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REGULAR ARTICLE

Effect of training datasets on support vector machine
prediction of protein-protein interactions

Siaw Ling Lo1, 2, 4, Cong Zhong Cai2, Yu Zong Chen3* and Maxey C. M. Chung 4
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2 Bioprocessing Technology Institute
3 Department of Computational Science, National University of Singapore
4 Department of Biochemistry, National University of Singapore

Singapore

Knowledge of protein-protein interaction is useful for elucidating protein function via the con-
cept of ‘guilt-by-association’. A statistical learning method, Support Vector Machine (SVM), has
recently been explored for the prediction of protein-protein interactions using artificial shuffled
sequences as hypothetical noninteracting proteins and it has shown promising results (Bock, J.
R., Gough, D. A., Bioinformatics 2001, 17, 455–460). It remains unclear however, how the pre-
diction accuracy is affected if real protein sequences are used to represent noninteracting pro-
teins. In this work, this effect is assessed by comparison of the results derived from the use of real
protein sequences with that derived from the use of shuffled sequences. The real protein
sequences of hypothetical noninteracting proteins are generated from an exclusion analysis in
combination with subcellular localization information of interacting proteins found in the
Database of Interacting Proteins. Prediction accuracy using real protein sequences is 76.9%
compared to 94.1% using artificial shuffled sequences. The discrepancy likely arises from the
expected higher level of difficulty for separating two sets of real protein sequences than that for
separating a set of real protein sequences from a set of artificial sequences. The use of real pro-
tein sequences for training a SVM classification system is expected to give better prediction
results in practical cases. This is tested by using both SVM systems for predicting putative pro-
tein partners of a set of thioredoxin related proteins. The prediction results are consistent with
observations, suggesting that real sequence is more practically useful in development of SVM
classification system for facilitating protein-protein interaction prediction.
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1 Introduction

Protein-protein interactions play important roles in various
biological events [1] and are the basis for assemblies of mo-
lecular machines such as RNA polymerase II. The ‘guilt-by-

association’ concept has been used for elucidating functional
roles from pairs of interacting proteins [2]. Identification of its
partner of known function may provide a useful clue to the
possible role of a protein of unknown function. Knowledge of
protein-protein interactions is also useful for probing biolog-
ical pathways and regulation of signaling, metabolic, gene
expression and replication processes. Various experimental
approaches have been used for the study of protein-protein
interactions. These include yeast two-hybrid systems [3], pro-
tein complex purification techniques using mass spectrome-
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try [4, 5], protein chip [6], correlated messenger RNA expres-
sion profiles [7] and genetic interaction data [8]. However, it is
not yet feasible to construct a complete protein interaction
map by exhaustive experimental studies. Hence, there is a
growing interest in the exploration of computational methods
for the prediction of protein-protein interactions.

So far, three different computational approaches have
been explored for the prediction of protein-protein interac-
tions. The first is based on genomics that uses phylogenetic
profiles of the presence and absence of genes in related spe-
cies [9], conservation of gene order in different species [10]
and gene fusion events [11] for functional prediction. The
second is based on the analysis of a variety of structural and
physicochemical features including the site of interaction
from surface patches [12], sequence and residue neighbor
profile [13] and molecular docking [14]. The third is con-
cerned with the prediction of putative protein partner(s)
from protein primary structure and associated physico-
chemical properties [15] or the correlated sequence-sig-
natures that recur in concert in various pairs of interacting
proteins [16].

Because of the limited availability of protein 3-D struc-
tures, methods that derive information directly from protein
primary structure are of particular interest. A statistical
learning method, support vector machines (SVM), has
recently been explored for the prediction of protein-protein
interactions [15] as well as protein secondary structure pre-
diction [17], protein fold recognition [18], analysis of protein
solvent accessibility [19] and other biomedical problems
including microarray gene expression data analysis [20] and
cancer diagnosis [21]. These studies have consistently shown
that SVM is usually superior to traditional supervised learn-
ing methods.

Like other statistical learning methods, the accuracy of
SVM classification depends on the relevance of the training
dataset to a particular biological problem. Thus it is impor-
tant to use a reliable training dataset to achieve a better clas-
sification. Since experimental conditions and, in some cases,
types of proteins are known to affect the accuracy of some of
the experimental methods [22], caution needs to be exercised
in the interpretation of experimental data. A large-scale
comparative assessment of protein-protein interaction data
suggested that highest accuracy is achieved for those inter-
actions supported or predicted by more than one method,
including in silico approach [22]. Hence, to ensure their
quality, the dataset of interacting proteins (positive dataset)
used in this work is from a subset of the data in the Database
of Interacting Proteins (DIP) [23] whose reliability has been
tested [24]. Since noninteracting proteins are not readily
available, artificial shuffled sequences resembling realistic
proteins have been used to construct the dataset of hypo-
thetical noninteracting proteins (negative dataset) for the
prediction of protein-protein interactions. Bock and Gough
[15] have shown that it gives an average accuracy of 80.9%.
However, shuffling sequences artificially may result in
sequences with no specific sequence patterns like motifs or

domains, while real protein sequences are known to contain
these conserved sequence patterns that play an important
functional role. It is unclear whether a classification system
derived from artificial sequences is sufficiently effective in
practical prediction of protein-protein interactions since
artificial shuffled sequences, having the possibility of not
containing any motifs or domains, are likely to be ‘nonfunc-
tional’ proteins. It is thus desirable to only use real protein
sequences for developing an SVM classification system
which might be more relevant to the prediction of protein-
protein interactions.

It is of interest to evaluate how the prediction accuracy
can be affected by the use of real protein sequences. For such
a purpose, real protein sequences are used to construct a
negative dataset. These real protein sequences are from an
exclusion analysis in combination with subcellular localiza-
tion information of interacting proteins in DIP. The predic-
tion accuracy of an SVM system trained from this dataset is
compared with those artificial shuffled sequences generated
from the same principle as described in the literature [15].
The prediction performance of both systems is further eval-
uated by using them for the identification of putative inter-
acting partners of a set of thioredoxin related proteins.

2 Materials and methods

2.1 Data collection and dataset construction

The positive dataset is downloaded from Saccharomyces cere-
visiae core subset of DIP database [24]. This dataset is vali-
dated by two methods described by Deane and colleagues
[24]. The first is to use the expression profile reliability index
to estimate the biologically relevant fraction of protein inter-
actions by comparing the RNA expression profiles of the
proteins with expression profiles of known interacting and
noninteracting pairs of proteins. The second is to use the
paralogous verification method to test the reliability of a
putative interaction pair by examining whether there is a
known paralog that also interacts with its partner protein.

Since a noninteracting protein dataset is not readily
available, a hypothetical noninteracting protein dataset is
generated based on subcellular localization information and
consists of protein pairs that do not colocalize together. The
subcellular localization source is retrieved from Munich
Information Center for Protein Sequences (MIPS) [25] and
only the four main types of localization are considered in this
study – cytoplasm, nucleus, mitochondria and endoplasmic
reticulum. The yeast proteins used in the positive dataset are
assigned with the four types of localization information and
those with multiple localizations are removed to minimize
the introduction of possible noise in the training process.
Four sets of proteins with respect to the four types of locali-
zation are generated and proteins from each set are subse-
quently paired with proteins from a different localization.
Due to the enormous amount of possible pairing, 5000 pro-
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tein pairs are randomly selected and used in this work. After
removing duplication and performing exclusion analysis of
the whole DIP yeast interacting proteins, a total of 4660 pro-
tein pairs are used as the hypothetical noninteracting dataset.

As a comparison, a second type of negative dataset com-
posed of artificial protein sequences of the hypothetical non-
interacting dataset are derived by using the Shufflet program
[26] with k-let (k = [1, 2]) counts. The k-let (the exact words
equal to or shorter than a given length k) are kept conserved
in generating random shuffled sequences. In addition to
preserving the amino acid composition which correlates with
protein-protein interfaces [27], such a shuffling [26] also
maintains the frequencies of dipeptides, tripeptides etc. The
algorithm ensures that every expected occurrence of each
possible k-let has the same probability, which is expected to
generate datasets with conserved properties that are closer to
real protein sequences than pure randomly generated
sequences. In general, a k-let works well for sequences up to
20k amino acids in length. Hence in order to maintain the
random uniform permutation, only 1-let and 2-let shuffled
protein sequences are considered in this study.

Each dataset is further divided in a random fashion into a
training set and a testing set while maintaining representa-
tives of distinct protein pairs in each set whenever possible.
For example, if the positive dataset has four interacting pro-
tein pairs of protein D, then each of the two pairs will be
randomly distributed to positive training and testing set
respectively. The training dataset is evaluated to remove ho-
mologous sequences using BLASTCLUST [28] with identity
threshold of 30% and length coverage threshold of 90% to
ensure the classifier is not biased to homologous sequences.
This gives a positive training set of 2080 interacting proteins,
a negative training set of 2331 noninteracting proteins, a
positive testing set of 2208 interacting proteins and a nega-
tive testing set of 2331 noninteracting proteins.

2.2 Feature extraction and representation

The feature vector of each interacting protein pair is con-
structed by using encoded representation of tabulated resi-
due properties of the two protein sequences including amino
acid composition, hydrophobicity, van der Waals volume,
polarity, polarizability, charge and surface tension for each
residue in sequences. Each protein sequence is converted
into a feature vector using amino acid composition percent-
age and the feature extraction method based on three
descriptors [18]. The first is the composition, which is a per-
cent composition of three constituents/groupings (e.g., polar,
neutral and hydrophobic residues for the feature of hydro-
phobicity). The second is transition, which describes the
transition frequencies (polar to neutral, neutral to hydro-
phobic, etc.). The third is distribution, which represents the
distribution pattern of a particular property (the position of
the first amino acid of a given property and the section in
which 25, 50, 75 and 100% of the amino acids with that
property are contained).

2.3 Support vector machines

SVM is a relatively new type of supervised learning algorithm
for two- or multi-class classification, which was originally
developed by Vapnik and coworkers [29, 30]. SVM separates a
given known set of {11, 21} labeled training data via a
hyperplane that is maximally distant from the positive and
negative samples. This optimally separating hyperplane in
the feature space corresponds to a nonlinear decision bound-
ary in the input space. Each of the feature vector generated
from the protein pairs in the positive dataset and negative
dataset are assigned with a label of {11} and {21} respectively
to indicate if the pair is interacting with each other or not.
Details of SVM can be found in the literature [30].

In order to compare our results with that obtained in an
earlier study [15], the same software SVMlight (http://www-
ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT) [31] as
used in that study is employed in this work. A Gaussian ker-
nel function [exp(2g (a2b(62)] with an optimized g parame-
ter is used. Gaussian kernel function has been commonly
used and shown to produce higher precision prediction than
other kernel functions [32, 33].

As in other statistical learning studies, SVM prediction
accuracy can be described by means of the classification
accuracy Q, precision and recall.

Q ¼ TP þ TN
TP þ TN þ FP þ FN

(1)

precision = TP/(TP 1 FP) (2)

recall = TP/(TP 1 FN) (3)

where TP, TN, FP and FN represents true positive, true nega-
tive, false positive, and false negative respectively. The SVM
classification is further evaluated using five-fold cross-valida-
tion and the standard deviation is calculated as an indication
of the consistency in the prediction accuracy obtained. In
order to better understand the classification by the three
models, the distance d between the position of the vector of the
classified protein and the optimal separating hyperplane in
the hyperspace is calculated using the following formula:

d ¼
Xl

i¼1

aiKðx;xiÞ þ b (4)

where the coefficients ai and b are the alpha and threshold
values determined by SVMlight svm_learn program and
K(x,xi) is the kernel function.

Scoring of SVM classification can then be estimated by a
reliability index (RI) and the RI value is defined as d/0.2
where d is the distance defined above. The relationship be-
tween RI value and accuracy percentage or statistical P-value
is shown in Fig. 1a while the Receiver Operator Character-
istic (ROC) plot of each RI value can be found in Fig. 1b. In
general, the absolute value of d is in the interval [0,2] and RI
is a value range from 0 to 10 with RI . = 7 corresponding to a
rather reliable prediction.
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Figure 1. a, Statistical relationship between the RI value and P-value (probability of correct classification) derived from analysis of 2208
positive and 2331 negative protein-protein interaction dataset; b, ROC plot of RI value. The legend indicate the range of RI value and its
corresponding ROC curve. TPR is True Positive Rate (Sensitivity) and FPR is False Positive Rate (1-Specificity).

3 Results and discussion

3.1 Prediction accuracy

Table 1 gives the accuracy of SVM prediction of interacting
proteins using both artificial shuffled protein sequences and
real protein sequences as the negative datasets. It is found that
the prediction accuracy using 1-let shuffled protein sequences
as a negative dataset is 94.1% while 2-let shuffled protein
sequences yield 89.3%, which is comparable to the accuracy of
80.9% from an earlier work [15]. The slight improvement is
probably due to the different feature representation and data-
set construction methods. In contrast, the prediction accuracy
using real protein sequences as negative datasets is 76.9%,
which is substantially lower than that derived from the use of
shuffled protein sequences as negative datasets.

3.2 Effect of different negative datasets

This result seems to indicate a correlation between the
degree of random shuffling of protein sequences in the
negative datasets and the computed classification accuracy.
The increasing randomness of the negative dataset tends to

give better prediction accuracy, which is expected as increas-
ingly artificial random shuffled sequences are likely to be
more easily distinguished from real protein sequences. As
shown in Fig. 2, even though shuffled sequences trained
classifiers achieve a higher accuracy on shuffled sequences
testing datasets, they are not able to perform as well when
applied on real sequences testing dataset. This is under-
standable as the level of difficulty for classifying two datasets
of real protein sequences is expected to be higher than that of
one set of real protein sequences and one set of shuffled
sequences, which partly contributes to the lower classifica-
tion accuracy derived from the use of real protein sequences.
In order to determine the effect of sequence randomness on
the performance of the SVM classification, the average dis-
tance of support vectors to the respective optimal separating
hyperplane for each of the three models is computed. The
average distance generated from the negative dataset of real
sequence (dr) is 0.54, while that of the shuffled 1-let sequen-
ces (ds1) and shuffled 2-let sequences (ds2) is 0.73 and 0.70
respectively. The classification system of the 1-let shuffled
protein sequences gives the largest average distance while
that of the real protein sequence gives the smallest average
distance. Figure 3 explains the effect of using different

Table 1. Prediction accuracy of SVM classification of interacting proteins using shuffled sequences and real pro-
tein sequences as negative dataset (dataset for noninteracting proteins).

Negative dataset TP FN TN FP Precision
(%)

Recall
(%)

Prediction
accuracy (%)

Shuffled sequences (1-let) 2039 169 2233 98 95.4 92.3 94.1 (1.3)
(2-let) 1935 273 2117 212 90.1 87.6 89.3 (0.7)

Real protein sequences 1527 679 1963 368 80.6 69.2 76.9 (1.7)

TP, TN, FP and FN represents true positive, true negative, false positive, and false negative respectively. Details of
the negative datasets construction are given in Section 2.1. A total of 2208 interacting proteins are used as a posi-
tive testing dataset, while 2331 noninteracting proteins are in a negative testing dataset. Combined results of five-
fold cross-validation are shown. The numbers in parentheses under Prediction accuracy (last column) correspond
to the standard deviations with five-fold cross-validation.
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Figure 2. ROC plot of various SVM classifications. s1, s2 and real
represents training or testing dataset containing shuffled 1-let, 2-
let sequences and real protein sequences as negative dataset
respectively, while train and test in the legend indicates SVM
training and testing dataset. For example, s2 train – real test in the
legend means the ROC curve of the classification using SVM
model trained with shuffled 2-let protein sequences as negative
dataset on real sequences testing dataset.

Figure 3. The effect of using different negative datasets in sim-
plified 2-D diagram. The larger margin or the distance (ds . dr)
between the position of the support vector and the optimal
separating hyperplane (OSH) in the hyperspace implies that it is
able to distinguish positive real sequence dataset (P) and the
shuffled sequence negative dataset (Ns) better than real
sequence negative dataset (Nr).

negative datasets in a simplified 2-D diagram. The larger
margin in between the two classes of dataset implies that the
model is capable of classifying a given test data better than
those with a smaller margin. For example, assuming that the
data point A is a positive test data, data point A will be clas-
sified correctly when 1-let shuffled sequence model is used,
but this is not the case when it is classified using the real
sequence model.

3.3 Thioredoxin related
proteins

To further evaluate the perfor-
mance of SVM classification
systems trained by using dif-
ferent types of negative data-
sets, a set of thioredoxin rela-
ted proteins are used as a pre-
liminary test of the prediction
capability of these systems in
real case studies. Thioredox-

ins play a critical role in reduction and oxidation (redox) reg-
ulation of protein function and signaling via thiol redox con-
trol. Moreover, they are also known to facilitate DNA binding
and to be involved in a number of functions in defense against
oxidative stress, control of growth and apoptosis and if secre-
ted, has chemokine activities [34]. Several human thioredoxin
related proteins from the Swiss-Prot database [35] are used in
this study. The details of the proteins are listed in Table 2.

A total of 7985 human proteins are extracted from the
Swiss-Prot database as the candidates of potential interacting
partners of each of these thioredoxin related proteins. Each of
the 7985 candidate proteins is paired with each thioredoxin

related protein to generate fea-
ture vectors which are sub-
mitted to the three SVM clas-
sification systems by the pro-
cedure outlined in Section 2.2.

The results in Table 3 sug-
gest that the SVM classifica-
tion system using artificial
shuffled protein sequences
(both 1-let and 2-let shuffling)
as the negative training data-
sets may not be practically
useful as their ability in iden-

tifying potential interacting protein partners seems limited.
For example, the dual specificity mitogen-activated protein
kinase kinase 4 (P45985), which is involved in signal trans-
duction, is predicted as a putative partner of TXNL_HUMAN
by the SVM system of the 1-let shuffled sequences. However,
this prediction result maybe questionable as the same pro-
tein is also predicted as a partner of TXN1_HUMAN and
TXN5_HUMAN which are not known to be involved in sig-
nal transduction. On the other hand, the SVM system of the
2-let shuffled sequences predicts a probable ATP-dependent
RNA helicase p54 (P26196) as a potential partner of PDI_-
HUMAN, which appears to be consistent with the entry
12097 of the Biomolecular Interaction Network Database
(BIND) [36] n. This entry describes a protein-protein complex
between S. cerevisiae PDI1 and DBP2 ATP-dependent RNA
helicase. Besides that, Sepiapterin reductase (P35270) is also
shown to be a possible partner of TXN1_HUMAN [37]. To
further assess these prediction results, the two sets of putative
protein partners are ranked by the reliability index.
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Table 2. Details of human thioredoxin related proteins from Swiss-Prot

Entry name Accession no. Protein name Annotated functions

PDI_HUMAN P07237 Protein disulfide isomerase
precursor

Procollagen-proline 4-dioxygenase
activity; protein disulfide isomerase
activity

TXN1_HUMAN Q16881 Thioredoxin reductase Thioredoxin-disulfide reductase activity

TXN5_HUMAN Q8NBS9 Thioredoxin domain
containing 5

Potential redox activity

TXNL_HUMAN O43396 Thioredoxin-like protein 1 Plays a role in apoptosis; protein-
disulfide reduction and signal
transduction

As shown in Table 3, the reliability index for the top five protein
partners of these two sets is low and thus they may not be con-
fidently predicted as potential partners.

In contrast, the SVM system trained by real protein
sequences as the negative training dataset appears to be
more capable in identifying potential partners (Table 4). For
instance, the proto-oncogene serine/threonine-protein
kinase pim-1 (P11309) is predicted as one of the top five
potential partners for each of the three thioredoxin related
proteins TXN1_HUMAN, TXN5_HUMAN, TXNL_HU-
MAN and the top potential partner for TXN1_HUMAN.
While there is no direct evidence showing thioredoxin rela-
ted proteins interact with Pim-1 kinase, recent research
findings have revealed both proteins are regulated via the
NF-kB pathway [38–40]. Another protein, mitogen-activated
protein kinase 1 (P28482), is also predicted as a potential
interacting candidate for TXNL_HUMAN which is con-
sistent with its functional roles in signal transduction and
apoptosis [41]. In addition, the 26S proteasome non-ATPase
regulatory protein (Q15008) is identified as a putative partner
of PDI_HUMAN. It is noted that the same complex has been
found in S. cerevisiae (entry 12123 in BIND database).
Besides that, several proteins with redox functions such as
pyruvate dehydrogenase (P08559); 24-dehydrocholesterol
reductase (Q15392) and soluble epoxide hydrolase (P34913)
are also identified. Pyruvate dehydogenase (P08559) is
known to play a role together with thioredoxin in the redox
regulation of mitochondria [42] while 24-dehydrocholesterol
reductase (Q15392), which is involved in cholesterol biosyn-
thesis, regulates mitochondria initiated apoptotic pathways
that are sensitive to the redox environment [43]. Although
there may not be a direct interaction between soluble epoxide
hydrolase (P34913) and TXN1_HUMAN, a recent publica-
tion [44] has shown that the expression of both proteins in
the prostate apoptosis pathway may be correlated.

These results show that the predicted protein interaction
pairs derived from the SVM system of real sequences are
more consistent with experimental findings than those from
artificial sequences, which suggests that SVM classification
systems trained by using real protein sequences may be
more practically useful in facilitating the prediction of puta-

tive potential interacting partners. Moreover, through the
concept of ‘guilt-by-association’, such systems may also find
potential application in facilitating protein function predic-
tion of a novel protein by probing its interaction with other
proteins of known function.

It is of interest to note that the four thioredoxin related
proteins used in this study have less than 30% sequence
identity with each other. The ability of the SVM system
trained by the real sequences to both predict protein with
redox function for all of the four proteins and identify puta-
tive protein partners having specific functions for individual
protein, can be partially attributed to the use of feature vectors
which are based on physicochemical properties of amino acid
sequences rather than sequence similarity. From Table 4, one
can see that the false positive rate is not small (indicated by a)),
which is likely due in part to the limited diversity of the
negative datasets used for training the SVM systems.

3.4 Drosophila melanogaster interaction database

While the thioredoxin examples have shown the potential of
SVM classification system trained using real protein
sequences as the negative training dataset, it may be more
realistic to apply the three classification systems on a larger
and more comprehensive dataset. The Drosophila melanoga-
ster interaction dataset from DIP which consists of 20 988
interactions from 7052 proteins is selected as it is the biggest
dataset in DIP at the time of writing. Out of the 20 988
interactions, 99.7% are extracted from high-throughput yeast
two-hybrid approach [45]. The real sequences classifier pre-
dicts 64% as possible interacting protein pairs which is much
lower than the shuffled sequences trained classifiers (91.2%
and 85.5% for shuffled 1-let and shuffled 2-let sequences
respectively). However the recent quality check on DIP yeast
dataset (about 8000 interactions) indicates that only 50% of
the dataset is reliable [24] while Sprinzak et al. [16] have shown
that the reliability of high-throughput yeast two-hybrid
assays is about 50% which may imply that the false positive
rate in the D. melanogaster dataset can be close to 50%. This
result suggests shuffled sequences trained classifiers are not
very capable in differentiating the true positive or real inter-
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Table 3. Top five prediction results (in descending order) from SVM classification of putative interacting protein partners of thioredoxin
proteins when shuffled 1-let and 2-let sequences are used as negative dataset. Underlined proteins show evidence of being
putative protein partners or having similar function.

Thioredoxin proteins
(Swiss-Prot ID)

Putative protein partner (Swiss-Prot ID) [RI value]

Prediction results using shuffled 1-let sequences as negative dataset

PDI_HUMAN
Protein disulfide isomerase
precursor (P07237)

Leucine carboxyl methyltransferase
Desmin
Oxysterols receptor LXR-alpha
ATP-dependent CLP protease ATP-binding subunit ClpX-like
Replication protein A 30 kDa subunit

(Q9UIC8)
(P17661)
(Q13133)
(O76031)
(Q13156)

[4.87]
[3.84]
[3.78]
[3.59]
[3.56]

TXN1_HUMAN
Thioredoxin reductase
(Q16881)

Leucine carboxyl methyltransferase
Dual specificity mitogen-activated protein kinase kinase 4
Keratin, type I cytoskeletal 17
Oxysterols receptor LXR-alpha
Replication protein A 30 kDa subunit

(Q9UIC8)
(P45985)
(Q04695)
(Q13133)
(Q13156)

[2.87]
[2.86]
[2.70]
[2.56]
[2.27]

TXN5_HUMAN
Thioredoxin domain
containing 5 (Q8NBS9)

Leucine carboxyl methyltransferase
Oxysterols receptor LXR-alpha
Dual specificity mitogen-activated protein kinase kinase 4
Replication protein A 30 kDa subunit
Desmin

(Q9UIC8)
(Q13133)
(P45985)
(Q13156)
(P17661)

[3.65]
[3.41]
[3.16]
[3.07]
[2.99]

TXNL_HUMAN
Thioredoxin-like protein 1
(O43396)

Leucine carboxyl methyltransferase
Oxysterols receptor LXR-alpha
Desmin
Dual specificity mitogen-activated protein kinase kinase 4
Replication protein A 30 kDa subunit

(Q9UIC8)
(Q13133)
(P17661)
(P45985)
(Q13156)

[5.16]
[4.13]
[3.98]
[3.93]
[3.84]

Prediction results using shuffled 2-let sequences as negative dataset

PDI_HUMAN
Protein disulfide isomerase
precursor (P07237)

Probable ATP-dependent RNA helicase p54
MutS protein homolog 4
Short transient receptor potential channel 6 (TrpC6)
High-affinity cGMP-specific 3,5-cyclic phosphodiesterase 9A
Protein-arginine deiminase type II (Peptidylarginine
deiminase II)

(P26196)
(O15457)
(Q9Y210)
(O76083)
(Q9Y2J8)

[2.60]
[2.20]
[2.16]
[2.15]
[1.96]

TXN1_HUMAN
Thioredoxin reductase
(Q16881)

Torsin A precursor (Dystonia 1 protein)
Ethanolamine kinase (EKI)
Pendrin (Sodium-independent chloride/iodide transporter)
Sepiapterin reductase (SPR)
MutS protein homolog 4

(O14656)
(Q9HBU6)
(O43511)
(P35270)
(O15457)

[1.15]
[1.02]
[0.34]
[0.32]
[0.84]

TXN5_HUMAN
Thioredoxin domain
containing 5 (Q8NBS9)

MutS protein homolog 4
Torsin A precursor (Dystonia 1 protein)
Ethanolamine kinase (EKI)
Cholinesterase precursor
Polycystin 2

(O15457)
(O14656)
(Q9HBU6)
(P06276)
(Q13563)

[1.91]
[1.51]
[1.31]
[1.11]
[1.10]

TXNL_HUMAN
Thioredoxin-like protein 1
(O43396)

MutS protein homolog 4
Probable ATP-dependent RNA helicase p54
Ethanolamine kinase (EKI)
Polycystin 2
Torsin A precursor (Dystonia 1 protein)

(O15457)
(P26196)
(Q9HBU6)
(Q13563)
(O14656)

[2.47]
[2.41]
[2.21]
[2.21]
[1.93]

acting protein pairs from a false positive, noninteracting
protein pairs when applied in real testing dataset. Never-
theless, there is a need to include a reliability check, as sug-
gested by Deane et al. [24], in addition to the RI value in the
real protein sequences trained classifier in order to minimize
the false positive rate.

3.5 Potential improvements

In addition to the negative dataset, the diversity of the posi-
tive dataset is also important for developing accurate SVM
classification systems for protein-protein interactions. At
present, the only publicly available and validated positive
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Table 4. Top five prediction results (in descending order) from SVM classification of putative interacting protein partners of thioredoxin
proteins when real sequences are used as negative dataset.

Thioredoxin proteins
(Swiss-Prot ID)

Putative protein partner (SwissProt ID) [RI value]

Prediction results using real sequences as negative dataset

PDI_HUMAN
Protein disulfide
isomerase precursor
(P07237)

Alpha-2,8-polysialyltransferasea)

24-dehydrocholesterol reductase precursor
Pyruvate dehydrogenase E1 component alpha subunit
Beta-parvin (Affixin) (CGI-56)a)

26S proteasome non-ATPase regulatory subunit 6

(Q92187)
(Q15392)
(P08559)
(Q9HBI1)
(Q15008)

[7.77]
[7.34]
[7.15]
[7.08]
[7.02]

TXN1_HUMAN
Thioredoxin reductase
(Q16881)

Proto-oncogene serine/threonine-protein kinase pim-1
Exostosin-like 3 (Putative tumor suppressor protein EXTL3)a)

Soluble epoxide hydrolase
Brain mitochondrial carrier protein-1a)

Alpha-2,8-polysialyltransferasea)

(P11309)
(O43909)
(P34913)
(O95258)
(Q92187)

[9.72]
[9.50]
[9.24]
[9.20]
[9.04]

TXN5_HUMAN
Thioredoxin domain
containing 5 (Q8NBS9)

24-dehydrocholesterol reductase precursor
Pyruvate dehydrogenase E1 component alpha subunit
cAMP-dependent 3,5-cyclic phosphodiesterase 4Ca)

Proto-oncogene serine/threonine-protein kinase pim-1
Angiotensinogen precursora)

(Q15392)
(P08559)
(Q08493)
(P11309)
(P01019)

[7.17]
[7.16]
[6.78]
[6.77]
[6.75]

TXNL_HUMAN
Thioredoxin-like protein 1
(O43396)

Alpha-2,8-polysialyltransferasea)

Proto-oncogene serine/threonine-protein kinase pim-1
24-dehydrocholesterol reductase precursor
Acidic fibroblast growth factor intracellular binding proteina)

Mitogen-activated protein kinase 1 (MAP kinase 2)

(Q92187)
(P11309)
(Q15392)
(O43427)
(P28482)

[7.93]
[7.61]
[7.42]
[7.17]
[6.91]

Underlined proteins show evidence of being the putative protein partners.
a) Proteins are most probably false positive as they are currently not known to be interacting with thioredoxin related proteins.

interacting protein pairs are those extracted from yeast
interaction data of DIP, and these are used in this work.
This set of protein pairs may not be representative of all
interacting proteins. Hence further improvement in the
prediction capability is expected if a more comprehensive
training data is used. Recently, cluster analysis of gene
expression data has shown that genes with similar func-
tions are likely to be coexpressed [20], hence prediction of
protein-protein interactions by combining computer classi-
fication with additional information such as coexpression
profile is helpful for developing a better tool for predicting
putative interacting partners of proteins and for providing
clues to the functional roles of a novel or unannotated pro-
tein.

4 Concluding remarks

Our study shows that the SVM classification system
trained using real protein sequences as the negative train-
ing dataset performs better in real testing cases than that
using artificial shuffled sequences. Even though the com-
puted prediction accuracy of the former appears to be

lower than the latter, the latter may not adequately reflect
the true prediction capability because of the intrinsically
higher level of difficulty for distinguishing real protein
sequences than that for separating real protein sequences
from artificial ones. This suggests the importance of using
real protein sequences in developing SVM classification
systems into a practical tool for protein analysis. Further
improvement in the diversity and quality of datasets and
classification algorithm may be useful in increasing the
prediction accuracy of SVM. These combined with the
analysis of additional information such as coexpression
profile, may be of help in developing SVM and other clas-
sification methods into a useful tool for protein-protein
interaction and protein function prediction.
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