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a b s t r a c t 

Rating-only collaborative filtering has been extensively studied for decades with great im- 

provements achieved in predicting a user’s preference on a target item at a particular 

time point. Yet, it remains a research challenge on how to capture users’ rating patterns 

which may drift over time. In this article, we propose a time-aware matrix co-factorization 

model, called PCCF , which considers two types of temporal effects, i.e., periodic and con- 

tinual . Specifically, periodic effects refer to the impact of discrete periodic time slices with 

which users’ preferences may be associated, and continual effects refer to the impact of 

continuous gradual time over which users’ preference patterns may change. The fact that 

users exhibit different preference patterns with respect to different time aspect has been 

further confirmed by our analysis on three real-world data sets. Together with time-based 

user biases, we integrate the two kinds of temporal effects into a unified matrix factor- 

ization model. Experimental results on the three data sets demonstrate the effectiveness 

of both kinds of temporal effects for rating prediction as well as the superiority of our 

approach’s performance over that of the other counterparts. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Nowadays, people are facing the challenge of overwhelming choices over the Internet, which is known as the informa- 

tion overload problem. It becomes more and more challenging for users to effectively select the items (e.g., movies, music, 

products) that suit their preferences. For example, as there are hundreds of thousands of movies in a system, it will be very 

difficult for a specific user to search for interesting movies. Recommender systems have thus become an essential toolkit 

for electronic commerce (e-commerce) applications, aiming to improve users’ satisfaction and experience by automatically 

suggesting items of interest in the light of their past behaviors and feedback. Recommendations are often presented in 

the manner of “People who watched this movie also watch...” or “You watched these 10 movies, so you might also like to 

watch... ”. 

There are two important recommendation tasks: rating prediction and top-N item recommendation . The former task at- 

tempts to generate prediction for an active user and a given item, for instance, to predict how many stars a user may give 

to a movie. The latter task is to select and recommend the top-N items upon which the user is likely to act (e.g., watch, 
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purchase, read). For example, recommend a user the top-10 most interesting movies along with their ranking orders in the 

recommendation list. In this article, we work on the first task, i.e., to produce accurate rating prediction for active users. 

Collaborative filtering (CF) [3,6] is one of the most effective methods to predict a user’s rating towards a given item. The 

basic idea is to aggregate the preferences of like-minded users (a.k.a, memory-based approaches), or to learn a preference 

pattern from historical rating data (a.k.a., model-based approaches). It is generally agreed that model-based approaches 

outperform memory-based ones in terms of predictive accuracy [11,12] . Our work follows the same line of model-based 

approaches for recommender systems. One of the challenges of traditional CF lies in that it fails to capture users’ behavior 

(rating) patterns which may drift over time in the following two ways. First, users may prefer different kinds of items in 

different time periods (e.g., busier hours vs. off-work time) [17] regularly. It implies that users may periodically switch their 

preferences. Second, users’ view of items may develop as their expertise levels upgrade from amateur to connoisseur over 

time [25] . In other words, users may gradually and progressively change their preferences over items. 

To handle the scenario where user preferences drift over time, many time-aware recommender systems 

[12,15,16,18,23–25] have been proposed recently. These studies model rating time from several different perspectives, in- 

cluding global and local temporal effects, periodic and continual rating patterns, etc. Broadly speaking, they take “time” into 

account either from the view of gradual drifting over time or from the view of periodic time cycle patterns. Based on our 

closer observations and analysis on three real-world data sets (see Section 3 ), we argue that a user’s preference drift is a 

complex procedure that cannot be simply explained by either way alone. For example, some users may better enjoy movies 

on weekends while preferring TV dramas during weekdays, a pattern of strong periodicity. On the other hand, as time goes 

by, users may also change their taste towards different kinds of movies and dramas, a trend of continuity. As another exam- 

ple of temporal change of user preference, we take Github 1 , one of the most well-known service providers for open-source 

repositories. It presents users’ coding preferences (i.e., statistics of commits) both in consecutive months (continually) and 

in each day of a week (periodically). 2 

In this article, we presume that users’ preferences are a combination of periodic and continual temporal effects at any 

particular time point. Specifically, periodic effects refer to the impact of discrete time slices on preference patterns, such 

as weekdays and weekends. It reflects relatively regular, stable temporal effects. In contrast, continual effects refer to the 

impact of continuous time over which users’ preferences may gradually change. It reflects relatively dynamic, transient 

temporal effects. We integrate both kinds of temporal effects into a unified matrix factorization model, aiming to provide 

more accurate rating prediction. In particular, each kind of temporal effects would result in a predicted rating. A linear 

combination of both predictions is taken to make a proper rating prediction, in which users’ time-based rating biases are 

incorporated as well. Experimental results on three real-world data sets (i.e., Epinions, Ciao, MovieLens) show that our 

approach performs better than other counterparts, demonstrating the effectiveness of combining both kinds of temporal 

effects. 

Summary of contributions. Our work makes four key contributions. The first contribution is to propose that a user’s 

rating towards a given item is influenced by a combination of gradually changing factors and periodically reoccurring fac- 

tors. It differs from other models which treat rating time in an either continual or periodic manner. The second contribution 

is to provide an insightful data analysis of temporal effects of user preferences on three real-world data sets in Section 3 . 

We show that user preference can be characterized from different perspectives of continual and periodic time. The rating 

patterns are distinct with respect to different perspectives. The third contribution is to propose a novel time-based recom- 

mendation approach, called PCCF that incorporates both temporal effects for rating prediction. The fourth contribution is to 

conduct extensive experiments to evaluate the effectiveness of the proposed approach on the three real-world data sets. We 

demonstrate that our approach achieves better performance than other counterparts in predictive accuracy. 

Outline. The rest of this article is organized as follows. Section 2 provides a brief overview of time-aware recommender 

systems in the literature. Section 3 presents a data analysis of temporal effects of user ratings on three real-world data sets. 

With the conclusion drawn in Section 3, Section 4 describes our approaches in detail, where three different models are 

proposed and discussed. A series of experiments are conducted in Section 5 to evaluate the effectiveness of the proposed 

approaches. Finally, Section 6 concludes the present work and outlines future research. 

2. Related work 

Time-aware recommender systems have been widely studied recently, given the fact that user preferences may drift over 

time. We can classify these works according to the recommendation tasks, i.e., methods for rating prediction and methods 

for item recommendation. In this article, we focus on the first kind of recommendation approaches, which can be further 

split into memory-based and model-based ones. Earlier studies are often memory-based, applying heuristic rules to identify 

a proper neighborhood for an active user and then to aggregate their preferences for rating prediction. For example, Ding 

et al. [4] design a time weighting factor to decay the similarities to previously rated items if time difference increases relative 

to the prediction time. The underlying assumption is that the most recent ratings can better reflect users’ real preferences 

at the current time. However, this assumption is not applicable to the users who have long-term or periodic preferences. 

1 https://github.com/ . 
2 Such statistics of a repository can be viewed by clicking ‘Graphs’ and then going to ‘Commits’. 

https://github.com/
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Lathia et al. [14] propose an adaptive time function to select proper K values in K-nearest neighbor (KNN) algorithm. In 

particular, the K values that minimize the errors in different time intervals are selected. Campos et al. [1] propose a time- 

based UserKNN method based on the assumption that many movie preferences remain only in a short time span. Although 

rating prediction is generated by the most recent user ratings, user similarity is computed by all user ratings without a 

proper consideration of time. 

Most recent work is model-based approaches where users’ temporal rating patterns are modeled and learned according 

to their historic rating data. Then, rating prediction is generated by applying the learned model to other unrated items for a 

specific user. The literature has shown that model-based approaches generally outperform memory-based ones in terms of 

predictive accuracy. Chu et al. [2] take into account the dynamics of item contents (e.g., popularity, click-through rate, fresh- 

ness) rather than user preferences. They propose a predictive bilinear regression model to provide accurate personalized 

recommendations. Users’ profiles are composed of demographic information and a summary of users’ activities in Yahoo! 

properties. However, those information may not be available in real practice due to the concern of privacy. This article fo- 

cuses on the time information associated to users’ rating data and other additional information will not be used. Li et al. 

[15] propose a cross-temporal domain predictive model from the perspective of user and item groups. In particular, they 

assume that the preferences of user (item) groups are relatively stable. Then, the preferences of individual user (item) are 

a combination of preferences of multiple user (item) groups that the user (it) belongs to. The relatedness of user and item 

groups between two successive time steps 3 is fed as prior knowledge into an existing bi-clustering graphic model. However, 

even the preferences of user groups may not always keep unchanged over time. Yin et al. [24] contend that users’ rating 

behaviors are influenced both by users’ intrinsic preferences and by temporal context. An item is likely to be less popular 

as time goes by, such as news. The authors propose a generative model where an item is selected based on either user’s 

intrinsic or temporal topics. An item weighting factor is designed to enhance the proposed model by exploiting the pop- 

ularity distribution and temporal distribution of items. The authors focus on global temporal effects and the task of item 

recommendation. In contrast, we consider both global and local temporal effects and work on the task of rating prediction. 

A number of temporal recommenders for item recommendation has also been proposed in the literature [8,17,18,22] . 

The most relevant models to our work are as follows. Koren [12] introduces a time-aware matrix factorization model 

called timeSVD ++ which performs better than other non-temporal models in terms of predictive accuracy on the Netflix 

data set. The basic idea is that user preferences will gradually change over different time bins. However, periodic tempo- 

ral effects are not considered in their work. Karatzoglou et al. [10] propose a Multiverse recommendation model where 

additional types of context information are treated as separate dimensions as a tensor. In this way, the relationships be- 

tween any two dimensions are taken into consideration and learned for better recommendation. However, its drawback is 

the inability to accommodate continual temporal effects. Karatzoglou [9] proposes two matrix factorization models—a mul- 

tiplicative model and an addictive model—by considering the sequential order of items rated by users. Specifically, a user 

can be modeled by the feature factors both at the current t and previous t − N steps ( N ≥ 1). Their experiments show that 

better performance can be achieved by integrating time information, and the additive model outperforms the multiplica- 

tive model. The best time step t is 2, indicating that the previous user preferences are most indicative to the current user 

preferences. However, periodic temporal effects are not taken into account. Xiong et al. [23] propose a Bayesian probabilistic 

tensor factorization (BPTF) model to learn global temporal effects on user-item interactions. In particular, a three-way tensor 

of user-item-time ratings is decomposed into three latent feature matrices of users, items and time aspects, respectively. The 

basic idea is that a user’s rating is not only dependent on the feature factors of users and items, but also dependent on how 

these feature factors match the current global trends (i.e., the latent feature vectors of time aspects). However, Zhang et al. 

[25] argue that the time dimension for recommendations is more likely to be local than global (across all user-item pairs). 

They propose a Bayesian temporal matrix factorization (BTMF) model under the assumption that user preferences gradually 

change over time. Specifically, a preference transition matrix is learned, which represents users’ time-invariant preference 

patterns of evolving over time steps. However, we argue that user preferences may not be changed with fixed patterns, 

but vary distinctly in different time steps. Besides, this model cannot capture repeatable user preferences over different 

time slices. Vaca et al. [21] propose a time-based collective factorization model, called Joint Past Present (JPP) decomposition 

model, to discover evolving topics and new trends in news. The authors assume that a collection of documents (e.g., news) 

arrive continuously in batches, and the current topic distribution can be linearly explained by the previous one with the 

help of a topic transition matrix. However, separating data into batches would cause data sparsity 4 even more severe, and 

thus greatly deteriorate the performance of recommendations. 

To sum up, we draw the following conclusions from the literature review. First, temporal information is useful to improve 

recommendation performance. Second, temporal effects could be either periodic and continual. Third, there is no previous 

work that combines both periodic and continual temporal effects for rating prediction. We claim that users’ temporal pref- 

erences cannot be simply explained by either one of temporal effects, but a combination of them. 

3 In this paper, we refer time steps as to time bins for continual (or gradual) temporal effects, and to time slices for periodic temporal effects. 
4 Data sparsity refers to the problem that users generally have only rated a small number of items, resulting in a sparse matrix of user-item interactions. 

The matrix sparsity is often greater than 90%. 
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Table 1 
The specifications of used data sets. 

Features Epinions Ciao MovieLens 

# users 22,164 2248 6040 
# items 296,277 16,861 3706 
# ratings 912,441 3583 10 0 0209 
Density 0.0139% 0.0945% 4.4684% 
Rating scale [1, 5] [1, 5] [1, 5] 
Max # ratings per user 5337 862 2314 
Avg # ratings per user 41.17 15.94 165.60 
Max # ratings per item 1742 170 3428 
Avg # ratings per item 3.08 2.13 269.89 
Beginning date 1999-07-05 20 0 0-06-01 20 0 0-04-26 
Ending date 2011-05-09 2011-04-12 2003-03-01 

3. Data analysis 

This section provides a data analysis of temporal effects of user preferences based on three real-world data sets, and 

shows that both temporal effects capture different characteristics of users’ rating behaviors. 

3.1. Data sets 

Three publicly available data sets, i.e., Epinions, Ciao 5 and MovieLens are used for data analysis and later the experi- 

ments in Section 5 . The first two data sets are provided by Tang et al. [20] , consisting of product reviews (i.e., ratings) along 

with rating timestamps. The products (i.e., items) cross over multiple product categories, such as movies, computers, sports, 

etc. More specifically, Epinions contains 22,164 users, 296,277 items and 912,277 ratings along with corresponding times- 

tamps. In Ciao, 2248 users have issued 35,835 ratings over 16,861 items. MovieLens is offerd by GroupLens 6 ,and it contains 

1,0 0 0,209 ratings from 6040 users and 3706 movies between April, 20 0 0 and February, 2003, with the restriction that each 

user has at least 20 ratings. The time units of all data sets are seconds. Note that the three data sets have only the times- 

tamps of users rating items, but no temporal information of items, e.g., being released. Detailed specifications of the three 

data sets are summarized in Table 1 , from which we note that Epinions and Ciao data sets are much sparser in ratings than 

MovieLens. The time span of the first two rating data are over 10 years and that of the third is around 3 years. 

3.2. Case study: Epinions 

Two series of experiments are conducted to summarize the statistics of ratings from two different perspectives: all users 

as a whole and a specific user as individuals. Specifically, on one hand the whole time span is equally split into 25 bins, 

where each bin covers around half a year (5.68 months to be exact). We believe that user preference may not change very 

frequently, and half a year would be appropriate to measure their changes. On the other hand, the time span is split into 

seven time slices each corresponding to a day of a week. Other time slices could be used as well, such as hour of a day, 

week of a month, etc. Recall that we refer time steps as to time bins for continual (or gradual) temporal effects, and to 

time slices for periodic temporal effects. We investigate the number of ratings distributed at each time step as well as the 

average rating values. 

Fig. 1 illustrates the results of rating distributions and average ratings over all users on Epinions, where sub figures (a, 

b) and (c, d) correspond to data split in consecutive and periodic, respectively. Specifically, Fig. 1 (a) shows that users were 

very active in giving ratings since time step 2, and then the activeness continually decreased to a normal level at time step 

5. The variations in the first 5 time steps are very large. Fig. 1 (c) implies that the numbers of ratings given on Monday and 

Sunday are smaller than that of ratings on the other days, and the variations are much smaller than that in Fig. 1 (a). For 

average ratings, by comparing Fig. 1 (b) with (d), users preferences over days are more stable than those over time bins. Note 

that the vertical axis of both sub figures has the same range of scale, making it easy to compare the rating variation. 

Fig. 2 depicts the results of rating distributions and average ratings over a specific user on Epinions. Specifically, we 

randomly select a user who have more than 300 ratings. As a result, a user with 367 ratings is chosen. The time bins 

are ranged from 4 to 19. Although user activities may vary from bin to bin (see Fig. 2 (a)), the average rating continually 

increases (see Fig. 2 (b)). Such trend is more significant in Fig. 2 (c, d). In particular, the user is less active on Friday (e.g., 

possibly busier to finish her work before the coming weekend), and she is more generous in giving higher ratings during 

weekends, especially on Sunday (e.g., due to good mood or entertainment). 

5 http://www.cse.msu.edu/ ∼tangjili/trust.html . 
6 https://grouplens.org/ . 

http://www.cse.msu.edu/~tangjili/trust.html
https://grouplens.org/
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Fig. 1. Rating distributions and average ratings of all users on Epinions , where (a, b) are results by splitting rating data into continuous 25 bins (i.e., 5.68 
months/bin), and (c, d) are results by splitting rating data into days of a week. The standard deviations in (d) are (1.167, 1.169, 1.165, 1.168, 1.166, 1.172, 
1.174) corresponding to each day of a week, indicating all days have almost the same deviations overall. 

3.3. Case study: Ciao 

Similarly, we conduct two sets of experiments on the Ciao data set to understand the nature of temporal effects. The 

first case is regarding the preferences of all users and the second one is about the preferences of a specific user. The same 

settings of rating split are adopted for the Ciao data set. The results are presented in Figs. 3 and 4 . 

Specifically, Fig. 3 (a) is similar to Fig. 1 (a) in that user activities are enhanced within the first 5 time bins, but differs 

in that Ciao users get more and more active after time step 5 whereas Epinions users get decreased continually. Fig. 3 (c) 

illustrates similar characteristics with Fig. 1 (c), that is, users participate less active on Monday and Sunday. Fig. 3 (b) shows 

more transient preferences than that in Fig. 3 (d), which remains relatively stable. 

Fig. 4 represents a user’s rating distribution and average ratings over different time steps. The user is randomly chosen 

by thresholding the number of ratings greater than 100. The ratings cover 5 time bins in Fig. 4 (a), and there are 188 ratings 

in total. The selected user is more active on Tuesday and Friday than on the other days (See Fig. 4 (c)). The data shown in 

Fig. 4 (b) are less indicative since the number of time bins is small. Even though, from Fig. 4 (d) we can find that the user 

generally gives lower ratings on weekends than on workdays. It is exactly opposed to the phenomenon shown in Fig. 2 (d), 

indicating the differences of the two data sets to some extent. 

3.4. Case study: MovieLens 

Same as the previous two data sets, we conduct two experiments on the MovieLens data set to investigate the effect of 

temporal effects. The first case is regarding the preferences of all users and the second one is about the preferences of a 

specific user. The same settings of rating split are adopted for this case study. The results are presented in Figs. 5 and 6 . 

Specifically, Fig. 5 (a) shows that the number of user actions is varied a lot in the first 5 time bins, and peaked at time step 

5. After that, the trend is declining and reaching a stable state quickly. Fig. 5 (c) illustrates similar characteristics with Fig. 1 (c) 

and Fig. 3 (c), that is, users participate less actively on Monday and Sunday. Fig. 5 (b) shows more transient preferences than 

that in Fig. 5 (d), which remains relatively stable. 
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Fig. 2. Rating distributions and average ratings of a specific user on Epinions (with 367 ratings), where (a, b) are results by splitting rating data into 
continuous 25 bins, and (c, d) are results by splitting rating data into days of a week. The standard deviations in (d) are (1.067, 1.032, 0.660, 0.867, 0.932, 
0.746, 0.937) corresponding to each day of a week. These deviations are much smaller than those of all users, and relatively small considering the rating 
scale is in [1, 5]. 

Fig. 6 represents a user’s rating distribution and average ratings over different time steps. The user is randomly chosen by 

thresholding the number of ratings greater than 800. The ratings cover 19 time bins in Fig. 6 (a), and there are 822 ratings 

in total. The selected user is more active on Monday and Saturday than on the other days (See Fig. 6 (c)). From Fig. 6 (b) 

and Fig. 6 (d), we find it similar to Fig. 5 (b) and Fig. 5 (d) in that users usually have a lot of temporary preferences but the 

periodic behavior characteristics is still very stable. 

3.5. Summary 

The following conclusions can be drawn from the previous case studies on Epinions, Ciao and MovieLens. First, users’ 

continual or gradual preferences are likely to be dynamic and transient. Although user activities may vary a lot in different 

time steps, the average ratings between continual time steps differ only in a small range. This is consistent with the claim 

given by Zhang et al. [25] . Second, users’ periodic preferences tend to be relatively stable, while a specific user’s rating 

patterns are clearer in periodic time slices than those in continual time bins. The difference in user activities is relatively 

small among time slices. It is safe to say that users’ rating behaviors can be modeled distinctively with different time split 

manners. Therefore, it is possible to better model user preferences, especially their changes over time by considering both 

kinds of temporal effects. We next present our approaches based on these conclusions. 

4. Periodic and continual temporal matrix factorization models 

In this section, we will elaborate two temporal matrix factorization models by integrating both periodic and continual 

temporal effects, followed by a discussion on items’ temporal effects on predictive accuracy. 

Specifically, our work builds upon latent factor models which consider bias terms, user- and item-feature matrices at the 

same time. We then add the effect of both periodic and continual terms on the prediction of user-item ratings. In addition, 
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Fig. 3. Rating distributions and average ratings of all users on Ciao , where (a, b) are results by splitting rating data into continuous 25 bins (i.e., 4.8 
months/bin), and (c, d) are results by splitting rating data into days of a week. The standard deviations in (d) are (0.668, 0.653, 0.654, 0.668, 0.657, 0.659, 
0.677) corresponding to each day of a week, indicating all days have almost the same deviations overall. 

we analyze the relations between two consecutive time steps whereby a time-aware regularization term can be made of, to 

further smooth the learning of our proposed models. More details will be given in the following subsections. 

4.1. Preliminary and notations 

To facilitate discussion, we will introduce a number of notations. Let R = [ r u,i ] m ×n be a user-item rating matrix, where 

r u,i is a rating given by user u on item i . The number of users and items is m and n , respectively. For simplicity, we preserve 

symbols u, v for users and i, j for items. Let T = [ t u,i ] m ×n be a rating time step matrix, where t u,i is the time step associated 

with rating r u,i regarding user u and item i . The time unit could be real timestamps, such as seconds, millionseconds, or 

index of time bins or time slices split by time intervals. In this article, we use time bin to indicate the time step if continuous 

time is split (for continual time effects), and time slice to imply the time step if discrete time is split (for periodic time 

effects). Both matrices R and T are very sparse, since users only rated a small portion of items in general. The sparsity is 

usually greater than 90% (see Table 1 ). The recommendation task in question is that: given a rating matrix R and associated 

time step matrix T , generate accurate rating prediction for the missing entries in the rating matrix R . 

Matrix factorization [13] has been demonstrated an effective technique to generate accurate rating predictions. Compar- 

ing with memory-based approaches, matrix factorization is able to handle large-scale data sets and make prediction more 

accurate and efficient. We next briefly introduce the basic idea of matrix factorization for rating prediction. The underlying 

assumption is that both users and items can be characterized by a small number of latent factors in the same feature space. 

By decomposing the rating matrix R into two low-rank user-feature matrix P ∈ R m ×k and item-feature matrix Q ∈ R n ×k , 

where k is the number of latent features. Then, a rating prediction can be generated by the inner product of feature vectors 

of the corresponding user and item. Specifically, the rating prediction is computed by: 

ˆ r u,i = P � u Q i , 
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Fig. 4. Rating distributions and average ratings of a specific user on Ciao (with 188 ratings), where (a, b) are results by splitting rating data into continuous 
25 bins, and (c, d) are results by splitting rating data into days of a week. The standard deviations in (d) are (0.376, 0.365, 0.407, 0.366, 0.375, 0.385, 0.397) 
corresponding to each day of a week. These deviations are much smaller than those of all users, and relatively small considering the rating scale is in 
[1, 5]. 

where P u ∈ R k is the latent feature vector of user u , Q i ∈ R k is the latent feature vector of item i , and ˆ r u,i denotes the 

predicted rating for user u on a target item i that she has not rated before. 

Koren [13] advocates that the use of user and item biases can greatly improve predictive accuracy. This is due to the 

fact that some users tend to give higher (lenient users) or lower (strict users) ratings, and some items are likely to receive 

higher (popular items) or lower (niche items) ratings. In other words, these bias terms can help capture the general trend 

of users and items in giving (or receiving) ratings. Formally, the rating prediction is enhanced by: 

ˆ r u,i = μ + b i + b u + P � u Q i , 

where μ is the global average rating, b i and b u are the biases of item i and user u , respectively. 

The objective is to ensure that the predicted rating ˆ r u,i is close to the ground truth r u,i . In other words, we’d like to 

minimize the difference between the two ratings, defining the objective function as follows. 

J = 
1 

2 

∑ 

u 

∑ 

i 

δ(r u,i )( ̂ r u,i − r u,i ) 
2 + 

λb 

2 

(∑ 

u 

b 2 u + 
∑ 

i 

b 2 i 

)
+ 

λu 

2 

∑ 

u 

‖ P u ‖ 2 F + 
λi 

2 

∑ 

i 

‖ Q i ‖ 2 F , 

where δ( r u,i ) is an indicator function which equals 1 if user u rated item i and 0 otherwise, ‖·‖ F is the Frobenius norm 7 , 

and λb , λu , λi are regularization parameters to help avoid over-fitting. Stochastic gradient descent (SGD) algorithm is usually 

adopted to learn a local minimum of variables P, Q, B u , B i , which will be elaborated in Section 4.4 . 

7 https://en.wikipedia.org/wiki/Matrix _ norm#Frobenius _ norm . 

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
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Fig. 5. Rating distributions and average ratings of all users on MovieLens , where (a, b) are results by splitting rating data into continuous 25 bins (i.e., 
1.4 months/bin), and (c, d) are results by splitting rating data into days of a week. The standard deviations in (d) are (1.106, 1.130, 1.109, 1.123, 1.115, 1.124, 
1.108) corresponding to each day of a week, indicating all days have almost the same deviations overall. 

4.2. PCCF: periodic and continual co-factorization 

The first factor we consider is the continual temporal effect where users’ preferences drift over continuous time bins. It 

captures users’ dynamic and transient preferences at a specific time step, as described in Figs. 1 (b) and 3 (b). Specifically, 

let P 
g 
u ∈ R k be a latent feature vector of user u at time bin g , where k is the number of latent features. Then, the rating 

prediction for user u on item i can be derived by: 

ˆ r u,i = μ + b i + b g u + (P g u ) 
� Q i , (1) 

where b 
g 
u indicates the user bias at time bin g , intending to capture the features illustrated in Figs. 2 (b) and 4 (b). Note that 

we opt not to consider the time-aware feature vector Q 
g 
i and instead we remain the time-invariant vector Q i . We will defer 

the explanations to Section 4.5 . For now, let us focus on time-aware preferences of users rather than those of items. 

The second factor we adopt is the periodic temporal effect where users’ preferences can be represented by a number of 

latent features associated with a time slice. It captures users’ cyclic and thus relatively stable preferences at a specific time 

slice, as described in Figs. 1 (d) and 3 (d). Similarly, let P 
p 
u ∈ R k be a latent feature vector of user u at period (i.e., time slice) 

p . Hence, the rating prediction for user u on item i can be generated as follows: 

ˆ r u,i = μ + b i + b p u + (P p u ) 
� Q i , (2) 

where b 
p 
u denotes the user bias at time slice p , aiming to model the characteristic illustrated in Figs. 2 (d) and 4 (d). 

Section 3.5 has concluded that combining both kinds of temporal effects may better model users’ preferences at a specific 

time step since they each reflect time-aware user preferences from different perspectives. In other words, user u ’s prefer- 

ences at time step (time bin g , time slice p ) can be represented by a latent feature vector of both P 
g 
u and P 

p 
u . We adopt 

a convex combination to combine them together due to its simplicity. More complex and non-linear combinations can be 



G. Guo et al. / Information Sciences 436–437 (2018) 56–73 65 

Fig. 6. Rating distributions and average ratings of a specific user on MovieLens (with 822 ratings), where (a, b) are results by splitting rating data into 
continuous 25 bins, and (c, d) are results by splitting rating data into days of a week. The standard deviations in (d) are (1.048, 1.009, 1.016, 0.953, 0.961, 
1.075, 0.913) corresponding to each day of a week. These deviations are much smaller than those of all users, and relatively small considering the rating 
scale in [1, 5]. 

investigated in the future work. Therefore, the rating prediction for user u on target item i can be written by: 

ˆ r u,i = μ + b i + δ(r) b g u + δ(1 − r) b p u 

+ r ∗ (P g u ) 
� Q i + (1 − r) ∗ (P p u ) 

� Q i , 
(3) 

where δ( x ) is an indicator function that yields 1 if x > 0 and 0 otherwise, and r ∈ [0, 1] represents the relative importance of 

continual temporal effect for modeling user preferences; the symbol ∗ denotes the multiplication of two scalars. In particular, 

if r = 1 , Eq. (3) will be degraded into Eq. (1) , i.e., prediction by continual user preferences only. If r = 0 , Eq. (3) will be 

equivalent with Eq. (2) , i.e., prediction by periodic user preferences only. As a result, if r ∈ (0, 1), both temporal effects are 

linearly considered. 

Other than convex combination, we also consider an alternative method—affine combination, given by: 

ˆ r u,i = μ + b i + δ(r) b g u + δ(s ) b p u 

+ r ∗ (P g u ) 
� Q i + s ∗ (P p u ) 

� Q i , 

where r, s ∈ [0, 1] represents the importance of continual and periodic temporal effects, respectively, which are empirically 

determined in our experiments. Note that the requirement r + s = 1 of convex combination is not applicable in this case. 

However, we have empirically find that the affine combination works slightly worse than the convex combination, although 

the former manner has more degrees of freedom in parameter tuning than the latter one. This implies that the continual 

and periodic temporal effects are not totally independent, but related to some extent. For our approach, we take Eq. (3) to 

generate rating predictions. We are aware that other non-linearly combination approaches are possible for an even further 

study. 

Section 3 also shows that user preferences between continual times bins vary only in a small range in general (see 

Fig. 1 (b) and Fig. 3 (b)), although greater variations can be observed in a first few time bins. Hence, we design the following 
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regularization term to avoid over-fitting in model learning. 

R (g) = 
∑ 

u 

∑ 

g 

f u (g, g − 1) ‖ P g u − P g−1 
u ‖ 2 F , (4) 

where g > 1, and f u (g, g − 1) ∈ (0 , 1] is a function to measure the correlation between two consecutive time bins for user u . 

The regularization term intends to add such a constrain that a user’s preference vectors among two consecutive time bins 

are relatively stable. The value of f u (g, g − 1) indicates how much user preferences are changed between two continuous 

time bins. In particular, f u (g, g − 1) = 1 means users do not change preferences while the smaller f u (g, g − 1) value implies 

the greater changes in user preferences. We propose two ways to define function f u (g, g − 1) . The simplest way is to set 

f u (g, g − 1) = C, where C ∈ (0, 1] is a constant. In other words, it means that we treat the correlation as irrelevant to specific 

users and time bins. In our case, we take the value C = 1 . The other way is based on item similarity, given by: 

f u (g, g − 1) = 

{ 
1 
�

∑ 

j∈ I t u 

∑ 

i ∈ I t−1 
u 

s ( j, i ) if I t u , I 
t−1 
u � = ∅;

1 otherwise , 
(5) 

where I t u , I 
t−1 
u denote the set of items rated by user u at time step t and t − 1 , respectively. The similarity between two 

items i, j is represented by s ( j, i ) ∈ [0, 1], and � is a normalization term. The intuition behind is that if items rated in 

consecutive time bins are highly similar, it indicates that a user’s preference has little or small changes, and vice versa. The 

item similarity can be computed by some similarity measure, such as the Pearson correlation coefficient, cosine similarity or 

Bayesian similarity [5,7] based on all the user ratings across over all the time bins (to alleviate the data sparsity problem). 

In our experiments, we adopt the first approach, i.e., f u (g, g − 1) = 1 for simplicity, and leave the exploration of the best 

similarity functions as a part of our future work. In this article, we focus on the two different kinds of temporal effects. 

Note that the same intuition of Eq. (4) cannot be applied to periodic temporal effects. In Section 3 , we have shown that 

a specific user can have different pref erence patterns in different time slices, such as workdays and weekends. Hence, no 

similar regularization term of periodic preferences is designed in our approach. 

Finally, the overall objective function to minimize is derived as follow. 

J = 
1 

2 

∑ 

p 

∑ 

g 

∑ 

u 

∑ 

i 

δ(r u,i , p, g)( ̂ r u,i − r u,i ) 
2 

+ 
λU 

2 

(
δ(r) 

∑ 

g 

∑ 

u 

‖ P g u ‖ 2 F + δ(1 − r) 
∑ 

p 

∑ 

u 

‖ P p u ‖ 2 F 

)

+ 
λG 

2 

(
δ(r) 

∑ 

g 

∑ 

u 

f u (g, g − 1) ‖ P g u − P g−1 
u ‖ 2 F 

)

+ 
λB 

2 

(
δ(r) 

∑ 

g 

∑ 

u 

(b g u ) 
2 + δ(1 − r) 

∑ 

p 

∑ 

u 

(b p u ) 
2 
)

+ 
λI 

2 

∑ 

i 

‖ Q i ‖ 2 F + 
λB 

2 

∑ 

i 

b 2 i 

(6) 

where δ( r u,i , p, g ) is to indicate if user u has rated item i at time bin g and (or) time slice p , ˆ r u,i is computed by Eq. (3) , and 

variables λU , λI , λG , λB are hyper-parameters to avoid over-fitting in model learning, elaborated in Section 4.4 . 

4.3. PCMF: periodic and continual matrix factorization 

The second model we introduce is an alternative matrix factorization model, by mixing latent feature vectors of users 

with both time bins and time slices. Specifically, let P 
p,g 
u denote user u ’s latent feature vector at time slice p and time bin g . 

Different from PCCF, a user’s feature vector is related with both time aspects, i.e., time bins and time slices. Then, the rating 

prediction for user u on item i can be computed by: 

ˆ r u,i = μ + b i + b p,g 
u + (P p,g 

u ) � Q i , (7) 

where b 
p,g 
u is the user bias for user u at time step ( p, g ). 

Similarly, for the regularization term, we consider the continual changes between two time bins within a time slice. 

Formally, it is formulated as follows. 

R (b, g) = 
∑ 

u 

∑ 

p,g 

f u (p, g, g − 1) ‖ P p,g 
u − P p,g−1 

u ‖ 2 F , 

where g > 1, and f u (b, g, g − 1) ∈ (0 , 1] is a function to measure the correlation between time bins g and g − 1 within a time 

slice p . The function f u (b, g, g − 1) can be defined in the same way as f u (g, g − 1) (see Eq. (5) ). 
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Hence, we yield the following objective function. 

J = 
1 

2 

∑ 

p 

∑ 

g 

∑ 

u 

∑ 

i 

δ(r u,i , p, g)( ̂ r u,i − r u,i ) 
2 

+ 
λU 

2 

∑ 

g 

∑ 

u 

‖ P p,g 
u ‖ 2 F + 

λI 

2 

∑ 

i 

‖ Q i ‖ 2 F 

+ 
λG 

2 

∑ 

p 

∑ 

g 

∑ 

u 

f u (p, g, g − 1) ‖ P p,g 
u − P p,g−1 

u ‖ 2 F 

+ 
λB 

2 

(∑ 

p 

∑ 

g 

∑ 

u 

(b p,g 
u ) 2 + 

∑ 

i 

b 2 i 

)
(8) 

where δ( r u,i , p, g ) indicates if user u has rated item i at time bin g in time slice p , ˆ r u,i is computed by Eq. (7) , and variables 

λU , λI , λB , λG are regularization parameters for users, items, biases and continual temporal effects, respectively. By compar- 

ing with PCCF, this model considers time bins and time slices simultaneously rather than separately. This formalization leads 

to less parameters (the parameter r in Eq. (6) is not required) and a more compact model. However, the finer granularity 

of temporal regularization term in Eq. (8) may over specify the temporal effects, resulting in less accurate recommendation 

performance, which will be demonstrated in Section 5 . 

4.4. Model learning & analysis 

The objective function of our model PCCF can be learned by applying the stochastic gradient descent (SGD) approach on 

a training data set. Since similar procedure is applicable to learning model PCMF, we focus on model PCCF in this section. 

For a specific observation ( u, i, p, g, r u,i ), the SGD update rules for variables b 
g 
u , b 

p 
u , b i , P 

g 
u , P 

p 
u , Q i are given as follows. 

∂J 

∂b g u 
= δ(r)(e + λB b 

g 
u ) , 

∂J 

∂b p u 
= δ(1 − r)(e + λB b 

p 
u ) , 

∂J 

∂b i 
= e + λB b i , 

∂J 

∂Q i 
= e 

(
rP g u + (1 − r) P p u 

)
+ λI Q i , 

∂J 

∂P g u 
= δ(r ) 

(
er Q i + λU P 

g 
u + λG f u (g, g − 1)(P g u − P g−1 

u ) 

− λG f u (g + 1 , g)(P g+1 
u − P g u ) 

)
, 

∂J 

∂P p u 
= δ(1 − r) 

(
e (1 − r) Q i + λU P 

p 
u 

)
, 

(9) 

where e = ̂  r u,i − r u,i is the rating prediction error for user u on item i . For simplicity, we omit the subscripts u, i . 

The pseudo-code for model learning and updating is given in Algorithm 1 . To explain, we take as input a training 

matrix R , time matrices T g , T p (resp. time bins and time slices), regularization parameters λU , λI , λB , λG , and learning rate 

γ . We assume that the original time matrix T , with timestamps in some time unit (e.g., seconds), has been preprocessed by 

formatting the timestamps into a number of time bins ( T g ) and of time slices ( T p ). First, we initialize the following variables 

with small random values in (0, 0.01) (line 1), including vectors of user biases B g = [ b 
g 
u ] m ×1 , B 

p = [ b 
p 
u ] m ×1 , a vector of item 

bias B i = [ b i ] n ×1 , user-feature matrices P g = [ P 
g 
u ] m ×k , P 

p = [ P 
p 
u ] m ×k and an item-feature matrix Q = [ Q i ] n ×k , where k is the 

number of latent factors. If the objective value J has not converged 8 (line 2) or the maximum number of iterations is not 

reached, for each observation ( u, i ) ∈ R in the training matrix (line 3), we conduct the following operations. The time bins 

g and time slices p can be retrieved from time matrices T g and T p (lines 5–6), respectively. Then, the rating prediction is 

computed by Eq. (3) (line 7). Once obtaining the rating prediction error e , we proceed to compute the gradients of variable 

by Eq. (9) (line 8). The variables are then updated accordingly (lines 9–14). Finally, the learned variables are returned as the 

output of PCCF algorithm (line 15). 

The most computational time to learn the PCCF model is mainly taken by evaluating the objective function J and com- 

puting the variable gradients. Specifically, for each iteration the time to compute a rating prediction by Eq. (3) is O ( k ), i.e., 

the steps required to calculate the inner product of user-feature and item-feature vectors, where k is the number of latent 

8 The convergence of an objective function in this work means that the objective function has reached its optimal value and status, and further learning 
cannot provide better solutions. 
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Algorithm 1: The PCCF algorithm. 

Input : R, T g , T p , λG , λB , λU , λI , γ ( learning rate ) 

1 Initialize vectors B g , B p , B i and matrices P g , P p , Q with small and random values in (0 , 0 . 01) ; 

2 while J not converged do 

3 foreach (u, i ) ∈ R do 

4 r u,i ← R (u, i ) , 

5 g ← T g (u, i ) , 

6 p ← T p (u, i ) , 

7 compute rating prediction ˆ r u,i by Equation 3; 

8 compute variable gradients by Equation 9; 

9 b 
g 
u ← b 

g 
u − γ ∂J 

∂b g u 
, 

10 b 
p 
u ← b 

p 
u − γ ∂J 

∂b p u 
, 

11 b i ← b i − γ ∂J 
∂b i 

, 

12 Q i ← Q i − γ ∂J 
∂Q i 

, 

13 P 
g 
u ← P 

g 
u − γ ∂J 

∂P g u 
, 

14 P 
p 
u ← P 

p 
u − γ ∂J 

∂P p u 
, 

15 return B g , B p , B i , P g , P p , Q; 

features. Hence, the overall time for objective function J is O ( k | R |), where | R | denotes the number of entries in the rating 

matrix R . Due to data sparsity, | R | is much smaller than the cardinality of R . On the other hand, all the time to compute 

gradients ∂J 
b g u 

, ∂J 
b p u 

, ∂J 
b i 

, ∂J 
P g u 

, ∂J 
P g u 

, ∂J Q i 
is O ( k | R |). Hence, the overall computational complexity is linear with the number of rating 

observations. In other words, our approach can be learned fast and applicable to large-scale data sets. 

4.5. Discussion: items’ temporal effects 

Till now, we have elaborated our approaches in modeling users’ preferences over time steps. Another assumption we 

adopt is that items’ characteristics are relatively stable over time. This assumption is also taken by some previous works, 

including [9,18,23] . However, some other researchers contend that items’ characteristics could be also influenced by time 

[15,16,24,25] . A typical example is that an item may be outdated and get less popular and attention from users, or users 

may not prefer an outdated item. In other words, the most exemplified case is that the popularity of items may decrease 

over time, such as news and movies. Even though, these works do not take time-based regularization term towards temporal 

effects of items. That is, no previous work suggests that items’ characteristics between two time steps will not be relatively 

stable. It is one of the main differences from users’ temporal preferences. 

Nevertheless, we can model items’ temporal characteristic in the form of Q 
g 
i , where g is a time bin. Then, the rating 

prediction for user u on item i can be obtained by: 

ˆ r u,i = μ + b u + b g 
i + P � u Q 

g 
i , 

where b 
g 
i is the bias for item i on time bin g . Alternatively, we can additionally integrate users’ temporal preferences. Then, 

the prediction can be rewritten as follows: 

ˆ r u,i = μ + b g u + b g 
i + (P g u ) 

� Q 
g 
i . 

Similar objective function can be designed to learn the model by minimizing the differences between predictions and ground 

truth. 

However, we empirically find that: (1) items’ temporal effect has little effect in improving recommendation performance; 

and (2) combining both users’ and items’ temporal effects cannot perform better than the case of users’ temporal effects 

only. The results imply that items’ temporal characteristics are ineffective, or kept relatively stable. This phenomenon can 

be explained in two aspects. First, most of items’ characteristics are time-invariant, i.e., are not influenced by time. Second, 

although items’ popularity may change from time to time, users’ temporal preferences are likely to capture such kind of 

changes. For example, as previously mentioned, the case of items being less popularity is equivalent with that of users not 

preferring outdated items. 

Therefore, we conclude that items’ temporal effects are negligible in our case (based on the used data sets). We focus on 

the study of users’ temporal preferences in this article. 
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5. Experiments and results 

In this section, we will evaluate the effectiveness of our approaches on three real-world data sets with the aim to study: 

(1) the influence of number of bins and the ways to slice time; (2) the impact of parameter r for the combination of 

temporal effects; and (3) the performance of our approaches in comparison with other counterparts. 

5.1. Experimental setup 

Data sets. The three real-world data sets described in Section 3.1 are used in our experiments. We have tried two dif- 

ferent ways to split rating data according to time information. The first way is to preserve the early 80% ratings for each 

user as a training set and leave the recent 20% ratings as a test set. The second way is the traditional 5-fold cross validation 

approach, i.e., the original data set is randomly split into 5 folds four of which is used as the training set and the rest as a 

test set. We empirically find that both approaches produce similar performance trends. Hence, in this article we adopt the 

5-fold cross validation to evaluate predictive performance, since it produces different subsets for evaluation at each itera- 

tion. The average results of five iterations are taken as the final performance. Cross validation is an often-adopted method 

to determine model parameters, whereby a model can be adapted to different data sets. 

Evaluation metrics. Two well-known metrics are used to measure the predictive accuracy, i.e., mean absolute error 

(MAE) and root mean square error (RMSE). More formally, they are define by: 

MAE = 

∑ 
u 
∑ 

i | ̂ r u,i − r u,i | 
N 

, 

RMSE = 

√ ∑ 
u 
∑ 

i ( ̂ r u,i − r u,i ) 2 

N 
, 

where N is the number of ratings in the test set. In general, smaller values of MAE and RMSE indicate better recommenda- 

tion accuracy. 

Comparison methods. A number of comparison models are implemented and compared in our experiments. 

• PMF [19] is a baseline matrix factorization approach where no additional information is employed. 
• timeSVD ++ is proposed by Koren [12] where user preferences are assumed to gradually change over different time bins. 
• TAM is the additive model proposed by Karatzoglou [9] where the sequential order of ratings is considered in a matrix 

factorization model. 
• BPTF is proposed by Xiong et al. [23] where time is regarded as an additional dimension in a tensor, i.e., as a global 

effect for all users and items. 
• PCCF is our approach described in Section 4.2 where both continual and periodic temporal effects are linearly combined 

(with parameter r ) and co-factored in a matrix factorization model. 
• PCMF is our approach described in Section 4.3 where users’ preferences are simultaneously associated with time bins 

and time slices. 

PMF and timeSVD ++ are provided by an open-source recommendation toolkit, called LibRec 9 . TAM and our approaches 

(PCCF, PCMF) are implemented under the framework of LibRec. BPTF 10 is kindly provided by Xiong et al. [23] , who addi- 

tionally provide an implementation of PMF. We have compared the performance of their version of PMF and LibRec PMF, 

and found that similar results are obtained by the two implementations. The settings of BPTF (e.g., the number of samples 

is 50) given by the authors [23] are adopted in our experiments, while the other experimental settings (e.g., the number of 

latent features, iterations, etc.) are the same as our own approach. The training and test data generated by our approach is 

used as input to the BPTF, which ensures a fair comparison. 

Parameter settings. For each method, there are a number of parameters to tune, such as regularization parameters, 

learning rate, etc. In our experiments, the most proper values are either determined by empirical results (by trying out 

different settings) or suggested by the original papers. Besides, we tune the learning rate in {0.0 0 01, 0.0 01, 0.01, 0.1}, and 

fix the number of latent features k = 10 in order to focus on model comparison. Grid searches are generally conducted to 

determine parameters. The number of maximum iteration is 300. Each setting will run 10 times to average the performance. 

The settings leading to the best MAE values are adopted. 

5.2. The impact of regularization parameters 

For simplicity, we set regularization terms λU = λI = λB and λG , and search for their optimal values in the range {0.0 0 01, 

0.001, 0.01, 0.1}. In this section, we use the Epinions data set as an example, while the same searching procedure is also 

used for the Ciao and MovieLens data sets. The settings for other parameters are: r = 0 . 5 , periodic time sliced by Hour of 

a Day, and given 5 continual time bins. Note that they are not optimal settings, and further analysis of each parameter will 
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Fig. 7. The impact of regularization parameters on Epinions: (a) λU , λI , λB and (b) λG . 

Fig. 8. The impact of time bins on predictive accuracy on three different data sets: (a) Epinions, (b) Ciao and (c) MovieLens. 

be given later. The results are depicted in Fig. 7 , where the best values for all the regularization parameters are 0.01 on 

Epinions. Further tuning λU , λI , λB separately may result in better performance. 

5.3. The impact of time bins 

This section studies how the number of time bins influences the recommendation performance of our approach PCCF 11 in 

terms of MAE 12 The best settings for PCCF are learning rate γ = 0 . 001 , regularization parameters λU = λI = λB = 0 . 01 , λG = 

0 . 01 on Epinions, settings γ = 0 . 001 , λU = λI = λB = 0 . 5 , λG = 20 on Ciao, and settings γ = 0 . 001 , λU = λI = λB = 0 . 01 , λG = 

10 0 0 on MovieLens. In addition, we select a time slice as hour of a day, and presume the importance of continual effect 

r = 0 . 5 . Then, we vary the number of bins from 1 to 10 stepping by 1. The results are presented in Fig. 8 . The trends on 

Epinions, Ciao and MovieLens are similar in that a greater number of time bins may deteriorate the performance. In partic- 

ular, Fig. 8 shows the best number of time bins for Epinions, Ciao and MovieLens is 2, 1, 1, respectively. Although it shows 

that continual time has a small impact on predictive accuracy, the impact could be much greater when the importance 

parameter r is further tuned as shown in Section 5.5 , and the time slices are better selected as shown in Section 5.4 . Nev- 

ertheless, by carefully choosing a proper number of time bins, a better performance may be achieved by aggregating both 

continual and periodic temporal effects. 

5.4. The impact of time slices 

With the previous settings of number of time bins, we proceed to vary the ways to determine time slices and investigate 

its influence on predictive accuracy. We have considered three manners: Day of a Week, Hour of a Day and AM/PM of a 

day. Alternative manners include Day of a Month, Week of a Month, etc. The experimental results are illustrated in Fig. 9 . 

Specifically, the best splitting method by Hour of a Day for both Epinions and Ciao works the best. The performance of Hour 

of a Day and that of AM/PM of a day are very close. However, the best splitting method for MovieLens is by Day of a Week, 

9 LibRec: http://www.librec.net/ . 
10 BPTF: http://www.cs.cmu.edu/ ∼lxiong/bptf/bptf.html . 
11 We focus on PCCF rather than PCMF in this article. 
12 The RMSE values follow similar trends with MAE. 

http://www.librec.net/
http://www.cs.cmu.edu/~lxiong/bptf/bptf.html
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Fig. 9. The impact of time slices on predictive accuracy on three different data sets: (a) Epinions, (b) Ciao and (c) MovieLens. 

Fig. 10. The impact of parameter r on predictive accuracy on three different data sets: (a) Epinions, (b) Ciao and (c) MovieLens. 

Table 2 
Performance of comparison methods on Epinions. 

PMF timeSVD ++ TAM BPTF PCMF PCCF 

MAE 1.4224 0.9826 0.8069 0.8196 0.80 0 0 0.7913 
RMSE 1.8657 1.3230 1.0408 1.0918 1.0410 1.0306 

the performance of which is very close to that of AM/PM of a day. The results show that a proper manner to slice periodic 

time can result in better performance. Although Hour of a Day and Day of a Week are the best choices in our experiments, 

we may have to choose alternative time slices when our approach being applied to some other datasets. 

By comparing Fig. 9 with Fig. 8 , we observe that the MAE differences among time slices are relatively greater than those 

among time bins. This is in accordance with our previous conclusion in Section 3.5 : users’ rating patterns are clearer in 

periodic time slices than those in continual time bins. 

5.5. The impact of parameter r 

Our next step is to investigate the impact of parameter r , i.e., the importance of continual effects in Eq. (3) . The optimal 

settings of number of time bins and manner of time slices are adopted according to previous discussion. We vary the value 

of r from 0.0 to 1.0 stepping by 0.1 on all data sets. The results are presented in Fig. 10 . Although MAE values vary in a 

small range on Epinions, the best value of parameter r is observed at 0.8. In contrast, the trend is clearer on Ciao where 

r = 0 . 5 outperforms either continual effects only (i.e., r = 1 ) and periodic effects only (i.e., r = 0 ). The curve of MovieLens 

is quite smooth: the performance increases as r grows, and reaches the extreme when r = 0 . 8 . Hence, we conclude that 

integrating both continual and periodic effects is useful to improve predictive accuracy. To sum up, we have found that a 

proper integration of both effects is able to improve recommendation performance. 

5.6. Comparison with other models 

In this section, we will compare our approaches with a baseline (without time information) and other state-of-the-art 

time-aware recommendation models. The results are presented in Tables 2 , 3 and 4 , corresponding to the performance on 

Epinions, Ciao and MovieLens, respectively. 

Specifically, when the data set is sparse, time-aware recommenders perform better than time-unaware recommender, i.e., 

PMF. The best settings for timeSVD ++ on three data sets are: 2 time bins and no time decaying weights. The performance of 

timeSVD ++ is the worst among time-aware recommenders, also implying that the continual temporal effects for individual 

users are less significant. This is confirmed by the comparison with BPTF in which global temporal effects are considered. 
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Table 3 
Performance of comparison methods on Ciao. 

PMF timeSVD ++ TAM BPTF PCMF PCCF 

MAE 1.7058 0.8405 0.7044 0.7642 0.7021 0.6979 
RMSE 2.2222 1.1940 0.9368 1.0521 0.9294 0.9265 

Table 4 
Performance of comparison methods on MovieLens. 

PMF timeSVD ++ TAM BPTF PCMF PCCF 

MAE 0.6701 0.6982 0.6950 0.6800 0.6824 0.6669 
RMSE 0.8606 0.8937 0.8775 0.8811 0.8706 0.8517 

The best number of time bins for BPTF is also 2, by tuning the value from 1 to 10 stepping with 1. Among the comparison 

methods, TAM works the best by considering the user preferences at both current and previous time steps. For the results 

of MovieLens, all the methods show good performance when the data set is relatively dense. 

Most importantly, our approaches, i.e., PCMF and PCCF consistently outperform the other counterparts on all data sets, 

especially when data sets are sparse. That is, the achieved MAE and RMSE values are the lowest ones. Although the im- 

provements are relatively small, Koren [13] has shown that small improvements in predictive accuracy may have a great 

impact on practical recommendation performance. It is a common practice that relatively small improvements are often 

achieved step by step in the field of recommender systems. Furthermore, we find that PCCF generally gains better accuracy 

than PCMF. Therefore, we can conclude that combining both periodic and continual temporal effects is effective in predicting 

accurate users’ ratings on unknown items. Additionally, a convex linear combination works better than a mixture modeling 

of both kinds of temporal effects. 

6. Conclusions and future work 

This article made effort s to model users’ preferences by simultaneously considering both periodic and continual temporal 

effects. The periodic tem poral effects ref er to the impact of periodic time slices on recommendation performance while con- 

tinual temporal effects indicate the impact of continuous time bins on rating prediction. They described different temporal 

aspects of user preferences. By conducting a data analysis on three real-world datasets, we found that users had different 

rating patterns in the light of time bins and time slices as a whole and as individual users. Upon with the observed phe- 

nomenon, we designed a co-factorization model by linearly integrating both impacts of periodic and continual temporal 

effects. The experimental results on the three real-world data sets demonstrated that our approaches worked better than 

other state-of-the-art time-aware recommendation models. 

Our future work will follow two lines of research. The first line is to investigate the influence of similarity measures 

for model regularization (see Eq. (5) ). Although this article focuses on the recommendation task of rating prediction, item 

recommendation is believed a more optimal task to accomplish for recommender systems. Hence, the second line of future 

work is to study the temporal effects for top- N item recommendation. In addition, more data sets will be adopted to further 

enhance the effectiveness of our approach. 
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