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Abstract

Using GPUs as general-purpose processors has revolutionized parallel computing by providing,
for a large and growing set of algorithms, massive data-parallelization on desktop machines. An
obstacle to their widespread adoption, however, is the difficulty of programming them and the
low-level control of the hardware required to achieve good performance. This paper proposes
a programming approach, SafeGPU, that aims to make GPU data-parallel operations accessible
through high-level libraries for object-oriented languages, while maintaining the performance
benefits of lower-level code. The approach provides data-parallel operations for collections that
can be chained and combined to express compound computations, with data synchronization and
device management all handled automatically. It also integrates the design-by-contract method-
ology, which increases confidence in functional program correctness by embedding executable
specifications into the program text. We present a prototype of SafeGPU for Eiffel, and show
that it leads to modular and concise code that is accessible for GPGPU non-experts, while still
providing performance comparable with that of hand-written CUDA code. We also describe
our first steps towards porting it to C#, highlighting some challenges, solutions, and insights
for implementing the approach in different managed languages. Finally, we show that runtime
contract-checking becomes feasible in SafeGPU, as the contracts can be executed on the GPU.

Keywords: GPGPU, parallel computing, runtime code generation, generative programming,
object-orientation, managed languages, design-by-contract, program correctness

1. Introduction

Graphics Processing Units (GPUs) are being increasingly leveraged as sources of inexpensive
parallel-processing power, with application areas as diverse as scientific data analysis, cryptogra-
phy, and evolutionary computing [1, 2]. Consisting of thousands of cores, GPUs are throughput-
oriented devices that are especially well-suited for realizing data-parallel algorithms—algorithms
performing the same tasks on multiple items of data—with potentially significant performance
gains to be achieved.
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The CUDA [3] and OpenCL [4] languages support the programming of GPUs for appli-
cations beyond graphics in an approach now known as General-Purpose computing on GPUs
(GPGPU). They provide programmers with fine-grained control over hardware at the C++ level
of abstraction. This control, however, is a double-edged sword: while it facilitates advanced,
hardware-specific fine-tuning techniques, it does so at the cost of working within very restrictive
and low-level programming models. Recursion, for example, is among the standard program-
ming concepts prohibited. Furthermore, dynamic memory management is completely absent,
meaning that programmers themselves must explicitly manage the allocation of memory and the
movement of data. While possibly acceptable for experienced GPU programmers, these issues
pose a significant difficulty to others, and are an obstacle to more widespread adoption.

Such challenges have not gone unnoticed: there has been a plethora of attempts to re-
duce the burden on programmers. Several algorithmic skeleton frameworks for C++ have been
extended—or purpose built—to support the orchestration of GPU computations, expressed in
terms of programming patterns that leave the parallelism implicit [5, 6, 7, 8, 9]. Furthermore,
higher-level languages have seen new libraries, extensions, and compilers that allow for GPU
programming at more comprehensible levels of abstraction, with various degrees of automatic
device and memory management [10, 11, 12, 13, 14, 15].

These advances have made strides in the right direction, but the burden on the programmer
can be lifted further still. Some approaches (e.g., [14]) still necessitate an understanding of rela-
tively low-level GPU concepts such as barrier-based synchronization between threads; a mecha-
nism that can lead easily to perplexing concurrency faults such as data races or barrier divergence.
Such concepts can stifle the productivity of programmers and remain an obstacle to broadening
the adoption of GPGPU. Other approaches (e.g., [10]) successfully abstract away from them,
but require programmers to migrate to dedicated languages. Furthermore, to our knowledge, no
existing approach has explored the possibility of integrating mechanisms or methodologies for
specifying and monitoring the correctness of high-level GPU code, missing an opportunity to
support the development of reliable programs. Our work has been motivated by the challenge
of addressing these issues within a high-level language without depriving programmers of the
potential performance boosts for data-parallel problems [16].

This paper proposes SafeGPU, a programming approach that aims to make GPGPU accessi-
ble through high-level libraries for object-oriented languages, while maintaining the performance
benefits of lower-level code. Our approach aims for users to focus entirely on functionality: pro-
grammers are provided with primitive data-parallel operations (e.g., sum, max, map) for collections
that can be combined to express complex computations, with data synchronization and low-level
device management all handled automatically. We present a prototype of SafeGPU for Eif-
fel [17], built upon a new binding with CUDA, and show that it leads to modular and concise
code that is accessible for GPGPU non-experts, as well as providing performance comparable
with that of hand-written CUDA code. This is achieved by deferring the generation of CUDA
kernels such that the execution of pending operations can be optimized by combining them. We
also present a report of our first steps towards porting SafeGPU to C#, highlighting some chal-
lenges, solutions, and insights for implementing the approach in different managed languages.

Furthermore, to support the development of safe and functionally correct GPU code, we inte-
grate the design-by-contract [18] methodology that is native to Eiffel (and provided by the Code
Contracts library [19] for C#). In particular, SafeGPU supports the annotation of high-level GPU
programs with executable preconditions, postconditions, and invariants, together specifying the
properties that should hold before and after the execution of methods. In languages supporting
design-by-contract, such annotations can be checked dynamically at runtime, but the significant



overhead incurred means that they are often disabled outside of debugging. With SafeGPU, con-
tracts can be constructed from the data-parallel primitives, allowing for them to be monitored at
runtime with little overhead by executing them on the GPU.

The contribution of this work is thus an approach and library for GPU programming that:

• embraces the object-oriented paradigm, shielding programmers from the low-level re-
quirements of the CUDA model without depriving them of the performance benefits;

• is modular and efficient, supporting the programming of compound computations through
the composition of primitive operations with a dedicated kernel optimization strategy;

• supports the writing of safe and functionally correct code via contracts, monitored at run-
time with little overhead.

This is a revised and extended version of our GPCE ’15 paper [20], with the following new
content:

• first steps towards porting SafeGPU to a second language, C#, accompanied by additional
examples;

• the integration of our C# port with Code Contracts, a library-based contract framework (in
contrast to the natively supported contracts of Eiffel);

• initial support for transferring class-based data (i.e., beyond primitive data) to the GPU;

• a new section on implementing SafeGPU in managed languages, focusing on data transfer,
translating customized program logic, and obtaining deterministic memory management;

• an expanded API section, with additional operation tables for vectors and matrices;

• an expanded discussion on future work, in particular, our plans to support multi-GPU
systems.

The rest of the paper is organized as follows. Section 2 provides an overview of the SafeGPU
approach, its capabilities, and how it is implemented. Section 3 explores the CUDA binding
and library APIs in more detail. Section 4 describes how design-by-contract is integrated. Sec-
tion 5 discusses in detail key aspects and challenges of the prototype implementations. Section 6
presents our kernel generation and optimization strategies. Section 7 evaluates performance,
code size, and contract checking across a selection of benchmark programs. Section 8 reviews
some related work. In Section 9, we conclude, and propose some future work.

2. Overview of the SafeGPU Approach

In this section we provide an overview of the programming style supported by SafeGPU,
present a simple example, and explain how the integration with CUDA is achieved (see Section 5
for an extended discussion on implementation issues).



2.1. Programming Style

CUDA kernels—the functions that run on the GPU—are executed by an array of threads,
with each thread executing the same code on different data. Many computational tasks fit to
this execution model very naturally (e.g., matrix multiplication, vector addition). Many tasks,
however, do not, and can only be realized with non-trivial reductions. This difficulty increases
when writing complex, multistage algorithms: combining subtasks into a larger kernel can be
challenging, and there is little support for modularity.

In contrast, SafeGPU emphasizes the development of GPU programs in terms of simple,
compositional “building blocks.” For a selection of common data structures including collec-
tions, vectors, and matrices, the library provides sets of built-in primitive operations. While
individually these operations are simple and intuitive to grasp (e.g., sum, max, map), they can also
be combined and chained together to generate complex GPU computations, without the devel-
oper ever needing to think about the manipulation of kernels. The aim is to allow for developers
to focus entirely on functionality, with the library itself responsible for generating kernels and
applying optimizations (e.g., combining them). This focus on functionality extends to correct-
ness, with SafeGPU supporting the annotation of programs with contracts that can be monitored
efficiently at runtime.

Before we expand on these different aspects of the library, consider the simple example for
Eiffel in Listing 1, which illustrates how a SafeGPU program can be constructed in practice.

matrix_transpose_vector_mult ( matrix : G_MATRIX [ DOUBLE ] ; vector : G_VECTOR [ DOUBLE ] ) : G_MATRIX
[ DOUBLE ]

require
matrix . rows = vector . count

do
Result := matrix . transpose . right_multiply ( vector )

ensure
Result . rows = matrix . columns
Result . columns = 1

end

Listing 1: Transposed matrix-vector multiplication in SafeGPU for Eiffel

The method takes as input a matrix and a vector, then returns the result of transposing the
matrix and multiplying the vector. The computation is expressed in one line through the chaining
of two compact, primitive operations from the API for matrices—transpose and right_multiply

—from which the CUDA code is automatically generated. Furthermore, because the latter of
the operations is only defined for inputs of certain sizes (N × M matrix; M dimension vector),
the method is annotated with a precondition in the require clause, expressing that the size of
the input vector should be equal to the number of rows in the matrix (rows, not columns, since
it will be transposed). Similarly, the postcondition in the ensure clause expresses the expected
dimensions of the resulting matrix. Both of these properties can be monitored at runtime, with
the precondition checked upon entering the method, and the postcondition checked upon exiting.

2.2. CUDA Integration

SafeGPU provides two conceptual levels of integration with CUDA: a binding and a library
level. The binding level provides a minimalistic API to run raw CUDA code within the high-
level language, similar to bindings like PyCUDA [21] and JCUDA [22], and is intended for
experienced users who need more fine-grained control over the GPU. The library level is built on



top of the binding, and provides the data structures, primitive operations, contracts, and kernel-
generation facilities that form the focus of this paper.

Eiffel program SafeGPU

Programmer’s view

Cuda program

CUDA C++

SafeGPU externals

C++

nvcc

CUDA .ptx

Figure 1: Runtime integration of CUDA with SafeGPU for Eiffel

In Eiffel, the runtime integration with CUDA (Figure 1) is achieved using the language’s
built-in mechanisms for interfacing with C++, allowing it to call the CUDA-specific functions
it needs for initialization, data transfers, and device synchronization. These steps are handled
automatically by SafeGPU for both the binding and library levels, minimizing the amount of
boilerplate code. Given a source kernel, whether handwritten at the binding level or generated
from the library one, the nvcc compiler generates a .ptx file containing a CUDA module that the
library can then use to launch the kernel.

In languages such as C#, which have existing CUDA bindings, the integration of SafeGPU is
simplified as the kernels the library generates can be passed to those bindings directly.

3. Design of the API

In the following, we describe in more detail the two levels of SafeGPU’s API. First, we
consider the binding level, which allows expert users to run CUDA code from within an object-
oriented language. Then we turn to the library level, and in particular, its three basic classes
for collections, vectors, and matrices. The operations provided by the API are described in the
context of our principal implementation for Eiffel.

3.1. CUDA Binding
The binding API provides handles to access the GPU and raw memory. Programming with

this API requires effort comparable to plain CUDA solutions, so it is therefore not a user-level
API; its main purpose is to provide functionality for the library API built on top of it.

Table 1 provides details about the API’s classes. The two main classes are CUDA_KERNEL and
CUDA_DATA_HANDLE. The former encapsulates a CUDA kernel; the latter represents a contiguous
sequence of uniform objects, e.g., a single-dimensional array.

3.2. Collections
Collections are the most abstract container type provided by SafeGPU: the majority of bulk

operations—operating on an entire collection—are defined here. Collections are array-based,
i.e., they have bounded capacity and count, and their items can be accessed by index. Collections
do not automatically resize, but new ones with different sizes can be created using the methods
of the class.

The key methods of the collection API are given in Table 2 and described in the following.
Note that in Eiffel, like Current denotes the type of the current object.



Table 1: Binding API

class description

CUDA_DATA_HANDLE Represents a handle to a device mem-
ory location. Supports scalar, vector, and
multi-dimensional data. Can be created
from (and converted to) standard ARRAYs.

CUDA_INTEROP Encapsulates low-level device opera-
tions, such as initialization, memory al-
location, and data transfer.

CUDA_KERNEL Represents a CUDA kernel, ready for ex-
ecution. Can contain an arbitrary num-
ber of CUDA_DATA_HANDLE kernel inputs,
one of which is used as output. Can be
launched with configurable shared mem-
ory.

LAUNCH_PARAMS Encapsulates the grid setup and shared
memory size required to launch a
CUDA_KERNEL.

KERNEL_LOADER Responsible for loading CUDA kernels
into the calling process. If necessary, per-
forms a kernel compilation. Can load
kernels from a file or from a string.

A SafeGPU collection can be created using the method from_array, which creates its content
from that of an Eiffel array: as an array’s content is contiguous, a single call to CUDA’s analogue
of memcpy suffices. Individual elements of the collection can then be accessed through the method
item, and the total number of elements is returned by count. The method concatenate is used to
join the elements of two containers and the method subset resizes a given collection to a subset.

The core part of the API design consists of methods for transforming, filtering, and query-
ing collections. All of these methods make use of Eiffel’s functional capabilities in the form
of agents, which represent operations that are applied in different ways to all the elements of a
collection (in the C# port, we use delegates—see Section 5). Agents can be one of three types:
procedures, which express transformations to be applied to elements (but do not return results);
functions, which return results for elements (but unlike procedures, are side-effect free); or pred-
icates, which are Boolean expressions.

To construct a new collection from an existing one, the API provides the transformation meth-
ods for_each and map. The former applies a procedure agent to each element of the collection,
whereas the latter applies a function agent. For example, the call

c .for_each (agent (a: INT) do a := a * 2 end)

represents an application of for_each to an integer collection c, customized with a procedure that
doubles every element. In contrast, the call

c .map (agent (a: INT): DOUBLE do Result := sqrt (a) end)

creates from an integer collection c a collection of doubles, with each element the square root of
the corresponding element in c.

To filter or query a collection, the API provides the methods filter, for_all, and exists,



Table 2: Collection API

from_array (array: ARRAY[T])
Creates an instance of a collection, containing items from the standard Eiffel array provided as input.

item (i: INT): T

Access to a single element.

count: INT

Queries the number of elements in the collection.

concatenate (other: like Current): like Current

Creates a new container consisting of the elements in the current object followed by those in other.

subset (start, finish: INT): like Current

Creates a subset of the collection that shares the same memory as the original.

for_each (action: PROCEDURE[T]): like Current

Applies the provided procedure to every element of the collection.

map (transform: FUNCTION[T, U]) : COLLECTION[U]
Performs a projection operation on the collection: each element is transformed according to the
specified function.

filter (condition: PREDICATE[T]): like Current

Creates a new collection containing only items for which the specified predicate holds.

for_all (condition: PREDICATE[T]): BOOLEAN

Checks whether the specified predicate holds for all items in the collection.

exists (condition: PREDICATE[T]): BOOLEAN

Checks whether the specified predicate holds for at least one item in the collection.

new_cursor: ITERATION_CURSOR [T]
Implementation of ITERABLE[T]; called upon an iteration over the collection.

update

Forces execution of all pending operations associated with the current collection. The execution is
optimized whenever possible.

which evaluate predicate agents with respect to every element. An example of filtering is

c .filter (agent (a: INT) do Result := a < 5 end)

which creates a new collection from an integer collection c, containing only the elements that are
less than five. The method for_all on the other hand does not create a new collection, but rather
checks whether a given predicate holds for every element or not; the call

c .for_all (agent (i: T) do Result := pred (i) end)

returns True, for example, if some (unspecified) predicate pred holds for every element of the
collection c (and False otherwise). The method exists is similar, returning True if the predicate
holds for at least one element in the collection (and False otherwise).

The queries for_all and exists are particularly useful in contracts, and can be parallelized
effectively for execution on the GPU. We discuss this use further in Section 4.

Collections are embedded into Eiffel’s container hierarchy by implementing the ITERABLE

interface, which allows the enumeration of their elements in foreach-style loops (across in Eiffel
terminology). Enumerating is efficient: upon a call to new_cursor, the collection’s content is



copied back to main memory in a single action.
Finally, the special method update forces execution of any pending kernel operations (see

Section 6).

3.3. Vectors

Vectors are a natural specialization of collections. Besides the inherited operations of collec-
tions, they provide a range of numerical operations.

The API for vectors is presented in Table 3. It allows for computing the average value avg and
sum of the elements of arbitrary vectors, as well as computing the minimum min and maximum max

elements. Furthermore, is_sorted will check whether the elements are sorted. These functions
are all implemented by multiple reductions on the device side (we remark that these computations
via reduction do not do more work than their corresponding sequential computations).

Table 3: Vector API: vector-only operations

sum: T

Computes the sum of the vector elements.

min: T

Computes the minimum of the vector elements.

max: T

Computes the maximum of the vector elements.

avg: T

Computes the average of the vector elements.

is_sorted: BOOLEAN
Checks whether the vector is sorted.

plus (other: VECTOR[T]) : VECTOR[T]
Adds the provided vector to the current vector and returns the result.

minus (other: VECTOR[T]) : VECTOR[T]
Subtracts the provided vector from the current vector and returns the result.

in_place_plus (other: VECTOR[T])
Adds the provided vector to the current vector and modifies the current vector to contain the result.

in_place_minus (other: VECTOR[T])
Subtracts the provided vector from the current and modifies the current vector to contain the result.

multiplied_by (factor: T) : VECTOR[T]
Multiplies the current vector by the provided scalar.

divided_by (factor: T) : VECTOR[T]
Divides the current vector by the provided scalar. The scalar should not be zero.

compwise_multiply (other: VECTOR[T]): VECTOR[T]
Multiplies the current vector by another component-wise.

compwise_divide (other: VECTOR[T]) : VECTOR[T]
Divides the current vector by another component-wise. No zero elements are allowed in the second
vector.

All the numerical operations such as plus and minus (alongside their in-place variants), as
well as multiplied_by and divided_by (alongside their component-wise variants) are defined as



vector operations on the GPU, e.g., a call to plus performs vector addition in a single action on
the device side. Note that aliases can be used for value-returning operations, e.g., v * n instead
of v .multiplied_by (n).

An important requirement in using and composing vector operations is keeping the dimen-
sions of the data synchronized. Furthermore, certain arithmetic operations are undefined on
certain elements; divided_by, for example, requires that elements are non-zero. Such issues are
managed through contracts built-in to the API that can be monitored at runtime, shielding devel-
opers from inconsistencies. We discuss this further in Section 4.

3.4. Matrices

The matrix API is strongly tied to the vector API: the class uses vectors to represent rows
and columns. On the device side, a matrix is stored as a single-dimensional array with row-
wise alignment. Thus, a vector handle for a row can be created by adjusting the corresponding
indices. The column access pattern is more complicated, and is implemented by performing a
copy of corresponding elements into new storage.

The matrix-only methods of the API are given in Table 4. Table 5 provides the specialized
operations inherited from the collection API, and describes how they are tailored to matrices.

In the API, the queries rows and columns return the dimensions of the matrix, whereas item,
row, and column return the part of the matrix specified. Single-column or single-row matrices can
be converted to vectors simply by making the appropriate call to row or column.

Similar to vectors, the API provides both conventional and in-place methods for addition and
subtraction. Beyond these primitive arithmetic operations, the API provides built-in support for
matrix-matrix multiplication (method multiply) since it is a frequently occurring operation in
GPGPU. The implementation optimizes performance through use of the shared device memory.

Also supported are left and right matrix-vector multiplication (respectively left_multiply

and right_multiply), component-wise matrix multiplication and division (compwise_multiply
and compwise_divide), matrix transposition (transpose), and submatrix creation.

Like the other API classes, matrix methods are equipped with contracts in order to shield the
programmer from common errors, e.g., mismatching dimensions in matrix multiplication.

4. Design-by-Contract Integration

To support the development of safe and functionally correct code, SafeGPU integrates the
design-by-contract methodology [18], i.e., the annotation of methods with executable pre- and
postconditions, expressing precisely the properties that should hold upon entry and exit. These
can be monitored at runtime to help ensure the correctness of programs. In the context of GPU
programs, in which very large amounts of data might be processed, “classical” (i.e., sequen-
tial) contracts take so long to evaluate that they need to be disabled outside of debugging. With
SafeGPU, however, contracts can be expressed using the primitive operations of the library it-
self, and thus can be executed on the GPU—where the data is sitting—without diminishing the
performance of the program (see our benchmarks in Section 7.3).

Contracts are supported by several object-oriented languages. Our principal implementation
of SafeGPU for Eiffel takes advantage of the fact that the specification and runtime checking of
contracts is supported natively by the language. For our port to C#, contracts are instead sup-
ported via a library—Code Contracts [19]—which provides a number of advanced specification
features including contracts for interfaces, abstract base classes, inheritance, and methods with



Table 4: Matrix API: matrix-only operations

rows: INT

Queries the total number of rows in the matrix.

columns: INT
Queries the total number of columns in the matrix.

row (i: INT): VECTOR[T]
Queries a live view of the elements in i-th row of the current matrix. Changes in the view will affect
the original matrix.

column (j: INT): VECTOR[T]
Queries a live view of the elements in j-th column of the current matrix. Changes in the view will
affect the original matrix.

multiply (matrix: MATRIX[T]) : MATRIX[T]
Performs matrix-matrix multiplication between the current matrix and the provided one. Creates a
new matrix to store the result.

left_multiply (vector: VECTOR[T]) : MATRIX[T]
Multiplies the provided row-vector with the current matrix.

right_multiply (vector: VECTOR[T]) : MATRIX[T]
Multiplies the current matrix with the provided column-vector.

transpose: MATRIX[T]
Returns a transposition of the current matrix. Creates a new matrix to store the result. An in-place
version is also available.

compwise_multiply (scalar: T): MATRIX[T]
Multiplies each element in the matrix by the provided scalar. Creates a new matrix to store the result.
An in-place version is also available.

compwise_divide (scalar: T): MATRIX[T]
Divides each element in the matrix by the provided scalar. Creates a new matrix to store the result.
An in-place version is also available.

submatrix (start_row, start_column, end_row, end_column: INTEGER): MATRIX[T]
Creates a submatrix, starting at (start_row, start_column) and ending at (end_row, end_column). A
new matrix is created to store the result.



Table 5: Matrix API: specialized collection operations

from_array (array: ARRAY[T]; rows, columns: INTEGER)
Creates an instance of a matrix, containing items from the standard Eiffel array provided as input.
The number of rows and columns is specified in the constructor.

item (i , j: INT): T

Access to a single element in a matrix.

count: INT

Queries the total number of elements in the matrix.

for_each (action: PROCEDURE[T]): like Current

Applies the provided procedure to every element of the matrix.

map (transform: FUNCTION[T, U]) : MATRIX[U]
Performs a projection operation on the matrix: each element is transformed according to the specified
function.

filter (condition: PREDICATE[T]): like Current

Creates a new matrix containing only items for which the specified predicate holds.

for_all (condition: PREDICATE[T]): BOOLEAN

Checks whether the specified predicate holds for all items in the matrix.

exists (condition: PREDICATE[T]): BOOLEAN

Checks whether the specified predicate holds for at least one item in the matrix.

new_cursor: ITERATION_CURSOR [T]
Implementation of ITERABLE[T]; called upon an iteration over the matrix. The iteration is row-wise.

update

Forces execution of all pending operations associated with the current matrix. The execution is
optimized whenever possible.

multiple return statements (which is forbidden in Eiffel). Most importantly for SafeGPU, the
library also provides runtime contract checking via a post-compilation step. Similar contract
libraries exist for other object-oriented languages, e.g., JML for Java [23].

4.1. Contracts in SafeGPU

Contracts are utilized by SafeGPU programs in two ways. First, they are built-in to the
library API; several of its methods are equipped with pre- and postconditions, providing cor-
rectness properties that can be monitored at runtime “for free” (i.e., without requiring additional
user annotations). Second, when composing the methods of the API to generate more complex,
compound computations, users can define and thus monitor their own contracts expressing the
intended effects of the overall computation.

The API’s built-in contracts are motivated easily by vector and matrix mathematics, for which
several operations are undefined on input with inconsistent dimensions or input containing ze-
roes. Consider for example Listing 2, which contains the signature and contracts of the library
method for component-wise vector division. Calling v1.compwise_divide (v2) on vectors v1 and
v2 of equal size results in a new vector, constructed from v1 by dividing its elements by the
corresponding elements in v2. The preconditions in the require clause assert that the vectors
are of equal size (via count, from the collection API) and that all elements of the second vector
are non-zero (via for_all, customized with a predicate agent). The postcondition in the ensure



clause characterizes the effect of the method by asserting the expected relationship between the
resulting vector and the input (retrieved using the old keyword).

compwise_divide ( other : VECTOR [ T ] ) : VECTOR [ T ]
require

other . count = count
other . for_all (

agent ( el : T ) do Result := el /= {T } . zero end )
ensure

Current = old Current
Result * other = Current

end

Listing 2: Contracts for component-wise vector division in SafeGPU for Eiffel

Built-in and user-defined contracts for GPU collections are typically classified as one of
two types. Scalar contracts are those using methods with execution times independent of the
collection size. A common example is count, which records the number of elements a collection
contains. Range contracts are those using methods that operate on the elements of a collection
and thus have execution times that grow with the collection size. These include library methods
such as sum, min, max, and is_sorted. The CUDA programs generated for such operations usually
perform multiple reductions on the GPU. Other common range contracts are those built from
for_all and exists, equipped with predicate agents, expressing properties that should hold for
every (resp. at least one) element of a collection. These are easily parallelized for execution on
the GPU, and unlike their sequential counterparts, can be monitored at runtime for very large
volumes of data without diminishing the overall performance of the program (see Section 7.3).

The Eiffel implementation of SafeGPU provides a straightforward way to monitor user-
defined contracts on the GPU: simply express them in the native require and ensure clauses
of methods, using the primitive operations of the library. This is analogous to classical design-
by-contract, in which methods are used in both specifications and implementations.

The C# port requires contracts to be expressed via library calls—Contract.Requires and
Contract.Ensures—rather than in native clauses. It is important that the preconditions are called
at the beginning of the method body (since they are executed as normal function calls), but for
postconditions, the binary is rewritten to ensure they are executed at the exit point(s) of the body,
hence they can be expressed anywhere in the method. It is conventional however to list them
immediately after the preconditions.

4.2. Example: Quicksort in SafeGPU
In the following, we will consider SafeGPU implementations of quicksort (in both Eiffel and

C#), since the example demonstrates built-in and user-defined contracts, as well as scalar and
range contracts.

Listing 3 contains the implementation and contracts of quicksort in Eiffel SafeGPU. The
implementation utilizes two methods provided by the collection API: concatenate, to efficiently
concatenate two vectors; and filter, to find items less than, greater than, or equal to the pivot.
The three calls to filter are customized with predicate agents expressing these relations. We
remark that since inline agents cannot access local variables in Eiffel, the pivot is passed as
an argument. This is denoted by (?, pivot) at the end of each agent expression: here, the ?
corresponds to item, expressing that it should be instantiated with successive elements of the
collection; pivot corresponds to a_pivot, expressing that the latter should always take the value
of the former. At runtime, the built-in contracts of these two library methods can be monitored,



quicksort ( a : G_VECTOR [ REAL_32 ] ) : G_VECTOR [ REAL_32 ]
require

a . count > 0
local

pivot : DOUBLE
left , mid , right : G_VECTOR [ REAL_32 ]

do
if ( a . count = 1) then

Result := a
else

pivot := a [ a . count / / 2]

left := a . filter ( agent ( item : REAL_32 ; a_pivot : REAL_32 ) : BOOLEAN do Result := item
< a_pivot end ( ? , pivot ) )

right := a . filter ( agent ( item : REAL_32 ; a_pivot : REAL_32 ) : BOOLEAN do Result := item
> a_pivot end ( ? , pivot ) )

mid := a . filter ( agent ( item : REAL_32 ; a_pivot : REAL_32 ) : BOOLEAN do Result := item =

a_pivot end ( ? , pivot ) )

Result := quicksort ( left ) . concatenate ( mid ) . concatenate ( quicksort ( right ) )
end

ensure
Result . is_sorted
Result . count = a . count

end

Listing 3: Quicksort in SafeGPU for Eiffel

but they only express correctness conditions localized to their use, and nothing about their com-
pound effects. The overall postcondition of the computation can be expressed as a user-defined
postcondition of quicksort, here asserting—using the is_sorted and count methods of the vector
API—that the resulting vector is sorted and of the same size. This can be monitored at runtime
to increase confidence that the user-defined computation is correct.

Listing 4 contains the implementation and contracts (as library calls) of Quicksort in the C#
port of SafeGPU. Note that this implementation is more general in that it uses collections instead
of vectors, and can work with any struct in which values can be compared and translated by
SafeGPU (see Section 5.2). Note also that we use delegates, the C# counterpart to Eiffel’s agents,
as well as lambda expressions to create these delegates in-place (since lambda expressions in C#
are allowed to access local variables, the syntax is slightly more compact). As the program
operates on generic collections, we have to provide a comparison function to IsSorted so that it
is able to compare two arbitrary objects in a collection. Again, this is achieved by using lambda
expressions to create a delegate in-place.

5. Implementation of SafeGPU

In this section, we discuss three of the most important issues for implementing the SafeGPU
approach in a managed language. First, how primitive and class-based data can be transferred
to the GPU. Second, how customized, functional computations can be expressed and supported.
Finally, how to achieve deterministic memory management in the presence of garbage collection.

These issues are discussed in the both the context of our principal SafeGPU implementation
for Eiffel as well as our initial port of the library for C#, in the hope that comparing the challenges
and solutions between them provides some general insights for implementing the library in other
managed programming languages.



public static GCollection<T> Quicksort<T>( GCollection<T> data ) where T : struct ,
IComparable<T>

{
Contract . Requires ( data . Count > 0) ;
Contract . Ensures ( Contract . Result<GCollection<T> >() . Count == data . Count ) ;
Contract . Ensures ( Contract . Result<GCollection<T> >() . IsSorted ( ( a , b ) => a . CompareTo ( b ) ) ) ;
if ( data . Count == 1) {

return data ;
}

T pivot = data [ data . Count / 2 ] ;

GCollection<T> left = data . Filter ( d => d . CompareTo ( pivot ) == −1) ;
GCollection<T> right = data . Filter ( d => d . CompareTo ( pivot ) == 0) ;
GCollectionr<T> mid = data . Filter ( d => d . CompareTo ( pivot ) == 1) ;

return Quicksort ( left ) . Concat ( mid ) . Concat ( Quicksort ( right ) ) ;
}

Listing 4: Quicksort in SafeGPU for C#

5.1. Transferring Primitive and Class-Based Data

Transferring data from the host to the device is a necessary precursor to performing GPU
computations. In C++ with raw CUDA, managing these transfers is relatively straightforward,
but low-level and laborious. Operations such as cudaMemcpy, cudaMalloc, and cudaFree are pro-
vided to allocate, copy, and free memory.

SafeGPU handles this programming overhead for the user, but in languages such as Eiffel
and C#, data transfer is made more complicated by the presence of a managed heap. In a naive
implementation, two steps—and thus additional overhead—are required to realize it. First, the
data is transferred from the managed heap into some fixed and contiguous structure. Second, this
is then transferred to the device using low-level CUDA operations via the binding API.

The first step and its additional overhead, however, can be skipped entirely if the managed
language provides a mechanism to directly access raw memory (e.g., via pointer-like constructs),
and the representation of the data already has some known contiguous structure. This is often
the case for arrays of primitive numerical type, e.g., integers, and floating points. A memcpy

counterpart is typically available since their representation in memory is fixed across languages.
In the C# port, we use a language mechanism that provides “unsafe” access to the memory of
arrays of primitives. In our Eiffel implementation, direct access is also provided to the contents
of arrays, but with the caveat that the array must be fixed during the memcpy call. If the array is
not fixed, Eiffel’s garbage collection mechanisms can interfere with the transfer and affect the
consistency of the data.

Data typed according to custom classes is much more challenging to transfer. The CUDA
implementation must be able to match the representation in memory, despite not have supporting
definitions for custom classes. Furthermore, in general, classes can point to other classes, poten-
tially requiring the (impractical) transfer of the whole object graph. Many classes of interest for
GPU computing, however, are not sophisticated structures, but are rather more simple and just
organize primitive data into a structure more suitable for the problem. SafeGPU thus focuses its
support for class-based data on that which has a simple structure, i.e., based on primitives and
value types.

Currently, our support for class-based data transfer has only been introduced into the C# port
of SafeGPU, as the language provides convenient built-in mechanisms for managing the data.
We support simple classes, i.e., those containing primitives, and value types from this defini-



tion. Using the P/Invoke feature of C#, the memory layout of such data is copied to unmanaged
memory, where it is no longer typed. Then, we use reflection to collect meta-information about
the structure being transferred, in particular, the number and types of fields (we do not translate
methods at this point). Finally, a C++ counterpart of the C# structure is generated that can be
handled by CUDA. We remark that while reflection in general can have some overhead, we at-
tempt to minimize it by using the technique in a limited way, i.e., once per class, and without
reflections in cycles.

Listing 5 exemplifies a simple application of class-based data transfer in SafeGPU. The
method DoStuff operates on collections of Complex numbers, which are defined by a custom
struct consisting of two doubles for the real and imaginary components of the numbers. The
method chains together some Map transformations on the input collection and returns the result.
To transfer the contents of the collection to the device, SafeGPU first copies its contents to un-
managed memory (no memcpy operation is available here, so it must loop across the elements),
then copies this data from unmanaged memory to the device. Finally, it uses reflection to collect
meta-information about the fields (Re and Im) in order to generate a counterpart in C++ to the
original C# struct.

struct Complex
{ // omitting constructor and getters / setters for simplicity

Double Re ;
Double Im ;

}

GCollection<double> DoStuff ( GCollection<Complex> collection )
{

return collection . // any number of tranformations can be chained
Map ( c => new Complex {Re = c . Re + c . Im , Im = c . Im } ) .

Map ( complex => Math . Abs ( complex . Re ) ) ;
}

Listing 5: A SafeGPU for C# method operating on data typed to a custom structure

5.2. Translating Customized Program Logic

Providing a library of common operations for common collections is an important first step
towards providing GPGPU capabilities at the abstraction level of an object-oriented language.
In the SafeGPU approach, however, we do not want programmers to be strictly limited to the
operations that we have provided. An important aspect of our approach is the ability to express
customized computations in a functional style and apply them to whole collections.

As discussed in Section 3.2, the SafeGPU API provides programmers with methods that op-
erate on the contents of entire collections. Methods such as map are generic transformations: their
actual behavior on the contents of collections is customizable. This is achieved by passing a user-
defined function abstraction (i.e., a typed function pointer) as a parameter of the transformation.
In Eiffel, we support agents as function abstractions; in the C# port, we support delegates. By
translating these function abstractions to C++ and CUDA, our framework supports the execution
of customized program logic on the GPU.

In the following we illustrate how function abstractions can be translated to the GPU using
the example of delegates in our C# port of SafeGPU. Our solution relies on the powerful support
provided by C# and .NET for runtime introspection and analysis, and in particular, the expression
trees framework [24]. With this support, it is possible to dynamically access and modify arbitrary



C# expressions during program execution, which allows SafeGPU to capture the customized
program logic that the user wishes to use in a collection transformation.

Listing 6 shows how simple expressions can be created in the expression tree framework.
The first expression captures a double constant; the second, a mathematical expression over
variables; and the third, a function taking an integer input and returning a string (expressed
by the first and second generic arguments, respectively). The string is generated in-place by
a lambda-expression, which creates a formal variable a and calls the ToString operation on it.
The variable is implicitly typed as an integer, which helps to keep the expression syntactically
simple. All three expressions are represented in the framework as tree-like data structures (the
nodes being expressions), and can be compiled and modified at runtime.

{
Expression<double> ex1 = 5 . 2 ;

Expression<double> ex2 = a + b / 5 . 0 ;

Expression<Function<int , string>> strExpr = ( a ) => a . ToString ( ) ;
}

Listing 6: Example expression trees in C#

SafeGPU uses the framework to extract tree representations of delegates. Consider the sig-
nature of Map in the C# API:

GCollection<T> Map (Expression<Func<T,T>> transformer);

When a call to Map is processed by SafeGPU, the expression trees framework is used to extract
an AST representation of transformer, which in turn can be translated to C++ / CUDA.

There are some restrictions on what can be translated and the types of functional expressions
that can be created. The expression tree framework, for example, does not support lambdas with
statement bodies. Furthermore, methods must operate on either primitive types or the types that
SafeGPU can translate itself (we cannot translate any arbitrary .NET method to C++ / CUDA).

Support for customizable program logic can be generalized to other managed languages if
analogous mechanisms exist for runtime analysis of program code. Unfortunately, such mech-
anisms are lacking in Eiffel, meaning that agent expressions (i.e., Eiffel’s function objects) are
translated much less elegantly by SafeGPU: at present, we treat them as strings and must man-
ually parse them. (Note that example usages of Eiffel’s agents can be found in Sections 3.2
and 4.)

5.3. Deterministic Memory Management in Languages with Garbage Collection

In C++ / CUDA, the programmer has full and explicit control over the device memory. In
languages with managed memory such as Eiffel and C#, one must consider how to determinis-
tically dispose of external resources in the presence of garbage collection, which can occur at
(seemingly) random time intervals, or perhaps not happen at all (e.g., if the garbage collector
assesses that there is enough memory). Since the host and device memories are disjoint, the
garbage collector might not become aware when the device no longer has enough memory.

A closely related problem to this is the avoidance of leaking memory between allocation
and deallocation in the presence of exceptions. We investigated how this problem was solved
in an unmanaged language, and used the solution as inspiration. C++ tackles it using the RAII
(Resource Acquisition Is Initialization) idiom [25]. The essential idea is to use stack allocation



and variable scope to ensure safe resource management. For example, in Listing 7, locker is
called whenever the thread of execution leaves the scope encompassing it, e.g., during exception
propagation. RAII is a very common idiom in C++: dynamic memory, file system descriptors,
and concurrency primitives can all be managed using it.

{
MutexLocker locker ( new Mutex ( ) ) ;
. . .

} // locker is called whenever the execution leaves the scope , whether during a normal
execution or during an exception propagation

Listing 7: A possible RAII idiom usage

The guarantees provided by RAII would be useful for implementing a translation to C++ /

CUDA, but unfortunately, RAII is not directly applicable to languages with managed memory
and garbage collection. However, managed languages often provide substitute mechanisms that
are similar. For this to work, the runtime must be aware that some managed objects store handlers
(e.g., memory addresses, descriptors) of resources in unmanaged memory. Typically, this is
achieved by implementing a special interface or inheriting from a special base class.

In C#, this is the IDisposable interface, and the language has special support for it: if a
class or interface implements it, then their objects can be used in so-called “using-blocks” which
emulate C++ scoping. Such a block is given in Listing 8: disposal is called whenever execution
leaves the scope of the block. Java has java.lang.AutoCloseable and try-with-resources, which is
very similar to the using-blocks of C#. Eiffel has the Disposable base class.

using ( new ResourceHandler ( ) ) {
. . .

} // Disposal is called whenever the execution leaves the scope , whether during a normal
execution or during an exception propagation

Listing 8: A using-block in C#

6. Kernel Generation and Optimization

In this section we describe how SafeGPU translates individual methods of the API to CUDA
kernels, how data is managed, and how the library optimizes kernels for compound computations.

6.1. Kernel Generation and Data Transfer
Generating CUDA kernels for calls of individual library methods is straightforward. Each

method is associated with a kernel template, which the library instantiates with respect to the
particular collection and parameters of the method call. The SafeGPU runtime (as described in
Section 2.2) then handles its execution on the GPU via Eiffel’s mechanisms for interfacing with
C++ or the existing CUDA binding for C#.

Transferring data to and from the GPU is expensive, so the library attempts to minimize the
number of occurrences. The only time that data is transferred to the GPU is upon calling the
method from_array, which creates a GPU collection from a standard Eiffel or C# array. Once
the data is on the GPU, it remains there for arbitrarily many kernels to manipulate and query (in-
cluding those corresponding to contracts). Operations that create new collections from existing
ones (e.g., filter, map) do so without transferring data away from the GPU; this occurs only for
methods that specifically query them.



6.2. Execution Plans and Kernel Optimization

While the primitive operations in isolation already support many useful computations (e.g.,
matrix multiplication, vector addition), the heart of SafeGPU is in its support for combining and
chaining such operations to implement multistage algorithms on the GPU. The main challenge
for a library aiming to provide this support is to do so without performance becoming incommen-
surate with that of manually written CUDA kernels. A naive solution is to generate one kernel
per method call and launch them one after the other. With SafeGPU, however, we adopt a de-
ferred execution model, analyze pending kernels, and attempt to generate more efficient CUDA
code by combining them.

By default, a method call is not executed, but rather added to a list of pending actions for the
corresponding collection. There are three ways to trigger its execution: (1) perform a function
call that returns a scalar value, e.g., sum; (2) perform a call to to_array which creates a standard
Eiffel or C# array from the GPU collection; or (3) perform a call of the special method update,
which forces the execution of any pending kernels.

Consider for example the problem of computing the dot product (or inner product) of two
vectors, which can be solved by combining vector multiplication and vector summation as in
Listing 9. Here, the result is obtained by chaining the a .compwise_multiply (b) method—which
produces an anonymous intermediate result—with vector.sum. In this example, the computation
is deferred until the call of sum, which returns the sum of the elements in the vector.

dot_product ( a , b : G_VECTOR [ DOUBLE ] ) : DOUBLE
require

a . count = b . count
do

Result := a . compwise_multiply ( b ) . sum
-- component - wise vector multiplication , followed by summing the elements

end

Listing 9: Combining primitives to compute the dot product in SafeGPU for Eiffel

The benefit of deferring execution until necessary is that the kernel code can be optimized.
Instead of generating kernels for every method call, SafeGPU uses some simple strategies to
merge deferred calls and thus handle the combined computation in fewer kernels. Before gener-
ating kernels, the optimizer constructs an execution plan from the pending operations. The plan
takes the form of a DAG, representing data and kernels as two different types of nodes, and rep-
resenting dependencies as edges between them. The optimizer then traverses the DAG, merging
kernel vertices and collapsing intermediate dependencies where possible. Upon termination, the
kernel generation takes place on the basis of the optimized DAG.
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Figure 2: Execution plans for the dot product method



We illustrate a typical optimization in Figure 2, which shows the execution plans for the
dot product method of Listing 9. The plan in Figure 2a is the original one extracted from the
pending operations; this would generate two separate kernels for multiplication and summation
(cmult and sum) and launch them sequentially. The plan in Figure 2b, however, is the result
of an optimization; here, the deferred cmult kernel is combined with sum. The combined kernel
generated by this optimized execution plan would perform component-wise vector multiplication
first, followed by summation, with the two stages separated using barrier synchronization. This
simple optimization pattern extends to several other similar cases in SafeGPU.

The optimizer is particularly well-tuned for computations involving vector mathematics. In
some cases, barriers are not needed at all; the optimizer simply modifies the main expression in
the kernel body, leading to more efficient code. For example, to compute aX + Y where a is a
scalar value and X, Y are vectors, the optimizer just slightly adjusts the vector addition kernel,
replacing X[i] + Y[i] with a*X[i] + Y[i]. Such optimizations also change the number of kernel
arguments, as shown in Figure 3.
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Figure 3: Execution plans for vector mathematics

At present, all our optimizations are of these simple forms. The execution plan framework,
however, could provide a foundation for applying more speculative and advanced optimizations
to improve the performance of SafeGPU further still. Investigating such optimizations remains
an important piece of future work.

6.3. Example: Gaussian Elimination

To illustrate the usefulness of the optimizer on a larger example, consider Listing 10, which
provides an implementation of Gaussian elimination (i.e., for finding the determinant of a matrix)
in SafeGPU. Note in particular the inner loop, which applies two transformations in sequence to
a given row of the matrix:

matrix.row (i) .divided_by (pivot)
matrix.row (i) .in_place_minus (matrix.row (step))

First, every element in the row is divided by a pivot (which an earlier check prevents from
being zero); following this, another row of the matrix is subtracted from it in a component-wise
fashion. The optimizer is able to combine these two steps into a single modified component-wise
subtraction kernel, applying the transformation (A[i] / pivot) − A[step] in one step (here, A[x]
denotes row x of matrix A). This optimization is depicted in Figure 4.



gauss_determinant ( matrix : G_MATRIX [ DOUBLE ] ) : DOUBLE
require

matrix . rows = matrix . columns
local

step , i : INTEGER
pivot : DOUBLE

do
Result := 1
from

step := 0
until

step = matrix . rows
loop

pivot := matrix ( step , step )
Result := Result * pivot

if not double_approx_equals ( pivot , 0 . 0 ) then
matrix . row ( step ) . divided_by ( pivot )

else
step := matrix . rows

end
from

i := step + 1
until

i = matrix . rows
loop

pivot := matrix ( i , step )
if not double_approx_equals ( pivot , 0 . 0 ) then

matrix . row ( i ) . divided_by ( pivot )
matrix . row ( i ) . in_place_minus ( matrix . row ( step ) )

end
i := i + 1

end

step := step + 1
end

end

Listing 10: Gaussian elimination in SafeGPU for Eiffel
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Figure 4: Execution plans for the inner loop of Gaussian elimination

7. Evaluation

To evaluate SafeGPU, we prepared a set of benchmark problems to solve on the GPU, each
with functionally equivalent implementations in sequential Eiffel, SafeGPU for Eiffel, and raw
CUDA in C++. To establish a baseline, we covered some problems that have well-established
implementations available in the NVIDIA SDK, such as vector addition and matrix multipli-



cation. Beyond this baseline, we also considered larger examples constructed by chaining the
primitive operations of our library, such as Gaussian elimination and quicksort. Across our
benchmark set, we made three different comparisons (which we expand upon in the following
subsections):

1. the performance of SafeGPU against CUDA and sequential Eiffel;
2. the conciseness of SafeGPU against sequential Eiffel;
3. the performance overhead of runtime contract checking in SafeGPU against checking tra-

ditional sequential contracts in Eiffel.

The six benchmark programs we considered were vector addition, dot product, matrix multi-
plication, Gaussian elimination, quicksort, and matrix transposition. We implemented the bench-
marks ourselves for SafeGPU and sequential Eiffel (both with contracts, wherever possible). We
did not implement but rather relied on a selection of sources for the plain CUDA code: vector
addition and matrix multiplication were taken from the NVIDIA SDK; dot product and quicksort
were adapted from code in the same repository; Gaussian elimination came from a parallel com-
puting research project [26]; and finally, matrix transposition came from a post [27] on NVIDIA’s
Parallel Forall blog.

The SafeGPU implementation and all the benchmarks are available to download online [17].
Listings for the SafeGPU implementations of quicksort and Gaussian elimination are also pro-
vided in this paper (Listings 3 and 10, respectively).

We remark that we use our principal, Eiffel implementation of SafeGPU in these experiments,
given that at the time of writing, our C# port remains an early prototype. Given the (intended)
similarities of the two implementations, any significant differences in performance might bring
about some interesting insights into language-specific overheads (but would not otherwise affect
the investigation here, which asks whether one can provide the functionality of SafeGPU in some
object-oriented library without paying a large price in performance).

7.1. Performance

The primary goal of our first experiment was to assess the performance overhead caused
by SafeGPU’s higher level of abstraction. To measure this, we compared the execution times
of benchmarks in SafeGPU against those in plain CUDA for increasingly large sizes of input.
Furthermore, we compared our benchmarks against functionally equivalent solutions in sequen-
tial Eiffel, allowing us to ascertain the input sizes necessary for GPU solutions to outperform
them. We remark that since performance was the focus of this first experiment, runtime contract
checking was completely disabled across all benchmarks.

All experiments were performed on the following hardware: Intel Core i7 8 cores, 2.7 GHz;
NVIDIA QUADRO K2000M (2 GB memory, compute capability 3.0). In our measurements,
we are reporting wall time. Furthermore, we measure only the relevant part of the computation,
omitting the time it takes to generate the inputs.

The results of our performance comparison are presented in Figure 5. The problem size (x-
axis) is defined for both vectors and matrices as the total number of elements they contain (our
benchmarks use only square matrices, hence the number of rows or columns is always the square
root). The times (y-axis) are given in seconds, and are the medians of ten runs.

While sequential Eiffel is faster than SafeGPU and plain CUDA on relatively small inputs (as
expected, due to the overhead of launching the GPU), it is outperformed by both when the size
of the data becomes large. This happens particularly quickly for the non-linear algorithm (e) in



comparison to the others. For matrix-matrix multiplication and Gaussian elimination, sequential
Eiffel took far too long to terminate on inputs of size 107 and above, and hence these data points
are omitted.

Across most of the six benchmarks, the performance of SafeGPU is very close to that of
plain CUDA, adding support to our argument that using our library does not lead to performance
incommensurate with that of handwritten CUDA code. The Gaussian elimination benchmark
displays the largest difference between SafeGPU and plain CUDA, on inputs of size 106 and
above. This is due to the need for the SafeGPU implementation to use nested loops, which have
the effect of additional kernel launches. This could be addressed in the future by API extensions,
or the introduction of more speculative optimization strategies designed for loops. Note that in
some benchmarks (especially on smaller inputs), SafeGPU sometimes slightly outperforms plain
CUDA, which we believe is due to differences between the memory managers of Eiffel and C++.

7.2. Code Size

The goal of our second experiment was to assess the conciseness of SafeGPU programs.
To measure this, we compared the lines of code (LOC) required for the main methods of these
programs (and any auxiliary methods) against the LOC of functionally equivalent sequential
Eiffel methods. Note that we do not compare against plain CUDA programs, because this is not
a particularly interesting comparison to make: it is known that higher-level languages are more
compact than those at the C/C++ level of abstraction [28], and CUDA programs in particular are
dominated by explicit memory management that is not visible in SafeGPU or Eiffel. Our CUDA
benchmarks are typically around 200 LOC code long (and sometimes more).

Our results are presented in Table 6. The programs written using our library are quite concise
(as expected for a high-level API); more interestingly, they are more compact than traditional
sequential Eiffel programs. This difference is explained by the usage of looping constructs. In
sequential Eiffel, loops are frequently used to implement the benchmarks. With SafeGPU, how-
ever, loops are often avoided due to the presence of bulk operations in the API, i.e., operations
that apply function abstractions to all the data present in a collection. We should note that this
is not always the case, as loops were required to implement the library version of the Gaussian
elimination benchmark.

We remark that while these results suggest that SafeGPU programs are more compact, we do
not yet know whether typical programmers can write them more productively. In future work, we
would like to perform a study on users themselves in order to determine whether the abstractions
and programming style of our approach allow for users to write programs productively, regardless
of their conciseness.

7.3. Contract Overhead

The goal of our final experiment was to compare the cost of checking SafeGPU contracts on
the GPU against the cost of checking traditional sequential Eiffel contracts. To allow a more fine-
grained comparison, we measured the contract checking overhead in three different modes: (1)
preconditions only; (2) pre- and postconditions only; and finally, (3) full contract checking, i.e.,
additionally checking class invariants at method entry and exit points. Note that our SafeGPU
benchmarks were annotated only with pre- and postconditions; invariants, however, are present in
the core Eiffel libraries that were required to implement the sequential programs (these libraries
also include some additional pre- and postconditions, making a full like-for-like comparison
with SafeGPU challenging). Across the benchmarks and for increasingly large sizes of input,
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Figure 4: SafeGPU performance evaluation

Table 4: Contract checking overhead comparison

problem 103 104 105 106 107 108

Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU

Vector Addition
pre 1.00 0.92 1.42 0.96 3.50 0.96 3.92 0.95 3.98 1.02 4.12 1.06
pre & post 1.00 0.92 1.42 0.96 3.66 0.96 3.93 0.95 3.98 1.02 4.29 1.06
full 1.00 0.92 2.86 0.96 7.00 0.96 7.81 0.95 7.82 1.02 7.97 1.06

Dot Product
pre 1.00 1.02 1.25 0.99 4.00 0.97 3.95 1.01 4.00 1.10 4.01 0.95
pre & post 1.00 1.02 1.25 0.99 4.00 0.97 3.95 1.01 4.15 1.10 4.10 0.98
full 1.00 1.02 1.88 0.99 7.25 0.97 7.33 1.01 7.46 1.10 7.48 0.98

Matrix-Matrix Multiplication
pre 4.00 1.05 4.47 1.01 4.55 0.99 4.54 0.99 - -
pre & post 4.00 1.05 4.47 1.01 4.59 0.99 4.57 0.99 - -
full 5.00 1.05 6.73 1.01 6.79 1.01 6.76 0.99 - -

Gaussian Elimination
pre 2.22 0.99 4.50 0.97 4.70 1.01 4.71 1.01 - -
pre & post 2.77 0.99 4.50 0.97 4.70 1.04 4.73 1.09 - -
full 4.44 0.99 6.67 0.97 6.96 1.04 6.96 1.09 - -

Quicksort
pre 2.14 1.02 2.26 1.05 2.64 1.00 3.03 1.01 3.03 1.02 -
pre & post 2.28 1.02 2.27 1.05 2.70 1.02 3.02 1.07 3.04 1.08 -
full 3.64 1.02 4.14 1.05 5.07 1.02 6.38 1.07 6.49 1.09 -

Matrix Transposition
pre 2.00 1.05 2.06 1.01 2.40 1.02 3.71 1.01 3.86 1.02 4.02 1.01
pre & post 2.00 1.05 2.06 1.01 2.40 1.03 3.96 1.11 4.05 1.12 4.27 1.14
full 4.15 1.03 5.60 1.01 6.10 1.03 7.88 1.10 8.12 1.12 10.44 1.13

7.1 GPU Programming and Code Generation
At the C++ level of abstraction, there are a number of algorithmic
skeleton and template frameworks that attempt to hide the orches-
tration and synchronization of parallel computation. Rather than
code it directly, programmers express the computation in terms
of some well-known patterns (e.g. map, scan, reduce) that cap-
ture the parallel activities implicitly. SkePU [6], Muesli [7], and
SkelCL [25] were the first algorithmic skeleton frameworks to tar-
get the deployment of fine-grained data-parallel skeletons to GPUs.
While they do not support skeleton nesting for GPUs, they do
provide the programmer with parallel container types (e.g. vec-
tors, matrices) that simplify memory management by handling
data transfers automatically. Arbitrary skeleton nesting is pro-
vided in FastFlow [8] (resp. Marrow [17]) for pipeline and farm

(resp. pipeline, stream, loop), but concurrency and synchronization
issues are exposed to the programmer. NVIDIA’s C++ template li-
brary Thrust [21], in contrast, provides a collection of data-parallel
primitives (e.g. scan, sort, reduce) that can be composed to imple-
ment complex algorithms on the GPU. While similar in spirit to
SafeGPU, Thrust lacks a number of its abstractions and container
types; data can only be modeled by vectors, for example.

Higher-level programming languages benefit from a number of
CUDA and OpenCL bindings (e.g. Java [29], Python [12]), making
it possible for their runtimes to interact. These bindings typically
stay as close to the original models as possible. While this allows
for the full flexibility and control of CUDA and OpenCL to be in-
tegrated, several of the existing challenges are also inherited, along
with the addition of some new ones; Java programmers, for exam-

Figure 5: SafeGPU performance evaluation (x-axis: input size in no. of elements)



Table 6: LOC comparison

problem Eiffel SafeGPU ratio
Vector Addition 18 8 2.3
Dot Product 16 6 2.7
Matrix-Matrix Multiplication 32 6 5.3
Gaussian Elimination 98 47 2.1
Quicksort 63 22 2.9
Matrix Transpose 27 8 3.4

Table 7: Contract checking overhead comparison

problem 103 104 105 106 107 108

Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU Eiffel SafeGPU

Vector Addition
pre 1.00 0.92 1.42 0.96 3.50 0.96 3.92 0.95 3.98 1.02 4.12 1.06
pre & post 1.00 0.92 1.42 0.96 3.66 0.96 3.93 0.95 3.98 1.02 4.29 1.06
full 1.00 0.92 2.86 0.96 7.00 0.96 7.81 0.95 7.82 1.02 7.97 1.06

Dot Product
pre 1.00 1.02 1.25 0.99 4.00 0.97 3.95 1.01 4.00 1.10 4.01 0.95
pre & post 1.00 1.02 1.25 0.99 4.00 0.97 3.95 1.01 4.15 1.10 4.10 0.98
full 1.00 1.02 1.88 0.99 7.25 0.97 7.33 1.01 7.46 1.10 7.48 0.98

Matrix-Matrix Multiplication
pre 4.00 1.05 4.47 1.01 4.55 0.99 4.54 0.99 - -
pre & post 4.00 1.05 4.47 1.01 4.59 0.99 4.57 0.99 - -
full 5.00 1.05 6.73 1.01 6.79 1.01 6.76 0.99 - -

Gaussian Elimination
pre 2.22 0.99 4.50 0.97 4.70 1.01 4.71 1.01 - -
pre & post 2.77 0.99 4.50 0.97 4.70 1.04 4.73 1.09 - -
full 4.44 0.99 6.67 0.97 6.96 1.04 6.96 1.09 - -

Quicksort
pre 2.14 1.02 2.26 1.05 2.64 1.00 3.03 1.01 3.03 1.02 -
pre & post 2.28 1.02 2.27 1.05 2.70 1.02 3.02 1.07 3.04 1.08 -
full 3.64 1.02 4.14 1.05 5.07 1.02 6.38 1.07 6.49 1.09 -

Matrix Transposition
pre 2.00 1.05 2.06 1.01 2.40 1.02 3.71 1.01 3.86 1.02 4.02 1.01
pre & post 2.00 1.05 2.06 1.01 2.40 1.03 3.96 1.11 4.05 1.12 4.27 1.14
full 4.15 1.03 5.60 1.01 6.10 1.03 7.88 1.10 8.12 1.12 10.44 1.13



we computed ratios expressing the performance overhead resulting from enabling each of these
three modes against no contract checking at all. The ratios are based on medians of ten runs (an
effect of using medians is that some ratios can be less than 1).

Our data is presented in Table 7, where a ratio X can be interpreted as meaning that the
program was X times slower with the given contract checking mode enabled. The comparison
was unable to be made for some benchmarks with the largest inputs (indicated by dashes), as it
took far too long for the sequential Eiffel programs to terminate. We remark that vector addition,
dot product, and matrix-matrix multiplication have only scalar contracts; Gaussian elimination,
quicksort, and matrix transposition have a combination of both scalar and range contracts (see
Section 4 for their definitions).

There is an encouraging difference between the contract-checking overhead in sequential Eif-
fel and SafeGPU: while the former cannot maintain reasonable contract performance on larger
inputs (the average slowdown for the “full” mode across benchmarks with input size 106, for
example, is 7.19), SafeGPU has for the most part little-to-no overhead. Disabling invariant-
checking leads to improvements for sequential Eiffel (which, unlike SafeGPU, relies on invariant-
equipped library classes), but the average slowdown is still significant (now 4.03, for input size
106). Across these benchmarks, postcondition checking adds little overhead to sequential Eiffel
above checking preconditions only (which has an average slowdown of 3.98 for input size 106).
SafeGPU performs consistently well in all modes of the experiment, with slowdown close to 1
across the first three benchmarks. The other three benchmarks perform similarly for precondition
checking, but as they include more elaborate postconditions (e.g., “the vector is sorted”), check-
ing both pre- and postconditions can lead to a small slowdown on large data (1.14 in the worst
case for this experiment). Overall, the results lend support to our claim that SafeGPU contracts
can be monitored at runtime without diminishing the performance of the program, even with
large amounts of data. Unlike sequential Eiffel programs, contract checking need not be limited
to periods of debugging.

8. Related Work

There is a vast and varied literature on general-purpose computing with GPUs. We review a
selection of it, focusing on work that particularly relates to the overarching themes of SafeGPU:
the generation of low-level GPU kernels from higher-level programming abstractions, and the
correctness of the kernels to be executed.

8.1. GPU Programming and Code Generation

At the C++ level of abstraction, there are a number of algorithmic skeleton and template
frameworks that attempt to hide the orchestration and synchronization of parallel computation.
Rather than code it directly, programmers express the computation in terms of some well-known
patterns (e.g., map, scan, reduce) that capture the parallel activities implicitly. SkePU [5],
Muesli [6], and SkelCL [9] were the first algorithmic skeleton frameworks to target the de-
ployment of fine-grained data-parallel skeletons to GPUs. While they do not support skeleton
nesting for GPUs, they do provide the programmer with parallel container types (e.g., vectors,
matrices) that simplify memory management by handling data transfers automatically. Arbi-
trary skeleton nesting is provided in FastFlow [7] (resp. Marrow [8]) for pipeline and farm
(resp. pipeline, stream, loop), but concurrency and synchronization issues are exposed to the
programmer. NVIDIA’s C++ template library Thrust [29], in contrast, provides a collection of



data-parallel primitives (e.g., scan, sort, reduce) that can be composed to implement complex
algorithms on the GPU. While similar in spirit to SafeGPU, Thrust lacks a number of its abstrac-
tions and container types; data can only be modeled by vectors, for example.

Higher-level programming languages benefit from a number of CUDA and OpenCL bindings
(e.g., Java [22], Python [21]), making it possible for their runtimes to interact. These bindings
typically stay as close to the original models as possible. While this allows for the full flex-
ibility and control of CUDA and OpenCL to be integrated, several of the existing challenges
are also inherited, along with the addition of some new ones; Java programmers, for example,
must manually translate complex object graphs into primitive arrays for use in kernels. Root-
beer [15], implemented on top of CUDA, attempts to alleviate such difficulties by automatically
serializing objects and generating kernels from Java code. Programmers, however, must still es-
sentially work in terms of threads—expressed as special kernel classes—and are responsible for
instantiating and passing them on to the Rootbeer system for execution on the GPU.

There are several dedicated languages and compilers for GPU programming. Lime [10] is a
Java-compatible language equipped with high-level programming constructs for task, data, and
pipeline parallelism. The language allows programmers to code in a style that separates compu-
tation and communication, and does not force them to explicitly partition the parts of the program
for the CPU and the parts for the GPU. CLOP [13] is an embedding of OpenCL in the D lan-
guage, which uses the standard facilities of D to generate kernels at compile-time. Programmers
can use D variables directly in embedded code, and special constructs for specifying global syn-
chronization patterns. The CLOP compiler then generates the appropriate boilerplate code for
handling data transfers, and uses the patterns to produce efficient kernels for parallel computa-
tions. Nikola [12] is an embedding of an array computation language in Haskell, which compiles
to CUDA and (like SafeGPU) handles data transfer and other low-level details automatically.
Other languages are more domain-specific: StreamIt [30], for example, provides high-level ab-
stractions for stream processing, and can be compiled to CUDA code via streaming-specific
optimizations [11]; and VOBLA [31], a domain-specific language (DSL) for programming lin-
ear algebra libraries, restricts what the programmer can write, but generates highly optimized
OpenCL code for the domain it supports. Finally, Delite [32] is a compiler framework for de-
veloping embedded DSLs themselves, providing common components (e.g., parallel patterns,
optimizations, code generators) that can be re-used across DSL implementations, and support
for compiling these DSLs to both CUDA and OpenCL.

A key distinction of SafeGPU is the fact that GPGPU is offered to the programmer without
forcing them to switch to a dedicated language in the first place: both the high-level API and
the CUDA binding are made available through a library, and without need for a special-purpose
compiler. Firepile [14] is a related library-oriented approach for Scala, in which OpenCL kernels
are generated using code trees constructed from function values at runtime. Firepile supports
objects, higher-order functions, and virtual methods in kernel functions, but does not support
programming at the same level of abstraction as SafeGPU: barriers and the GPU grid, for exam-
ple, are exposed to developers.

8.2. Correctness of GPU Kernels
To our knowledge, SafeGPU is the first GPU programming approach to integrate the spec-

ification and runtime monitoring of functional properties directly at the level of an API. Other
work addressing the correctness of GPU programs has tended to focus on analyzing and ver-
ifying kernels themselves, usually with respect to concurrency faults (e.g., data races, barrier
divergence).



PUG [33] and GPUVerify [34, 35] are examples of static analysis tools for GPU kernels. The
former logically encodes program executions and uses an SMT solver to verify the absence of
faults such as data races, incorrectly synchronized barriers, and assertion violations. The latter
tool verifies race- and divergence-freedom using a technique based on tracking reads and writes
in shadow memory, encoded in Boogie [36].

Blom et al. [37] present a logic for verifying both data race freedom and functional correct-
ness of GPU kernels in OpenCL. The logic is inspired by permission-based separation logic:
kernel code is annotated with assertions expressing both their intended functionality, as well as
the resources they require (e.g., write permissions for particular locations).

Other tools seek to show the presence of data races, rather than verify their absence. Exam-
ples include GKLEE [38] and KLEE-CL [39], both based on dynamic symbolic execution.

9. Conclusion

We presented SafeGPU: a contract-based, modular, and efficient approach for library-based
GPGPU in object-oriented languages, demonstrated through a prototype implementation for Eif-
fel and an initial port for C#. The techniques of deferred execution and execution plan optimiza-
tion helped to keep the library performance on par with raw CUDA solutions. Unlike CUDA
programs, SafeGPU programs are concise and equipped with contracts, thereby contributing to
program safety. We also found that GPU-based contracts can largely avoid the overhead of asser-
tion checking. In contrast to classical, sequential contracts, it is feasible to monitor them outside
of periods of debugging: data size is not an issue anymore.

This work can be extended in a variety of directions. In the current implementation, the
optimizer is tailored to linear algebra and reduction/scan problems. Global optimizations could
be introduced, such as changing the order of operations, or handling loops in a more efficient
way. Furthermore, as shown in Section 7, GPU computing is not yet fast enough on “small” data
sets. This could be resolved by introducing a hybrid computing model, in which copies of data
are maintained on both the CPU and GPU. This could allow for switching between CPU and
GPU executions depending on the runtime context.

To provide better support for task parallelism, SafeGPU could be integrated with a thread-
based library. We could also investigate the integration of SafeGPU with a higher-level concur-
rency model, such as Eiffel’s SCOOP [40], which provides contract-based and transaction-like
reasoning over concurrent and distributed [41] objects.

There is a need to evaluate SafeGPU further on a broader set of benchmarks, to gain a better
understanding of where the library is useful and where further research is necessary. We also
plan to investigate its use in larger case studies, in particular, applying the library to speed up
embarrassingly-parallel evolutionary algorithms used in test data generation (as outlined in [42]).

Finally, in the work presented, we focused on single-GPU systems. In practice, however,
multi-GPU systems are becoming increasingly ubiquitous. Integrating (and thus benefiting from)
multiple accelerator devices in future versions of the SafeGPU approach is hence a particularly
important item of future work. Multi-accelerator systems (possibly from different manufactur-
ers, with different computing capabilities) bring a a range of new challenges. How do you, for
example, distribute your computations? Simply transferring your data—as we did—to a single-
GPU system is no longer sufficient. How do you manage the load? How do you deal with data
dependencies across several devices? And how do you choose the best device for the current
(sub-)problem?



A possible pathway to supporting multi-GPU systems is to work with “data chunks”, repre-
senting parts of the original data. This would also allow for the processing of data arrays that
are too large for just a single device. Working with chunks, however, requires a more complex
orchestration of computations: the framework must carefully manage partial transfers, assemble
data back from chunks, attempt to avoid inter-chunk data dependencies, and manage the bal-
ance of work across devices (solutions to such challenges might take inspiration from existing
research in the setting of distributed computing). Furthermore, chunked data and multi-GPU
systems might lead to a new class of kernel optimizations not possible in the current setting of
single-GPU systems.
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