Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

3-2012

Hoare-style verification of graph programs

Christopher M. POSKITT
Singapore Management University, cposkitt@smu.edu.sg

Detlef PLUMP

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering
Commons

Citation

POSKITT, Christopher M. and PLUMP, Detlef. Hoare-style verification of graph programs. (2012).
Fundamenta Informaticae. 118, (1-2), 135-175.

Available at: https://ink.library.smu.edu.sg/sis_research/4859

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4859&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Fundamenta Informaticae 118 (2012) 135-175 135
DOI 10.3233/FI-2012-708
I0S Press

Hoare-Style Verification of Graph Programs

Christopher M. Poskitt*f, Detlef Plump
Department of Computer Science

The University of York

Deramore Lane, York, YO10 5GH, United Kingdom
cposkitt@cs.york.ac.uk; det@cs.york.ac.uk

Abstract. GP (for Graph Programs) is an experimental nondetermingtigramming language
for solving problems on graphs and graph-like structurelse lenguage is based on graph trans-
formation rules, allowing visual programming at a high lexeabstraction. In particular, GP frees
programmers from dealing with low-level data structuresthis paper, we present a Hoare-style
proof system for verifying the partial correctness of (asilof) graph programs. The pre- and post-
conditions of the calculus are nested graph conditions @ifiressions, a formalism for specifying
both structural graph properties and properties of labéls.show that our proof system is sound
with respect to GP’s operational semantics and give exagilis use.

1. Introduction

Rule-based transformations of graph-like structures are ubiquitousnipuwer science. Applications
of graph transformation to programming languages and software enigigpéssiude the semantics and
implementation of functional programming languages [26, 27], the specificatid analysis of pointer
structures [3, 2, 33], the semantics of the Unified Modelling LanguageZl]7and the semantics and
analysis of model transformations [36, 9, 5, 15].

Applications to the semantics of languages and the analysis of systems natisslyhe question
of how to formally verify properties of graph transformation systems. temeéyears, a number of
verification approaches have emerged which typically focus on setsaphgransformation rules or
graph grammars [32, 4, 20, 6, 10, 19].

*This author is grateful to be supported by a scholarship of the Engigesmith Physical Sciences Research Council.
tAddress for correspondence: Department of Computer SciemeeUmiversity of York, Deramore Lane, York, YO10 5GH,
United Kingdom
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Graph transformation languages such as PROGRES [34], AGG [35]hd(#a] and GrGen [8],
however, provide control constructs on top of graph transformatitas for practical problem solving.
To give a simple example, consider the problem of reversing the directitie @dges of an input graph.
This requires two loops in sequence: the first applies as long as possib&ewhich reverses an edge
and marks it as reversed (to ensure termination), the second applieggaasi@ossible a rule which
removes the auxiliary edge mark.

The challenge to verify programs in practical graph transformation layegulaas, to the best of our
knowledge, not yet been addressed. A first step beyond the vedifiaaf plain sets of rules has been
made by Habel, Pennemann and Rensink [11] by constructing the weakesnditions of so-called
high-level programs. These programs provide constructs such asrg&d composition and as-long-
as-possible iteration over sets of conditional graph transformation riifes.authors adopt Dijkstra’s
approach to program verification: one calculates the weakest pridoonfr a program and its post-
condition, and then needs to prove that the program’s precondition impliasehleest precondition.
High-level programs fall short of practical graph transformation laggs though, in that they cannot
calculate with labels (or attributes), a capability which is indispensable for miaph algorithms. For
example, computing the shortest path between two nodes requires one tarecang add distances
(edge labels). Another drawback of the approach of [11] is thatrfagrams with loops, the generated
weakest precondition is infinite.

In this paper we present an approach for verifying programs in thghgoeogramming language
GP [28, 22], an experimental nondeterministic language for high-leebl@m solving in the domain of
graphs. GP is based on graph transformation rules and has a simple agdtagmantics, to facilitate
formal reasoning about programs. The core of GP consists of justémstructs: single-step application
of a set of rules, sequential composition, branching and looping. OareHzalculus assumes that the
conditions of branching statements and the bodies of loops are sets diausdule schemata rather
than arbitrary programs.

Instead of adopting the weakest-precondition approach to verificatierfpllow Hoare’s seminal
paper [16] and devise a calculus of syntax-directed proof rulespaf system aims at human-guided
verification and the compositional construction of proofs, assisted by han&al theorem prover. This
is in line with work on program verification for languages such as Javal@®7, 25].

The pre- and postconditions of our calculus Breonditions nested graph conditions in the sense of
Habel and Pennemann [10], extended with expressions as labelssagithasnt constraints for specify-
ing properties of labels. For example, the E-condiidr® @) | x * x = y) expresses that there exists
two nodes labelled with some integersandy such thatz> = y. Such an assertion cannot be finitely
expressed with the conditions of [10]. To demonstrate the problem withemsmpler property, con-
sider the E-conditiodl( & | type(x) = int) which requires the existence of a node labelled with some
integer. To specify this with a condition in the sense of [10], we would needctade all integers in
the label alphabet (violating that paper’s requirement that label alphatefinite) and then resort to the
infinite condition

(@)VIO)VI@)VI@)VI@)V...

The rest of this paper is organised as follows. We briefly review somenpnaries in Section 2,
graph transformation in Section 3, and graph programs in Section 4. Fajjais, we present E-
conditions in Section 5, and then use them to define a proof system for &tinis6, where its use will
be demonstrated by proving properties of graph colouring programSedtion 7, we formally define
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two transformations of E-conditions used in the proof system, then in Sectom [@ove the axiom
schemata and inference rules sound in the sense of partial correetitbsgspect to GP’s operational
semantics. Finally, we conclude in Section 9.

This paper is an extended version of the conference paper [31hgafildl proofs, and further exam-
ples.

2. Graphs, Assignments, and Substitutions

Graph transformation in GP is based on the double-pushout approacteiaielling [13]. This frame-
work deals with partially labelled graphs, whose definition we recall below. c@dhsider two classes
of graphs, “syntactic” graphs labelled with expressions and “semantqhg labelled with (sequences
of) integers and strings. We also introduce assignments which translaéetsyigraphs into semantic
graphs, and substitutions which operate on syntactic graphs.

A graphover a label alphabét is a systenG = (Vg, Eq, sa, ta, la, ma), whereVg and Eg are
finite sets ofnodes(or verticey andedges s, tq: Eq — Vi are thesourceandtarget functions for
edges/q: Vo — Cis the partial node labelling function amd; : E« — C is the (total) edge labelling
function. Given a node, we writels(v) = L to express thal;(v) is undefined. Graply is totally
labelledif /¢ is a total function. We writ€/ (C) for the set of all totally labelled graphs ow&randg(C, )
for the set of all graphs ovét.

Unlabelled nodes will occur only in the interfaces of rules and are nagessthe double-pushout
approach to relabel nodes. There is no need to relabel edges aaithayvays be deleted and reinserted
with different labels.

A graph morphisny: G — H between graph& and H consists of two functiongy : Vg — Vi
andgg: Eq — Eg that preserve sources, targets and labels; thagisgr = gy osa, tgogr = gvota,
mpy o gy = mg, andly(g(v)) = lg(v) for all v such that;(v) # L. Morphismg is aninclusionif
g(z) = x for all nodes and edges It is injective(surjectivg if gy andgg are injective (surjective). Itis
anisomorphisnif it is injective, surjective and satisfiég (gv (v)) = L for all nodesv with i (v) = L.

In this cas& and H areisomorphic which is denoted byr =~ H.

We consider graphs over two distinct label alphabets. Graph prograch&-onditions contain
graphs labelled with expressions, while the graphs on which programatepse labelled with (se-
guences of) integers and character strings. We consider graphes fofstitype as syntactic objects and
graphs of the second type as semantic objects, and aim to clearly sepassdetrels of syntax and
semantics.

Let Z be the set of integers and Char be a finite set of characters. We fix lealpbabetl =
(Z U Char)™ of all non-empty sequences over integers and character strings.

The other label alphabet we are using consists of expressions sxrtodhe EBNF grammar of
Figure £, where Varld is a syntactic classf variable identifiers. We writ€(Exp) for the set of all
graphs over the syntactic class Exp.

Each graph irG(Exp) represents a possibly infinite set of graph&;ii). The latter are obtained
by instantiating variables with values frofh and evaluating expressions. Assignments a partial

1This grammar and those in the following sections are ambiguous, as wetazencerned with concrete syntax in this paper.
If necessary we use parentheses to disambiguate expressiong@anpso
2\We use the non-terminals of our grammars to denote the syntactic cldssesgs that can be derived from them.
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Exp = (Term| String) [~ Exp]

Term = Num| Varld | Term ArithOp Term
ArithOp = H KT

Num =[] Digit {Digit}

String = " {Chai '™’

Figure 1. Syntax of expressions

functiona: Varld — £. Given an expressios, an assignment is well-typedfor ¢ if it is defined for

all variables occurring ir and if for each termtl @ ¢2 in e, with @ in ArithOp, we havex(x) in Z for

all variablesx occurring int1 @ ¢2. In this case we inductively define the valefe € £ as follows. If

e is a numeral or a sequence of characters, tfeis the integer or character string represented.bly

e is a variable identifier, thea® = a(e). Otherwise, ife has the fornmt; @ ¢ with @ € ArithOp and
t1,t € Term, there™ = t{ &z t5 wheredy is the integer operation representeddbyFinally, if e has
the form¢_e; with ¢ € Termu String ande; € Exp, thene® = t%e{ (the concatenation of the sequences
t* andey).

Given a graphz in G(Exp) and an assignment that is well-typed for all expressions i@, we
write G* for the graph inG(L£) that is obtained frondz by replacing each labelwith e® (note thatG*
has the same nodes, edges, source and target functidfis #sg: G — H is a graph morphism with
G, H € G(Exp), theng® denotes the morphistws;, g%) : G* — H.

A substitutionis a partial functiors: Varld — Exp. Given an expressian o is well-typedfor e if
for each termt; © ¢ in e, with & € ArithOp, we haver(x) € Term for all variable identifierg in t; @t
for which ¢ is defined. In this case, the expressidnis obtained frome by replacing every variable
for which o is defined witho (x) (if o is not defined for a variable, thenx” = x). Given a grapl in
G(Exp) such that is well-typed for all labels irz, we write G for the graph inG (Exp) that is obtained
by replacing each labelwith ¢°. If g: G — H is a graph morphism between graphgjifExp), then
g° denotes the morphisfy,, 9%): G° — H°.

Given an assignment : Varld — L, the substitutiorns, : Varld — Exp inducedby o maps
every variablex to the expression that is obtained frar(x) by replacing integers and strings with their
syntactic counterparts. For exampleqifx) is the integer 23, thea,, (x) is 23 from the syntactic class
Num. Consider another exampleqifx) is the sequencs, a, bc , wheres6 is an integer and andbc are
strings, therr, (x) = 56_."a” "bc”. Note that for any variable, and any two well-typed assignments
o, a forx, oq(x)* = a(x).

3. Graph Transformation

We briefly review the model of graph transformation underlying GP, théldepushout approach with
relabelling [13]. Our presentation is tailored to GP in that we consider griagh £), and rules in which
the interface consists of unlabelled nodes only.

Aruler = (L + K — R)is a pair of inclusiondf — L and K — R, whereK consists of
unlabelled nodes only, antl and R are totally labelled graphs oveél. GraphK is theinterfaceof r.
Intuitively, an application of- to a graph will remove the items ih — K, preservel(, add the items in
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R — K, and relabel the unlabelled nodesAn Given a graplG in G(L£), an injective graph morphism
g: L — G is amatchfor r if it satisfies thedangling condition no node ing(L) — g(K) is incident to
an edge inG — g(L). In this case> directly derivesghe graphH in G(£) that is constructed frorr as
follows?:

1. Remove all nodes and edgegjiil) — g(K).

2. Add disjointly all nodes and edges frafh— K, keeping their labels. Fere Er — Ex, sg(e) is
sr(e)if sp(e) € Vg — Vi, otherwisegy (sr(e)). Targets are defined analogously.

3. Foreach nodein K, I (gy(v)) becomeggr(v).

We writeG =, 4 H (or justG =, H) if G directly derivesH as above.

Figure 2 shows an example of a direct derivation. The rule in the uppersrapplied to the left
graph of the lower row, resulting in the right graph of the lower row. Fapicity, we do not depict
edge labels and assume that they are all the same. The node identifier® inathé rule specify the
inclusions of the interface. The middle graph of the lower row is an intermetiatdt (omitted in
the above construction). This diagram represents a double-pushihiet @ategory of partially labelled
graphs ovel_.

— 2 ( ) — (:g :)
Figure 2. A direct derivation

To define conditional rules, we equip rules with predicates that resttecosmatches. Aonditional
rule ¢ = (r, P) consists of a rule and a predicat& on graph morphisms. Given totally labelled graphs
G, H and amatcly: L — G for ¢, we writeG =, , H (or justG =, H) if P(g) holds and> =, ;, H.
For a set of conditional ruleR, we writeG =% H if there is somey in R such thalG =, H.

4. Graph Programs

We briefly review GP’s conditional rule schemata, program syntax, @adtsral operational semantics.
We also give an example program that computes a graph colouring, in tordeake clear how the
programming language and its features work. Further technical detailexamaples can be found in
[28, 29].

3See [13] for an equivalent definition by graph pushouts.
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4.1. Conditional Rule Schemata

Conditional rule schemata are the “building blocks” of graph programspgram is essentially a list
of declarations of conditional rule schemata together with a command segtencontrolling their
application. Rule schemata generalise graph transformation rules as a#doidithe previous section,
in that labels can contain (sequences of) expressions over parawfatgrs integer or string. Figure 3
shows a conditional rule schema consisting of the identiietige followed by the declaration of formal
parameters, the left and right graphs of the schema which are gragtiip), the node identifiers, 2,

3 specifying which nodes are preserved, and the keywaed e followed by a rule schema condition.

bridge(a,b,x,y,z: int) atb

1 2 3 1 2 3

where not edge(1, 3)

Figure 3. A conditional rule schema

In the GP programming system [22], rule schemata are constructed witlplaicabeditor. Labels
in the left graph comprise only variables and constants (no compositessiqus) because their values
at execution time are determined by graph matching. The condition of a rudenscls a Boolean
expression built from arithmetic expressions and the special predi¢géewhere all variables occurring
in the condition must also occur in the left graph. The predieage demands the existence of an edge
between two nodes in the graph to which the rule schema is applied (and idljypsed in negated
form). For example, the expressiant edge(1, 3) in the condition of Figure 3 forbids an edge from
node 1 to node 3 when the left graph is matched. The grammar of Figurenési¢tiie syntax of rule
schema conditions, where Term is the syntactic class defined in Figure 1.

BoolExp = edge’(Node’,/ Node’) | Term RelOp Term
| not BoolExp | BoolExp BoolOp BoolExp

Node =  Digit{Digit}

RelOp = =N\ | > | <=

BoolOp = and|or

Figure 4. Syntax of rule schema conditions

Conditional rule schemata represent possibly infinite sets of conditioaphdgransformation rules
in the sense of the previous section. A rule schdma> R with conditionT" represents conditional
rules((L* «+ K — R*), I'*Y), whereK consists of the preserved nodes (whichiirare unlabelled)
andI'*9 is a predicate on graph morphisms L% — G (see [28, 29]). Thus, applying the rule schema
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(L = R,T') to agraph& in G(£) amounts to:

1. choosing an assignmemnt Varld — L,

2. choosing a graph morphispn: L® — G that satisfies the dangling condition with respect to
(L + K — R%),

3. checking the conditioh ¢, and

4. applying(L* <+ K — R®) with matchg, in the sense of Section 3.

For example, the upper rows of Figure 5 show the rule schemage of Figure 3 (without con-
dition) and its instanceridge®, wherea(x) = 0, a(y) = a(z) = 1, a(a) = 3 anda(b) = 2. The
condition ofbridge evaluates undex to a predicate which is true for a matglof the left-hand graph
if and only if there is no edge from(1) to g(3). The lower rows of Figure 5 show an application of
bridge® by a graph morphism satisfying the predicate.

a+b

Schema: @i.@_b,@ N

Figure 5. Application of the rule scherbaidge using instantiation

4.2. Abstract Syntax

Figure 6 gives the abstract syntax of graph programs. A prograsisterof a number of declarations of
conditional rule schemata and macros, and exactly one declaration of a omainand sequence. The
rule schema identifiers (category Ruleld) occurring in a call of cateBatgSetCall refer to declarations
of conditional rule schemata in category RuleDecl (see Section 4.1). éedategory is not defined in
the textual syntax because rule schemata are declared graphically in fregg®mming system [22].

Macros are a simple means to structure programs and thereby make themeauable. Every
program can be transformed into an equivalent macro-free progyarepbacing macro calls with their
associated command sequences (recursive macros are not allovweialldws us, when defining the
semantics of GP, to consider programs as command sequences.
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Prog =  DecKDecl}
Decl = RuleDecl MacroDecl| MainDecl
MacroDecl =  Macrold '=" ComSeq
MainDecl = main’'=" ComSeq
ComSeq = Com{’; Com}
Com =  RuleSetCall MacroCall
| if ComSegthen ComSeq ¢1se ComSeq]
| ComSeq '’
| skip | fail
RuleSetCall := Ruleld’{’ [Ruleld {", Ruleld}]’}’
MacroCall =  Macrold

Figure 6. Abstract syntax of GP

A branching commandf C then P else @ is executed on a gragh by first executing the program
C ond. If C can produce a graph, then the progr&mis executedn the input graphG. On the other
hand, if all executions of’ on GG end in failure, then the progra is executed, again, on the input
graphdG.

The commandskip andfail can be expressed through the other commands (see Section 4.3),
hence the core of GP includes only the call of a set of conditional ruknsata (RuleSetCall), sequential
composition (’;'), the if-then-else statement and as-long-as-possibléde(d’).

4.3. Structural Operational Semantics

GP’s formal semantics [29] is given in the style of structural operatioaadamtics (see for example
[24]). Inference rules inductively define a small-step transition relatioon configurations In our
setting, a configuration is either a command sequence together with a grstpngj@aph, or the special
element fail:

— C (ComSegx G(L)) x ((ComSegx G(L£)) UG(L) U {fail}).

Configurations in ComSeqgG (L) represent unfinished computations, given by a command sequence
that remains to be executed and a state (a graph), while graghg jrare proper results of computations.
In addition, the element fail represents a failure state.

Each inference rule in Figure 7 consists of a premise and a conclusianageg by a horizontal
bar. Both parts contain meta-variables for command sequences and,grdyeineR stands for a call in
category RuleSetCalt), P, P’, Q stand for command sequences in category ComSeq¢-aitl stand
for graphs inG(L£). Given a rule set calR, we writeG % if there is no graph such thalG = H.
Meta-variables are considered to be universally quantified. For exathpleule [Call]sos should be
read as: “For allR in RuleSetCall and aliz, H in G(£), G = H implies(R, G) — H.

Figure 7 shows the inference rules for the core constructs of GP. \ite wt and —* for the
transitive and reflexive-transitive closures-ef A command sequendg finitely failson a graphG ¢
G(L) if (1) there does not exist an infinite sequeneg G) — (C1, G1) — ... and (2) for each
terminal configurationy such thatC, G) —* ~, v = fail. (A configurationy is terminalif there is no
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configurationy such thaty — §.) In other words( finitely fails on G if all computations starting from
(C, G) eventually end in the configuratidail.

[Calll]sosagg% [Canz]sos%
P, G H PG
[SeQ]sos <P,<Q G>> <<P/ Q,> > [Seflz]sos <Pé2 G>> <Q7 >

-
Setlsos T s o

f] (C,G) =T H
1SOS (if C'then P else Q, G) — (P, G)

] C finitely fails onG
21SOS (if C'then P else Q, G) — (Q, G)

,G) =T H P finitely fails onG
[Alap,|sos <p§ T ; (P, H) [Alap,]sos (P, é> —~q

Figure 7. Inference rules for core commands

The meaning of the remaining GP commands is defined in terms of the meaning of¢heom-
mands, see Figure 8. We refer to these commands@gedcommands.

[SKip|sos (skip, G) — (null, G)
wherenull is the rule schem@ = ()
[Faillsos (fail, G) — ({}, G)
[If3]sos (if C then P, G) — (if C then P else skip, G)

Figure 8. Inference rules for derived commands

The meaning of graph programs is summarised by a semantic furfcfiowhich assigns to every
programP the function] P] mapping an input grap&' to the set of all possible results of runnifgon
G. The result set may contain, besides proper results in the form of grdphspecial value. which
indicates a non-terminating or stuck computation. Feenantic functiorf_]: ComSeq— (G(£) —
20(£)UiL} s defined by:

[PIG = {He€gG(L)| (P, G) i>H} U {L | P can diverge or get stuck froid }

“We write [P]G for the application of P] to a graphG.
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where P can diverge fronG if there is an infinite sequendd®, G) — (P1, G1) — (P2, Ga) — ...,
and P can get stuck frond7 if there is a terminal configuratiof@, H) such tha( P, G) —* (Q, H)
(where the rest progra) cannot be executed because no inference rule is applicable).

A program can get stuck only in two situations: either it contains a sub@nogt C' then P else ()
whereC' both can diverge from some graph and cannot produce a propst fresn that graph, or it
contains a subprograid! where the loop’s body3 possesses the said propertyaf

4.4. Example Program: Node Colouring

We discuss an example program to familiarise the reader with GP’s feaflings program will be a
running example throughout the remainder of the paper.

A colouring for a graph is an assignment of colours (integers) to nodes such thattinee and
target of each non-looping edge have different colours. The anogslouring in Figure 9 produces a
colouring for every integer-labelled input graph, recording coloarscacalled tags. In general, a tagged
label is a sequence of expressions separated by underscores.

main = init!; inc!

init(x: int)

ORET
1 1

inc(i,k,x,y: int)

=0 - Y

Figure 9. The programolouring and two of its executions

The program initially colours each node with 0 by applying the rule schiamaas long as possible,
using the iteration operatot”. It then repeatedly increments the target colour of edges with the same
colour at both ends. Note that this process is nondeterministic: Figurev@sdh@ executions, one
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producing a colouring with two colours, and one producing a colouring thite colours.

It is easy to see that wheneveslouring terminates, the resulting graph is a correctly coloured
version of the input graph. This is because the output cannot contadgawith the same colour at
both of its incident nodes, as thenc would have been applied at least one more time. Also, it can be
shown that every execution of the program terminates after at most aatjgatimber of rule schema
applications [28].

5. Nested Graph Conditions with Expressions

We introduce nested graph conditions with expressions (or E-conditiosgecify graph properties in
the pre- and postconditions of graph programs. E-conditions extencegitedhconditions of [10] with
expressions for labels, and assignment constraints that restrict tles Waéu can be assigned to variables.
E-conditions can be considered as finite representations of (possibiyehfiets of nested conditions.

Definition 5.1. (Assignment constraint)

An assignment constraing a Boolean expression conforming to the grammar in Figure 10. We require
that the arguments of the operators<, >= and <= belong to the syntactic class Term and that the
arguments of and\= belong to either Term, String, or Exp (Termu String). (See Figure 1 for the
definition of Term, String and Exp.) O

ACBOOIEXp Exp RelOp Expnot ACBooIEXp
| ACBooIExp BoolOp ACBooIExp

| type '( Exp’) =" Type | true

ReIOp = ,=’ | 1\=7 ‘ ’>’ ’ 7<7 | ’>=’ ’ 7<=’
BoolOp = and]|or
Type = int | string | tagged

Figure 10. Syntax of assignment constraints

Given an assignment constrainind an assignment well-typed for all expressions i, the valuey®
inB = {tt, £} is inductively defined as follows. § = true, theny® = tt. Let now~ have the form
e1 > eg With > € RelOp andey, ea € Exp. Ifpxis=or \=, then(e; > e2)® = tt (resp.ff) if e = €9,
otherwise(e; 1 e9)® = £f (resp.tt). If >is >, andey, e2 are in Term, then the value ¢, > e2)® is
the truth value ot{ > eg. (The cases for whert is <, >=, and<= are analogous.)

If v = not v, with y; € ACBOoOIEXp, themy® = tt (resp.£ff) if v{ = ££f (resp.tt). If y =y ® 2
with 1,72 € ACB0ooIExp and® € BoolOp, them® = 4{ &g 7§ wheredg is the Boolean operation
onB represented by.

Finally, if v has the formtype(e) = t with e € Exp andt € Type, them® = tt if t(e®) = ¢, where
the function t £ — Type is defined by:

int ifl eZ,
t(l) = ¢ string if { € Char,
tagged otherwise.
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Example 5.1. (Assignment constraint)
Consider the assignment constrajnt a > b and b \=0 and type(a) = int. Leta; = (a — 5,b +— 1)
andag = (a+— 3,b+— 0). Theny™* = tt andy*? = ff. O

Note that variables in assignment constraints do not have a type petlige,the variables in GP
rule schemata. Ratheatype can be used to restrict the type(s) that a variable may be instantiated to.
A substitutiono : Varld — Exp is well-typed for an assignment constrainif it is well-typed for

all expressions iny, and if for eacht; < ¢o with 1,42 € Term andx € RelOp— {=,\=}, we have
o(x) € Term for all variable identifiers in t;,ts for which o is defined. In this case, the assignment
constrainty? is obtained fromy by replacing every variable for which o is defined witho (x).

Notation 5.1. (type)
We allowtype(x1,...,x,) = int to be short fotype(x;) = int and ... and type(x,) = int. [

Definition 5.2. (E-condition)

An E-conditionc over a graphP is of the form true of(a | v, ¢’), wherea: P < C'is an injectivé
graph morphism withP,C' € G(Exp), v is an assignment constraint, andis an E-condition over
C. Boolean formulae over E-conditions ovEBryield E-conditions over?, that is,—c andc; A ¢y are
E-conditions ovelP if ¢, ¢, co are E-conditions oveP. O

All substitutionso are well-typed for: = true. In this case we defin€ = true. A substitutiornr is
well-typed forc = 3(a | v, ) if it is well-typed for the graphs im, for v, and forc’. In this case the
application ofo to ¢ is definede” = 3(a” | 47, ()7).

The satisfactionof E-conditions by injective graph morphisms between graphg(if) is defined
inductively. Every such morphism satisfies the E-condition true. An injegffaph morphism: S <
G with S, G € G(L) satisfieghe E-condition: = J(a: P — C' | 7, ), denoteds |~ ¢, if there exists an
assignment that is well-typed for all expressions i C, v and is undefined for variables present only
in ¢, such thatS = P%, and such that there is an injective graph morphjsr@’® — G with goa® = s,
v* = tt, andq | (¢')?>. Here,o,, is the substitution induced hy, which we require to be well-typed
for all expressions ir’. If such an assignment and morphismy exist, we say that satisfiesc by a,
and writes |=,, c. Figure 11 summarises=,, ¢ (assuming thaf® = tt).

§=p <> (o
AZ%#M%

Figure 11. Satisfaction of an E-condition

Remark 5.1. (Induced substitutions)
In the definition of satisfaction, we apply an induced substitutigrio the nested E-conditiori, before
checking that the morphisisatisfies it. This is necessary to enforce equal assignment of variaates th
appear only in the assignment constraint in different parts of the nesting.

O

SWe restrict to injective morphisms since GP is restricted to injective matching.
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For brevity, we write false foritrue,3(a | ) for 3(a | ~, true), 3(a, ') for I(a | true, ), andv(a |
v, ") for =3(a | v, =¢’). In our examples, when the domain of morphismP — C can unambiguously
be inferred, we write only the codomain. For instance, an E-conditiof() — C,3(C < C”)) can
be written as3(C, 3(C")), where the domain of the outermost morphism is the empty graph, and the
domain of the nested morphism is the codomain of the encapsulating E-corglitiorphism.

An E-condition over a graph morphism whose domain is the empty graph ise@f®o as ark-
constraint We later refer to E-conditions over left- and right-hand sides of rulerselia as-app-
conditions

Example 5.2. (E-condition) 1

The ITZ-condi-tionv( @l—k>®2 | x>y, 3(_81—1‘»(@2)) (which is an E-constraint) expresses that every pair
of adjacent integer-labelled nodes with the source label greater tharrgee l&bel has a loop incident
to the source node. The unabbreviated version of the condition is as $ollow

1
30 = @@, | x>y, A @D, — 81_1;@2 | true, true)).
]

We write¥ and¥,, in place ofi= andj=,, respectively, when the satisfaction relation does not hold for a
morphism and E-condition.

A graphG in G(£) satisfies an E-condition, denoted | ¢, if the morphismi: 0 < G satisfies
c. (Note that graphs will only ever satisfy E-constraints.)

The satisfaction of Boolean formulae over E-conditions is defined indaigtivWe haves = —c if
sF ¢ ands = cAdif s = cands | d. Given an assignment, we haves =, —cif s ¥, ¢, and
sFEa cNdif s =4 cands =, d.

Given a substitutior, we define(—c¢)? = —¢?, and(c A d)? = ¢ A d° if o is well-typed forc and
¢, d respectively.

Notation 5.2. (Unconstrained variables)

For simplicity, we omit labels of nodes and edges in E-conditions that arenattamed variables. We
leave it implicit that in each graph of the E-condition, each such variablersanly once and does not
occur in any assignment constraint. O

By this convention, we can simplify the E-condition in Example 5.2 to:

V(®~Q, | x>y,3(81—>®2)).

Here, it is implicit that the non-looping edge in both graphs are labelled byatine sariable (but nat
ory), and the looping edge in the nested graph is labelled by another, distiiattlea In Example 5.2,
k and1l are used, respectively, but the choice of symbols is unimportant.

6. A Hoare Calculus for Graph Programs

We present and discuss a system of partial correctness proof aul&Pf in the style of Hoare [1],
using E-constraints as the pre- and postconditions. We demonstrate tbkthiseroof system in two
examples.
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Definition 6.1. (Partial correctness)

A graph programP is partially correctwith respect to a preconditionand a postconditiod (both of
which are E-constraints), if for every gragh € G(£), G = c implies H |= d for every graphH in
[P]G. O

Recall that[_] is GP’s semantic function (see Section 4.3), &RJG contains all graphs resulting
from executing progran® on graphG. Note that partial correctness of a prograéhtoes not entail that
P will terminate on graphs satisfying the precondition.

Given E-constraints, d and a progran®, a triple of the form{c} P {d} expresses the claim that
P is patrtially correct with respect to preconditierand postconditionl. Our proof system in Figure
12 operates on such triples. As in classical Hoare logic [16, 1], we @sprtof system to construct
proof trees, deriving the desired triple by application of the axiom scheamatéanference rules. We let
¢, d, e, inv range over E-constraint®, () over arbitrary command sequences;; over conditional rule
schemata, an® over sets of conditional rule schemata.

reapp ] e o7 (e} MONPPH App(R)} R {falsel

{c} m {d} ... {c} rn {d}
{c} {r1,...,rn} {d}

{inv} R {inv}

[ruleset] {inv} R! {inv A ~App(R)}

']

{c} P{e} {e}Q{d}
{c} P; Q {d}

{} P{d'}
{c} P {d}

[comp]

[cons]c = ¢ d=d

{cAAPP(R)} P{d}  {cA—APP(R)} @ {d}
{c} if R then P else Q {d}

[if 1]
Figure 12. Partial correctness proof rules for GP’s corernamds

Two transformations — App and Pre — are required in some of the proaf (idemal constructions
are given in Section 7). Intuitively, App takes as input a®Beatf conditional rule schemata, and trans-
forms it into an E-condition specifying that at least one rule scherfiaigapplicable. Pre constructs the
weakest precondition such thaiGf = Prg(r, ¢), and the application af to G results in a grapl#, then
H = c. The transformation Pre is informally described by the following steps:ofh) f disjunction of
right E-app-conditions, accounting for the possible ways in whiahnd the right-hand side of the rule
schemar might overlap, (2) convert the right E-app-condition into a left E-appelition (i.e. over the
left-hand side of"), (3) nest this within an E-condition that is quantified over every possibtemiar
(accounting also for its applicability).

The proof rules share a number of similarities with their counterparts for mtiperprogramming
languages, but there are also a number of important differences.xidme guleapp] is as basic to our
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proof system as the assignment axiom is to the proof systems of [16, H.[rlilleset] rule requires
each rule schema to be considered in turn, since one is nondeterministicadlgncturing program
execution. Our [if] rule considers the applicability of the guaf, a set of rule schemata, rather than
the evaluation of some Boolean expression. We also have the axiom pjpwnédaich allows one to infer
postconditions of failing programs. The [comp] rule should be familiar fromventional Hoare calculi.
The iteration rule [!] is our analogue to classical loop rules; it requirestomprove that the E-condition
inv is an invariant of the loop body. Like other proof systems, we have a futerssequence [cons],
which can strengthen preconditions and weaken postconditions. Thiegu&es one to prove that the
E-conditionsc = ¢ andd’ = d are valid, which, as in conventional Hoare logic, has to happen outside
of the proof system.

Two of the proof rules deal with programs that are restricted in a partiaagar both the conditiod”
of a branching commaniif C then P else Q and the bodyP of a loop P! must be sets of conditional
rule schemata (whereas GP allows arbitrary programs). This restrictguldlge is complete though in
that every computable function on graphs (with untagged labels) is compytsaime program. This is
proved in [12] for a similar language.

When constructing a proof tree for a program containing derived conmsnane can simply replace
each derived command with the corresponding core command (see Fjganel 8se the proof rules
of Figure 12. However, it is more convenient to have proof rules dealirectly with the derived
commands, and we give these in Figure 13.

[skip] [fail]

{c} skip {c}

{true} fail {false}

{c ANApp(R)} P {d}

(-] {c} if R then P {d}

cN\N—-App(R) = d

Figure 13. Partial correctness proof rules for GP’s ders@amands

Example 6.1. (Colouring)

Our first example proves a property of thel ouring program of Figure 9. We prove thatdiblouring
is executed on a graph which satisfies the following precondition, then r@ph gesulting from that
execution will satisfy the postcondition:

Precondition —3( @ | not type(a) = int)
or “every node is integer-labelled”

Postcondition V( ®,,3( @, | a=b_c and type(b, c) = int))A—=3( @—k»@ | type(i,k,x,y)=1int)
or “every node label is an integer with a colour attached to it, and nodegllimketeger labelled
edges have distinct colours”

Note that the property we are proving does not guarantee that nodes lmkstring-labelled edges
will have distinct colours. Indeed, they might not, since the rule schematalefuiring operate only
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on integer labelled nodes and edges. If we strengthened the preconditiequire that input graphs
contain only integer-labelled edges, then it would be possible to have a mioeead postcondition (we
do not show this here to keep the example simple).

A proof tree proving the above for oablouring program is given in Figure 14. The precondition,
program, and postcondition form the triple at the root of the tree.

[ruleapp]
[cons]

']

{Prg(init,e)} init {e}
{e} init {e}
{e} init! {e A -App({init})}

[ruleapp]

[cons] {Pre(inc,d)} inc {d}

{d} inc {d}

[cons] — [ : .
{c} init! {d} {d} inc! {d A =App({inc})}
[comp] {c} inith: inc! {d A —App({inc})}

¢ = =3(@®@ |nottype(a)=int)

d = V(®,3(®,|a=bcandtype(b,c)=1int))

e = V(®@,3@,]type(a)=1int) V I( @, | a=b_c and type(b,c) = int))

App({init}) = -3(® | type(x) - int)
~App({inc}) = —I(@~E | type(i,k x,y) = int)
Pre(init,e) = V(®,|type(x) = int,

V(®,®,I®, @, type(a) = int)
VI(®,®,|a=bcandtype(b,c)=int))
AV(®,, 3 @, | type(x.0) = int)
VI( @, | x-0=b_c and type(b, c) = int)))
Pre(inc, d) = Y @l—l{»@z‘ type(i,k,x,y) = int,
v( @1_1('@2@)3, 3(@1—1{'@2693 | a=b_c and type(b, c) = int))
/\V(@l‘k’@za 3(2] x-i=b_c and type(b,c) = int))

/\v(@l—k'@zv 3(@1‘1{'@2! y-i+1 =b_c and type(b,c) = int)))

Figure 14. A proof tree for the prograselouring of Figure 9

The side conditions arising from applications of [cons] are satisfied|msvi(we omit the trivial
cases):

e = Preinit,e). For Préinit,e) to be satisfied, for every integer labelled node in the graph, it
must be the case that every other node is labelled with either a single intemeirdgeger and a colour

(the second conjunct of the nested E-condition can be disregardedtsenode will always be integer
labelled). The E-condition guarantees that every node is integer labelled, so the whole implication must
be valid.
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d = Pre(inc, d). For Préinc, d) to be satisfied, for every pair of integer-labelled coloured nodes linked
by an integer-labelled edge, it must be the case that any node outsidepithisust be labelled with an
integer and a colour (the second and third conjuncts of the nested pdréahsregarded sincg y, and

i can only be integers). The E-conditidrguarantees that every node will be labelled with an integer
and a colour, so the whole implication must be valid.

¢ = e. Fore to be satisfied, every node must either be labelled with a single integer, degeliand a
colour. The E-conditiom guarantees that every node is integer labelled, so the whole implication is valid.

e A -App({init}) = d. Ford to be satisfied, every node must be labelled with an integer and a
colour. The E-conditiorm guarantees that every node is labelled with a single integer, or an intaar an
colour; but-App({init}) guarantees that no node is labelled with a single integer. Hence, evezy nod
is labelled with an integer and a colour, and the whole implication is valid. O

Example 6.2. (2-Colouring)

We now consider the prograg+colouring, given in Figure 15. The program checks whether a non-
empty and connected input graph is 2-colourable and, if this is the casegttpcolours its nodes with 0
or 1. If the graph is not 2-colourable, then the program returns the graph unmodified. The program
first picks an arbitrary integer-labelled node and colours it with 0, leefepeatedly colouring uncoloured
nodes adjacent to coloured nodes with either 0 or 1, as appropriaté,. theyrogram attempts to find
two adjacent nodes with the same colour (an illegal colouring); if it can filcti ®odes, every colour is
removed.

Note that on an empty input graph, the rule schei@se and hence the whole program will fail.
Also, if the input graph is disconnected, the program will check 2-calaility only for one of the
graph’s connected components. These restrictions could be lifted lythsiprogram as the body of an
as-long-as-possible loop, but we prefer to keep matters simple in this example

We prove that if2-colouring is executed on a graph which satisfies the following precondition,
then any graph resulting from that execution will satisfy the postcondition:

Precondition —3(¢.) | type(i,x) = int)
or “no integer-labelled node is coloured”

Postcondltlonaﬁﬂ(@ | type.(i,x) = i1.1t) Y (V(@l | type(i,x) = int, 3(@1 |i=0ori=1))A
ﬁa(@'@ | type(av 1, X, Y) = lnt))
or “either the precondition holds, or every integer-labelled node with aucdias colour O or 1
and no two nodes linked by an integer-labelled edge have the same colour”

A proof tree proving the above for o@rcolouring program is given in Figure 6. The E-constraints
used as the assertions are given in full in Figure 17.

The side conditions arising from applications of [cons] ang fife satisfied as follows (we omit the
trivial cases):

¢ = Prgchoose, f). The first conjunct of the nested part of Rtkeoose, f) is clearly satisfied by any
graph. The second conjunct demands that there is not a distinct mmd&édel that is integer-labelled
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main = choose; colour!; if illegal then undo!

colour = {colourl, colour2}

choose(x: int) illegal(a,i,x,y: int)
colouri(a,i,x,y: int) undo(i,x: int)

B0 - @Q@@

@@ )

Figure 15. The program®-colouring

and tagged with a colour. E-conditienexpresses that no integer-labelled node is coloured, hence the
whole implication is valid.

e = Prgcolourl,e). For Précolourl,e) to be satisfied by a graph, for every possible match of
colouri, nodel must be coloured or 1, and every coloured node outside of the match must be coloured
0 or 1. Additionally, the colour that nod2will be assigned after the application@flouri must also be

0 or 1 (which it will be if i is assigned t6 or 1, by 1-i in the assignment constraint). The E-condition

is satisfied if and only if every coloured integer-labelled node has céloui, so the whole implication
must be valid.

e = Pre(colour2, e). Analogous to the above.

f = e. Foreto be satisfied, every coloured integer-labelled node in the graph muskduged with0 or

1. If fis satisfied, then one such node is colourgout there are not two coloured integer-labelled nodes,
i.e. only one node is coloured and it has coléuHence, every coloured node is correctly coloured, and
the implication is valid.

—App({undo}) = ¢V d. Valid since-App({undo}) andc are the same E-conditions.

e N -App({illegal}) = cV d. Valid sincee A =App({illegal}) forms the same E-condition &s
O



SubtreeA SubtreeB
{c} choose; {colourl, colour2}!; if illegal then undo! {c¢V d}

[comp]

where Subtredl is:

[ruleapp] [ruleapp]
[cons] {Pre(colourl,le)} iolourl {e} [cons] {Pre(colour2,16)} <2:olour2 {e}
[ruleset] le} colouri {e} {e} colour2 {e}

{e} {colourl, colour2} {e}
{e} {colourl, colour2}! {e A =App({colourl, colour2})}

[ruleapp] M

{Prg(choose, f)} choose {f}

[Cons][comp] {c} choose {f} [cons] {f} {colouri, colour2}! {e}
{c} choose; {colourl, colour2}! {e}
and Subtree3 is:
[[rajleapp] {true} undo {true}
[cons] “ {true} undo! {-App({undo})}

{e NApp({illegal})} undo! {c Vv d}
{e} if illegal then undo! {c V d}

[if2]

Figure 16. A proof tree for the prograrcolouring of Figure 15
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c = —EI(@ | type(i,x) = int)

d = (V(@1|type(i,x)=int,§l(@1] i=0ori=1))
Aﬁﬂ(@—i@ | type(a,i,x,y)=int))

e = V(@l| type(i,x) =int,5|(@l| i=0ori=1))

f = 39 | type(x) = int)
A=3(6) @) | type(d, 3,%,y) = int)

—App({colourl, colour2})
= —EI(@—a>® | type(a,i,x,y) = int)

/\ﬂEI(@:—@ | type(a, i, x,y)=1int)

App({illegal}) = 3I(E)=G) | type(a,i,x,y) = int)
—-App({undo}) = —EI(@ | type(i, x) = int)
Prgchoose, f) = V( ®1| type(x) = int,

3((),6 | type(y) = int)
\/E|(®1\ type(x) = int))
NEEHEE 6 | type(i, ,y,2) = int)
Aﬂﬂ(@l@ | type(0, j,x,2z) = int)
Aﬂﬂ(@l@ | type(i,0,y,x%) = int)))

V(@;»@Z | type(a, i,x,y) = int,

(@l—a»@@ | type(k,z) = int, 3 @—i@)@ |k=0ork=1))
/\V!typelx -1nt3@—>®\1—00r1—1))

AY( @1—"‘»@2|type (1-i,y) = int, 3( @1—>@2|1 i=0or1-i=1)))

V(=) | type(a, i,%,y) = int,

(=), | type(k,z) = int, I((D=3),6H) [ k=0o0rk=1))
/\v(@?a_@ | type(i,x) = int, 3( @<—@|1—Oor1—1))
v(@fa_@ | type(1-i,y) = int, 3( @4—@|1 i=0or 1-i=1)))

Prgcolourd,e)

<

Prgcolour2,e) =

z

<

>

Figure 17. The E-conditions used in the proof tree of Figure 6
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7. Transformations of E-Conditions

In this section we give formal definitions of the transformations App and &vé prove that they are
correct. They are adapted from the basic transformations of nestddiona in [10].

We begin in Section 7.1 by stating and proving basic lemmata about the satisfialdiityomditions
to which substitutions have been applied (these lemmata are used in later).ptadiection 7.2, we
define the transformation App and prove that it is correct. In Section &3Huild up to a definition
and correctness proof of transformation Pre, breaking the trandiormsteps into the intermediate
transformations A and L.

7.1. Substitution and Satisfiability Lemmata

In this subsection, we state and prove two lemmata about the satisfiability afidiioas to which
substitutions have been applied. These lemmata are later applied in the @ssgutoofs of App and
Pre.

Lemma 7.1 states that if a morphism satisfies an E-condition by a particularmassigrihen it will
also satisfy that E-condition after a substitution indifdeyl some (or all) of the assignment’s mappings
is applied (and vice versa). Intuitively, this is because the induced sulmstiteplaces variables with
syntactic representations of the labelgithat the assignment would have mapped them to.

Lemma 7.2 states that if a morphism satisfies an E-condition to which a substitusibedrmapplied,
then it also satisfies the E-condition before the application of that substitutituitively, this is true
since one can define a new assignment that incorporates the effeat sfibistitution.

Lemma 7.1. (Induced substitutions that preserve satisfiability)
Lets: P — G be an injective morphism, whereis a well-typed assignment artd € G(L). Letc
be an E-condition, and’ be an assignment such thatifis defined for a variable theno/(x) = «a(x).
Then,

s Eq c ifandonly if s o 7«

Proof:
Case onec = true. We have that”~ = true¢’ = true. All morphisms satisfy true.

Casetwoc = 3(a: P — C | v,¢). In both the “only if” and “if” directions, the argument follows from
the definition ofo,,, and the fact that for every variabtethat« is defined ong/(x) = a(x). Together,
we get thair, (x)* = a(x) = o/(x). That is, the substitution ultimately does not change the lab&l in
obtained by the application of assignmento a label. O

Corollary 7.1. Lets: P* — G be an injective morphism, whereis a well-typed assignment defined
only for variables inP, andG € G(£). Letc = 3(a: P — C'| v, ') be an E-condition oveP. Then,

s = ¢ implies s = ¢7=.

Substitutions induced by assignments are defined in Section 2.
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Lemma 7.2. (Discarding a substitution preserves satisfiability)
Given an injective morphism: S — G with S, G € G(£), an E-conditiorr, sets of variable identifiers
X,Y,an assignment: X — £, and a substitutior: Y — EXp,

s Eq ¢ implies s =4, ¢

wherea, : X — L is defined for all variables in X as follows:

(x) = a(x) if o(x) is undefined,
A o(x)*  if o(x) is defined.

Proof:
By structural induction.

Induction basisLet ¢ = true. Then we have =, tru¢Z ands =, true. All morphisms satisfy true.
Induction hypothesisThe statement holds faf.

Induction step.Letc = J(a: P — C | ~,¢). Assume that =, ¢’. Then we havé+?)* = tt and
an injective graph morphism: (C?)* — G with g o (a”)® = s. Now consider, from the statement,
an assignment which has as its domain all the variables occurridgah and~. For all variablesx
whereo(x) is undefined (i.e. variables which are not substituted and thus remaimpies€), we
havea,(x) = «a(x). For all variablex whereo (x) is defined (i.e. variables which are substituted), we
havea,(x) = o(x)®. Intuitively, a, has the net effect of applying the substitutiorfwhere defined)
before applying the original assignment This assignment gives u*> = (P7)%, C% = (C?)?,
y% = (v7)* = tt, and thus an injective graph morphigm C* — G with ¢’ 0 a® = s andq’ = q.
By assumptiong’ = ((¢/)?)?«, and so there is an assignmentsuch thay’ =, ((¢/)7)7~. We assume
without loss of generality that’ contains at least the mappings @f Lemma 7.1 and the induction
hypothesis together yield =, . Clearly,a; has at least the mappings @f; using this and the
definition of =, we yieldq’ |= (¢/)?»=. Putting everything together we get the result that,, ¢. O

7.2. Applicability of Sets of Rule Schemata

In this subsection, we define and prove correct the transformationwpph takes as input a set of rule
schemata, and returns an E-condition expressing the weakest prtprey graph must satisfy for at
least one rule schema in the set to be applicable to it (i.e. at least one rateachn be applied to the
graph). For a rule schema to be applicable to a graph, there must be enunity to apply it without
violating the dangling condition, and without violating any constraints the rilersa imposes over the
instantiation of variables. The definition of App makes use of two intermediatsftianations, Dang
andr, which respectively address these requirements.

In Lemma 7.3, we define and prove correct the transformation Dang, wékels as input a rule
schema, and returns as output an E-condition which is satisfied by morptiismsthe left-hand side
of the rule) that violate the dangling condition.
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In Lemma 7.4, we define and prove correct the transformatjavhich takes as input the left-hand
side and condition of a rule schema, and returns an E-condition which iBeshtly morphisms (from
the left-hand side of the rule) that satisfy the rule schema condition.

Lemma 7.3. (Dangling condition)
There is a transformation Dang such that for all rule schematnd all injective graph morphisms
q: L® — G with o a well-typed assignment,

q = —Dang) if and only if ¢ satisfies the dangling condition.
U

The idea of transformation Dang is to generate a disjunction of E-condigats, one expressing
some context (e.g. an edge incident to a node which would be deletedwbkich if present around the
image ofL in ¢, would imply that the morphism is violating the dangling condition.

Construction. Define Dangr) = \/,.,3a, where the index sefl ranges over allinjective graph
morphismsz: L — L® such that the pai{K’ — L, a) has no natural pushdutomplement, and each
L® is a graph that can be obtained frdimby adding either (1) a loop labelled ky (2) a single edge
between distinct nodes labelled kyor (3) a single node and a non-looping edge incident to that node
labelled byx andy respectively; in all caseg, y are variables distinct from each other and all labels in
L. If the index set4 is empty, then Dang@) = false.

Example 7.1. Consider the rule schema&duce = < = @1 ). Applying Dang toreduce
yields the following E-condition:

Dangreduce) = \/,c43a x x
- @0, F>D) VI @0, G D)
Vi@, @+0>®) Vi @0, O F0L0)

(OO, B8

Proof:

Only if. Assume thayy = —Dangr). By definition of = and the construction of Dang, we have
q ¥ Dangr) = \/,c 4 Ja where A ranges over morphisms: L — L% such that{(X — L,a) has
no (natural) pushout complement. Eakh is obtained fromZ by adding either (1) a loop, (2) an edge
between distinct nodes, or (3) a new node incident to a hon-looping(edgéhe three possible ways a
single edge can be added#d. It follows that there is no assignmemtand morphisng’: (L@)a' — G
with ¢’ ca® = ¢. Hencey satisfies the dangling condition, since no node in the imagetbft would be
deleted byr, is incident to an edge i&¥ outside of the match, i.e. the image of some edge ffom- L
ing.

"We equate morphisms with isomorphic codomainsdse finite.
8A pushout isnatural if it is simultaneously a pullback [13].
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If. Assume thaty: L“ — G is a match forr, i.e. it satisfies the dangling condition. Then the pair
(K* — L%, q) has a pushout complemeit € G(£). We assume that there is anc A such that
(K < L,a) has no pushout complement, and some assignadestich that; =, Ja, then derive

a contradiction. This assumption gives us a morphigm (L#)® < G with ¢ 0 a® = ¢. The
assignmenty’ is the same a& other than for having mappings for the additional variablesn(i.e.

a variable for the extra edge to thoselinand possibly a variable for an extra node). Constf@gt
(see Figure 18) as a pullback QL@)O/ — G < D. By the universal property of pullbacks, there
is a morphismk® — (K’)* such that the resulting diagrams commute. By the pushout-pullback
decomposition(1) + (2) has a decomposition into pushoiit and(2), and(K® < L% a®') has a
pushout complement. Clearly, before the application of assignnaeatsd o/, the pair of morphisms
(K — L,a) has a pushout complementdiiExp). A contradiction. There is no assignmeritsuch that

q Fa V 4e 4 Ja = Dangr), i.e. the result thag = -Dangr).

ao‘i (1) \E

(L)<= (k)

o
G <— D

Figure 18. Diagram chasing for a contradiction

O

Lemma 7.4. (Rule schema condition)
There is a transformation such that for all rule schemata= (L = R) with rule schema conditiof,
and all injective graph morphisms L% — G with « a well-typed assignment,

q o 7(L,T) if and only if ¢ and« satisfy the rule schema conditidh -

The idea ofr is to encode the rule schema condition within both the assignment constraints of
E-conditions (the morphisms of which are simply the identity morphism)pnd the Boolean connec-
tives between them. The exception is #ige predicate, which is concerned with the context/oin
the graph; this is encoded by an E-condition, the morphism of whichLhasits domain, and. as its
codomain but with the extra edge demanded by the predicate.

Construction.We definer (L, T") inductively (see Figure 4 for the syntax of rule schema conditions). If
I" is empty, thenr(L,T") = true. IfI" has the formt; < ty with ¢1,¢2 in Term andx in RelOp, then
7(L,T) = 3(L < L | t; e t2). If I has the formmot b with b in BoolExp, thenr (L, T") = —7(L, ). If

I" has the fornmb; @ by with by, by in BoolExp and® in BoolOp, thenr (L, I") = 7(L, b1) ®&a,v 7(L, b2)
whered,, v is A for and andV for or. Finally, if I' is of the formedge(n1,n2) with ny, ne in Node, then
7(L,T) =3(L — L') whereL’ is a graph equal td, except for an additional edge whose source is the
node with identifiem,, whose target is the node with identifies, and whose label is a variable distinct
from all others in use.
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Example 7.2. Consider the left-hand side of a rule scheina: @l—°>@2 and the rule schema condition
I' = a<bandb < c. Applying the transformation to L. andTI" yields the following E-condition:

7(L,T) = 7(L,a<b)A7(L,b<c)
= A@*0,~ @0, [2<0)"I(@>®, @O, |p<o)

Proof:
Only If. Assume thay =, 7(L,T"). We consider each of the forms tHatan take (using the grammar
defined in Figure 4).

Suppose thal is an empty rule schema condition. Trivially, we have thaind « satisfy the rule
schema conditiof'.

Suppose thaf’ has the form¢; < ¢ with ¢1,%5 in Term and< in RelOp. The assumption and
construction together give usl=, 3(L — L | t; < t) and(t; > t2)® = tt. Since the assignment
constraint is identical to the rule schema condition, we havegthatd « satisfy the rule schema condi-
tionT.

Suppose thal' has the formedge(ni,n2) with ny,no in Node. The assumption and construction
together give ug =, 3(L < L’) whereL’ is obtained fromZL by adding an edge from the node with
identifiern, to the node with identifiens. There is a morphisnp : (L')* — G with ¢/o(L — L')* = q.
Hence the image af is such that it satisfies the rule schema condifiainat demands the existence of
an edge fronm; to ns.

Suppose thal' has the formnot b with b in BoolExp. The assumption and construction together
give usq =, —7(L,b). By the definition of=,, we haveg ¥, 7(L,b). By induction,q anda do not
satisfy the rule schema conditibnHence the rule schema conditiasat b is satisfied.

Suppose finally thdt has the fornmb; & by with by, bs in BoolExp and® in BoolOp. The assumption
and construction together give gg=, 7(L,b1) ®av 7(L, b2). By the definition of=, and®, v/, we
have thaty =, 7(L,b;) and (resp. ory =, 7(L, bs). Itis clear from induction thag and« satisfy the
rule schema conditiof.

If. Assuming thaty and « together satisfy the rule schema conditibnone can construct a similar
argument in the other direction yielding=,, 7(L,T"). 0

Proposition 7.1. (Applicability of a set of rule schemata)
For every sefR of conditional rule schemata, there exists an E-constrain{ Rpmsuch that for every
graphG € G(£),

G = App(R) if and only if there is a grapl/ such thatG =% H.
O

The transformation App generates an E-constraint that can only beeshtigfia graple if at least
one of the rule schemata froR can directly derive a grapH from G. The idea is to generate a disjunc-
tion of E-constraints from the left-hand sides of the rule schemata, ussiongeo handle restrictions
on the applicability of the rule schemata (i.e. the dangling condition when deletohgsnand the rule
schema condition restricting possible assignments).
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Construction. Define Apg{}) = false and App{ri,...,r»}) = app(ri) V ... vV app(r,). For a
rule schema; = (L; + K; — R;) with rule schema conditiofr;, define appr;) = 3(0 — L; |
., "Dangr;) A 7(Li, I';)) wherew,, is an assignment constraint restricting the types of variables in
to the corresponding types in the declarationofFor example, if; corresponds to the declaration of
inc (see Figure 9), thef,, would be the assignment constraiype(i, k, x,y) = int.

Example 7.3. Consider the rule schentraduce(a, b, c : int) = ( @l—°>@ = (@, ) withrule schema
conditionI" = a < b and b < c. Applying App toreduce Yields the following E-condition:

App({reduce}) =  appreduce)
= 30— @O, |type(ab,c)=int,
—Dangreduce) A 7( @f»@z, )
= @l—c>@2 | type(a,b,c) = int,

(I E5D,) A I G0, A - OO )

N OSOLD) A A OSB)
ANI(@S®, [2<b) A3 @O, | v<c))

Proof:
Defineig: 0 — G.

Only if. Assume that? = App(R). By the definitions of= and App, we have that; = App(R) =
appr) V...V appr,) wherer; € R. By assumption, there is a rule schema (L; + K; — R;)

in R with rule schema conditiof;, and a well-typed assignmeatsuch thatic =, app(r;) = 3(a:

0 — L; | v,,—Dangr;) A 7(L;,T;)). There exists an injective graph morphigm L — G with
qoa® =1iqg, q = -Dangr;)?> andq = 7(L;,I';)°>. By Lemma 7.2, we have = —Dangr;) and

q = 7(L;,T;). By Lemma 7.3, the dangling condition is satisfiedgand by Lemma 7.4; satisfies the
rule schema conditiofi. Putting everything together, and by the definition of rule schema application,
is a match for-;. Hence there is a direct derivatich=-,, , H for some grapt{ € G(L). Sincer; € R,

we get the result that there exists a grdplsuch thatlG =% H.

If. Assume that there exists a graphsuch that? =% H. Then there is a rule schemac R such
thatG =, H. Hence there is some instantiation of the variables imandI" by an assignment that
gives a matchy : L — G for r andI'* = tt. By Lemma 7.4, we have =, 7(L,I"), and then
with Lemma 7.1 get; = 7(L,T")?~. The morphismy is guaranteed to satisfy the dangling condition
since direct derivations are constructed from two natural pushouith MWmma 7.3 this gives us that
g = —Dangr). Since« is defined only for variables i (variables appearing ifi must also appear
in L, by the definition of rule schema conditions), we get from Corollary 7.1 ¢hgat -Dangr)?=.
By the definition ofl=, we getq = —-Dangr)?> A 7(L,T")?». From the construction we have that
only restricts the instantiations of variables to the types that were declargedanclearly we have that
& = tt. Bringing this all together, we have thaf =, appr) = 3(0 — L | v, -Dandr) A 7(L,T))
sinceq o () — L*) =iq. As apfr) is a disjunct of AppR), we geti =, App(R), and by definition
of |=, we get the result tha¥ = App(R). 0
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7.3. Transformation of Postconditions into Preconditions

In this subsection, we define and prove correct the transformatiowRia) takes as input a rule schema
and a postcondition (in the form of an E-condition), returning an E-comtitiat if satisfied by a graph,
guarantees that any graph resulting from the application of the rule schidireatisfy the postcondition.
The transformation Pre makes use of two intermediate transformations, A arddh are adapted from
the basic transformations of nested conditions described by Habel anémann in [10].

In Proposition 7.2, we define and prove correct the transformation ishitansforms an E-constraint
into an E-app-condition over the right-hand side of a rule schema.

In Proposition 7.3, we define and prove correct the transformation ighathansforms an E-app-
condition over the right-hand side of a rule schema into an E-app-condiiemtioe left-hand side of
that same rule schema.

Remark 7.1. In the transformations that follow, there are statements of the forfd® — G = J(a:

P < C|~,d)for P,C € G(Exp) andG € G(L), i.e. the domain of is some instantiation of the graph
in the domain ofz. For the sake of simplicity, if such a morphism does satisfy such an E-camdite
often assume to be the assignment by which the E-condition is satisfied,si.e:, 3(a | v,c). We
can do this without loss of generality, since we can always “overloagith mappings for variables not
present inP but present irC, v, without affecting the graph resulting from the applicatiomab P. [

Remark 7.2. E-conditions, by definition, contain arbitrary expressions as the labétenfgraphs. We
can however restrict ourselves (without loss of generality) to coriegi&-conditions in which nodes
and edges are labelled only by (sequences of) distinct variables,tsmgariables can be equated with
the original expressions in the assignment constraint. For example, tbadtion 3( @ ) can be
rewritten as the equivalent E-conditiaif @, | a = x*x). ' O

Proposition 7.2. (From E-constraints to E-app-conditions)

Let ¢ be an E-constraint, the graphs of which are labelled by (sequencdistifict variables. There is
a transformation A such that for all rule schemata: (L = R) sharing no variables with®, and all
injective graph morphisms: R* — H with H € G(L£) anda a well-typed assignment,

h = A(r,c) ifandonly if H = c.
0

The idea of A is to consider a disjunction of all possible “overlappingsRo&and the graphs of
the E-constraint. Since distinct labels on the syntactic level (Exp) can teniised to equal labels
on the semantic levek]), the transformation applies substitutions to variables to facilitate overlappings
of nodes and edges on the syntactic level. Intuitively, an E-conditiontiresfrom A asserts that the
property described by the E-constraint still holds, but makes this asseiitioin the context ofR.

Construction.All graphs used in the construction of the transformation belong to the Gl&e). For
E-constraints: = 3(a: ) — C | v, ) and rule schemats, define Ar,c¢) = A'(igr: § — R, c). For

°It is always possible to replace the label variables ivith new ones that are distinct from thoserin
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injective graph morphisms: P — P’, and E-conditions oveP,

Al(p,true) = true
A(p,3(a: P=Clyd)) = \/ \ 30177A (s ()).
ogEY eces

The second line of the equations relies on the following. Construct theoptish) of p anda (see
Figure 19) leading to injective graph morphismis P’ — C’ andq: C < C’. The finite double
disjunction\/ .5 \/ .. ranges first over substitutions from which we define to contain (1) the empty
substitution®, and (2) all possible substitutions of the fofay, ~ £1,...,a, — SBx) where eachy;

is a distinct label variable frond’ that is not also inP or P’, and eachg; is some label fromP’ (if

a node or label in?’ is tagged, them; may be a portion, or the entirety of, that sequence). For each
o € X, the double disjunction then ranges over every surjective graph morghi€”’)? — E such that
b=eco(a')? ands = e o ¢ are injective graph morphisms. The sgfis the set of such surjective graph
morphisms for a particular, the codomain of which we consider up to isomorphism. Given a surjective
graph morphisne; : (C')?* — FE4, E; is considered redundant and is excluded from the disjunction if
there exists a surjective graph morphisgn (C’)?2 — FEj5, such thatF, 2 FE4, and there exists some

o € ¥ such thatty = E;.

/
P<7p P

0/47

4700

JE

Figure 19. Construction of A

Note that the special form of the substitutions3nmeans that for any € ¥, P? = P, and
(P")? = P'. Note also thab ands are jointly surjective; the idea is that eaghcontains an image of
both P’ andC?, with the substitutions equating labels on the syntactic level and thus facilitesng
which nodes and edges are overlapping (needed for expressinthbawle schema interacts with the
original E-constraint).

The transformations AA’ are extended for Boolean formulae over E-conditions in the usual way,
that is, Ar, —~c) = =A(r,c), and Ar,c1 A ca) = A(r,c1) A A(r, c2) (@analogous for A).

Example 7.4. Letr = init (See Figure 9), and

=V(@®,,3( @, | type(a) =int) VI( (@, | a=b_c and type(b, c) = int)),

That is, a substitution that replaces no variables.
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that is, “every node is labelled by either an integer or a sequence of twgeinste For brevity in what
follows, we definec) = 3( @), | type(a) = int) andcy = 3( @), | a =Db_c and type(b,c) = int).
With the definition ofv, we yield:

=-3(@,, =) A cy).

Now, applying transformation A te ande, we get:

A(r,c) = A3 @, ¢ A )
= A= ¢9 . 3@, ¢, A ch))
= (Voes Veesg (b |7, A (s, (=) A =ch)7)))
= @ ‘1 .1®2’A §1,7¢ A c3))
\/EI(1<—> 1, Al (s9, (=) A _|C/2)(a»—>x,0))))
0, ©,@, ~A(s1,¢)) A -A(s1,5))
\/3( | LA (52, (¢])E7%0) A=A/ (59, (c)) (B%0))))
ﬁa. 1@3’%@ (a) = int, A’(s11, true))
3(1@2 | a=b_c and type(b, c) = int, A’(s11, true)))

. ype x.0) = int, A’(s21, true))
—3( 9 . x_0 =b_c and type(b, c) = int, A’(s91, true))))

= . zlc)
. @ | type(a) = int) V 3(1@2| a=b_c and type(b, c) = int))
M@, €,
(‘ type(x.0) = int) V 3(1] x_0 =b_c and type(b, c) = int)),

whereX = {(), (a — x.0), (a — x), (a — 0)} (here,() denotes the empty substitution that replaces no
variables) and the particular instances of diagrams from the construét®nane as in Figure 20. Note
that both(a — x) and(a — 0) can only yield redundant E-conditions and hence are excluded from
the disjunction above. Note also that becatise’, contain only identity morphisms (and hence their
codomains do not introduce new variables), each instancé(e;‘,A;) fori,j € {1,2} ranges over only
one substitution: the empty substitution.

The E-app-condition arising from (&, ¢) can be read as follows: “(1) every node that is not in
the image of the right-hand side ofis either labelled by an integer or a sequence of two integers,
and (2) every node that is in the image of the right-hand sideisfeither labelled by an integer or a
sequence of two integers”. Note that we could already apply simplificattdhsatage (e.g. the disjunct

. | type(x-0) = int) can safely be discarded since it is unsatisfiable). However, we will wlt u
the end of this running example (i.e. once (Pre) is given) before applying any, so that the effects of
the transformations can be followed more easily. O

We remark that in the worst case, transformation A can result in a factdoiatup of the size of an
E-condition. One can construct an example where graptadC in Figure 19 both have nodes and
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S11 S21

@9(®)

Figure 20. Instances of diagrams from the construction’of A

n edges, and there are more thdrpairwise non-isomorphic grapls that satisfy the conditions of the
construction of Proposition 7.2.

In order to prove Proposition 7.2, we first prove a lemma stating that am#iomn ¢ over P can
be shifted along an injective graph morphigrwhich has as its domaiff. The proof is very similar to
the proof of Lemma 3 in [10]. On the one hand, it is simplified since we considlgrinjective graph
morphisms in our E-conditions, but on the other, it is made more complicated bgpleation of graphs
over the syntactic and semantic label alphabets.

Lemma 7.5. (Shifting E-conditions over morphisms)
Let P € G(Exp). Letc be an E-condition true, af(a: P < C | v, ) in which the nodes and edges
of each graph (except those alsofth are labelled by (sequences of) distinct variables. For all injective
graph morphismg : P — P’ andp” : (P')* — H whereP’ € G(Exp), H € G(£), anda is a
well-typed assignment,

p” = A'(p,c) ifand only if p” o p® |= c.

Proof:
We proceed by structural induction, taking a similar approach to the pfaafroma 3 in [10].
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Induction basisLet ¢ = true. Then we havg” = A’(p, true) = true andp” o p® = true. All morphisms
satisfy true.

Induction hypothesisThe statement holds for E-conditieh

Induction stepLetc = 3(a: P — C' | v, ). For clarity, Figure 21 provides a diagram of the construc-
tion before and after the application of assignment

Only if. Assume thap” = A’(p,c). We assume without loss of generality that it does savhigee
Remark 7.1), i.ep” =0 A'(p,¢) = Vyex Veee, 3(b: P = E |47, A'(s: C7 — E,(')7)). There
exists at least one € X and onee € ¢, such thap” =, 3(b | v7,A'(s, (/)?)). By definition of =,
there exists an injective graph morphigth: £ — H with p” = ¢” o b*. Defineq = ¢" o s* and
p' = p” o p%, both of which are injective since injectivity is closed under composition. @struction,
a’ op = qoais apushout. Since only replaces variables introduceddh and thus also present in
C’ but notP or P/, we have thaP? = P, (P')? = P’, andq” o a” = (a’)? o p is a pushout. Clearly,
applyinga to the morphisms of this pushout results in a pushout of graphsdiaiy. By construction,
we haveb = eo (a')? ands = e o ¢°. With everything together, we derive théto p* = p' = ¢’ o (a”)*
and get’ = p" o p® =4 F(a” [ 17).

Now, we want to apply the induction hypothesis, but first must rewrite teeragtion into an ap-
propriate form (without substitutions). The assumption giveg’us= A’(s: C? — E, (¢/)7)7>; with
Lemma 7.2 we yield)” = A’(s, (¢/)?). By the constructiong is undefined for variables not present
in C. SinceC? forms the common domain of the pushout in the construction’othe E-condition
generated by As, (¢)7) is the same as the E-conditio(&: C' — X, ¢')? where intuitively, X is the
graph obtained fron¥ by reversing the substitution. More specifically,is the graph with the property
X = E>whered/ is defined for all variables as follows:

/(%) = a(x) if o(x) is undefined,
TN s if o) is defined.

Using Lemma 7.2 again, we havé: X «— H = A'(z: C — X, ). Now, we can use the induction
hypothesis to yield:” o 2% = ¢/. SinceX? = E, X® = E®, and since that’ is “embedding” the
effect of o, we can bring the substitution back to the syntactic level to yjéld s* |= (¢/)°.

We havep” o p® =, 3(a? | 77) andq’ = ¢" o s* = (¢/)?. The latter is satisfied by an assignment
that has at least the mappingsc®@f(since the domain of’ is (C?)®, and since from the assumption,
((+")7)?= must evaluate tat under some assignment), o= ((¢/)?)?~ by Lemma 7.1. Together, this
gives usp” o p* =, 3(a? | 47, ()?). By Lemma 7.2 and the definition ¢, we get the result that

p"op* = 3aly,d).

If. Assume thap” o p* |= c. We assume without loss of generality that it does selfgee Remark 7.1),
i.e.p” o p® =, c. Definep’ = p” o p®, which is injective since injectivity is closed under composition.
By the definition of=,, there exists an injective graph morphisifi — H with (C* — H)oa® = p'.
Consider substitutions € X where(v?)* = tt, and injective graph morphismgé: (C?)* — H with

¢ o(a”)* = p'andq’ | ((¢)7)7~ (we assume that has mappings for additional variables introduced by
o, see Remark 7.1). Atleast one such morphism is guaranteed to existdiis tlife empty substitution).
From the construction yield pushoui3 o a® = (a’)? o p with pushout objectéC’)?. Clearly, applying
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p—L p
(a')” a’
b( (C)L—C7
&
S
FE

Figure 21. Instantiating the construction with an assigmme

« to the morphisms yields pushouts of graphs frG(). By the universal property of pushouts, each
pushout has a unique morphigm ((C")?)* — H with p” = ho ((a')?)* andq’ = ho (¢°)*. Consider

y o x = h, a surjective-injective factorisation &f with = : ((C")?)* — X surjective,y : X — H
injective, X € G(£), and injective morphisms= z o (¢?)* andu = z o ((a’)?)“. Now, we argue that
for whicheverX € G(£) is yielded by the factorisation, the construction yields a grapha G(EXxp)
such thatt® = X,

Suppose that is an injective morphism, and hence an isomorphism since it is also surjddative,
((C")7)> = X. The construction yields an isomorphism, ile~ C?. It follows thatE® = X. Suppose
now thatz is non-injective, i.e. some nodes (edges)df )~ are merged. Sincg u are injective, the
images of( P')* and(C“)® in X must overlap. Hence, a variable #f and another variable i@ must
both be instantiated by to the same label if. Yet these variables may be distinct and hence the labels
they are in cannot be merged at the syntactic level. However, for notyemg X, such a variable in
C, sayx, can be replaced with a corresponding variabl@iby o such thaiv(x) = o(x)*. Now, with
P’ andC sharing at least one label, the construction yields surjective morpkisndy — E where
E 2 C? andE® = X. The construction gives us= e o ¢? andb = eo (a’)?. It follows thate®, ¢”, s*,
andb® are equal ta, y, t, andu up to isomorphism.

In all casesp” = ho ((a')?)* h = ¢" o e®, andb® = e o ((a')?)* yield p” = ¢" o b*, i.e.

P Fa Voes Veee, 3(b | 77). In each case we can apply a similar argument to that in the “Only if”
section of the proof to obtaigi’ = A’(s, (¢')?) from the induction hypothesis.

We havep” o V,ex Veee, 3(0 | 77) andq” = A'(s, (¢')7). The latter is satisfied by an assign-
ment that has at least the mappingsxqanalogous to the reasons at the end of the “only if” section), so
q" = A'(s, (¢')7)7« by Lemma 7.1. Together, this givespiS=o V5 Vee., 3(0 |17, A (s, (¢)7)) =
A/(p, c). Finally, we use the definition df to yield the result thap” = A’(p, c).

When considering Boolean formulae over E-conditions, the statement fofi@m the definition
and induction hypothesis. O
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Proof:
Proof of Proposition 7.2.

From the construction of Proposition 7.2 and the statement of Lemma 7.5, we getA(r, c¢) iff
hi=A(ig,c)iff hoi Eciff ig: 0 — H = ciff H = c. 0

We now define and prove correct the transformation L, which transfamis-app-condition over
R (the right-hand side of a rule schema) into an E-app-condition bv@he left-hand side of a rule
schema). Intuitively, one can think of the transformation as applying thesallema in reverse to the
graphs of the E-app-conditions.

Proposition 7.3. (Transformation of E-app-conditions)

There is a transformation L such that, for every rule schema (L < K < R) with rule schema
conditionI’, every right E-app-condition for r, and every direct derivatio =, ,;, H with g: L® —
G andh: R — H whereG, H € G(L£) and« is a well-typed assignment,

g Eao L(r,c) ifandonly if h =, c.
U

Construction. All graphs used in the construction of the transformation belong to the Glg=Ssp).
L(r, ¢) is inductively defined as follows. Let(k, true) = true and L, 3(a | v,¢")) = 3(b | v,L(r*, )

if (K — R, a) has a natural pushout compleméntwith * = (Y <— Z — X) denoting the “derived”
rule by constructing natural pusho(). If (K < R,a) has no natural pushout complement, then

L(r,3(a]|~,)) = false.
1(

r*: (Y «——Z7—>»X)

r:(] «——- 4>R

The transformation L is extended for Boolean formulae in the usual waysthidr, —¢) = —-L(r, ¢),
and L(r,c1 A ea) = L(r,e1) AL(T, c2).

Example 7.5. Continuing from Example 7.4, we get:

L(r,A(r,c)) = YV(®,— ®,0,
I ®, ®, | type(a) = int)
VI(®,®,|a=bcandtype(b,c) = int))
M@, @,
(@, | type(x-0) = int)
VI(®, | x-0=Db._c and type(b, c) = int)).

where the diagrams arising from applications of the construction are &s igiFigure 22.
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H—0O0—

HO—0O—®
GH——0O—

H— 00—

Figure 22. Instances of diagrams from the construction of L

Our proof of the proposition is similar to the proof of Theorem 6 in [10]. Aslier, the proof is
simplified by the restriction to injective graph morphisms in E-conditions, but issmaate complicated
by the separation of graphs over the syntactic and semantic label alphabets

Proof:
We prove the proposition by structural induction.

Induction basisLet ¢ = true. By construction, we get(k, ¢) = L(r,true) = true. We havey =, true
andh |, true. All morphisms satisfy true.

Induction hypothesisAssume that the proposition holds for E-conditi&n
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Induction step.For a right E-app-condition of the form= 3(a | 7, ¢'), the construction distinguishes
two cases. Let ands denote the injective graph morphisfis— L andK — R, respectively. Lef1)
and(2) denote the natural pushouts of the construction,(@jtland(2)* denote the same diagrams but
after the application of the well-typed assignmerto the morphisms (as in Figure 23). Clearly, for a
given assignment, (1)* and(2)® are unique (up to isomorphism).

L <> K <> R Lo <% go <t o
b\ﬁ 2) \L (1) La ba£ 2)° i (1)° iaa
Y < 7Z — X Y= 2% — X“

Figure 23. Instantiating the construction with an assigmme

Case oneThe morphismsgs, a) have a natural pushout complement. By construction, we havélla |
v,))=3(b|~,L(r*, ) whereb: L — Y andr* = (Y + Z — X).

A. First, we show that given an injective graph morphigm Y — G with ¢’ o b® = g, there
is a decomposition of the pushouts (see Figure 24) which yields the injectiph ghorphismy :
X% — H with goa® = h. Construct the pullback ef andD — G, obtaining the pullback object
F € G(L£). By the universal property of pullbacks, there is a unique graph newph® — F
such that the arising diagrams commute. By the pushout-pullback decompa&tjand(4’) are
pushouts and pullbacks, i.e. natural pushoufs. — F' is injective ash® is injective. Since the
pushout complements of injective graph morphisms are unique up to isomurprsl pushout
(2") is a natural pushout, we get th@t) is equal to natural pusho(®)® up to isomorphism and
F =7

Lo <5 K* <> RY
el @ [ [e
o\ YOl F <> X )
@ wl CONK
G <D ~— H

Figure 24. Decomposing a rule application

Now construct the natural pushogt) of K* < F ands®. By the uniqueness of pushout com-
plements of injective morphismél’) equals(1)® (up to isomorphism). By the universal property
of pushouts, there is a unique morphigm X¢ — H with ¢ o a® = h. By the decomposition
lemma of pushouts, diagraf8’) is also a pushout. Sineg and hence” — D are injective, it
follows thatq is also injective.

B. Given an injective graph morphisgn X < H with ¢ o a® = h, one canyield;: Y* — G
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with ¢’ 0 b* = g by instantiating 1)-(2) into (1)*-(2)®, and decomposing these intt) — (4') as
above, i.e. starting by constructifgf) as a pullback of andD — H.

C. For an assignment whose mappings comprise at least those,dhe induction hypothesis states
thaty : Y* — G =, L(r*,d) ifand only if ¢: X¢ — H =, c. By the definitions of L=,
Lemma 7.1, and the statements above, we have:

g9 FaL(r3(a] ) =30[L0" )

iff v* = tt and there existg': Y* — G such thay o b* = g andq’ = L(r*, )%
iff v* = tt and there existg’: Y* < G such that/ o b = g andq’ =/ L(r*, )
iff v* = tt and there existg: X* < H such thag o «® = h andq =, ¢

iff v* = tt and there existg: X* < H such thay o a® = h andq =, ()7

iff b 3aly,d)

Case two.The morphismgs, a) do not have a natural pushout complement. By construction, we have
L(r,3(a | v,c’)) = false. The problem reduces to showing that,, false iff h =, 3(a | 7,¢). By
the definition of=,, no morphism satisfies false, hence it is sufficient to argue’ttties not satisfy
A(a [ v, ).
Assume that =, 3(a | 7,¢). Then there exists an injective graph morphigmX® — H with
goa® = h. Then, as in case one, the pushout can be decomposed into pudhpaisl(3’). This means
that the morphismsés, a) have a pushout complement, which contradicts the assumption.

When considering Boolean formulae over E-app-conditions, the statéofients from the definition
and induction hypothesis. O

We conclude this section by defining and proving correct the transformBtie, which makes use
of the transformations A and L. Pre transforms a postcondition into a padéaon intuitively by the
following steps: (1) transform the postcondition into an E-app-conditi@r the right-hand side of the
rule schema, (2) transform this into an E-app condition over the left-higledo$ the rule schema, (3)
nest this within an E-constraint quantified over all morphisms flomhich represent a match.

Proposition 7.4. (Transformation of postconditions into preconditons)
There is a transformation Pre such that, for every E-consiraévery rule schema= (L <+~ K < R)
with rule schema conditioli, and every direct derivatio® =, H,

G = Prer,c) implies H = c.
O

Construction.Define Prér,c) = V(0 < L | ~,, (-Dangr) A 7(L,T") = L(r,A(r,¢)))), wherey, is as
defined in Proposition 7.1.

Example 7.6. Continuing from Examples 7.4 and 7.5, we get:
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Prgr,c) = V(®, | type(x) = int,
V(®,®,,(®, ®,]type(a) = int)
VI(®, @, |a=bcandtype(b,c)=int))
AV(®,, 3 @, | type(x.0) = int)
Vv( ®1 | x.0 =b_c and type(b, c) = int))).

Sincer does not delete any nodes, and does not have a rule schema conditgory ) A7 (L, ') = true,
simplifying the nested E-constraint generated by Pre. We can simplify,Rjey hand to yield:

Prer,c) = V( ®1 @2 | type(x) = int, J( @1 @2 | type(a) = int)
V3I(®, ®,|a=bcandtype(b,c)=1int)).

Proof:
Defineic : ) — G. Assume thatz = Pre(r,c¢). Then there exists an assignmensuch thatG =,
Pre(r,c). Thenig o Prer,c) = V(0 < L | ~.,(-Dangr) A 7(L,T') = L(r,A(r,c)))). By the
definition of =, for universally quantified E-conditions, for eveyy L* — G with go () — L*) = ig,
we have thay = —-Dangr)?> A 7(L,I')? = L(r,A(r,c))?>. By Lemma7.2 and the definition of,
we have thay = Dangr) V —=7(L,T") V L(r,A(r, c)).
Suppose thag ¥ L(r, A(r,c)). Theng must satisfy Dan@’) V —7(L,T") meaning thatZ %% (this
conclusion is clear from an examination of Proposition 7.1), i.e. a contradiofithe statement.
Suppose now that = L(r,A(r,c)). From Proposition 7.3 we gét: R* — H | A(r,c). From
Proposition 7.2 we gelf |~ ¢, the result. O

8. Soundness

In this section, we present our main result that the proof rules of oureHogic are sound for proving
partial correctness of graph programs. That is, a graph progtasrpartially correct with respect to a
preconditiore and a postconditiod (in the sense of Definition 6.1) if there exists a full proof tree whose
root is the triple{c} P {d}.

Theorem 8.1. The proof system comprising the axioms and inference rules of Figuresst2ind for
graph programs, in the sense of partial correctness (Definition 6.1). O

Proof:
To prove soundness, we prove that each single proof rule is coyegipealing to the semantic function
[P]G (see Section 4.3). The result then follows by structural induction orf prees.

Let ¢, d, e,inv be E-constraintsP, (Q be arbitrary graph program® be a set of conditional rule
schematay, r; be conditional rule schemata, aod H, G, ', H' € G(L£). Recall that the symbol
denotes a small-step transition relation on configurations of graphs agigprs.

[ruleapp]. Follows from Proposition 7.4.
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[nonapp]. Suppose that = —~App(R). By Proposition 7.1, we get that there does not exist a gfaph
such thatz =% H, or equivalentlyG #. From the inference rule [Callsoswe obtain the transition
(R, G) — falil (intuitively, this indicates that the program terminates but without returaiggaph). No

graph will ever result; this is captured by the postcondition false, whichriagahgor morphism can satisfy.

[ruleset]. Suppose that we have a non-empty set of rule schémata. , r,, } denoted byR, thatG = ¢,
and that we have a non-empty set of graphs, {H € G(£) | G =, H} such that eaclt! |= d (if the
set was empty, then [nonapp] would apply). For this set of graphs t@hempty, at least onec R
must be applicable t&'. That is, there is a direct derivatign = H for some graphH that satisfies
d. From the inference rule [Callsosand the assumption, we gi®|G = {H € G(£) | (R,G) — H}
such that eaclt/ = d.

[comp]. Suppose that' = ¢, [P]G = {G' € G(L) | (P,G) —T G'} such that eacli’ |= e, and
QG = {H € G(£) | (Q,G'Y - H} such that eacltl = d. Then[P; Q]G = {H € G(L) |
(P;Q,G) =T (Q,G") —T H} such that eaclt! |= d follows from applications of the inference rules
[Seq]sosand [Sed]sos

[cons]. Suppose thadl’ = ¢/, c = ¢, d' = d,and[P]G’' = {H' € G(L) | (P,G') —T H'} such that
eachH' = d'. If G |= ¢, we have |= ¢ sincec = ¢. By the assumption, we have for ealthe [P]G
thatH = d'. Fromd' = d, we getH | d.

[if 1]. Case OneSuppose thaf = ¢, [P]|G = {H € G(L) | (P,G) =" H} such that eacli |= d, and
G = App(R). By Proposition 7.1, executin® on G will result in a graph. Hence by the assumption
and the inference rule [[fsos [if R then P else Q|G = {H € G(L) | (if R then Pelse Q,G) —
(P,G) —T H} such that eaclt! |= d.

Case Two. Suppose that? E ¢, [Q]G = {H € G(£) | (Q,G) —* H} such that each
H = d, andG = —-App(R). By Proposition 7.1, executin@ on G will not result in a graph.
Hence by the assumption and the inference rulddfs [if R then P else Q]G = {H € G(L) |
(if R then P else Q,G) — (Q,G) —* H} such that eacli/ = d.

[']. We prove the soundness of this proof rule by induction over the rarrabexecutions oR that do
not result in finite failure. Assume that for any graghsuch thaiG’ |= inv, [R]|G' = {H' € G(L) |
(R,G'Yy — H'} such that eaclil’ = inv.

Induction basisSuppose that’ = inv. In the case thaR cannot ever be applied @& without finite
failure, only the inference rule [Alapsoscan be applied, thati$R!|G = {G € G(£) | (R!,G) — G}.
Since the graph is not changed, trivially, the invariant holdsG.é= inv. Since the execution d® on
G does not result in a grapty; = —~App(R).

Induction hypothesisThere is a configuratiofiR!, G) such thatR!,G) —* H, with the property
that if G |= inv, then we have for eacH in [R!]G = {H € G(£) | (R!,G) —* H} thatH [ inv and
H = -App(R). -

Induction step.Suppose that we haJR!|G = {H € G(£) | (R!,G) — (R!,G) —* H} where
the first small-step transition arises from an application of [Nlags Suppose thatr = inv. Then by
assumption(? |= inv. It follows from the induction hypothesis that ealih|= inv andH = -App(R).

O
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9. Conclusion

We have presented the first Hoare-style verification calculus for digahgraph transformation lan-
guage. This required us to extend the nested graph conditions of Halnelef@ann and Rensink with
expressions as labels and with assignment constraints, in order to de@mdtpowerful rule schemata
and infinite label alphabet. We have demonstrated the use of the calcufurs¥org partial correctness
properties of a nondeterministic colouring program and a program oigeédr 2-colourability. Our
main technical result is that our proof rules are sound with respect t® fGiPhal semantics.

It is an open problem whether the calculus is relatively complete, that igheshior every program
that is partially correct with respect to its pre- and postcondition, theresexoof of this fact within the
calculus when all valid implications=- d of E-constraints are added as axioms. This would correspond
to Cook’s classical result that Hoare logic for imperative programs igivelp complete [7]. In both
cases, the crucial problem is to show that for a given loop and its pakticom the weakest precondition
can be expressed in the assertion language. However, classical tamapieproofs exploit that program
states are mappings from program variables to values, while the statepbffyograms are graphs. We
remark that even in the simpler case of the nested graph conditions of Rebekemann and Rensink, it
is open whether the weakest preconditions of loops can be finitely esgateshis is why in [11], infinite
weakest preconditions are generated for loops.

We want to extend our calculus so that the total correctness of graghapne can be proved. Then,
besides ensuring that a program is partially correct, a proof woulchgtese that all program runs ter-
minate if started from graphs satisfying the program’s precondition. Teeelhis, the proof rule for
loops could be extended by using a termination funcanG(£) — N. The anteceder{tinv} R {inv}
would be strengthened to express thatif= inv andG =z H, thenH = inv and#G > #H. The
proof thatR decreases the measyfenvould happen outside the Hoare calculus, similar to the proofs of
the implications in the consequence rule.

Another topic for future work is to generalise the calculus such that it eamle conditions of
branching statements and loop bodies that are arbitrary subprogramistregth sets of rule schemata.
This may require a substantial strengthening of the assertion languagdema incorporate the finite
failure concept of GP’s semantics.

Finally, we would like to increase the expressiveness of E-conditionslloping Habel and Radke
[14] inintroducing graph variables that represent graphs gendrgteyperedge-replacement systems. It
is shown in [14] that this allows to specify graph properties such as cteuheess and acyclicity, which
are not first-order properties and hence beyond the power of (firétd conditions and E-conditions.

Acknowledgements. We are grateful to the anonymous referees for their detailed and thaligbitfi-
ments which helped to improve this paper.
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