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Abstract. A number of high-level languages and libraries have been proposed that offer novel and simple
to use abstractions for concurrent, asynchronous, and distributed programming. The execution models that
realise them, however, often change over time—whether to improve performance, or to extend them to
new language features—potentially affecting behavioural and safety properties of existing programs. This
is exemplified by Scoop, a message-passing approach to concurrent object-oriented programming that has
seen multiple changes proposed and implemented, with demonstrable consequences for an idiomatic usage
of its core abstraction. We propose a semantics comparison workbench for Scoop with fully and semi-
automatic tools for analysing and comparing the state spaces of programs with respect to different execution
models or semantics. We demonstrate its use in checking the consistency of properties across semantics by
applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the
principal execution models of Scoop. Furthermore, we demonstrate the extensibility of the workbench by
generalising the formalisation of an execution model to support recently proposed extensions for distributed
programming. Our workbench is based on a modular and parameterisable graph transformation semantics
implemented in the Groove tool. We discuss how graph transformations are leveraged to atomically model
intricate language abstractions, how the visual yet algebraic nature of the model can be used to ascertain
soundness, and highlight how the approach could be applied to similar languages.
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1. Introduction

In order to harness the power of modern architectures, software engineers must program with concurrency,
asynchronicity, parallelism, and distribution in mind. This task, however, is fraught with difficulties: data
races and deadlocks can result from the most subtle of errors in synchronisation code, and unexpected
program behaviours can emerge from the interactions between processes. To address this, a number of
novel programming APIs, libraries, and languages have been proposed that provide programmers with more
intuitive models of concurrency and distribution, such as block-dispatching in Grand Central Dispatch [GCD],
“sites” and concurrency primitives in Orc [KQCM09], or message-passing and active objects in languages such
as Scoop [WNM15] and Creol [JOY06].

The high-level programming abstractions that such languages provide rely on intricate implementations
that must maximise concurrency and performance whilst ensuring that programs still behave as the program-
mer expects them to. Devising execution models that successfully reconcile these requirements, however, is
challenging: a model too restrictive can deny desirable concurrency and cause unnecessary bottlenecks, but
a model too permissive might lead to surprising and unintended program executions emerging. Furthermore,
execution models evolve and change over time as language designers seek to improve performance, and seek
to support new language constructs or applications. Comparing the performance of different execution mod-
els is as simple as benchmarking their implementations. It is much harder, however, to detect and analyse
the subtle effects of semantic changes on behavioural or safety properties, which have the potential to affect
existing programs written and tested under older execution models.

One language that clearly exemplifies these issues is Scoop [WNM15], a message-passing approach to
concurrent object-oriented programming. Scoop provides concurrency in a very shielded way, designed to
allow programmers to introduce it while still maintaining the modes of reasoning they are familiar with from
sequential programs, e.g. localised pre- and postcondition reasoning, and interference-free method execution
over multiple objects. The fundamental language abstractions of Scoop were informally proposed as early
as the ‘90s [Mey93, Mey97], but it took many more years to realise them effectively: multiple execution mod-
els [BPJ07, MSNM13, WNM15], prototypes [Nie07, TOPC09], and production-level implementations [Eif]
appeared over the last decade. Furthermore, the latest semantics is unlikely to be the last, as new language
features continue to be proposed and integrated with the existing abstractions, e.g. shared memory [MNM14]
and distributed programming extensions [SPM16]. Together, these can be seen as a family of semantics for
the Scoop language, but a family that is partially-conflicting. To illustrate one such conflict, suppose that
the following two blocks of code are being executed by two distinct and concurrent threads of control:

separate stack
do

stack.push (1)
stack.push (2)
...
stack.push (7)

end

separate stack
do

stack.push (8)
x := stack.top

end

Intuitively, the stack object is some concurrent stack of integers, and each separate block indicates to
Scoop that the instructions within should be executed on the stack in program text order, and without
interference from the instructions of other threads. As a consequence, if the stack is observed, it would
be impossible for 8 to appear anywhere in-between 1 through to 7; furthermore, the value stored to x
will always be 8. The synchronisation to achieve this—which allows the programmer to reason about a
separate block as if it were sequential code—is the responsibility of Scoop, and generalises to blocks over
multiple concurrent objects. The execution models orchestrating this, however, have changed over time: the
original model [MSNM13] had the effect of blocking concurrent objects for the full duration of separate
blocks (e.g. blocking the stack until stack.push (1) through to stack.push (7) are all requested),
whereas the current model [WNM15] only blocks when necessary for the sake of performance (e.g. competing
stack.push commands are logged simultaneously, but in a special nested queue structure that ensures
the order guarantees).

While both execution models maintain the order guarantees, they can lead to the same program behaving
quite differently: under the older model, for example, programs are more prone to deadlocking, whereas
under the current model, existing programs that relied (whether intentionally or not) on the coarse-grained
blocking as a lock on some resource may no longer work as the programmer intended. Despite such substantial
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changes, the different semantics of Scoop have only ever been studied in isolation: little has been done to
formally compare the execution traces permitted under different execution models and ensure that their
behavioural and safety properties are consistent (in fact, they are not). While some comprehensive, tool-
supported semantic formalisations do exist—in Maude’s conditional rewriting logic [MSNM13] for example,
and in a custom-built Csp model checker [BPJ07]—they are tied to particular execution models, do not
operate on actual source code, and are geared towards “testing” the semantics as they are unable to scale
to more general verification tasks. Owing to the need to handle waiting queues, locks, asynchronous remote
calls, and several other intricate features of the Scoop execution models, these formalisations quickly become
very complex, not only blowing up the state spaces that need to be explored, but also making it difficult
to confirm their soundness with language designers—one of the few means of ascertaining soundness in the
absence of precise documentation.

Our Contributions. We propose a semantics comparison workbench for Scoop, with fully and semi-
automatic tools for analysing and comparing the state spaces of programs with respect to different execu-
tion models or semantics. Our workbench is based on a graph transformation system (Gts) formalisation
that: (i) covers the principal concurrent asynchronous features of the language, using Gts rules and con-
trol programs (strategies) to atomically model their intricate effects on Scoop states (i.e. on control flow,
concurrent object structures, waiting queues, and locks); (ii) is modular, parameterisable, and extensible,
allowing for Scoop’s different semantics to re-use common components, and to seamlessly plug-in distinct
ones (e.g. for storage, control, synchronisation); and (iii) is implemented in the general-purpose Gts tool
Groove [GdMR+12], providing out-of-the-box state space analyses for comparing programs under different
Scoop semantics. We demonstrate the use of the workbench for checking the consistency of properties across
semantics by applying it to a set of representative Scoop programs, and highlighting a deadlock-related dis-
crepancy between the principal execution models of the language. Furthermore, we demonstrate the extensi-
bility of the workbench by generalising one of the semantics to support the features of D-Scoop [SPM16], a
prototype extension of Scoop for distributed programming. We discuss how the visual yet algebraic nature
of our Gts models can be used to ascertain soundness, and highlight how our approach could be applied to
similar concurrent, asynchronous, distributed languages.

This is a revised and extended version of our FASE 2016 paper, “A Graph-Based Semantics Work-
bench for Concurrent Asynchronous Programs” [CHP16] (itself based upon the preliminary modelling ideas
in [HPCM15]), adding the following new content: (i) a new Gts semantics covering the distributed program-
ming abstractions of D-Scoop, formalised orthogonally to the others by extending an existing semantics and
not just replacing the components of one; (ii) a presentation of the underlying, compositional metamodel to
which the family of Scoop and D-Scoop semantics all conform, including a discussion of the metamodel’s
genericity; (iii) an expanded evaluation that additionally explores the state spaces of our benchmarks in fully
distributed contexts; and (iv) a significantly revised presentation, including new details, explanations, and
examples throughout the paper.

For language designers, this paper presents a transferable approach for checking the consistency of concur-
rent asynchronous programs under competing language semantics. For the graph transformation community,
it presents our experiences of applying a state-of-the-art Gts tool to a non-trivial and practical problem in
programming language design. For the broader verification community, it highlights the need for verification
parameterised by different semantics, and demonstrates how Gts-based formalisms and tools can be used to
derive an effective, modular, and extensible solution. Finally, for software engineers, it provides a workbench
for crystallising their mental models of Scoop, potentially helping them to write better quality code and
understand how to port it across different Scoop implementations.

Plan of the Paper. We begin with an overview the Scoop concurrency model, its two most established
execution models, and its distributed extension (Section 2), before presenting some necessary Gts prelim-
inaries (Section 3). Following this, we introduce a graph-based semantics metamodel for Scoop, and show
how to formalise different, parameterisable semantics that conform to it (Section 4). We propose a formal
Gts-based model in Groove for the family of Scoop semantics, and implement it in a small toolchain (Sec-
tion 5), allowing us to compare the state spaces of representative Scoop programs under different semantics
(Section 6) and highlight a deadlock-related discrepancy. Finally, we examine some related work (Section 7),
and conclude with a summary of our contributions and some future research directions (Section 8).
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2. SCOOP: A Concurrent, Asynchronous, Distributed Programming Language

Scoop [WNM15] is a message-passing approach to concurrent object-oriented programming that aims to pre-
serve the well-understood modes of reasoning enjoyed by sequential programs, such as sequential consistency,
interference-free method execution over multiple objects, and pre- and postcondition reasoning over blocks
of code. In order to achieve this, it provides its users with concurrency abstractions that are easier to reason
about than threads, minimal new language syntax, and an implementation responsible for orchestrating the
synchronisation. While Scoop has been studied principally in the context of concurrency, its programming
abstractions also generalise to distributed systems by means of an additional layer for coordinating requests
over a network [SPM16].

This section presents an overview of Scoop’s most important features. First, we describe handlers, sep-
arate objects, and separate blocks—Scoop’s main concurrency abstractions. We demonstrate the reasoning
they allow programmers to do in some simple examples. Second, we compare the two most established execu-
tion models for orchestrating the synchronisation, and highlight the rationale for their different approaches.
Finally, we discuss D-Scoop [SPM16], a prototype extension of Scoop that extends one particular execution
model with support for distributed programming.

Throughout this paper we present Scoop with respect to the syntax and terminology of its principal
implementation for Eiffel [Eif]. We remark that the ideas, however, can be implemented for any other object-
oriented language (as explored, e.g. for Java [TOPC09]).

2.1. Language Abstractions and Execution Guarantees

Handlers and Separate Objects. In Scoop, every object is associated with a handler (also called a
processor), a concurrent thread of control with the exclusive right to call methods on the objects it handles.
Object references may point to objects sharing the same handler (non-separate objects) or to objects with
distinct handlers (separate objects). Method calls on non-separate objects are executed immediately by their
shared handler. To make a call on a separate object, however, a request must be sent to the distinct handler
of that object. If the method requested is a command (i.e. it does not return a result), then it is executed
asynchronously, leading to concurrency; if it is a query (i.e. a result is returned and must be waited for), then
it is executed synchronously. Note that handlers cannot synchronise via shared memory: only by exchanging
requests.

In Scoop, objects that may have different handlers are declared with a special separate type. In
order to request method calls on objects of separate type, programmers simply make the calls within
so-called separate blocks (the type system prevents calls outside of such blocks). These can be declared
explicitly (we will use the syntax separate x,y, . . . do . . . end), but whenever a separate object is
a formal parameter of a method, the body of that method is implicitly a separate block too. The underlying
implementation is then responsible for orchestrating the synchronisation between handlers implied by the
separate blocks.

Execution Guarantees. Scoop provides strong guarantees about the execution of calls in separate blocks,
in order to help programmers reason more “sequentially” about their concurrent code and avoid typical
synchronisation bugs. In particular, within a separate block, requests for method calls on separate objects
are always logged by their handlers in the order that they are given in the program text; furthermore, there
will never be any intervening requests logged from other handlers. These guarantees apply regardless of the
number of separate objects and handlers involved in a separate block. As a consequence, programmers
can write code over multiple concurrent objects that: (1) is guaranteed to be data race free; and (2) can be
reasoned about sequentially and independently of the rest of the program.

To illustrate, consider the following separate blocks (adapted from [WNM15]) that set the “colours” of
two separate objects, x and y. Suppose that a handler is about to enter the separate block to the left,
and concurrently, a distinct handler is about to enter the separate block to the right:
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separate x,y
do

x.set_colour (Green)
y.set_colour (Green)

end

separate x,y
do

x.set_colour (Indigo)
a_colour = x.get_colour
y.set_colour (a_colour)

end

The two separate blocks contain a mix of commands and queries, which are issued as asynchronous and
synchronous requests respectively to the handlers of x and y. The body of the leftmost separate block
asynchronously sets the colours of x and y to be Green . The body of the rightmost block first asynchronously
sets x to Indigo , then synchronously queries the colour of x, then asynchronously sets the colour of y to
the result of that query. The Scoop guarantees ensure that for the duration of a separate x,y block,
no intervening requests can be logged on the handlers of x or y. As a result, it would not be possible to
observe the colours in an intermediate state: both of them would be observed as Green , or both of them
would be observed as Indigo . Interleavings permitting any other combination of the colours are completely
excluded. This additional control over the order in which concurrent requests are handled represents a twist
on classic message-passing approaches, such as the actor model [Agh86], and programming languages like
Erlang [AVW96] that implement them.

Wait Conditions. Scoop also provides a mechanism for synchronising on conditions, built on top of Eiffel’s
native support for contracts1. In sequential Eiffel, preconditions (keyword require) and postconditions
(ensure) express conditions on the state that should hold at the beginning and end of a method execution.
They are executable queries and can be monitored at runtime. In Scoop, however, if a precondition involves
separate objects, then it is re-interpreted as a wait condition that must be synchronised on. The body of
the method (which is implicitly a separate block) is not entered until the condition becomes true. We remark
that postconditions do not have a special concurrent re-interpretation, and are simply (optionally) logged as
requests immediately upon exiting the method body.

Consider the following excerpt from a Scoop program solving the producer-consumer problem:

put_on_buffer (a_buffer: separate
BOUNDED_BUFFER[INTEGER ]; an_element:
INTEGER)

require
not a_buffer.is_full

do
a_buffer.put (an_element)

ensure
not a_buffer.is_empty
a_buffer.count = old a_buffer.count + 1

end

remove_from_buffer (a_buffer: separate
BOUNDED_BUFFER [INTEGER ]): INTEGER

require
not a_buffer.is_empty

do
a_buffer.consume
Result := a_buffer.last_consumed_item

ensure
a_buffer.count = old a_buffer.count - 1

end

Here, a number of concurrently executing producers (left) and consumers (right) must respectively add
and remove elements from a buffer of bounded size that has its own concurrent handler (the buffer is of
separate type). Producers must not attempt to add an element to the buffer when it is full; consumers
must not attempt to remove an element from the buffer when it is empty. These requirements are expressed
as wait conditions in the require clauses of the respective methods; they must become true before entering
the method bodies (which are implicitly separate blocks, since the buffer is a formal argument). In the case
of producers, Scoop guarantees that the request to call a_buffer.put(an_element) will be logged
on the handler of a_buffer in an order such that not a_buffer.is_full is true when it is executed;
similar for consumers with a_buffer.consume and the wait condition not a_buffer.is_empty .

1 Contracts can also be supported in other object-oriented languages, e.g. via JML [BCC+05] for Java, or Code Con-
tracts [Cod17] for C#.
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h1

h0 h0
h3 h2 h1h2,'h3

Fig. 1. Three handlers (h1, h2, h3) logging requests on another (h0) under RQ

h1

h0 h0
h3 h2 h1h2,'h3

Fig. 2. Three handlers (h1, h2, h3) logging requests on another (h0) under QoQ

2.2. Execution Models

The programming abstractions of Scoop require an execution model that specifies how requests between
handlers should be processed. Two contrasting models have been supported by the Scoop implementation
over its evolution: initially, an execution model we call Request Queues (RQ) [MSNM13], and an execution
model that has since replaced it which we call Queues of Queues (QoQ) [WNM15]. In the following we
compare the two models and highlight a semantic discrepancy between them.

Request Queues. The RQ execution model associates each handler with a single Fifo queue for storing
incoming requests. To ensure the Scoop execution guarantees, each queue is protected by a lock. For a
handler to log a request on the queue of another handler, the former must first acquire the lock protecting
the latter. Once the lock is acquired, it can log requests on the queue without interruption.

Under the RQ model, upon entering a separate x,y,... block, the handler must simultaneously
acquire locks on the request queues associated with the handlers of x,y,... and must hold them for the
duration of the block. This coarse-grained solution successfully prevents intervening requests from being
logged, but leads to performance bottlenecks in several situations, e.g. multiple handlers vying for the lock
of a highly contested request queue.

Figure 1 visualises three handlers (h1, h2, h3) attempting to log requests (green squares) on the queue
associated with another handler (h0) under RQ. Here, h1 has obtained the lock (i.e. entered a separate block
involving objects handled by h0) and is able to log its requests on the queue of h0 without interruption.
Once h1 releases the lock (i.e. exits the separate block), h2 and h3 will contend for the lock in order to log
the requests that they need to.

Queues of Queues. In contrast, the QoQ execution model associates each handler with a “queue of
queues”, a Fifo queue itself containing (possibly several) Fifo subqueues for storing incoming requests.
Each subqueue represents a “private area” for a particular handler to log its requests, in program text order,
and without any interference from other handlers (since they have their own dedicated subqueues).

Under the QoQ model, upon entering a separate x,y,... block, the handler is no longer required
to fight for the exclusive right to log requests. Instead, dedicated subqueues are simultaneously prepared
by the handlers of x,y,... on which requests can be logged without interference for the duration of
the block. Should another handler also need to log requests on x,y,... , then another set of dedicated
subqueues are prepared, and the requests can be logged on them concurrently. The QoQ model thus removes
a potential performance bottleneck of RQ, but is still able to ensure the Scoop reasoning guarantees by
wholly processing the subqueues, one-by-one in the order that they were created, and processing the requests
within each subqueue in the order that they were logged there.

Figure 2 visualises three handlers (h1, h2, h3) sending requests (green squares) to another handler (h0)
under QoQ. In contrast to RQ (Figure 1), the three handlers have access to dedicated subqueues and can
log their requests concurrently. In highly asynchronous programs, this substantially reduces the amount of
unnecessary blocking.

Note that the implementations of RQ and QoQ (i.e. compilers and runtimes) include a number of
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separate left_fork , right_fork
do

left_fork.use
right_fork.use

end

Listing 1. Eager philosophers

separate left_fork
do

separate right_fork
do

left_fork.use
right_fork.use

end
end

Listing 2. Lazy philosophers

additional optimisations. While we do not model them in this paper, strictly speaking, these implementations
could even be viewed as representing distinct semantics in the Scoop family.

Semantic Discrepancies. While both of the execution models correctly implement the programming ab-
stractions of Scoop, discrepancies can arise in practice. We already highlighted that QoQ can lead to less
blocking than RQ, and thus boost performance. But it also has the potential to affect the intended function-
ality of a program. For example, in the mental model of programmers, separate blocks under RQ had become
synonymous with acquiring and holding locks. Such behaviour does not occur when entering separate blocks
in QoQ.

This discrepancy is illustrated by the dining philosophers problem, in which concurrent processes (philoso-
phers) must repeatedly acquire sole use of shared resources (forks) without causing a cyclic deadlock. The
Scoop solution, provided as part of the official documentation [Eif], attempts to solve it by representing
philosophers and forks as separate objects—each with their own handlers—and modelling the acquisition of
forks (eating) as a separate block. Consider Listing 1 and Listing 2, which respectively provide the official
solution and a variant with nesting. Under RQ, Listing 1 (“eager” philosophers) solves the problem by re-
lying on the implicit simultaneous acquisition of locks on the forks’ handlers; no two adjacent philosophers
can be in their separate blocks at the same time. Under RQ, Listing 2 (“lazy” philosophers) can lead to
a circular deadlock, since the philosophers acquire the locks in turn. Under QoQ however, neither version
will deadlock, but neither version actually represents a solution: since all the requests are asynchronous, no
blocking occurs at all, and philosophers can “eat” regardless of the states of other philosophers. While not a
solution to dining philosophers under QoQ, the basic execution guarantees of Scoop remain satisfied.

2.3. Extension for Distributed Programming

Yet another competing semantics for Scoop is D-Scoop (for Distributed Scoop) [SPM16], which adds
support for programming with separate objects over networks. Rather than replace an existing semantics,
D-Scoop extends the QoQ model: it aims to retain the abstractions, guarantees, and behaviours of Scoop
under QoQ, while generalising them to distributed objects via an additional communication layer that
remains hidden from the programmer. In the following, we provide an overview of how Scoop systems
communicate over a network, and discuss a simple example.

D-Scoop. In D-Scoop, an instance of a running Scoop program (under QoQ) is called a node2. A node
can open a connection to another node through a network socket, which is then shared by all of its handlers.
Nodes communicate, via these connections, using messages and replies. Messages are sent from a client node
to a supplier ; replies are sent back from the supplier to the client to indicate the outcome.

When entering a separate block, it is now possible that one or more of the involved separate objects
are handled on one or more remote nodes. For this new case, D-Scoop introduces a (two-phase) locking
protocol to allow for remote calls to be logged in a way that maintains the separate block guarantees, while
minimising blocking as much as possible. The protocol involves three stages: (i) a prelock stage, for setting
up remote subqueues in a correct order; (ii) an issuing stage, for logging object calls on those subqueues
without interruption; and (iii) an execution stage, for dequeueing and executing those calls.

2 A Scoop program can be viewed as a D-Scoop program with only one node.
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Locking Protocol. The prelock stage ensures the creation of subqueues across multiple remote handlers
without interference. First, messages (with the subject PRELOCK ) are sent to the nodes of remote objects
to announce that a handler in the client node wishes to enter a separate block that involves them. These
are sent one-at-a-time and in a fixed order based on node IDs (to avoid deadlock). If a supplier receives a
PRELOCK message but is already involved in the prelock stage of another node, the client blocks. Once the
supplier is available, it replies OK , indicating that the client can unblock and send a PRELOCK message to
the next node involved (if any). Once these messages are all acknowledged, the client sends a LOCK message
to each “prelocked” supplier, which instructs them to prepare a private subqueue on the appropriate handler.
By once again replying OK , the suppliers are indicating that they are ready to receive and enqueue requests,
and the prelock stage is over.

The issuing and execution stages are more straightforward, and typically overlap (in fact they must
overlap if synchronous queries are involved). The client simply issues remote requests over the network as
asynchronous CALL or synchronous QCALL messages, corresponding respectively to commands and queries.
For the former, the supplier replies OK as soon as the command is enqueued; for the latter, the supplier
replies OK as soon as the query is executed, and also returns the result.

When a supplier is involved in the prelock stage of a particular client, any other clients that try to
involve it in a prelock stage are blocked. This blocking is crucial to ensure that subqueues are created
without interference. Instead of blocking a competing node for the whole of a separate block, however,
blocking only occurs during the prelock stage (i.e. while subqueues are being set up); competing issuing
stages can otherwise run concurrently. This allows for D-Scoop systems to remain efficient, while lifting the
execution guarantees and behaviours of QoQ to a distributed setting.

Additional details about the locking protocol as well as some example message-&-reply exchanges are
provided in [SPM16]. Note that D-Scoop also provides some advanced mechanisms for recovering from
failure (e.g. compensation) which we do not explore in this paper.

Distributed Example. Consider the following code excerpt from a D-Scoop implementation of a bank
account management system:

transfer (source , target: separate ACCOUNT; amount: NATURAL)
do

if source.balance >= amount then
source.set_balance (source.balance - amount)
target.set_balance (target.balance + amount)

else
-- Notify user (not shown)

end
end

The transfer method allows some client to transfer an amount of money from a source account to a
target account. As the two bank accounts are of separate type and provided as formal arguments, the
body of transfer implicitly forms a separate block.

Suppose that source and target are handled on two different remote nodes. Upon calling transfer ,
the client must follow the aforementioned locking protocol before it can enter the method body and start
issuing requests. First, the client node sends a PRELOCK message to the node containing source . If (or
when) the node is not being prelocked by another client, it replies OK ; the client then sends a PRELOCK

message to the node containing target and waits for an OK . At this stage, no other client can prelock the
nodes containing the two accounts, i.e. no other nodes can interrupt the process of generating subqueues.
The client issues LOCK requests to the suppliers, which trigger the creation of subqueues on the handlers of
source and target . After both reply OK , the client enters the body of transfer (and the nodes of
source and target become free to be prelocked by others). The balance requests are issued as syn-
chronous QCALL messages, with the requests enqueued by the suppliers and waited for; the set_balance
commands are enqueued as asynchronous CALL messages, and the client can exit the block before the final
one (target.set_balance) is executed. The requests are issued and executed without any interference.

Note that a (single node) concurrent version of transfer would look exactly the same as this dis-
tributed version. The only difference emerges upon execution: if source or target are remote, then the
implementation must follow the locking protocol. This is invisible to the programmer, who works with the
same abstractions and execution guarantees regardless of where any separate objects are actually located.
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3. Graph Transformation System Preliminaries

Our semantics comparison workbench for Scoop is based on graph transformation systems (Gts)—also
known as graph-rewriting systems or graph grammars. Graph transformation is a flexible formalism for
dynamic systems, and is well-suited to modelling the structures and relations in Scoop states (e.g. object
references, handlers, waiting queues). Gts is an inherently visual modelling approach, but is also anchored
to a formal, algebraic basis, and is supported by a variety of practical tools.

In this section, we present a brief and informal overview the basic concepts of Gts, which should be
sufficient to follow the rest of the paper. For a deeper introduction to Gts, we refer to reader to some
standard textbooks, e.g. [Roz97, EEPT06].

Graph Transformation Systems. Gts are rule-based systems for manipulating graphs. They can be seen
as a computation abstraction, in which states (or configurations) are graphs3, and computational steps are
rules that rewrite these graphs. In the state space of a Gts applied to some initial configuration, the states
are thus graphs, and the transitions are rule applications.

Gts rules nondeterministically match a structural pattern in a graph and rewrite it. Rules consist of
combinations of the following: (i) a “context” in the graph that needs to be matched by the rule but is
unchanged by it; (ii) a set of edges and nodes (and labels) that are added in this context; (iii) a context that
is matched but removed by the rule; (iv) a negative application condition, i.e. a part of the graph that when
present, prohibits the application of the rule.

Typically, the rules of a Gts are applied to graphs nondeterministically (both in choosing the rule
and choosing the match) and for as long possible. If a Gts consists of rules that unconditionally add new
nodes or edges, for example, then it will be associated with an infinite transition system containing graphs
of unbounded size. Many tools (e.g. Groove [GdMR+12], GP 2 [Plu12]) allow for control programs (or
strategies) to be defined over the rules, adding a finer degree of control.

Notation & Example. There are several ways to denote a Gts rule, but for simplicity, we will use the
notation of Groove (since we use the tool in our workbench). In the following, we illustrate the application
of Gts rules using a simple and intuitive example. Formally, rule applications are described in a proper
categorical setting, via graph morphisms and pushout constructions (we refer the reader to [EEPT06]).

Suppose we are using a graph to model a simple Fifo queue. Let us distinguish two types of nodes in our
graph: a node labelled Queue modelling the “anchor” of a queue, and message nodes Message:a and Message:b
labelled with the Message type and some contents, either a or b . Furthermore, let us distinguish edges
labelled with “next”, representing pointers towards the tail of the Fifo queue.

Consider the following Gts rules Append_a and Append_b:

Queue next

Message:a

next nextAppend_a:

Queue next

Message:b

next next

Message Messagenext next3

Append_b:

Following Groove’s notation, solid black nodes and edges are matched by the rule (but not deleted),
dashed blue nodes and edges are matched and deleted, green ones are newly created, and red ones must not
be present. Intuitively, the application of a rule to a graph is a three-step procedure: first, the black and
blue structure is matched in a context where the red structure is not present; second, the blue structure in
the match is deleted; finally, the green structure is created. Thus, Append_a deletes a “next” edge incident
to the anchor and inserts a Message:a node in its place; Append_b does the same for a Message:b node, but
only if the Fifo queue has at most three elements.

Suppose that we have the following initial configuration, which models an empty Fifo queue:

Queue next

3 In this paper, our graphs are directed and labelled, with parallel edges allowed.
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The application of Append_a to this graph proceeds as follows:

Queue next

Queue next

Message:a

next next

Queue

Queue next

Message:a

next next

Queue Message:a
next

next
⇒ ⇒

1. match 2. delete 3. create

The match of the rule is indicated by dashed grey lines. Observe that in this case, two of the nodes in the
rule are mapped to the same node (i.e. the match is non-injective).

The rule Append_b could have been applied to the same initial graph, too, since its negative application
( Queue Message Messagenext next3 ) has no match. This specifies that there must not exist a
message node reachable from the anchor node by four “next” edges. Observe that the negative application
condition is only matching the Message type of the labels (and not its contents, a or b ), and that a simple
regular expression is used over the edges. As a consequence, Append_b can only be applied if the Fifo queue
has at most three elements.

After multiple applications of Append_a and Append_b, we can eventually derive a graph representing a
Fifo queue that contains the message abba:

Queue Message:a Message:b Message:b Message:anext next next next
next

We could extend the Gts, for example, with similar rules that remove messages from the queue, taking
different actions depending on the contents.

Control Programs. In general, a Gts tries to apply its rules in a nondeterministic fashion. More fine-
grained control over the application of rules is possible with the help of control programs (also know as
strategies) that specify in a declarative way how rules are to be applied. For example, the control program
alap Append_b; Append_a; would apply the rule Append_b as long as possible (alap) and then Append_a
once. This will always lead to a message queue containing bbbba.

In Groove, control programs can also specify so-called recipes, which wrap functions over (possibly
multiple) rules into a single transition. Control programs and recipes provide an ideal base for defining
Gts in a modular way, e.g. by supporting different implementations of recipes for different semantics of
components (e.g. different queuing models in our case).

We refer the interested reader to [GdMR+12] and the documentation of the Groove tool for more details
on control programs, recipes, and additional features of Gts rules, e.g. ! = and == edges (for explicitly
expressing whether two matched nodes are distinct or not), or nested rules for matching universally (∀) and
existentially (∃) quantified substructures.

4. A Graph-Based Semantics Metamodel

With the example of Scoop, we have motivated the need for a semantics comparison workbench that: (i) can
model features such as asynchronous remote calls and waiting queues; (ii) is modular (e.g. for replacing RQ
synchronisation with QoQ) and extensible (e.g. for lifting QoQ to D-Scoop); and (iii) provides formal
and automatic analyses for checking the consistency of behavioural and safety properties of programs under
different semantics. The following three sections present how we achieve this through the use of a Gts
semantics, formalised in the Groove tool, and supported by a wrapper and simple toolchain.

In this section, we describe the first step of our process, in which we derive a graph-based, compositional
metamodel to which the family of Scoop semantics (and possibly other message-passing language semantics)
all belong. We use the metamodel to formally structure the sub-components of semantics and the interfaces
between them. This abstract structure provides the basis of our approach to semantics parameterisation,
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Rule Engine Configuration Graph

≈ GTS

Fig. 3. Overview of the Gts underpinning a semantics comparison workbench

which allow for common semantic components to be re-used across different execution models, and other
semantic components to be plugged-in.

Metamodel Overview. We present a graph-based semantics metamodel covering Scoop and other actor-
like programming languages based on: (i) message-passing concurrency; (ii) (active) objects, which are ex-
plicitly assigned to a handler and can only be accessed via this handler; (iii) asynchronous and synchronous
calls between objects across different handlers; and (iv) different distribution topologies (i.e. different ways
of connecting or relating distributed runtimes). The metamodel describes the structure of the semantic com-
ponents found in RQ, QoQ, and D-Scoop, but abstracts away from concrete details (e.g. computations on
non-separate, separate, or remote objects). Different models expressing these details, however, can be plugged
in to the metamodel because of its compositionality, so long as they conform to the abstract boundaries and
interfaces it defines. Semantic plug-ins of interest include, for example, different storage models, different
queuing semantics, and different distribution topologies.

Our semantics metamodel describes the structure of a Gts, consisting of a rule engine and configuration
graph (Figure 3). The rule engine encodes the step-wise operational rules of the semantics, whereas the
configuration graph encodes a snapshot of the state of the handlers, their objects, their current synchronisa-
tion topology, as well as a representation of the original Scoop program’s control flow. Before launching a
state-space exploration on a Scoop program, the rule engine and corresponding configuration graphs must
be initialised accordingly. The rule engine can be parameterised by plugging in semantic components to
simulate different ways of synchronising, queuing, and handling distributed objects (the choices of which are
then reflected in the typing of the configuration graph). The configuration graph must also be initialised to
encode the control-flow information of the original Scoop source code, as well as any expected initial con-
figurations of handlers, objects, and topology. Our workbench is thus a front end responsible for initialising
both aspects of the Gts (with respect to an execution model and Scoop program), and then launching
simulations or analyses of the system’s behaviour.

In the following, we present these building blocks of our metamodel in more detail, and demonstrate
a semantic plug-in for storage. Without loss of generality, we assume—for simplicity of presentation—that
objects are dynamically generated from flat class templates, i.e. inheritance is flattened in a pre-compilation
step. Thus, our (Scoop) objects consist of a finite fixed set of initialised variables with values that can be
changed in program executions.

Configuration Graphs. Configuration graphs, which encode snapshots of the states of handlers, are the
heart of our metamodel, and describe the structure of configurations4 in traces of rule applications. Each
configuration encodes both static control flow information (extracted from the original program), as well as
the dynamic states of the handlers, any objects under them, and the topologies that connect them.

Figure 4 depicts the three principal components of configuration graphs and their connections. Each
handler defines an autonomous execution unit with exclusive access to some region of storage, and the
ability to administer inter-handler synchronisation via the topology abstraction. Note that there is an a
priori unbounded number of handler instances in a configuration graph. The topology abstraction connects
the handlers and defines the channels by which they synchronise. It also encodes name resolution and
references between objects residing under the control of different handlers. Furthermore, it can be used to
encode nodes and distributed communication channels. The control flow information encodes the control
flow graph of the program, including all information necessary to dynamically generate new objects, e.g. via

4 We will use configurations and configuration graphs synonymously.
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Handler 1
Topology Abstraction

Handler n

Handler 2 Handler n-1

Control Flow Information

. . .
«Handler»

«Handler» «Handler»

«Handler»

configuration graph

Fig. 4. Structure of a configuration graph (with n handlers)

Control

Storage

Synchronisation topology abstraction

control flow graph

«Handler»

Fig. 5. Structure of a handler and its connections to its environment

class templates. Note that the control flow information in a configuration graph is static and does not change
under the execution of the rule engine.

Our metamodel further divides each handler into three semantic subcomponents: (i) its control state,
recording the handler’s current position in the control flow information; (ii) its storage stage, including a
stack for recursion, and a heap containing objects, possibly with references to separate objects (i.e. under the
control of other handlers); and (iii) a synchronisation component connecting to the topology abstraction and
including, for example, a dispatcher for outgoing requests and an input queue for storing requests received
from other handlers. These three subcomponents are depicted in Figure 5.

Example: Storage Model. The different (sub)components of our configuration graph can be defined and
typed according to the needs of different language semantics. In all of the execution models of Scoop, for
example, we require that the storage associated with handlers consists of both an object heap and a stack
frame. Figure 6 depicts a type graph for this requirement, prescribing the structure of the storage components.
This (simplified) example covers recursion via a linked list of stack frames, containing variables with values
that are either primitive or references to objects. These references can point to objects under the control of
the same handler, but may also point to objects under the control of other (possibly distributed) handlers.
The stack frame maintains a pointer to the current object with respect to the handler’s execution, and may
also refer to a return state (via the handler’s connection to control flow information) for modelling recursion.
Note that the last-in-first-out nature of the stack is modelled via the corresponding semantic rules in the
rule engine.

The example does not cover all intricacies of the storage models used in Section 5. Nevertheless, the level
of detail supplied by a concrete implementation of such a component is visible. Different implementations of
the metamodel’s components lead to different subgraphs within the configuration graphs, with each choice
of subgraph conforming to its own type graph. The manipulation of the elements of these subgraphs is then
controlled by a dedicated set of rules in the rule engine.
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Fig. 6. Simplified type graph of a storage model with stack-based recursion and an object heap

Rule Engine. The rule engine controls the execution of semantic graph transformation rules, and thus
implements a step-wise operational semantics. For each control state of a handler (encoded as a pointer
from the handler to the control flow graph in the configuration graph), the rule engine nondeterministically
applies one of the fireable transitions permitted by the control flow graph and any guards. Upon firing a
transition, side effects may occur (e.g. changes to the handler’s storage), and the handler moves to the next
control state. Note that while we assume an interleaving semantics for simplicity of presentation, the parallel
execution of truly independent transitions in one global semantic step would be possible in, e.g. the Scoop
implementation.

Additionally, the rule engine encodes a number of rules that operate in the background, performing
garbage collection, object initialisation, queue management, and also moving requests from handler-to-
handler via the given topology abstraction. These background rules are essential to ensure progress of the
overall system. For example, a synchronous call will block a handler indefinitely if the issued request is not
moved across the topology abstraction and enqueued at the other end.

Semantics Parameterisation. Similar to the compositionality of configuration graphs, the rules in the rule
engine are decomposed into sets that define semantics for the different (sub)components of the metamodel.
For example, in the context of Scoop, we can use a set of rules defining the queueing semantics of RQ or
those of QoQ. In replacing a set of rules, however, the type graph of the affected component must also be
replaced to ensure that the rules operate on subgraphs exhibiting the expected structure. RQ, for example,
expects simple request queues, but QoQ expects to operate on nested queueing structures.

Beyond a parametric treatment of request queues, we could also plug in different topology abstractions
(e.g. introducing a two-level network hierarchy to model the distribution of handlers across nodes), or investi-
gate different storage models for the handlers (e.g. replacing the object heap with a simple counter variable).
Each plug-in simply requires a type graph for the expected structure of the subgraph, and a new set of
rules for modelling the appropriate manipulations that take place on them. All plug-ins must also ensure a
consistent treatment of connections to other components, ensuring that the semantics remain modular and
compositional.

Metamodel for the Scoop Family. Our metamodel is sufficiently rich to cover the main features of the
Scoop family of semantics: (i) message-passing based concurrency; (ii) objects that are accessible only via
their assigned unique handler; (iii) asynchronous and synchronous calls to separate objects; (iv) different
implementations of the synchronisation components for handlers (i.e. RQ and QoQ); and (v) different
distribution topologies by plugging in different topology abstractions (i.e. for D-Scoop). Concrete Gts
models for the Scoop family of semantics and their implementation in our workbench will be presented in
Section 5.

Models Beyond Scoop. Due to the modularity of our metamodel, it should also be relatively straight-
forward to cover other asynchronous, actor-like, distributed object-oriented computation frameworks, or
distributed message-passing based models.

From a theoretical point of view, we can also encode distributed finite-automata models with messages
exchanged over reliable unbounded Fifo queues with local infinite recursion and an unbounded number of
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dynamically generated automata/handlers. While strictly weaker than (i.e. can be simulated by) our Scoop
model, they would be more manageable for deriving decidability results in the context of our workbench.

A further candidate for our semantics comparison workbench is Erlang [AVW96]: like Scoop, it has
an intricate formal semantics, with programs behaving differently depending on whether they run in a
(local) multi-core or distributed context. Furthermore, it has a highly optimised underlying runtime (see
e.g. [SFBE10]) that has been under constant development over the last two decades, and thus may be prone
to introducing unexpected behaviours for older programs. Analysing Erlang programs for concurrency bugs
is extremely cumbersome: while in theory a data race free actor-based language, the runtime’s scheduler
and global data dictionary (i.e. a kind of table-based memory heavily used in Erlang software) introduce
various possibilities for race conditions in real world Erlang programs [CS10]. Thus, understanding Erlang’s
semantics is a crucial task for programmers, language designers, and runtime developers—i.e. the target
groups of our semantics workbench approach. Contrary to Scoop, Erlang focuses an asynchronous message-
passing concurrency. In the language of our metamodel: handlers would synchronise only via asynchronous
messages over a (possibly) distributed topology of Fifo queues, and while the handlers would only have a
relatively flat storage model, they would have more intricate ways of accessing their Fifo mailboxes. Also in
contrast to Scoop, Erlang is a multi-paradigm language including functional features and pattern-matching,
thus the translation of the original program code to the control-flow information needed in the graph-based
model is not as straightforward. Extending the semantics workbench towards Erlang would be interesting
future work.

5. Formal Model and Toolchain

In this section we present Scoop-Gts, our formal Gts model for the Scoop family of semantics, which
instantiates and conforms to the semantics metamodel presented in Section 4. Furthermore, we describe its
implementation in the Groove model checking tool for Gts, and present a wrapper that helps to automate
the analysis of Scoop source code with respect to different semantics in Groove.

A companion website [Com] provides additional information and explanations about the formal model
that were omitted from this paper due to space constraints. Furthermore, the model and wrapper are both
available to download [Rep].

5.1. Overview

The standalone tool at the core of our toolchain consists of the Scoop-Gts formalisation in Groove, and
a wrapper around it which allows different execution models (RQ, QoQ, D-Scoop) to be selected. We
furthermore provide a simple compiler to generate initial configuration graphs from Scoop source code,
which the different semantics can be applied to.

An overview of the toolchain is depicted in Figure 7. The different components of the toolchain are
summarised below, and presented in more detail in the rest of this section.

Scoop-Gts. The formalisation and implementation of the different Scoop execution models (QoQ, RQ,
D-Scoop). In essence, Scoop-Gts is a Gts consisting of sets of transformation rules that define the
semantic components of the metamodel, and control programs that dictate the order of the rule applica-
tions. Furthermore, the associated type graphs ensure that all graphs in the system conform to a certain
structure, which is particularly useful during development. The Gts is implemented in Groove, which
allows us to compare properties of state spaces under different execution models. The implementation is
presented in detail in Section 5.3.

Groove Wrapper. Built on top of Groove, our wrapper provides command-line switches for conve-
niently plugging in different Scoop semantics, processing generated graphs, and reporting feedback.
This also includes a regression test suite that helps to maintain correctness when extending Scoop-Gts.

Scoop-Graphs. Instances of configuration graphs for Scoop programs, consisting of encoded control-flow
graphs corresponding to the original source code, and a snapshot of the current state of handlers. When
provided as an initial state, should either store the necessary handlers pre-initialised, or a root procedure
allowing Scoop-Gts to initialise them itself.

Graph Compiler. In order to provide a fully automatic toolchain from source code to analysis results,
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Fig. 7. Overview of the Scoop-Gts toolchain

we implemented a simple compiler covering basic features of the Scoop language. This compiler is
implemented in Eiffel, which allows us to use the EiffelStudio compiler for parsing input programs. The
compiler generates Scoop-Graphs that can then be used directly in the standalone tool.

5.2. Running Example: Dining Philosophers

To illustrate the different parts of the formal model and toolchain, and to demonstrate a semantic inconsis-
tency, we will use an expanded version of the dining philosophers program we introduced earlier (Section 2).
Here, we provide only the most important excerpts of the Scoop code, adapted from an official exam-
ple provided with the Scoop release [Eif]. The full program is available to download from our toolchain
repository [Rep], and further explanations are available on our companion website [Com].

Listing 3 contains the main creation method make of the program, which is responsible for creating
(i.e. initialising) the forks, as well as the philosophers that will compete for them. Note that both forks and
philosophers are created as objects of separate type, meaning that all of them have their own, distinct
handlers. Each philosopher object points to two fork objects with distinct handlers, and each fork object
is pointed to by two philosophers, with the cyclic structure ensured by the left fork of the first philosopher
being assigned as the right fork of the final philosopher. Upon the creation of each philosopher, note that
its concurrent behaviour is triggered by the separate block launch_philosopher , which asynchronously
requests the philosopher’s live method.

We remark that in D-Scoop, the programmer would set up different nodes (each running a D-Scoop
instance) manually, before reaching this step. Creating distributed objects then boils down to sending requests
across the network to existing remote handlers that have creation methods available to them. In our model
of D-Scoop, we re-interpret this manual intialisation step, instead treating the creation of any separate
object as the creation of a new node with that new object and handler, i.e. a scenario in which a program
is as distributed as possible. In the case of make , all the forks and philosophers would be created on their
own nodes and communicate across the network.
make

-- Create philosophers and forks
-- and initiate the dinner.

local
first_fork , left_fork , right_fork: separate FORK
a_philosopher: separate PHILOSOPHER

do
from

i := 1
create first_fork.make
left_fork := first_fork

until
i > philosopher_count

loop
if i < philosopher_count then

create right_fork.make
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else
right_fork := first_fork

end
create a_philosopher.make (i, left_fork , right_fork , round_count)
launch_philosopher (a_philosopher)
left_fork := right_fork
i := i + 1

end
end

launch_philosopher (philosopher: separate PHILOSOPHER)
-- Launch a_philosopher.

do
philosopher.live

end

Listing 3: make method for initialising philosophers and forks

Listing 4 contains the live method of the PHILOSOPHER class, which repeatedly calls a method that
is supposed to simulate the philosopher exclusively holding its forks. There exist a number of different ways
in which we could try to implement eating. All of them involve separate blocks over forks, but differ over
whether the forks are controlled at the same time (“eagerly”) or in sequence (“lazily”), and whether the
bodies of the separate blocks request any methods on those forks. Several implementations are provided:
(i) eat_no_statements , which picks up forks eagerly but does not issue requests in the method body;
(ii) eat, which is eager and asynchronously issues requests on forks; and (iii) bad_eat , which picks up the
forks lazily and issues asynchronous commands once they are obtained.
live

do
from
until

times_to_eat < 1
loop

-- Philosopher `Current.id ' waiting for forks.
eat (left_fork , right_fork)
--bad_eat
-- Philosopher `Current.id ' has eaten.
times_to_eat := times_to_eat - 1

end
end

eat_no_statements (left , right: separate FORK)
-- Eat

do
end

eat (left , right: separate FORK)
-- Eat , having acquired `left ' and `right ' forks.

do
left.use
right.use

end

bad_eat
-- Eat by first getting access to the `left ' fork ,
-- then the `right ' one.

do
pickup_left_then_right (left_fork)

end

pickup_left_then_right (left: separate FORK)
do

pickup_right_and_eat (left , right_fork)
end

pickup_right_and_eat (left , right: separate FORK)
do
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left.use
right.use

end

Listing 4: PHILOSOPHER code

Under RQ, both eat and eat_no_statements reflect valid solutions to the dining philosophers
program, with the former being used in an officially provided example program [Eif]. Yet these are examples
of developers mixing the programming abstractions of Scoop with the details of a particular execution
model: in their mental models, forks had become synonymous with locks, and the process of entering the
separate blocks had become synonymous with simultaneously acquiring them (or specifically, the locks on
their request queues). Thus, no two adjacent philosophers can be in their separate blocks at the same time.
With the QoQ semantics, however, forks cannot be viewed as locks in this way unless the separate blocks
synchronise on them both (i.e. with queries). Since they do not, the programs no longer represent correct
solutions to the dining philosophers problem under QoQ, despite still respecting the high-level reasoning
guarantees of the Scoop abstractions. Analogously, acquiring forks in turn can cause bad_eat to deadlock
under RQ, but not under QoQ (since there is no blocking).

Our semantics comparison workbench aims to uncover discrepancies in idiomatic usages of Scoop’s
abstractions such as these. We later show how general-purpose rules can be used to reveal discrepancies such
as the existence of deadlocks, and how specialised rules can be used to reveal discrepancies in program-specific
properties, such as implementing dining philosophers correctly. We use combinations of these implementations
(lazy and eager; with and without commands) in our evaluation, along with other typical concurrency
benchmarks.

5.3. Scoop-Gts

At the heart of our workbench is Scoop-Gts, our parameterisable formal model for the Scoop family of
semantics, conforming to the general metamodel of Section 4. We implemented the transformation system
in Groove [GdMR+12], a state-of-the-art, general-purpose tool for Gts analyses. The tool provides a GUI
that allows us to draw graphs visually, which are then stored in the Graph eXchange Language format, an
XML-like language for representing graph structures (designed to facilitate the exchange of graphs between
different tools). In addition to the general state space analyses it provides out of the box, Groove also
supports the visual simulation of individual rule steps, which is invaluable for testing and validating the
model.

Scoop-Graphs. We refer to the configuration graphs in Scoop-Gts as Scoop-Graphs. Recall that these
represent a snapshot of the current state of the handlers. In the context of Scoop and D-Scoop, the control
flow information subgraph encodes both methods and classes; the handler subgraphs encode object heaps,
stack frames, and some queuing structure (RQ or QoQ); and the topology abstraction subgraph consists of
(separate) object references, and (in D-Scoop) information about the nodes that handlers are located on.

Part of a Scoop-Graph is shown in Figure 8, which depicts the simple control-flow graph of the eat
method in the lower half, and the state of a handler in the upper half. The control-flow graph itself is static:
there are no rules that directly modify these nodes and edges. However, handlers can fire transitions encoded
in these control-flow graphs. We model this using an edge labelled current_state for each handler that
is currently executing a method. As handlers execute actions, they move along the control-flow graphs in
the expected way. Note that D-Scoop control-flow graphs do not contain additional information specific to
distributed computing. This is because in terms of the abstractions, programmers can use remote separate
objects in the same way as those residing on the same node; the only difference is in the topology abstraction.

Note that initial Scoop-Graphs, such as those generated by our simple compiler, contain only the static
control-flow part. There are no edges or nodes related to a particular runtime semantics, and as a result,
we can use the same initial graphs for a given program and decide later on the semantics we want to use to
simulate the program.

Control Programs. Our current rule engine includes around 120 transformation rules covering local com-
putations, execution of commands and queries, runtime management, queueing, and other activities. In most
situations, we do not want to explore all possible rule applications. Instead, we often have situations where
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Fig. 8. Control-flow graph for the eat method and a handler executing it. The parameter of the use (right)
command has been evaluated and refers to a fork on a different handler. The static part remains unchanged
throughout the simulation, but the handler in the dynamic part moves along the control-flow graph

initialize_model; // call gts rule for initialisation
while (progress & no_error) {

for each handler p: // choose handlers under some scheduling strategy
alap handler_local_execution_step(p)+; // each handler executes local actions as long as possible

try synchronisation_step; // then try (one) possible global synchronisation step
}
recipe handler_local_execution_step (p){

try separate_object_creation(p)+; // try local actions that are possibly applicable
else try assignment_to_variable(p)+;
else try ... ; // sequentially try all other possible actions
try garbage_collection ()+; // do some "garbage collection" to keep the model small

}
recipe synchronisation_step (){

reserve_handlers | dequeue_task | ...; // nondeterministically try to synchronise
}
... // remaining recipes (core functionality)
// ---------- plug in -------------------------------------------------------------------------------
recipe separate_object_creation(p){ // provide different implementations for RQ and QoQ

... // and parameterise the control program
}
... // remaining recipes that are plugged in

Listing 5: Simplified control program (in Groove syntax) from the Scoop-Gts rule engine

we only want to apply a certain (set of) rules. For example, when a handler finishes executing a method, it
may be possible that there are leftover nodes and edges in the graph. To clean this up, we provide bookkeeping
(or background) rules. Of course, it makes sense to apply these as soon as possible instead of allowing other
rules to be applied (e.g. rules that advance the execution of other handlers) since their effects are local to a
handler and independent of all others. One way to ensure a certain order of execution is to design rules such
that they can only be applied when we want them to. Here, negative application conditions are commonly
used. For example, we could insert a node CleanupInProgress when a method execution is finished and
place it in all cleanup rules (as a node that needs to be present in order for the rule to match). Similarly,
we would add a negative application condition for this node in all other rules (making sure that the rule
only gets applied if the graph is not in a cleanup state). However, we use this strategy only sparingly in our
implementation, since the resulting rules tend to become large and contain many seemingly unrelated nodes.

Fortunately, Groove provides another way to restrict rule application orders, namely control programs.
These programs allow us to specify execution orders and avoid having cluttered rules. The overall effect
is that the firing of a transition in the control-flow graph appears to happen atomically—regardless of the
number of rules involved—meaning that we exclude unnecessary interleavings on local bookkeeping rules.
Listing 5 shows a simplified version of the main control program that drives the execution of Scoop-Gts.
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Using these control programs furthermore allows us to perform optimisations, and force particular rule
applications when exploring other execution paths would not reveal any additional behaviours. One example
occurs when multiple handlers execute local computations (i.e. computations that do not involve separate
or remote objects). While all interleavings are possible in the actual runtimes, we do not need the overhead
of simulating all of them, since local computations do not involve any interactions between handlers. In
Scoop-Gts, we therefore mark one handler as active and advance it as long as possible, until it terminates
or a statement involving separate objects is reached. Then, we activate the next handler (in an ordered
list of all handlers) and do the same until no handlers are able to execute local computations anymore. At
this point, handlers are either idle (i.e. they have finished their execution), or they are at a synchronisation
point where other handlers are involved in the next operation. Here, rules involving separate entities are
applied in a nondeterministic manner. This way, we ensure that all interleavings that are of interest to us
(i.e. interleavings that result in different orders and configurations of the queues) are explored. Thanks to
these optimisations, we made it feasible to perform full state-space exploration for small programs like the
running example and the ones discussed in Section 6.

Transformation Rules. One advantage of a graph representation of is that the graphs can be easier to
read (for smaller instances, at least). This is in particularly true for the transformation rules in our system,
since they are usually small and perform a simple task. In an earlier prototype without control programs, the
rules often contained helper nodes and negative application conditions to make sure a rule is only applied
when appropriate. However, in our current implementation we can avoid most of these helper elements and
end up with clean, more direct rules. Furthermore, transformation rules are expressive and atomic, with
Groove able to support the matching of arbitrary-length paths and quantify over substructures.

Figure 9 shows the rule that, when applied, enqueues a request (the green RemoteCall node) into a
target’s request queue—a similar task to that from our introduction to Gts in Section 3 (but without the
anchor node at the tail of the queue). In essence, this rule updates a handler’s current_state by moving
it across an ActionCommand node, which represents either executing a command directly (if the target
is handled by the same handler) or issuing an asynchronous request on the target handler. The rule is for
the latter case: it matches a different handler (indicated by the != edge) when looking up the target, which
is found by following the target edge from ActionCommand up to the evaluated value and its handler.
Since the target is handled by a different handler, the request queue (WorkQueue) of the target’s handler is
matched and a new RemoteCall node is appended to the queue. In the lower part of the rule, parameters
are passed by matching all indexed parameters corresponding to the method call and adding parameter
nodes to a remote call. These parameter nodes then point directly to the evaluated values. Finally, the
_Evaluation nodes are removed, as they are no longer needed once the handler has passed the action
node in the control graph and the request has been issued.

A second example, shown in Figure 10, shows one of the few additional rules required for implementing
D-Scoop on top of the QoQ semantics. Once all prelocks have been obtained and lock requests sent
(indicated by the _Lock node and its edges), this rule performs the acknowledgement of the requests on all
target handlers by setting the flag _locked . Note that the main handler is connected to an initial state via
a _current_state_before_lock edge. Since this edge label is only used in D-Scoop related rules,
this means that the normal QoQ rules cannot fire and simulate past the initial state. Instead, D-Scoop
rules will match and the whole locking process is simulated. Once this is done (i.e. all locks are obtained
and the handler is at a state where no more D-Scoop related operations need to be performed), the last
D-Scoop rule replaces the _current_state_before_lock edge with a “normal” current_state
edge (as used in QoQ). From this point on, the method execution will be simulated just like a QoQ program.

Modularity of Scoop-Gts. An important part of our formalisation is modularity. In the case of Scoop,
we have three different execution models that share certain properties. For example, local computations, in
which no synchronisation is involved, do not behave differently. Instead, we can use the same rules for all
semantics. We can achieve this using the previously discussed control programs. We split the programs into
a generic root program that covers rules that are used in all runtimes. From these, however, several so-called
recipes (intuitively: functions over rules) are referenced that differ from runtime to runtime (most notably
synchronisation_step(), which nondeterministically performs one of the next possible asynchronous tasks,
and garbage_collection(), which cleans up the graph). Consequently, we have three additional files, each
one covering a specific runtime and implementing the same recipes, but using different rules. This way, we
can switch runtimes simply by stating which control programs are enabled. Note that it is not necessary to
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Fig. 9. Full, unmodified rule for enqueueing a new remote call in the RQ semantics. The Handler node is
advanced from one ControlState to another. The new remote call is appended to the WorkQueue of the
target handler. The tail is matched using a next* edge from the work queue to the black RemoteCall . We
ensure that the tail node is matched using a negative application condition. Finally, the green RemoteCall
is inserted at the end. Note that in the lower part, we attach the evaluated parameters to the remote call

Fig. 10. Simplified D-Scoop rule that is applied when (i) all target handlers (left side) are prelocked by the
executing handler (lower right), and (ii) the executing handler has sent lock requests to all of them. The
_Lock nodes get removed upon application
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state which rules are enabled at different points, since only those referenced in an active control program are
applied.

Similar to control programs, type graphs are also split into several files. By doing this, we can enable only
the relevant type graphs when working on a specific runtime. As a result, we do not end up with malformed,
hard to debug state graphs, that, for example, mix RQ and QoQ semantics.

To illustrate how close two of the semantics are, we compare the implementations of QoQ and D-Scoop.
With D-Scoop being an extension on top of QoQ, we were able to start by reusing the QoQ implemen-
tation. Implementing the basic prelock/lock mechanism took no more than 4 rules (prelock request, prelock
acknowledgement, lock request, and lock acknowledgement). We then use some additional rules that handle
method calls (in particular, entering methods needs to toggle the new protocol before executing the stan-
dard QoQ operations) and method returns (here, we handle releasing the locks and cleaning up the graph).
Finally, we reference these additional rules in a control program. This program contains only the parts that
differ from QoQ by re-defining recipes that use the new rules. The vast majority of both control programs
and rules, however, stay the same between the two runtimes, making our approach practical for extending
and modifying existing implementations.

Errors and Consistency of Semantics. With the workbench, we can now check programs and runtimes
for errors and inconsistencies. One application is to verify certain properties of a given Scoop program across
different execution models. For example, one might be curious whether the dining philosophers program can
deadlock. To do this, we simply use the standalone tool and perform a full state-space exploration. The tool
reports the final states of the Gts, i.e. the states where no more rules can be applied. In the Gts, undesired
behaviour is specified with error rules, which capture certain properties of a runtime program. These rules
are checked between synchronisation points, i.e. whenever the program branches due to multiple possible
interleavings of the execution. In case an error rule matches, it is applied and a node of (sub)type Error
is created. As a result, the control program immediately stops further execution, resulting in a final state
representing the exact point at which the error occurred. This way, we can see whether any errors occurred
during exploration by simply iterating over all final states and checking whether an error node is present in
any of them.

An example of two handlers (philosophers) in a deadlock is shown in Figure 11. Each philosopher is
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trying to obtain a lock on the handler of its right fork, but of course, that one is already locked. Since no
philosopher gives up a lock, the program cannot proceed. An error rule for deadlock matches the pattern
involving the cycle between the control state, handlers executing the method, queue locks (on the handlers
of the forks), and variable targets (referencing the already locked fork).

While errors related to the execution model are usually universal (e.g. deadlocks can be expressed in
similar ways in all runtimes and are independent of the simulated program), it is also possible that certain
programs have further properties that we want to check. For example, in the dining philosophers program
with commands (eat), none of the execution models produce a deadlock error. However, when executed
under QoQ, the program is not a valid implementation of the dining philosophers (since philosophers sharing
a fork can enqueue commands to their private subqueues in the fork’s handler at the same time). By creating
a custom error rule for this program that matches whenever two handlers are executing the eat method
(or one of its variants), we can show that this condition arises with the QoQ runtime, but not with the RQ
runtime.

Soundness/Faithfulness of Scoop-Gts. Due to the varying levels of detail in the previous formalisa-
tions of the execution models (and complete lack of formalisations of their corresponding implementation-
s/runtimes), there is no universal way to formally prove Scoop-Gts’s faithfulness to them. In the following,
we describe the techniques we applied to establish confidence in its soundness despite this challenge. We
remark that Scoop-Gts currently does not support some advanced programming mechanisms of the Eiffel
language (e.g. exceptions, agents), but could straightforwardly be extended to cover them.

We were able to conduct expert interviews with the researchers proposing the execution models and the
programmers implementing the Scoop compiler and runtimes (i.e. as part of EiffelStudio), which helped to
improve our confidence that Scoop-Gts faithfully covers their behaviour. Here, Scoop-Gts’s advantage
of being a visually accessible notation was extremely beneficial, as we were able to directly use simulations
in Groove during the interviews, which were understood and accepted by the interviewees. Before the
interviews, we would prepare configurations (graphs) representing interesting scenarios, and would click
through rule applications in Groove together with the experts. In a sense, our formal model partially
mapped to how they would informally sketch the execution models for us on a whiteboard.

In addition, we compared Groove simulations of the executions of Scoop programs (those based on the
benchmarks of Section 6) against their actual execution behaviour in the official Scoop IDE and compiler
(both the current release that implements QoQ, and an older one that implemented RQ; for D-Scoop there
is no official release of a compiler/runtime yet as it currently exists only as a research prototype). Again,
this augmented our confidence.

Furthermore, we were able to compare the QoQ execution model with the structural operational se-
mantics for QoQ provided in [WNM15]. Unfortunately, the provided semantic rules focus only on a much
simplified core, preventing a rigorous bisimulation proof exploiting the algebraic characterisations of Gts.
We can, however, straightforwardly implement and simulate them in our model.

Our D-Scoop model is based on the QoQ model, incorporating an abstraction of the underlying network
topology and an implementation of the locking protocol in our model’s scheduler. Again, we compared our
model to the informal (but detailed) description in [SPM16], e.g. by testing the simulation of the underlying
message exchanges of the locking protocol in our model. Additionally, we interviewed the developer of
D-Scoop based on simulation runs of our model in Groove. Regrettably, the only existing formal model
of D-Scoop was not an operational one but rather a “context-sensitive grammar for a language composed
of messages on a timeline” [Sch16], thus precluding a direct formal semantic comparison.

Groove Wrapper and Scoop-Graph Compiler. Scoop-Gts is the main outcome of our work and
can be used directly with the Groove binaries. However, it is tedious to do so, since it requires knowledge
about the implementation of Scoop-Gts. To mitigate this problem, we provide a simple wrapper utility
around Groove that operates in the domain of Scoop-Gts. The utility provides a command-line interface
to configure and instantiate Scoop-Gts. It then uses Groove to run the state-space exploration. As opposed
to Groove itself, which provides generic output, we can parse the final states and check for the existence
of Error nodes and other properties of the graph. Finally, these findings are reported. In addition to this
scenario, we also use the wrapper utility for testing purposes and for generating the benchmark results that
are presented in this paper.

While not part of the current distribution, we also implemented a simple compiler that translates Scoop
programs into Scoop-Graphs. This helps make all aspects of the toolchain practical, since we do not have to
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specify initial graphs manually nor annotate the source code. Instead, we can use unmodified code to generate
graphs and verify concurrency properties. The compiler is implemented in Eiffel on top of the EiffelStudio5

compiler, and is currently being integrated into a research branch of the IDE [TFNM11]. As the control flow
information can be mapped directly back to the source code, we can provide feedback on the analyses to the
programmer based on concrete lines of code.

6. Tool Case Studies and Evaluation

In this section, we present an evaluation of our toolchain. We apply it to a selection of Scoop benchmarks
consisting of small, self-contained programs that represent idiomatic usages of the language’s concurrency
abstractions. By simulating these programs using Scoop-Gts and Groove, we show that it is feasible to
explore the full state-spaces of such a benchmark set and check the consistency of properties across different
execution models.

Benchmark Selection. Our aim was to devise a set of representative programs that cover typical usages of
Scoop’s concurrency mechanisms. In order to be able to explore the full state-spaces, these programs were
selected with the capabilities of the workbench in mind: even though our Gts rules and control programs
limit the amount of unnecessary interleaving, larger programs will still suffer from the state-space explosion
problem. We therefore based our benchmark programs on the official, documented Scoop examples [Eif] and
some classical synchronisation problems. We implemented these programs in Scoop, and used our compiler
to automatically generate the corresponding initial graphs, i.e. encoding the control-flow of the original
programs. Everything necessary to reproduce the benchmarks in this section is available from our online
repository [Rep].

We selected the following programs: dining philosophers (as presented in Section 5) with its two im-
plementations for picking up forks that exploited the implicit locking of RQ (eagerly, by picking them
atomically, or lazily, by picking them in sequence—eat and bad_eat from Listing 4 respectively); another
two variants of the dining philosophers without any commands in the separate blocks; single-element pro-
ducer consumer, which uses a mixture of commands, queries, and wait conditions; and finally, barbershop
and dining savages (adapter from “The Little Book of Semaphores” [Dow]), both of which use a similar mix
of features. These programs cover different usages of Scoop’s language mechanisms and are well-understood
examples in concurrent programming. Note that while our compiler supports inheritance by flattening the
used classes, these examples do not use inheritance; in particular, no methods from the implicitly inherited
class ANY are used. By not translating these methods into the initial graphs, we obtain considerably smaller
graphs (which impacts the exploration speed, but not the sizes of the generated transition systems).

Table 1 summarises metrics for the mentioned programs, where the columns are reported as follows:

Initial Graph. Name of the program that is executed. These initial graphs are direct outputs from the
compiler without further modifications. Since the initial graphs consist only of the control-flow graphs
(i.e. the static part of a Scoop-Graph), there are no differences between the individual runtimes: all of
them start with the same initial graph, but once we select the control programs and transformation rules,
the evolution of the graph reflects the selected runtime’s behaviour.

Runtime. Parameterised Scoop semantics: RQ, QoQ, or D-Scoop. Each semantics has its own control
programs and transformation rules (with shared elements). The wrapper utility allows us to select the
execution model that should be used via a simple command-line switch.

Configurations. The number of proper configurations in the exploration. Note that in this context, a
state is counted whenever a full local execution step or synchronisation step (cf. Listing 5) is applied.
Intermediate states obtained by individual rule applications are not counted. However, they can still
be reported using the wrapper. As a result of counting only high level steps, this number indicates the
amount of concurrency that takes place, since the difference in branching comes at synchronisation points
only.

Transitions. The raw number of applications of individual rules. This includes rule applications that set
the graph in a temporary state (i.e. a state that requires additional rule applications before it becomes
a configuration as described above).

5 https://www.eiffel.com/eiffelstudio/

https://www.eiffel.com/eiffelstudio/
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Initial Graph Size and Final Graph Size. The sizes in terms of nodes and edges for each program.
Since the translated programs do not depend on the Scoop semantics that is later applied, the initial
graph sizes are the same across each semantics for a given program.

Time. Wall clock time and standard deviation.
Memory. Memory usage and standard deviation. Here, we report the peak amount of memory used by the

Java VM executing the exploration process.

To obtain the results, we used the most recent version of our compiler and wrapper [Rep] at the time of
writing. Furthermore, we used Groove 5.5.6, also the most recent version available. The time and memory
values are the means of five runs. All experiments were carried out on a notebook with an Intel Core i7-
4810MQ CPU and 16 GB of main memory. We used the OpenJDK 1.8 Java VM with the -Xmx 14g option.

Benchmark Results. The results of the evaluation are reported in Table 1. We performed full state-space
exploration for all combinations of the programs and execution models.

Since initial graphs are completely independent of the chosen semantics, the initial graph sizes within
each program are the same. The initial graph sizes increase linearly with the size of the translated input
program. The final sizes of the graphs are, however, larger, since the graphs now contain the dynamic part
of the state, and its related components such as handlers, objects, and queues. The final states of a given
program also differ across the semantics due to the different topologies and representations of queues, for
example. In order to keep the graph sizes down, we use “garbage collection” rules, which remove edges and
nodes that are no longer needed during execution (i.e. the results of intermediate computations). However,
note that we do not perform real garbage collection. For example, unreachable objects are not removed, and
the graph size increases linearly with the number of created objects.

The number of configurations gives us an insight into how the different semantics behave, since this
column only counts proper steps in the exploration. Differences between these numbers arise from different
branching at synchronisation points, thus the number of configurations is an indicator as to how much
concurrency the semantics allows. However, it is important to note that it is not a simple matter of “higher
is better”. When comparing RQ and QoQ, we observe that QoQ produces more configurations, agreeing
with our intuition that QoQ allows more concurrency (or, in the context of Scoop-Gts, more branching
at synchronisation points). However, we can also see that using D-Scoop results in more configurations. In
this case, this is due to the fact that D-Scoop is more complex due to the additional (pre)locking protocol
on top of QoQ.

The time and memory columns show the raw power requirements of our toolchain. The number of con-
figurations is, unsurprisingly, particularly sensitive to programs with many handlers and only asynchronous
commands (e.g. dining philosophers). Programs that also use synchronous queries (e.g. producer-consumer)
scale much better, since queries force synchronisation once they reach the front of the queue. We note again
that our aim was to facilitate automatic analyses of representative Scoop programs that covered the dif-
ferent usages of the language mechanisms, rather than optimised verification techniques for production-level
software. The results suggest that for this objective, on benchmarks of the size we considered, the toolchain
scales well enough to be practical.

Error Rules / Discrepancies Detected. In our evaluation of the various dining philosophers implemen-
tations, we were able to detect that the lazy implementation (Listing 4) can result in deadlock under the RQ
model, but not under QoQ or D-Scoop. This was achieved by using error rules that match circular waiting
dependencies (such as the one exemplified by Figure 11). In case a deadlock occurs that is not matched by
these rules, we can still detect that the execution is stuck and report a generic error, after which we manually
inspect the resulting configuration. While such error rules are useful for analysing Scoop-Graphs in general,
it is also useful to define rules that match when certain program-specific properties hold. For example, if we
take a look at the eager implementation of the dining philosophers (Listing 4) and its executions under RQ,
QoQ, and D-Scoop, we find that the program cannot deadlock under any one of them. This does not prove,
however, that the implementation actually solves the dining philosophers problem under all semantics. To
check this, we defined an error rule that matches if and only if two adjacent philosophers are in their separate
blocks at the same time, which is impossible if forks are treated as locks (as they implicitly are under RQ).
This rule matches only under the QoQ and D-Scoop semantics, highlighting that under these semantics,
the program is no longer a solution to the dining philosophers problem. (We remark that it can be “ported”
to QoQ and D-Scoop by replacing the commands on forks with queries, which force the waiting.)
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Table 1. Evaluation results (graph size and final graph size given as number of nodes/number of edges, time
in seconds, memory in GB, and the latter two with standard deviation in seconds and GB respectively)

Initial Graph Runtime Configurations Transitions Graph Size Final Size Time [std] Memory [std]

DP 2 eager (no commands) QoQ 443 6135 254 / 395 300 / 473 5.380 [0.199] 0.582 [0.000]

RQ 442 6010 254 / 395 300 / 473 5.409 [0.082] 0.580 [0.000]

DSCOOP 1247 16313 254 / 395 304 / 477 12.968 [0.581] 0.684 [0.020]

DP 2 eager QoQ 5863 75818 226 / 343 282 / 456 25.579 [0.862] 1.744 [0.019]

RQ 4219 54441 226 / 343 261 / 396 18.270 [0.657] 1.677 [0.092]

DSCOOP 13046 166399 226 / 343 265 / 400 52.979 [0.566] 2.647 [0.163]

DP 2 lazy (no commands) QoQ 919 11935 250 / 387 296 / 465 9.664 [0.447] 0.644 [0.015]

RQ 868 11211 250 / 387 325 / 541 9.138 [0.624] 0.641 [0.012]

DSCOOP 2303 28676 250 / 387 331 / 560 21.411 [0.496] 1.020 [0.011]

DP 2 lazy QoQ 9609 123583 221 / 334 256 / 387 40.891 [0.776] 2.447 [0.196]

RQ 5679 72692 221 / 334 288 / 470 23.548 [0.807] 1.971 [0.131]

DSCOOP 18874 237124 221 / 334 294 / 489 73.001 [0.890] 3.388 [0.214]

DP 3 eager (no commands) QoQ 3286 45152 254 / 395 316 / 499 35.986 [1.055] 1.529 [0.002]

RQ 3269 43967 254 / 395 316 / 499 35.124 [0.867] 1.728 [0.032]

DSCOOP 14867 192100 254 / 395 322 / 505 147.302 [6.960] 3.933 [0.202]

DP 3 eager QoQ 227797 2924382 226 / 343 302 / 492 1480.638 [40.989] 13.830 [0.241]

RQ 99198 1270216 226 / 343 277 / 422 436.354 [5.107] 11.491 [0.301]

DSCOOP 523513 6633232 226 / 343 283 / 428 2726.030 [40.534] 13.785 [0.168]

DP 3 lazy (no commands) QoQ 11774 151526 250 / 387 312 / 491 115.693 [3.137] 3.995 [0.032]

RQ 10877 139216 250 / 387 355 / 604 109.221 [2.352] 3.549 [0.088]

DSCOOP 47710 597564 250 / 387 364 / 632 474.863 [8.735] 7.896 [0.272]

DP 3 lazy QoQ 444689 5684103 221 / 334 272 / 413 2424.935 [92.014] 13.934 [0.067]

RQ 170249 2166740 221 / 334 319 / 536 1090.135 [29.512] 13.887 [0.125]

DSCOOP 1288663 16176547 221 / 334 278 / 421 5999.547 [56.999] 13.963 [0.188]

barbershop QoQ 54325 702611 302 / 466 346 / 538 488.813 [2.994] 8.252 [0.142]

RQ 38509 494491 302 / 466 346 / 538 342.980 [3.825] 7.096 [0.244]

DSCOOP 179392 2270388 302 / 466 350 / 542 1954.988 [36.668] 13.772 [0.071]

PC 5 QoQ 12366 156210 307 / 476 353 / 548 135.797 [4.408] 3.417 [0.110]

RQ 4085 51283 307 / 476 353 / 548 45.107 [2.377] 2.080 [0.137]

DSCOOP 23174 286641 307 / 476 356 / 551 246.470 [3.795] 5.201 [0.168]

PC 20 QoQ 50286 632820 307 / 476 398 / 593 575.061 [30.652] 7.719 [0.353]

RQ 12890 159958 307 / 476 398 / 593 141.640 [3.734] 4.318 [0.098]

DSCOOP 90434 1113531 307 / 476 401 / 596 997.760 [27.277] 10.961 [0.383]

dining savages QoQ 79398 1008596 410 / 631 459 / 716 1240.665 [36.165] 11.738 [0.397]

RQ 35361 448576 410 / 631 459 / 716 530.563 [24.885] 7.120 [0.081]

DSCOOP 303678 3789448 410 / 631 473 / 751 5094.824 [35.232] 13.925 [0.131]
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To summarise, we can distinguish between two kinds of rules for detecting errors and discrepancies:
(i) rules that match generic criteria, but depend on the details of the execution model (e.g. cyclic deadlock
conditions with locked handlers in the RQ model); and (ii) program-specific rules that match conditions
specific to the program that is simulated (e.g. match when two adjacent philosophers are eating at the same
time). By systematically defining combinations of these kinds of rules for our benchmark programs and
execution models, our workbench can provide a richer comparison.

7. Related Work

We briefly describe some related work closest to the overarching themes of our paper: frameworks for semantic
analyses, Gts models for concurrent asynchronous programs, and verification techniques for Scoop.

Frameworks for Semantic Analysis. The closest approach in spirit to ours is the work on the K frame-
work [LSR12, RS10]. It consists of the K concurrent rewrite abstract machine and the K technique. One
can think of K as domain specific language for implementing programming languages with a special focus
on semantics. It was recently successfully applied to give comprehensive semantics to Java [BR15b] and
JavaScript [PcR15]. Both K and our workbench have the same user group (programming language designers
and researchers) and focus on formalising semantics and analysing programs based on this definition. We
both have “modularity” as a principal goal, but in a contrasting sense: our modularity is in the form of a
semantic plug-in mechanism for parameterising different model components (e.g. storage, synchronisation,
network topology), whereas K focuses on modularity with respect to language feature reuse. In contrast to
our approach, K targets the whole language toolchain, including the possibility to define a language and
automatically generate parsers and a runtime simulator for testing the formalisation. Based on the formal
power of Maude’s conditional rewriting logic, K also offers axiomatic models for formally reasoning about
programs, and offers the possibility to define complex static semantic features, e.g. advanced typing and
meta-programming.

Despite having similar underlying theoretical power (K’s rewriting is similar to “jungle rewriting” graph
grammars [SR12]), Scoop-Gts models make the graph-like interdependencies between concurrently running
handlers (or threads of execution) a first-class element of the model. This is an advantage for analyses of
concurrent asynchronous programs, as many concurrency properties can straightforwardly be reduced to
graph properties (e.g. deadlocks as wait-cycles). Our explicit Gts model also allows us to compare pro-
gram executions under different semantics, which is not a targeted feature of K. We also conjecture that
our diagrammatic notations are easier for software engineers to grasp than purely algebraic and axiomatic
formalisations.

Semantic Analysis of Memory Models. Memory models are crucial for defining the correctness of
concurrent shared memory platforms and programming languages. There is a large body of work targeting
formalisations (e.g. axiomatic models as in [MHMS+12], operational models as in [NMS16]) and reasoning
about these memory models’ power (e.g. [HKV97]). A recent axis of work, e.g. in [WBSC17, MAM10], targets
the generation of litmus tests that formalise the differences between memory models of the C language family
(including GPU programming). In our formal setting of asynchronous distributed programs, e.g. Scoop,
which is guaranteed to be data race free, memory models do not play as prominent a role for program
analysis. However, providing a hands-on notion of semantic differences via a set of example programs (i.e.
litmus tests) is close in spirit to our workbench’s general goal of making semantics more accessible to the
programmer.

Gts Models for Concurrent Asynchronous Programs. Formalising and analysing concurrent object-
oriented programs with Gts-based models is an emerging trend in software specification and analysis, es-
pecially for approaches rooted in practice. See [Ren10] for a good discussion—based on a lot of personal
experience—on the general appropriateness of Gts for this task.

In recent decades, conditional rewriting logic has become a reference formalism for concurrency models;
we refer to [Mes92] and its recent update [Mes12] for details. While having a comparable expressive power,
our decision to use Gts and Groove as our state-space exploration tool led us to an easily accessible, generic,
and parameterisable semantic model and toolchain that executes in acceptable time on our representative
Scoop examples.
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Closest to our Scoop-Gts model is the Qdas model presented in [GHR15]: an asynchronous, concurrent,
waiting queue based Gts model with global memory, for verifying programs written in Grand Central Dis-
patch [GCD]. Despite the formal work, there is not yet a compiler for transforming Grand Central Dispatch
programs into configurations for the Gts model. Furthermore, the model was not designed with modularity
of semantic components in mind.

The Creol model of [JOY06] focuses on asynchronous concurrent models but without more advanced
remote calls via queues as needed for Scoop. Analysis of the model can be done via an implementation in
Maude [JOA05].

Several approaches exist for analysing programs based on the actor model [Agh86], e.g. Erlang [AVW96]
(see also the discussion in Section 4). Most approaches rely on reasoning about a program’s correctness on
an abstract level, e.g. as in [SM16] or [DGM14], and do not focus on comparing executions under different
semantics.

There are a number of Gts-based models for Java, but they only translate the code to a typed graph sim-
ilar to the control-flow subgraph of Scoop-Gts [CDFR04, RZ09]. A different approach is taken by [FFR07],
which abstracts a Gts-based model for concurrent object-oriented systems [FR05] to a finite state model that
can be verified using the SPIN model checker. However, despite the intention to build generic frameworks for
the specification, analysis, and verification of object-oriented concurrent programs, e.g. in [DDF+05, ZR11],
there are no publicly available tools implementing this long-term goal that are powerful enough for Scoop.

Groove itself was already used for verifying concurrent distributed algorithms on an abstract Gts
level [GdMR+12], but not on an execution model level as in our approach. Similar in spirit are Gts based
models for ad-hoc broadcasting networks, e.g. in [DSZ12], which target complex dynamic topologies of the
participating distributed processes but only provide high-level abstractions of the participating processes
(e.g. by state machines). However, our approach’s generic topology abstraction could easily combine these
sophisticated, dynamic communication networks with powerful low-level semantic models of the participating
processes to gain a better understanding of distributed systems from the bottom-up.

Scoop Analysis / Verification. Various analyses for Scoop programs have been proposed, including:
using a Scoop virtual machine for checking temporal properties [OTHS09]; checking Coffman’s deadlock
conditions using an abstract semantics [CM17]; and statically checking code annotated with locking orders
for the absence of deadlock [WNM10]. In contrast to our work, these approaches are tied to particular (and
now obsolete) execution models, and do not operate on (unannotated) source code.

The complexity of other semantic models of Scoop led to scalability issues when attempting to leverage
existing analysis and verification tools. In [BPJ07], Scoop programs were hand-translated to models in the
process algebra Csp to perform, for example, deadlock analysis; but the leading Csp tools at the time could
not cope with these models and a new tool was purpose-built to analyse them (but is no longer available
online). In a deadlock detection benchmark for the Maude formalisation of Scoop under RQ [MSNM13],
the tool was not able to give verification results in any reasonable time (i.e. less than one day) even for simple
programs like dining philosophers6; our benchmarks compare quite favourably to this. Note that since our
work focuses more on semantic modelling and comparisons than it does on the underlying model checking
algorithms, we did not yet evaluate Groove’s generic bounded model checking algorithms for temporal logic
properties on our Scoop-Gts models.

8. Conclusion

We proposed and constructed a semantics comparison workbench for Scoop, a concurrent, asynchronous,
and distributed programming language based on message-passing, and used it to compare behavioural and
safety properties of programs under different execution models. We constructed the workbench by applying
the following general steps: (i) derive a graph-based, compositional metamodel to which the family of
execution models or semantics all conform; (ii) formalise the different semantics as Gts rules and control
programs (strategies) in Groove, exploiting modularity and semantic parameterisation to obtain versatile
and extensible models; (iii) test the formalisations by comparing simulations in Groove against the actual
implementations; (iv) ensure soundness by evaluating the rules in expert interviews, and where possible,

6 From personal communication with the researchers behind this benchmark.



28 C. Corrodi, A. Heußner, and C.M. Poskitt

formally relating any existing semantics to the Gts rules and strategies; (v) express generic safety properties
(e.g. “this will not deadlock”) and benchmark-specific properties (e.g. “adjacent philosophers will not eat at
the same time”) as special error rules, that match only when a state violates the property; (vi) apply the
Gts model checking engine of Groove to check whether error rules are applied consistently (or not) for a
program under different semantics.

We presented a compositional semantics metamodel for Scoop, and used it to construct Scoop-Gts, a
formalisation in Groove that covered the principal execution models of the language and a recent extension
for distributed programming. We highlighted how common components could be used modularly across
semantics, and how the components that differed (e.g. request queues and synchronisation) could be “plugged-
in” by exploiting the modelling power of Gts and control programs in Groove. We built a wrapper for
Groove that automates the translation of Scoop source code into an initial configuration (i.e. a graph),
triggers its Gts state-space exploration algorithms, and reports to the user differences between the state-
spaces under different semantics (e.g. number of transitions, graph sizes) as well as any error rule applications
detected. We applied the wrapper to a set of Scoop benchmark programs representing idiomatic usages of its
abstractions, and detected a behavioural and deadlock-related discrepancy between the principal execution
models, suggesting the usefulness of the workbench for comparing different semantics.

We are currently working on extending Scoop-Gts to cover some more advanced and esoteric fea-
tures of Scoop and D-Scoop (e.g. exception handling [MNM12], compensation [SPM16], passive han-
dlers [MNM14]), and plan to extend the benchmark set to produce a comprehensive conformance test suite
for the Scoop family of semantics. We are continuing to look for ways of refactoring Scoop-Gts to improve
performance and broaden the class of programs it can handle practically, noting the impact that the shapes
of rules and control programs can have on Groove’s running time [ZR14]. We also plan to explore the feasi-
bility of applying formal Gts program logics (e.g. [HP09, PP12]) to our Groove models, in order to prove
general properties of the execution models. Many properties of interest in Scoop-Gts involve arbitrarily
long paths and cycles (e.g. for defining general cyclic deadlocks), which require reasoning systems able to
handle monadic second-order graph properties, e.g. [PP14].

A more general line of future work would focus on the shape of Scoop-Graphs in the state spaces gen-
erated by Scoop-Gts. Insights here would help us to devise better abstraction techniques (along the lines
of [BR15a]), which we could use to implement more efficient verification algorithms, and which could help us
to visualise the influence of different semantic components on Scoop-Graphs. Furthermore, we plan to build
semantics comparison workbenches for other message-passing (or actor-like) concurrent and distributed pro-
gramming languages in order to properly assess how effectively our approach generalises beyond Scoop. It
would be particularly interesting if we could compare not only different execution models, but also different
programming abstractions across multiple languages, all within one unified formalisation.

Acknowledgements. This work extends the research reported in our FASE 2016 paper [CHP16], which
was partially funded by ERC Grant CME #291389.
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