ple, in Fig. 10, we plot the autocorrelation of foreground
in Fig. 9 (d). The extracted activity in Fig. 9 (d) has peri-
odicity and the average period is 30 seconds which is in the
valid range. The standard deviation is 3.095, which does not
exceed σT . Smokey therefore comes to a conclusion that there
is smoking activities in the CSI trace of Fig. 9 (a).

E. Using Multiple Antennas

Given the rapid development of MIMO (Multiple Input
Multiple Output) technique, it is becoming more common
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Fig. 11. CSI sequences collected by three antennas during smoking.

Fig. 12. Boxplot of the CSI collected by three antennas during smoking.

for a wireless radio to have multiple antennas. Actually,
our receiver supports up to three antennas. With multiple
antennas, the CSI information will be much richer due to the
spatial diversities of different antennas. In previous design,
we have already show the effectiveness of using CSI to detect
smoking activity. However, in practice, a single antenna may
be influenced by environmental noise and the people around.
To improve the robustness of Smokey in practice, we propose
using multiple antennas. Each antenna detects the smoking
activity individually and all the detection results will be fused
to judge whether there is a smoking activity or not. For
example, in Fig. 11, we collect the CSI by three antennas
during smoking. We can find that Antenna 1 doesn’t capture
the smoking information. But Antenna 2 and Antenna 3 are
more sensitive to smoking and therefore more informative.

1) Antenna Selection: From above example, we can find
that many antennas are sensitive to the human motions but
some others can be insensitive to the human motions, due to
the spatial diversity of antennas. Processing CSI of uninfor-
mative antennas such as Antenna 1 will not help to improve
the performance. Computation overhead can be saved if we
can avoid processing the insensitive antennas. When extending
our method to collect CSI from multiple users, a selection
of the informative antennas is necessary to avoid wasting
computation and network resources.

Fig. 12 presents a box plot of the CSI from three antennas.
We can find that the sensitive antennas will have a large CSI
variation. Hence, we use the variance of CSI to represent the
information gain. If the variance of CSI raw data is larger
than the threshold, we upload the users’ data to our serve for

Fig. 13. The layouts of the office room and the apartments. The deploying
locations of the prototype are also shown in the figures.

further processing. Otherwise, we drop the data to reduce the
use of computation and network resources.

2) Result Fusion: After getting the CSI data of different
antennas from even multiple users, each antenna decides
smoking exists or not individually. Then we fuse the results
from individual judgements. If any antenna detects there is
a smoking activity, Smokey sends the alarm of detecting the
smoking event. By this way, we can improve the detection
accuracy and improve the robustness for practical applications.

IV. EVALUATION

In this section, we present the evaluation of Smokey under
various environments to show its accuracy and robustness.

A. Methodology

We implement a prototype of Smokey with commodity WiFi
devices. We use a TP-LINK TL-WR742N wireless router as
the transmitter and a mini PC with Intel WiFi Link 5300 NIC
that equipped with one antenna as the receiver. Both devices
operate in IEEE 802.11n mode on Channel 11 at 2.4GHz.
We configure the receiver pings the transmitter to get the CSI
measurements by the Linux CSI tool [12].

We evaluate the performance of Smokey in three real
environments: (a) an apartment of 7.5×4.5 m2 with a smoker
living in, (b) an apartment of 7.5 × 4.5 m2 with a non-
smoker living in, and (c) a smoking-allowed office room of
4.8 × 3.6 m2 in an office building. The two apartments
share the same structure. The layouts of the apartments
and office room are shown in Fig. 13. The transmitter
and receiver are placed 0.8m above the floor. For environ-
ment (a) and (b), we place the transmitter and receiver at
“Location A” in Fig. 13. In each environment, we run Smokey
for five workdays to count the number of smoking events.
The two volunteers living in the apartments are office workers
who usually stay at the apartments from 18:00 to 8:00 on the
next day, on workdays. For environment (a) and (b), we get
the ground truth by asking the volunteers report the times of
smoking and the time they are smoking. For environment (c),
we deploy a civil camera to record the events in the office
room and count the number of smoking events manually as
the ground truth. Note in the real experiments, we use the
receiver with only one antenna to show Smokey can detect
smoking even with the basic hardware setup. We will conduct
individual experiments under controlled environments when
the receiver is equipped with multiple antennas.

To quantify the performance of Smokey, we focus on
(1) True Positive Rate (TPR): the fraction of cases where
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TABLE I

OVERALL ACCURACY OF SMOKEY IN REAL DEPLOYMENTS

Smokey correctly detects the smoking events among all the
detected activities, (2) False Positive Rate (FPR): the fraction
of cases where Smokey mistakenly generates false alarm
when there is actually no smoking event. Since we detect the
smoking event instead of detailed smoking behaviors, we only
label each activity as “smoking” or “non-smoking” rather than
each motion in the activity.

B. Accuracy of Smokey

1) Overall Accuracy: We present the overall accuracy in
three real deployments in Table I. During the experiments,
Smokey detects 693, 712 and 513 activities in environ-
ment (a), (b) and (c), respectively. An activity is defined as
a series of motions within the time window. We artificially
define an activity lasts five minutes equaled to the time
length of smoking, which is a little bit different from the
definition activity in semantics. Therefore, the number of
activities are less than conventional wisdom. On the whole,
Smokey successfully detects 92.8% of the smoking activities
and misjudges 2.3% of the normal activities as smoking. In the
relatively static environment such as the apartments that are
usually occupied by the single occupant, the TPR of Smokey
can be as high as 0.976 and the average FPR is low to 0.008.
In the relatively dynamic environment in the office room where
people come in and got out frequently, the TPR of Smokey
drops to 0.919 and the FPR increases to 0.097.

2) Compare With the Baseline Methods: We compare
Smokey with two baseline methods: using the best single
subcarrier and using all subcarriers, in the apartment envi-
ronments. In the scheme of using the best single subcarrier,
we test all the subcarriers and select the single subcarrier with
best performance as the result. In the scheme of using all
the subcarriers, we directly combine the information on all
subcarriers by adding up the CSI amplitudes.

To quantitatively compare the overall detection accuracy,
we plot the Receiver Operating Characteristic (ROC) curves of
four methods in Fig. 14. The ROC curve can depict the tradeoff
between TPRs and FNRs over various settings. We find that
using the best single subcarrier has the worst performance,
only provides a TPR less than 0.2 when the FPR is 0.2. It is
even worse than directly combining all the subcarriers which
provides a 0.7 TPR when the FPR is 0.2. The reason behind
this result is that the information about smoking are dynami-
cally scattered in different subcarriers, a single subcarrier fails
to gather enough information to detect the composite motions.
Our foreground detection based motion acquisition (Smokey

Fig. 14. ROC curves of Smokey with/without PA (Periodicity Analysis),
compared with two baseline methods.

without PA) can identify 93.38% and 98.38% of the smoking
activities when the FPR is 0.1 and 0.2 respectively. Keep the
FPR to 0.1, PA (Periodicity Analysis) can improve the TPR
by 7.2%, compared to Smokey without PA. When keeping
the TPR as 1, PA helps Smokey to reduce the FPR from
0.265 to 0.043.

3) Periodicity Analysis: In Fig. 15, we plot the autocor-
relation results together with the CSI trace collected from
environment (a) to show the effectiveness of our periodicity
analysis component. After obtaining the motions extracted by
foreground detection based motion acquisition, Smokey per-
forms autocorrelation for each activity. Then Smokey extracts
the peaks and calculates the intervals between adjacent peaks
as the period. Then σ, the standard deviation of periods,
is calculated and compared with the threshold σT . In Fig. 15,
the 1st, 2nd and 4th activities have σ > σT and the σ of the
3rd activity is smaller than σT . Smokey therefore concludes a
smoking happens during the period from 10 to 15 minutes.

Periodicity analysis in Smokey uses the standard deviation
of periods to analyze the stability of period. Hence, the thresh-
old of the standard deviation of periods, σT , is important to
the accuracy. Fig. 16 plots the TPR and TNR of Smokey in
environment (a) and (b) under a range of thresholds. Setting
σT = 4.5 provides best accuracy in this case. However,
in Smokey, we have no training set and we can only use the
common features of smoking and some intuition universal to
most people. σT = 5 in our setting is also able to provide a
satisfied performance.

C. Event-Driven Sampling

To ensure the efficiency of event-driven sampling, an accu-
rate human presence detection method is the prerequisite.
Hence, we evaluate the accuracy of our deviation-based detec-
tion method. We first conduct an validation experiment to show
the effectiveness of our human presence detection. We set the
low sampling rate sL = 100ms/sample and the detection
window size Tp = 1000ms. And we use only one antenna.
Initially, no person in the monitoring area. We ask a person
enter the area after 60 seconds. The person keeps walking in
the area for one minutes and then leave the area. We plot the
raw CSI on 30 subcarriers and the average standard deviation
σp during the experiment as Fig. 17 shown. We can find that σp

during [60s, 120s] is obviously different. Then we can detect
the human presence by setting an appropriate threshold σpt.
Once detecting the human presence, Smokey will use the high
sampling rate to collect more detailed information for the
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Fig. 15. Periodicity analysis of a piece of CSI traces collected from environment (a).

Fig. 16. Accuracy of Smokey vs. threshold σT .

Fig. 17. Human detection by the changes of average standard deviation.
The person enters the monitoring area at 60s and leaves at 120s.

further analysis. Because the low sampling rate used
in Smokey is same to the commercial WiFi beacon
rate (100ms/sample), Smokey consumes no additional
energy when there is no potential target in the monitoring area.

To further study the accuracy of our human detection
method, we deploy the prototype (the setting is introduced
in Section IV-A) and conduct experiments in three different
environments: lab, corridor and classroom. Each time, we ask
the volunteer to enter the monitoring area and wander around
for one minute and then leave for one minute. The experiments
run for 20 minutes in each environment. The experiment
parameters are SL = 100ms/sample, σpt = 0.8.

We calculate the detection accuracy under two detection
window size 1000ms and 3000ms. The results are shown
in Fig. 18. The maximum and minimum accuracy are shown
by the error bars. When Tp = 1000ms, we can see that the
average detection accuracy is 100%, 98.4% and 80.8% in the
lab, corridor and classroom, respectively. If we extend Tp from
to 3000ms, the average detection accuracy can be improved
to 100%, 100% and 98.3%, as the blue bars shown in Fig. 18.
The experiment results demonstrate the effectiveness of our
deviation-based human presence detection method. Therefore,
the effectiveness of event-driven sampling is ensured.

Fig. 18. Accuracy of the human detection component.

Fig. 19. Illustration of the experiment environments in LOS, NLOS, and
through-wall scenarios.

D. Robustness of Smokey

1) Impact of NLOS Propagation: One advantage of Smokey
over the video surveillance is that it can work in NLOS
propagation. We evaluate the performance of Smokey under
the LOS, NLOS and through-wall scenarios, as illustrated
in Fig. 19. The experiments are conducted in the apartment.
For through-wall scenario, the transmitter and receiver are
placed at “Location C” shown in Fig. 13. We first equip the
receiver with only one antenna. We plot the ROC curves of
Smokey with one antenna under different scenarios in Fig. 20.
As expected, the accuracy degrades moderately in the NLOS
scenario and drops sharply in the through-wall scenario. This
is because the concrete wall causes significant attenuation and
one antenna is not robust enough. Given the FPR of 0.01,
the TPRs are 0.946, 0.567 and 0.304 for LOS, NLOS and
through-wall scenarios, respectively. The results reveal that
Smokey with one antenna is effective but more appropriate
for the non-through-wall scenarios.

We then equip the receiver with three antennas and do
the experiments again under the LOS, NLOS and through-
wall scenarios. We plot the ROC curves of Smokey with
three antennas under those scenarios in Fig. 21. As the
results shown, using multiple antennas distinctly improves
the accuracy. Given the FPR of 0.01, the TPRs when using
three antennas are 0.988, 0.857 and 0.551 for LOS, NLOS
and through-wall scenarios, respectively. The results demon-
strate that Smokey with multiple antennas is more robust.
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Fig. 20. ROC curves of Smokey in LOS, NLOS, and through-wall scenarios,
when using one antenna.

Fig. 21. ROC curves of Smokey in LOS, NLOS, and through-wall scenarios,
when using three antenna.

Fig. 22. Accuracy of Smokey vs. device-to-target distances, when using one
antenna.

This is because the spatial diversity between antennas provides
different sensitivities to the human motions. Even though
one antenna may fail to capture the smoking motions, other
antennas are probably sensitive to the smoking motions.

2) Impact of Device-to-Target Distance: Different from
existing gesture recognition systems that require targets near
the transceivers, the distance between targets and transceivers
can be long in our scenarios. We conduct experiments to
evaluate the accuracy of Smokey when the target has various
distances to the receiver (termed as device-to-target distance).
We place the transmitter and receiver at “Location B” in the
apartment shown in Fig. 13. The receiver is configured with
a single antenna. We ask the smokers smoking with various
distances to the receiver from 0.5m to 3.5m. We plot the TNRs
and TPRs of Smokey in Fig. 22. We can find that the accuracy
decreases with distance increasing, as expected. When the
distance increases to 3m, Smokey is only able to detect 66.67%
of the smoking activities, with a FPR 0.114.

We then use three antennas on the receiver and repeat the
experiments. We plot the results in Fig. 23. The accuracy is
significantly improved even when the distance is long. When
the distance increases to 3m, Smokey can still detect 88.89%
of the smoking activities, with a FPR 0.056. Compared to
using a single antenna, the TPR is increased by 33.3% and the
FPR is reduced by 50.9%. The experiment results demonstrate
the robustness of Smokey when using multiple antennas.

Fig. 23. Accuracy of Smokey vs. device-to-target distances, when using
three antennas.

Fig. 24. Accuracy of Smokey vs. CSI sampling rates, when using one
antenna.

3) Impact of CSI Sampling Rate: Smokey extras informa-
tion from CSI sequences. Therefore, the CSI sampling rate
influences whether fine-grained information could be captured.
We conduct experiments to investigate the performance of
Smokey under various sampling rates. We ask a smoker
smoking in the office room shown in Fig. 13. We vary the
CSI sampling period from 10ms to 100ms per sample. Under
each sampling period, we collect the traces during the smoker
smoking to measure the detection accuracy. We repeat the
experiment three times and calculate the average accuracy of
Smokey.

The experiment results are shown in Fig. 24. As expected,
the average accuracy decreases with the CSI sampling period
increasing. This is because a longer sampling period leads
to the loss of detail information. The average accuracy drops
from 1.00 to 0.75 when sampling period increases from
10 to 50ms per sample, and to 0.19 when sampling period
further increases to 100ms per sample. But we also can
find Smokey has certain resilience to the reduction of CSI
sampling rate. Even the sampling period increases to 40ms per
sample, the average accuracy maintains high. From the results,
we can find that though Smokey still performs well when
sampling period slightly increases, high CSI sampling rate is
more preferred. This is also a reason of designing the event-
driven sampling component that detects human presence with
low sampling rate. With event-driven sampling component,
Smokey can starts sampling with high rate when any human
presents. Smokey therefore balances the energy consumption
and the detection accuracy.

4) Impact of Multiple People: The rationality behind
Smokey is that the smoking motions affect WiFi signal propa-
gation, which is reflected by the variations of CSI. Therefore,
if there are too many people moving in the monitoring area,
the impacts of smoking on WiFi signal can be corrupted by the
motions that have larger impacts on CSI. Even though smoking
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Fig. 25. Accuracy of Smokey in scenarios with multiple people, when using
one antenna. (a) Case 1: a single smoker is smoking and chatting with different
number of non-smokers. (b) Case 2: multiple smokers are smoking at the same
time.

Fig. 26. Accuracy of Smokey in scenarios with multiple people, when using
three antennas. (a) Case 1: a single smoker is smoking and chatting with
different number of non-smokers. (b) Case 2: multiple smokers are smoking
at the same time.

in public places usually happens in the corners with few people
around such as the restrooms and staircases, several people
may present in the same monitoring area of Smokey. Note that
we have already validate the effectiveness of Smokey under the
scenario of multiple people by the experiments in the office in
Section IV-B. In the office, there are multiple people working
in there and some other people often go in and out. Here,
we just want to specifically study the impacts of multiple peo-
ple. To evaluate the robustness of Smokey in the environments
with multiple people, we test its performance in two cases:
(1) there are a smoker and several (1-4) non-smokers chatting
in the office room, and (2) there are several (2-5) smokers
smoking at the same time. We don’t restrict the movements in
the room. But the volunteers usually have small movements
such as changing body gesture and occasionally walk around
in the office.

We plot the results of using one antenna under
case (1) and (2) in Fig. 25(a) and (b). When there are two
people in the environment, the TPR of case (1) and (2) is 1.0
and 0.95, respectively. When the number of people increases
to five, the TPR is only 0.7 and 0.45 for case (1) and (2). For
both cases, the accuracy degrades with the number of present
people increasing. However, the degradation of case (2) is
much faster than case (1). The reason behind the results may
be that multiple smokers break the periodicity of smoking
more seriously than multiple non-smokers.

We then plot the results when the receiver use three antennas
under case (1) and (2) in Fig. 26(a) and (b). The accuracy
of Smokey with three antennas increases to 0.889 when a
smoker is smoking and other four non-smokers are around.
When there are five smokers smoking at the same time,
the accuracy can increase to 0.778. Compared to using one
antenna, the performance is improved by 27% and 72.9%
for case (1) and (2), respectively. The results demonstrate

that using multiple antennas is an efficient way to increase
the performance of Smokey. Besides, when using Smokey
in practice, a crowdsourcing framework that encourages the
volunteers contribute their CSI data to the system can be
considered. With the help of multiple antennas from multiple
devices, Smokey is expected be more robust and accurate.

V. RELATED WORK

Computer Vision: Based on the civil cameras, researchers
in the area of computer vision (CV) deal with the prob-
lem of gesture recognition by the motions of the person’s
arms [4], [19], [20]. All these CV-based methods are effective
when there are clear images. However, since cameras can only
capture the line-of-sight (LOS) images, a bunch of blind spots
will exist due to the deployment cost or privacy. Different from
these CV-based methods with LOS requirements, Smokey
detects the smoking activity by commercial WiFi devices
under both LOS and NLOS environments.

Wearable Devices: With the development of embedded
devices and sensors, wearable devices as well as smartphones
are popular in our daily life. Researchers and engineers adopt
specific sensors to sense the gas produced by tobacco such
as carbon monoxide [2] and nicotine [3]. These sensors can
only work in a very limited area to obtain enough concentra-
tion of nicotine or carbon monoxide for detection. Recently,
researchers focus on leveraging the inertial sensors embedded
in users’ devices to detect and monitor the smoking behavior
of a smoker [16], [21], [22]. However, all these methods are
usually designed for aids in smoking cessation programs. All
of them require the targets wearing dedicated devices such as
the chest band in mPuff [16], customized electronic lighter in
UbiLighter [21], and wristband in RisQ [22]. No such intrusive
device is available in our passive detection system.

Wireless Signal: To the best of our knowledge, Smokey is
the first attempt that uses wireless signal to achieve device-free
passive smoking detection. In the literature, researchers lever-
age wireless signal to recognize body motions such as walking
forward and backward [10]. WiSee [9] and AllSee [23] recog-
nize the pre-trained gestures by learning the training set of
RSSI traces and use start gestures to help recognition achieve
a high accuracy. Aforementioned systems rely on special
hardwa-re such as USRP, self-designed circuit boards, or ultra-
wideband radar transceivers. Some works [24]–[27] analyze
the human behaviors and location by analyzing the signals
changes of devices attached on objects, which are not device-
free. Some researchers propose to recognize gestures by com-
mercial WiFi devices. WiGest [8] uses existing WiFi signal to
recognize certain hand gestures on top of a laptop with a short
distance. It also requires the target to perform start gestures to
reduce false positives. WiSleep [7] leverages the WiFi signal
to monitor a person’s sleeping in a static environment without
other motions’ interference. In Smokey, the potential violators
may be neither compliant nor in the static environment.

VI. CONCLUSION

We present Smokey, a device-free passive smoking detection
system by leveraging the CSI information of WiFi signal.
We design a foreground detection based motion acquisition
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method to extract the meaningful information from multiple
noisy subcarriers even influenced by the posture changes.
We also elaborately leverage the common features to recognize
the series of motions during smoking, avoiding the target-
dependent training set to achieve a high accuracy. We further
leverage the diversity of multiple antennas to enhance the
robustness of Smokey in practice. We also propose an event-
driven sampling mechanism to avoid congesting the wireless
channel and unnecessary energy consumption. We prototype
Smokey on commodity WiFi devices and evaluate it in various
environments. Experimental results demonstrate the effective-
ness and robustness of Smokey.
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