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Abstract We provide a theoretical proof showing that un-
der a proportional noise model, the discrete eight point al-
gorithm behaves similarly to the differential eight point al-
gorithm when the motion is small. This implies that the dis-
crete algorithm can handle arbitrarily small motion for a
general scene, as long as the noise decreases proportionally
with the amount of image motion and the proportionality
constant is small enough. This stability result extends to all
normalized variants of the eight point algorithm. Using sim-
ulations, we show that given arbitrarily small motions and
proportional noise regime, the normalized eight point algo-
rithms outperform their differential counterparts by a large
margin. Using real data, we show that in practical small mo-
tion problems involving optical flow, these discrete structure
from motion (SFM) algorithms also provide better estimates
than their differential counterparts, even when the motion
magnitudes reach sub-pixel level. The better performance of
these normalized discrete variants means that there is much
to recommend them as differential SFM algorithms that are
linear and normalized.
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1 Introduction

Structure from motion (SFM) is one of the oldest prob-
lems in computer vision. Its goal is to obtain a 3-D motion
and structure from multiple views of the same scene. Dif-
ferential algorithms have been employed in SFM for many
years. They are formulated for situations in which the mo-
tion is very small, such that the said motion can be ap-
proximated by velocity. To date, for nearly every discrete
SFM algorithm, such as the seminal eight point algorithm by
Longuet-Higgins (1981), there exists a differential counter-
part (such as Longuet-Higgins and Prazdny 1980). Although
there are recent works reporting simulation results which
indicate that some discrete SFM algorithms appear capa-
ble of handling very small motions (Baumela et al. 2000;
Mainberger et al. 2008; Triggs 1999), the suspicion about
the stability of the discrete formulation under small motion
still persists in some quarters and has not been adequately
addressed theoretically. Despite the many error analyses
conducted on discrete SFM (Chiuso et al. 2000; Daniilidis
and Spetsakis 1997; Kanatani 2003; Luong and Faugeras
1996; Ma et al. 2001; Maybank 1992; Weng et al. 1989;
Xiang and Cheong 2003), there is no work that specifically
looks at the behaviour of these algorithms under increas-
ingly smaller motions. All error analyses and comparisons
are invariably taken as a snapshot at a particular instance
of baseline, rather than over the entire span of baselines.
What we do find are a number of anecdotal observations
stemming from the following line of analysis: at a partic-
ular setting of small baseline, and given a particular set of
motion/scene configuration, one obtains a certain set of em-
pirical results and thus one accepts the hypothesis that the
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discrete SFM algorithm under small baseline is stable or un-
stable. This lack of clear theoretical evidence continues to
prompt conjectures and testing, such as: Is dense optic flow
useful to compute the fundamental matrix (Mainberger et
al. 2008)? Is the first order differential computation stabler
when the disparity is very small (Kanatani 2003)? Would
it avoid any singular behaviour potentially present in orig-
inal discrete formulation? (Ma et al. 2000 showed that as
far as linear formulation is concerned, the differential form
is by no means simply a “first order approximation” of the
discrete case in the sense that a straightforward lineariza-
tion of the discrete formulation results in certain terms be-
ing not separable). Thus, the primary question that we seek
to answer here is whether the discrete eight point formula-
tion is stable even under small motion, or it faces fundamen-
tal degeneracies which the differential algorithms manage to
avoid by making a first order approximation.

If the answer is the former, it calls into question the mo-
tivation (except for reason of efficiency) for a large vol-
ume of SFM literature which by and large treat the differ-
ential problem as something distinct from the discrete one.
Examples of differential SFM formulations include Brooks
et al. (1997), Fermüller (1995), Heeger et al. (1992), Horn
and Weldon (1988), Kanatani (1993), Longuet-Higgins and
Prazdny (1980), Ma et al. (2000), Nister (2007) and Viéville
and Faugeras (1995). If the answer is the latter, it gives rise
to the question of whether a proper understanding of the role
of differential algorithms will allow us to design better dis-
crete algorithms that can handle a larger range of baselines.

1.1 The Differential Formulation

Let us begin by considering the motivation underlying dif-
ferential algorithms. As the name structure from motion sug-
gests, one degenerate scenario common to all SFM algo-
rithms is that of a stationary camera. This degeneracy is in-
trinsically insurmountable (if there is no motion, there will
surely be no structure from motion). However, it brings to
mind a set of very interesting questions. How large must the
motion be before we can recover structure? Is it possible to
recover structure from an infinitesimally small motion? If
so, what are the conditions required for a reasonable struc-
ture recovery?

Differential SFM algorithms provide a very elegant an-
swer to all of the above questions. They assert that when
the motion is small, the movement of the individual feature
points on the image plane can be approximated as 2D im-
age velocity (which is in turn approximated by optical flow).
After estimating the 2D optical flow, the differential algo-
rithms seeks to compute the differential quantities defining
the cameras motion (angular velocity and translation direc-
tion) and following that, the scene structure. As these al-
gorithms are formulated in terms of the instantaneous mo-
tion, a quantity that is independent of the amount moved,

it is clear that provided the image feature velocity (or opti-
cal flow) can be extracted reasonably well, the stability of
the algorithm is not affected by issues of whether or not a
motion is “too small”.

In reality, we cannot measure the image feature velocities
directly; they are actually obtained from some finite image
feature displacements. This means that in order to carry out
differential SFM under arbitrarily small motion, the ratio of
noise to feature displacement magnitude (i.e. the percent-
age noise) must be sufficiently small (since if the noise is
of fixed magnitude, the feature displacement measurements
will eventually be overwhelmed by noise as the camera mo-
tion tends to zero). In essence, the underlying premises of
the differential formulation is that one can recover structure
and motion from a sufficiently small motion, provided one
has a reasonable bound on the percentage noise in the fea-
ture displacement measurements (this is equivalent to saying
that we need a reasonable bound on the fixed noise in the ve-
locity measurements).

In seeking to ascertain if the differential formulation
avoids an intrinsic degeneracy present in the discrete for-
mulation we need to consider whether the associated dis-
crete algorithm will yield a reasonable estimate for struc-
ture and motion given a sufficiently small motion and a
reasonable bound on the percentage noise. Henceforth, we
denote algorithms that demonstrate such behavior as be-
ing able to handle “differential conditions”. We would also
like to distinguish between the inherent sensitivity of the
underlying problem and the error properties of a particu-
lar algorithm for solving that problem. For instance, try-
ing to solve the SFM problem for a configuration near to
the critical surface (Maybank 1992; Negahdaripour 1989)
is an inherently sensitive problem. No algorithms (discrete
or differential) working with finite arithmetic precision can
be expected to obtain a solution that is not contaminated
with large errors. In this paper, we are primarily inter-
ested in the stability of the discrete SFM algorithms un-
der small motion, in the sense that it does not produce
any more sensitivity to perturbation than is inherent in the
underlying problem. Thus we would only deal with gen-
eral scenes not close to an inherently ambiguous configu-
ration.

1.2 Noise and Perturbation Analysis

We feel that a major reason for the persistent division of the
two view problem into the differential and discrete domain is
because it is very difficult to systematically analyze the per-
formance of discrete algorithms when the motion is small.
Some intuition into this problem can be obtained by looking
at the classical discrete eight point algorithm, where the es-
sential matrix is obtained as the solution to the least squares
problem min‖Ax‖2. Since the solution is in the null space
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of the symmetric matrix AT A, the sensitivity of the problem
can be characterized by how the eigenvalues and eigenvec-
tors of the data matrix AT A is influenced by the amount of
motion and noise. As we show later, under small motion, the
data matrix can be written as:

A(ε) ≈ AR + εAT

where the data matrix A(ε) is now written as a function
of ε. A(ε) is split into two terms: the residue term AR when
there is no motion, and the motion term εAT , with ε → 0 as
the amount of motion becomes progressively smaller. As we
will show later, the rank of the matrix AR is at most 6, and in
fact, for a general scene, the rank of AR is exactly 6. Since
AR has right nullity greater than 1, as ε approaches 0 and
A(ε) approaches AR , the problem of finding a unique solu-
tion to the right null space of AT (ε)A(ε) becomes increas-
ingly ill-conditioned as the gaps between the eigenvalues be-
come smaller. In particular, if we assume that a small fixed
noise N exists in the estimation process (e.g. noise arising
from finite arithmetic precision, which is 16 decimal digits
for double precision):

Ã(ε) ≈ AR + εAT + N

then at a small enough motion, the noise N becomes com-
parable or even exceeds the motion term εAT such that the
legitimate solution is no longer associated with the smallest
eigenvalue of ÃT (ε)Ã(ε). This sudden appearance of a sec-
ond solution has been termed as the second eigenmotion in
Ma et al. (2001). This ill-conditioning is the primary reason
why vision researchers have reservations over applying the
discrete formulation when faced with the problem of small
motion.

However, before reaching the limit of arithmetic preci-
sion, the noise is likely to be dictated by measurement noise
in the feature correspondence or the optical flow (which
is actually obtained from feature displacement), and this
noise is likely to obey a proportional model. In small mo-
tion, the correspondence problem is much simplified by the
fact that the two views of the scene do not differ greatly
from each other. There will be less hidden surfaces, smaller
difference in radiometry, and less geometrical deformation.
Hence, although the motion of individual feature points is
small, the absolute error incurred in the matching process
is also small. For really small motion, differential opti-
cal flow algorithms (Horn and Schunck 1981; Lucas and
Kanade 1981) would be better placed to yield the desired
measurement accuracy, especially with some of the more
sophisticated recent implementations (Bruhn et al. 2005;
Ho and Goecke 2008; Lempitsky et al. 2008; Nir et al. 2007;
Ren 2008; Sand and Teller 2006). The error in estimat-
ing image velocity through the Brightness Constancy Equa-
tion (BCE) has been analyzed by Verri and Poggio (1989)

from which it is clear that the noise in the flow measure-
ment is also likely to be proportional to the magnitude of
the motion. It was shown that error stems from various
sources, such as changes in the lighting arising from non-
uniform illumination or different point of view, or abrupt
changes in the reflectance properties of the moving surfaces
at the corresponding location in space, all of which are pro-
portional to the magnitude of the motion. Ohta’s analysis
(Ohta 1996) approached from the perspective of the elec-
tronic noise in the imaging devices and also showed the
same dependence of the measurement error in the optical
flow on the amount of image motion. This is a consequence
of the finite receptive field in real cameras, whereby the
sampling function is not a Dirac’s delta function but rather
depends on both the image gradient and the image mo-
tion.

In this connection, it is also well to note that many
algorithms for finding optical flow make errors not only
due to the aforementioned sources, but also due to viola-
tion of the flow distribution model that is assumed (such
as the smoothness assumption). This latter source of er-
ror might give rise to non-proportional noise and thus pre-
vent us from obtaining structure from truly infinitesimally
small motions, even if we have succeeded in proving the
stability of the discrete eight point algorithm under small
motion with proportional noise. However, we envisage that
these algorithm-specific errors arising from flow distribu-
tion model would become smaller and smaller, especially
with the recent spate of optical flow algorithms (Bruhn et
al. 2005; Ho and Goecke 2008; Lempitsky et al. 2008;
Nir et al. 2007; Ren 2008; Sand and Teller 2006) and to-
gether with the publication of a database for optical flow
evaluation (Baker et al. 2007). Indeed, with better flows
computed from these algorithms in regular usage, there is
greater motivation for using flows to recover scene structure
since it avoids having to solve the tricky problem of fea-
ture correspondence. It then begs the question whether we
should recover structure from flow using one of the differ-
ential SFM formulations, or if inputting flows to some of the
discrete normalized variants offer a better alternative (Main-
berger et al. 2008).

1.3 Findings and Organization

In this paper, we carry out perturbation analysis to study
the numerical stability of the discrete eight point algo-
rithm and its variants (Chojnacki et al. 2003; Hartley, 1997;
Longuet-Higgins 1981; Muhlich and Mester 1998; Torr and
Murray 1997) under small motion. The noise regime that
we have adopted is such that the data matrix Ã(ε) is given
by

Ã(ε) ≈ AR + εAT + M(ε)
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where M(ε) represents the inherent measurement errors
arising from various sources such as the BCE constraint and
the electronic noise, both of which are proportional to the
amount of motion “ε”. We show that given a sufficiently
small proportional noise M(ε), the discrete eight point al-
gorithm and its variants are all capable of handling “dif-
ferential conditions”. For researchers who view the differ-
ential/discrete dichotomy as inviolate, this result is signifi-
cant because much effort has been spent in refining the dis-
crete eight point algorithm. It permits us to use the more
intensively researched discrete algorithms without first re-
formulating the problem as a differential one; this can re-
sult in very large improvements over the current state-of-
the-art differential algorithms. As we show later in the ex-
perimental section, the normalized discrete algorithms ap-
pear to give considerably better performance than its dif-
ferential counterparts (unnormalized) even when the mo-
tion is extremely small. Thus one can indeed obtain a lin-
ear normalized differential version by using the normal-
ized 8-point discrete algorithm. For researchers who be-
lieve that discrete algorithms can be readily applied to
the small motion problem, this paper provides some the-
oretical explanation for their empirical results and illus-
trates the limits within which such an attitude may be
adopted.

The theoretical portion of the paper is primarily divided
into three large portions. The first third of the paper (Sects. 2
to 4) involves introducing the eight point formulation, with
some minor reformulations to allow rigorous analysis of its
supposed ill-conditioning in the context of small motion.
The second third (Sects. 5 to 6) is primarily an adaptation
of traditional perturbation theory to our problem of relating
baseline to noise. Standard perturbation theory (Wilkinson
1965) usually concerns itself with a fixed data matrix and
a changing amount of noise. Our scenario is somewhat dif-
ferent from the customary one: our data matrix A(ε) is also
a function of ε. A straightforward application of standard
results would not be adequate as the Gerschgorin’s discs
would overlap. Finally, in the last third of the paper (Sect. 7),
we complete the stability analysis by tracking how the errors
in the fundamental matrix estimate are propagated to the ro-
tation and translation estimates, from which structure of the
scene is finally recovered. The theoretical analysis is then
followed by the experiments and the conclusion. Lastly, we
also record in the appendix some theorems and results re-
quired for the perturbation analysis carried out in the paper
proper.

1.4 Mathematical Notations

In this section, we explain some of the mathematical nota-
tions that a reader will frequently encounter when reading
the paper.

1. AS symbol
Let

A =
⎡
⎣

a d g

b e h

c f i

⎤
⎦ .

The symbol AS denotes the vector obtained by stacking
the columns of A, i.e.,

AS = [a b c d e f g h i
]T

.

2.
︷︸︸︷

w symbol
Let w = [w1 w2 w3 . . . w9

]T ∈ R
9. We de-

note by
︷︸︸︷

w the following 3 × 3 matrix

︷︸︸︷
w =

⎡
⎣

w1 w4 w7

w2 w5 w8

w3 w6 w9

⎤
⎦ .

Clearly, we have (
︷︸︸︷

w )S = w and
︷︸︸︷
AS = A.

3. û symbol
For each u = [u1 u2 u3

]T ∈ R
3, we form the 3 × 3

skew-symmetric matrix

û =
⎡
⎣

0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤
⎦ .

(a) For v ∈ R
3, we have

ûv = u × v, (1)

where u × v is the vector product of u and v.
(b) For a 3 × 3 invertible matrix A, with det(A) �= 0, we

have the following result from page 456 of Ma et al.
(2003).

(A−1)T ûA−1 = 1

det(A)
(Âu). (2)

4. Throughout this paper, we work on the Frobenius norm
of a matrix (say C) which is defined and denoted as fol-
lows:

‖C‖ =
√∑

i,j

c2
ij .

It generalizes the definition of the usual norm on vectors.
5. �x symbol

Suppose the function x(ε) is defined for ε ≥ 0. We
shall use the usual notation �x to denote the change in x:

�x = x(ε) − x(0).
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Likewise, we have �Yi , etc. Sometimes, to avoid cum-
bersome notation, we denote a function x(ε) at ε = 0 by
just x.

6. For the ease of reading this paper, we gather in the
following a table of symbols for the eigenvalues and
eigenvectors of the matrices AT

RAR , AT (ε)A(ε) and
Ã(ε)T Ã(ε) (to be introduced in subsequent sections).

Matrix Eigenvalues Eigenvectors

AT
RAR λi ri , unit vector

AT (ε)A(ε) λi(ε) qi (ε), unit vector
Ã(ε)T Ã(ε) λ̃i(ε) q̃i (ε)

1.5 Mathematical Expressions

The following phrases will be frequently encountered in this
paper.

1. For a sufficiently small ε: If we say that a condition (or
a statement) X is satisfied for a sufficiently small ε, it
means that there exists a positive ε0 > 0, such that the
condition (or statement) X is satisfied for all ε where
0 ≤ ε < ε0.

2. Order εn or O(εn): For an integer n, a function f (ε) is
said to be of order εn if |f (ε)| ≤ Kεn for some K > 0
as ε → 0. That is, for a sufficiently small ε > 0, |f (ε)

εn | is
uniformly bounded. In symbol, we write f (ε) = O(εn).
When n = 0, we write O(ε0).

Some special cases/notes:
(a) For a function f (ε), we note that

f (ε) = O(εn+1) ⇒ f (ε) = O(εn),

but the converse is not true in general. In other words,
O(·) is not an asymptotically tight bound.

(b) If F(ε) is a matrix (or a vector), then saying it is of
order εn means that each of its individual entries is of
order εn. This is equivalent to saying that the norm
of F(ε) (which is a real valued function) is of order
εn.

(c) Let k be a rational number. For a sufficiently small η,
we have

(1 + η)k = 1 + kη + O(η2).

This follows from the first order term of the Taylor
expansion. In particular, for non-negative real num-
bers n and l, and sufficiently small ε and m, we have

(1 + O(εn)ml)k = 1 + O(εn)ml, (3)

where the constant k has been absorbed in the
O-notation.

2 A Single Moving Camera Viewing a Stationary Scene

Let us assume that there is a single moving camera viewing
a stationary scene consisting of N feature points Pi , where
1 ≤ i ≤ N .

Let ε ≥ 0 be a non-negative real number representing the
elapsed time. Our goal in this section is to formulate the
eight point algorithm in the form of a data matrix and a so-
lution vector, both of which can be expressed as a series in ε.
Subsequently, we will use matrix perturbation theory to ana-
lyze their properties when the elapsed time ε (and hence the
motion) is small.

At time instance ε ≥ 0, a point Pi has its coordinates with
respect to the camera reference frame given by

Pi (ε) = [Xi(ε) Yi(ε) Zi(ε)
]T

.

Let us assume that the motion is smooth, with the camera
positions being related to each other by the translation vec-
tor εTc and a smoothly changing rotation R(ε). The 3 × 1
vector Tc is a constant vector representing the translational
velocity, whereas the 3 × 3 matrix R(ε) is a rotation matrix
which changes smoothly with ε and R(0) = I , where I is
the 3 × 3 identity matrix.

The rotation matrix R(ε) can be expressed as the expo-
nential of some skew-symmetric matrix ω̂, that is, a series
of the form (Theorem 2.8, Ma et al. 2003)

R(ε) = I + εω̂ + O(ε2), (4)

where ω is the angular velocity.
As a result of the motion, we have

Pi (ε) = R(ε)(Pi − εTc). (5)

Recall from the preceding section that sometimes we shall
denote Pi (0) = Pi . When projected onto the image plane of
the camera, the points Pi and Pi (ε) will have image coordi-
nates pi and pi (ε) respectively where

pi = 1

Zi

Pi = [xi yi 1
]T

,

(6)
pi (ε) = 1

Zi(ε)
Pi (ε) = [xi(ε) yi(ε) 1

]T
.

Using (5) and (6), we have

pi (ε) = pi + ε[�tx �ty 0 ]T + O(ε2) (7)

where �tx, �ty are the x and y components of the image
feature velocity respectively.

2.1 Epipolar Constraint with Normalization

Given two camera images, one at time 0 and the other at
time ε, the epipolar constraint is

pT
i E(ε)pi (ε) = 0, (8)

where E(ε) = T̂cR
T (ε).
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Given eight or more point matches, the above epipolar
constraint is sufficient for us to determine the essential ma-
trix E(ε) up to a scale factor, by solving a set of linear equa-
tions.

This is the famous eight point algorithm of Longuet-
Higgins (1981). However, it is important to note that the
epipolar constraint is seldom used in its raw form. Rather,
for the sake of numerical stability in the presence of noise, a
normalization procedure is often employed.

Let Θ be an 3 × 3 invertible matrix introduced for this
purpose. For example, it can be of the form

⎡
⎣

a 0 c

0 b d

0 0 1

⎤
⎦ ,

with ab �= 0. Examples of normalization matrices taking
such form are the normalization matrix in Hartley normal-
ization (Hartley, 1997), or in the context of uncalibrated mo-
tion analysis, Θ would be the camera’s intrinsic matrix.

For a sufficiently small ε ≥ 0, suppose

Θ(ε) = Θ + O(ε) (9)

is invertible. Then its inverse (Θ(ε))−1 takes the form

(Θ(ε))−1 = Θ−1 + O(ε). (10)

We denote the normalized (or uncalibrated) version of the
essential matrix as F(ε) where

F(ε) = (ΘT )−1E(ε)(Θ(ε))−1. (11)

We will sometimes call F(ε) the fundamental matrix where
appropriate.

Using (9) and (7), we can write

Θ(ε)pi (ε) = [xi yi 1 ]T

+ ε[�tx �ty 0] + O(ε)2, (12)

where

Θpi = [xi yi 1 ]T ,

Θ(ε)pi (ε) = [xi(ε) yi(ε) 1 ]T

and (�tx,�ty) is the image feature velocity in the normal-
ized system. In this normalized system, the corresponding
epipolar constraint (8) becomes

[(Θpi )]T F (ε)[(Θ(ε))pi (ε)] = 0. (13)

Collecting N such constraints for i = 1, . . . ,N , we form a
system of linear equations:

A(ε)(F (ε))S = 0, (14)

where

A(ε) =
⎡
⎢⎣

x1(ε)x1 x1(ε)y1 x1(ε) y1(ε)x1y1(ε)y1 y1(ε) x1 y1 1
...

...
...

...
...

...
...

...
...

xN(ε)xN xN(ε)yN xN(ε) yN(ε)xN yN(ε)yN yN(ε) xN yN 1

⎤
⎥⎦ (15)

and (F (ε))S is the column vector defined in Sect. 1.4. Thus,
an estimate of the matrix F(ε) can be obtained via the null
space of A(ε).

Finally, we rewrite the matrix F(ε) in (11) into a form
more amenable to analysis:

F(ε) = (ΘT )−1E(ε)(Θ(ε))−1

= (Θ−1)T T̂cΘ
−1ΘRT (ε)(Θ(ε))−1

= 1

det(Θ)
[(̂ΘTc)][ΘRT (ε)(Θ(ε))−1] (16)

where the last step has been obtained by using (2). By (10)
and (4), we have ΘRT (ε)(Θ(ε))−1 = I +O(ε) which gives

F(ε) = 1

det(Θ)
[(̂ΘTc)][I + O(ε)]. (17)

Since F(ε) is defined up to a scale factor, we can write

F(ε) = T̂ + O(ε) (18)

where

T = ΘTc√
2‖ΘTc‖

. (19)

Here, we have set ‖T‖ = 1√
2

so that (T̂)S has unit norm.

From (16) and (1), we note that T is in the left null space of

F(ε).
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3 The Degeneracy Affecting the Discrete Algorithm

Using (12), we rewrite the data matrix A(ε) as a series ex-
pansion in ε,

A(ε) = AR + εAT + O(ε2) (20)

where

AR =

⎡
⎢⎢⎣

x2
1 x1y1 x1 y1x1 y2

1 y1 x1 y1 1
...

...
...

...
...

...
...

...
...

x2
N xNyN xN yNxN y2

N yN xN yN 1

⎤
⎥⎥⎦ ,

(21)

AT =
⎡
⎢⎣

x1�tx1 y1�tx1 �tx1 x1�ty1 y1�ty1 �ty1 0 0 0
...

...
...

...
...

...
...

...
...

xN�txN yN�txN �txN xN�tyNyN�tyN �tyN 0 0 0

⎤
⎥⎦ .

Recall that when the motion (i.e., ε) is small, the discrete
eight point algorithm is regarded as increasingly ill condi-
tioned. In this section, we revisit the explanation in terms of
the data matrix A(ε).

As ε tends to zero, using (20), we know that A(ε) tends
to AR . Let F0 be a 3 × 3 matrix satisfying

(Θpi )
T F0(Θ(0)pi (0)) = 0

i.e.,

(Θpi )
T F0(Θpi ) = 0, (22)

which is the constraint given in (13) when ε = 0. Solving F0

from (22) is equivalent to solving the following linear least
squares system

AR(F0)
s = 0

whose solution space we will analyze now.

3.1 The Null Space of AT
RAR

In this subsection, we prove that for a general scene, the
nullity of the 9×9 matrix AT

RAR is 3 and we also determine
the null space of AT

RAR .
Assume that the feature points on the image plane are

well distributed such that we cannot fit a conic section that
passes through all of them (this condition is easily satisfied,
especially under small motion where the number of features
which can be matched is very dense). We then have the fol-
lowing result.

Proposition 1 Assume that all the feature points on the im-
age plane do not lie on any conic section. The nullity of
AT

RAR is 3.

Proof Since

AT
RARu = 0 ⇔ ARu = 0,

we shall determine the nullity of AR .

Note that the matrix AR in (21) contains 3 pairs of iden-

tical columns, namely columns 2 and 4, columns 3 and 7,

and columns 6 and 8. Hence, the rank of AR is at most 6.

Consider the submatrix A′
R formed from AR by remov-

ing one copy of each repeating column pair:

A′
R =

⎡
⎢⎢⎣

x2
1 x1y1 x1 y2

1 y1 1
...

...
...

...
...

...

x2
N xNyN xN y2

N yN 1

⎤
⎥⎥⎦ .

We shall show that the 6 columns of A′
R are linearly in-

dependent so that the rank of AR is at least 6. Suppose

A′
Rv = 0, where v = [a b c d e f ]T �= 0. This gives,

ax2
i + bxiyi + cxi + dy2

i + eyi + f = 0, 1 ≤ i ≤ N,

which means that all the feature points lie on the conic de-

fined by ax2 + bxy + cx + dy2 + ey + f = 0. This violates

our assumption. So, we must have v = 0, which implies that

the rank of A′
R (and hence AR) is at least 6. Therefore, the

rank of AR is 6. By the rank-nullity formula, the nullity of

AR is given by (9 − (rank of AR)). Hence the nullity of AR

is 3, and so is that of AT
RAR . �
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Proposition 2 The null space of AT
RAR is the following set

S = {(̂u)S |u ∈ R
3}

=

⎧⎪⎨
⎪⎩

⎡
⎣

0 −u3 u2
u3 0 −u1

−u2 u1 0

⎤
⎦

S ∣∣∣∣∣u1, u2, u3 ∈ R

⎫⎪⎬
⎪⎭

.

Proof By (1), every skew-symmetric matrix û formed from
u ∈ R

3 will satisfy (22). Thus, the set S ⊆ null space of AR .
However, the set S is a subspace of R

9 and its dimension
is 3. Since the nullity of AR is also 3, the set S is indeed the
null space of AR . �

It is a well known fact that a real symmetric matrix of
the form ZT Z has non-negative eigenvalues. Thus, we can
arrange the 9 non-negative eigenvalues λi of the matrix
AT

RAR in a non-increasing order:

λ1 ≥ λ2 ≥ · · · > λ7 ≥ λ8 ≥ λ9 ≥ 0.

Proposition 3 Consider the real symmetric matrix AT
RAR ,

and let λi be its eigenvalue, with corresponding unit eigen-
vector ri , for 1 ≤ i ≤ 9. Then we have

λ1 ≥ λ2 ≥ · · · ≥ λ6 > λ7 = λ8 = λ9 = 0.

Moreover, we may choose r7, r8 and r9 such that

r7 = T̂7
S
, r8 = T̂8

S
, r9 = T̂S

where T is defined in (19), and T7, T8 and T are mutually
orthogonal vectors of norm 1√

2
.

Proof It follows from the nullity of AR (and hence AT
RAR)

being 3 that the real symmetric matrix AT
RAR has a zero

eigenvalue, with multiplicity 3. Thus, λ7 = λ8 = λ9 = 0.
The eigen-space corresponding to the zero eigenvalue is

indeed the null space of AT
RAR . Since the null space of

AT
RAR is spanned by its three eigenvectors, we are free to

choose r7, r8 and r9, as long as they belong to the subspace
S in Proposition 2, and are orthonormal to each other. There-
fore we choose to set

r9 = T̂S, (23)

where T is defined in (19).
By Proposition 2, the other two eigenvectors r7 and r8

can also be written in the form r7 = T̂7
S

, r8 = T̂8
S

, where
T7, T8 and T must be mutually orthogonal vectors of norm

1√
2

to ensure the orthonormality of r7, r8 and r9. �

Since AR has right nullity greater than 1, as ε ap-
proaches 0 and A(ε) approaches AR , the problem of find-
ing a unique solution to the right null space of AT (ε)A(ε)

(recall that camera pose is estimated from the right null
space of A(ε)) becomes increasingly ill-conditioned. This
ill-conditioning is the primary reason why vision researchers
have reservations over applying the discrete formulation
when faced with the problem of small motion. However, as
we have argued in Sect. 1, if the noise in the flow estimation
is proportional to ε, the question then becomes whether the
noise declining proportionally to ε is sufficient to compen-
sate for the increased instability due to the last three eigen-
values of AT (ε)A(ε) getting closer together. In the next sec-
tion, we explain how this problem can be analyzed using
matrix perturbation theory.

4 On the Noiseless Case A(ε)T A(ε)

The least squares solution to (14) is given by the right null
space of the 9 × 9 symmetric matrix AT (ε)A(ε). As such,
the subsequent analysis is conducted on AT (ε)A(ε) rather
than A(ε).

If one thinks of the eigenvectors qi (ε) of AT (ε)A(ε) as
possible solutions to (14), then their corresponding eigen-
values λi(ε) are the residue (sum of squared error) related
to these solutions. That is, we have

qi (ε)
T A(ε)T A(ε)qi (ε) = qi (ε)

T λi(ε)qi (ε) = λi(ε).

Thus, each λi(ε) represents the residue of A(ε) associated
with qi (ε). The larger the value of λi(ε), for 1 ≤ i ≤ 8, the
more stable is the solution as the “wrong” solution is less
likely to be confused with the correct one.

In the absence of noise, using (20), the matrix AT (ε)A(ε)

can be expressed as the following series expansion,

AT (ε)A(ε) = AT
RAR + ε(AT

T AR + AT
RAT ) + O(ε2). (24)

This says that the matrix AT (ε)A(ε) can be thought of
as the “perturbation” of the matrix AT

RAR by the matrix
ε(AT

T AR + AT
RAT ) for sufficiently small ε.

We shall use matrix perturbation theory to discuss the
eigenvectors and eigenvalues of this “perturbed” matrix.

4.1 How the Eigenvectors of AT (ε)A(ε) Vary with ε

Let us denote the eigenvalues of the matrix AT (ε)A(ε) by
λi(ε), i = 1,2, . . . ,9, where

λ1(ε) ≥ λ2(ε) ≥ · · · ≥ λ9(ε) ≥ 0.

We shall now choose corresponding unit eigenvectors qi (ε),
for 1 ≤ i ≤ 9, such that {q1(ε),q2(ε), . . . ,q9(ε)} is an or-
thonormal basis of R

9.
It is clear from (16) and the definition of A(ε) in (15) that

the actual camera motion satisfies (14). Thus A(ε) and hence
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A(ε)T A(ε) have a nullity of at least one. In other words, we
have λ9(ε) = 0 and (F (ε))S is the corresponding eigenvec-
tor.

It follows from both (18) and our choice of r9 in (23) that

(F (ε))S = r9 + O(ε).

Normalizing (F (ε))S , we obtain the unit eigenvector q9(ε) =
(F (ε))S

‖(F (ε))S‖ corresponding to the eigenvalue λ9(ε) = 0. By
Lemma 6 (in Appendix A.1), we have

q9(ε) = r9 + z9(ε) where z9(ε) = O(ε). (25)

Treating the matrix AT (ε)A(ε) as the “perturbation” of
the matrix AT

RAR by ε(AT
T AR + AT

RAT ) for sufficiently
small ε, we apply perturbation theory (in particular, The-
orem 8 in Appendix A.1) to obtain the following result for
the remaining unit eigenvectors of AT (ε)A(ε).

Theorem 1 The set of unit eigenvectors of AT (ε)A(ε) given
by

{q1(ε),q2(ε), . . . ,q9(ε)}
can be chosen such that

qi (ε) = r′
i (ε) + zi (ε),

where ‖r′
i (ε)‖ = 1 and zi (ε) = O(ε). Moreover, the vectors

r′
i (ε)’s have the following properties:

1. r′
9(ε) = r9 = T̂S (from (25)).

2. r′
i (ε) is a linear combination of all eigenvectors rj of

AT
RAR , whose associated eigenvalue λj is identical to

λi , for i ≤ 9.
3. r′

i (ε) is orthogonal to rj if λi �= λj .
4. r′

i (ε), 1 ≤ i ≤ 8 is orthogonal to r9.

Remark 1 For 7 ≤ i ≤ 9, each vector r′
i (ε) is a linear com-

bination of r7, r8 and r9, and hence it is a vector in the right
null space of AR . From Proposition 2, we have

︷ ︸︸ ︷
r′

7(ε) = T̂′
7(ε), and

︷ ︸︸ ︷
r′

8(ε) = T̂′
8(ε)

for some orthogonal vectors T′
7(ε) and T′

8(ε) in R
3 where

‖T′
7(ε)‖ = ‖T′

8(ε)‖ = ‖T‖ = 1√
2
.

4.2 How the Eigenvalues of AT (ε)A(ε) Vary with ε

As discussed in the preceding section, λ9(ε) = 0. For the
remaining eigenvalues λi(ε), applying perturbation the-
ory (Theorem 6 in Appendix A.1) to the expression for
AT (ε)A(ε) in (24) yields the following result.

Proposition 4 For 1 ≤ i ≤ 8,

λi(ε) = λi + O(ε).

From Proposition 3 we know that λi > 0 for 1 ≤ i ≤ 6.
As such, when ε is sufficiently small, using Proposition 4,
we know that eigenvalues λi(ε) remains positive and hence
their corresponding eigenvectors are distinct from the true
solution.

However, for 7 ≤ i ≤ 8, we note that Proposition 3 in-
dicates that λi(ε) may be zero. From the point of view of
stability, this is worrying and we must seek a more explicit
expression than that offered by standard matrix perturbation
theory.

Lemma 1 For i = 7 or 8, if the hypothesis ‖A(ε)qi (ε)‖ =
γiε + O(ε2) where γi > 0 is true, then λi(ε) = O(ε2). In
particular,

λi(ε) = Λiε
2 + O(ε3), where Λi = γ 2

i > 0.

Proof This follows readily from the hypothesis since

λi(ε) = qT
i (ε)AT (ε)A(ε)qi (ε)

= ‖A(ε)qi (ε)‖2

= Λiε
2 + O(ε3),

where Λi = γ 2
i > 0. �

We shall explain why the hypothesis imposed on
A(ε)qi (ε) is meaningful. Note that for 7 ≤ i ≤ 8,

A(ε)qi (ε) = (AR + εAT )(r′
i (ε) + zi (ε))

= ARzi (ε) + εAT r′
i (ε) + O(ε2)

= ε

(
1

ε
ARzi (ε) + AT r′

i (ε)

)
+ O(ε2),

where ARzi (ε) + εAT r′
i (ε) = O(ε), which is the first order

approximation of the residue of A(ε) associated with the so-
lution qi (ε). The hypothesis that γi > 0 is intimately related
to the assumption that we are dealing with a non-degenerate
scene configuration in a differential setting. The reason can
be seen by looking at the square of the coefficient of the first
order term in the preceding equation and substituting the ex-
pressions for AR and AT from (21):

∥∥∥∥
1

ε
ARzi (ε) + AT r′

i (ε)

∥∥∥∥
2

=
N∑

j=1

((�tpj )
T
︷︸︸︷
r′
i (ε)pj + pj

T
︷︸︸︷
z′
i (ε)pj )

2 (26)
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where

z′
i (ε) = 1

ε
zi (ε) = O(ε0),

pj = [xj yj 1 ]T , �tpj = [�txj �tyj 0 ]T .

Equation (26) should be familiar to most vision re-
searchers: it is the sum squared error of the differential
fundamental matrix (Ma et al. 2003; Viéville and Faugeras
1995) associated with the “solution” r′

i (ε) and z′
i (ε), with

r′
i (ε) representing the translational velocity and z′

i (ε) related
to the angular velocity.

From Theorem 1, for i = 7,8,
︷︸︸︷
r′
i (ε) = T̂′

i (ε) where T′
i (ε)

is orthogonal to the true translation T and

‖T′
i (ε)‖ = 1√

2
.

Thus, the positivity hypothesis made by Lemma 1 on the
first order term γi amounts to saying that when we substi-
tute with a translation vector orthogonal to the true transla-
tion, the sum squared error must be greater than zero. This
hypothesis must hold, otherwise the scene in view would
be degenerate to the differential fundamental matrix. There-
fore, using Lemma 1, we can say that

λi(ε) = ε2Λi + O(ε3), where Λi > 0,7 ≤ i ≤ 8. (27)

Hence, in principle, under noiseless condition, there is no
degeneracy in the solution to the eight point algorithm even
under infinitesimal motion. The question of whether this
non-degeneracy is sufficient to ensure stability under the
proportional noise model is one which will investigate in the
subsequent sections.

5 Eigenvalues of AT (ε)A(ε) under Noise

Having determined how the eigenvectors and eigenvalues of
AT (ε)A(ε) vary with ε, we are now in a position to deter-
mine how they are affected by noise.

Let the corrupted data matrix Ã(ε) be of the form

Ã(ε) = A(ε) + M(ε),

where A(ε) is defined in (15) and ‖M(ε)‖ ≤ εm for suffi-
ciently small ε. The matrix M(ε) represents the proportional
noise model, and m is some proportionality factor which is
a function of the percentage noise in the optical flow.

Now, the matrix ÃT (ε)Ã(ε) is a perturbed version of
AT (ε)A(ε) given by

ÃT (ε)Ã(ε) = AT (ε)A(ε) + B(ε,M) (28)

where

B(ε,M) = AT (ε)M(ε) + MT (ε)A(ε) + MT (ε)M(ε)

= O(ε)m. (29)

The estimated solution is obtained by finding an eigen-
vector q̃9(ε,M) of ÃT (ε)Ã(ε) that corresponds to its small-
est eigenvalue λ̃9(ε,M). Thus, we have

(AT (ε)A(ε) + B(ε,M))̃q9(ε,M)

= λ̃9(ε,M)̃q9(ε,M). (30)

Note that both the eigenvalues λ̃i (ε,M) and eigenvectors
q̃i (ε,M) of ÃT (ε)Ã(ε) are functions of ε and M . Hence-
forth, we rely on the ˜ notation to remind the reader of the
dependence on M , suppressing M in these cases to keep our
notation simple. However, in cases where the dependence
on M is not clear, we will explicitly write down the depen-
dence.

5.1 Eigenvalue λ̃9(ε)

In this subsection, we shall determine the order of the eigen-
value λ̃9(ε) via the error |̃λ9(ε) − λ9(ε)|, where λ9(ε) = 0.
Specifically, we shall prove that λ̃9(ε) = O(ε2)m for a suf-
ficiently small m.

Unfortunately, the standard results in perturbation theory
only lead to |̃λi(ε)−λi(ε)| = O(ε)m for each i, from which
we are not able to deduce that λ̃9(ε) is simple since the
three Gerschgorin’s discs might overlap. To overcome this
difficulty, we apply the techniques developed in Wilkinson
(1965) and prove a modified result of Gerschgorin’s Theo-
rems, namely Proposition 8 in Appendix A.1. For readers
not familiar with Gerschgorin’s Theorems and the notion of
Gerschgorin’s discs, please refer to Theorems 5 and 6 in Ap-
pendix A.1.

Before we apply Proposition 8, let us record the fol-
lowing simple result which plays an important role in pro-
viding the order of eigenvalues and is also crucial for ob-
taining the projection αi(ε,M) of q̃9(ε) along qi (ε) in
Sect. 6.

Lemma 2

(a) If either i or k is in the set {1,2,3,4,5,6}, then

‖qT
k (ε)B(ε,M)qi (ε)‖ = O(ε)m.

(b) If both i and k are in the set {7,8,9}, then

‖qT
k (ε)B(ε,M)qi (ε)‖ = O(ε2)m.
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Proof Part (a) is straightforward from (29). For part (b), we
use qi (ε) = r′

i (ε) + zi (ε) in Theorem 1, and the data matrix
expression in (20) to obtain

qT
k (ε)B(ε,M)qi (ε)

= (r′
k(ε) + zk(ε))

T (AT
RM(ε)

+ MT (ε)AR)(r′
i (ε) + zi (ε)) + O(ε2)m2.

When 7 ≤ k ≤ 9 and 7 ≤ i ≤ 9, we have λk = 0 and
λi = 0. Using Theorem 1, we have ARr′

k(ε) = 0 and
ARr′

i (ε) = 0. Hence, we have

qT
k (ε)B(ε,M)qi (ε)

= (r′
k(ε) + zk(ε))

T (AT
RM(ε)

+ MT (ε)AR)(r′
i (ε) + zi (ε)) + O(ε2)m2

= zT
k (ε)AT

RM(ε)r′
i (ε) + r′T

k (ε)MT (ε)ARzi (ε)

+ zT
k (ε)AT

RM(ε)zi (ε) + O(ε2)m2

= O(ε2)m. �

If we can now specially construct an invertible matrix K

such that the matrix K−1AT (ε)A(ε)K becomes a diagonal
matrix Diag(λi(ε)), then Proposition 8 provides an upper
bound for |̃λi(ε) − λi(ε)|. Our aim is to have upper bounds
on |̃λi(ε)−λi(ε)| which enable us to isolate the 9th circular
disc G̃9 from the other G̃i ’s.

As mentioned above, the standard result from perturba-
tion theory (Wilkinson 1965) is not adequate as there re-
mains a possibility that the 9th circular disc G̃9 defined in
Proposition 8 might overlap with other disc G̃i , in which
case λ̃9(ε) would lie in the union of the discs. We need to
choose K properly so that G̃9 is isolated from the other G̃i .
We shall now work towards a suitable choice of an invertible
matrix K .

First consider the matrix QT (ε)ÃT (ε)Ã(ε)Q(ε) where
Q(ε) is the matrix whose ith column is the unit eigenvec-
tor qi (ε) of the real symmetric matrix AT (ε)A(ε). Clearly,
Q−1(ε) = QT (ε). From (28), we have

QT (ε)ÃT (ε)Ã(ε)Q(ε)

= Diag(λi(ε)) + QT (ε)B(ε,M)Q(ε) (31)

where Diag(λi(ε)) is a diagonal matrix whose ith diagonal
entry is λi(ε).

By Proposition 8, every eigenvalue λ̃j (ε) of ÃT (ε)Ã(ε)

lies in at least one of the circular discs with center λk(ε) and
radius

9∑
i=1

|qT
k (ε)B(ε,M)qi (ε)| = O(ε)m.

(Note that Proposition 8 does not imply that j is necessar-
ily equal to k.) Now, the center of the 9th circular disc is 0
while those of the 7th and 8th circular discs are 0 + O(ε2)

(from (27)). However, all three circular discs have radii of
order O(ε) by the preceding equation. Consequently, for a
sufficiently small ε, these three discs may overlap with each
other, and λ̃9(ε) lies in their union. As such, for this naive
choice of K = Q(ε), we are not able to ascertain a good
upper bound for |̃λ9(ε) − λ9(ε)|.

Fortunately, by inspecting the entries in the matrix
Q(ε)T B(ε,M)Q(ε), we find that the upper bound on
|̃λi(ε)−λi(ε)| can be improved by pre- and post-multiplying
the matrix in (31) with the respective matrices S−1(ε) and
S(ε), where

S(ε) =
[
εI6 0
0 I3

]
.

Here, In denotes the n × n identity matrix, and 0 is a zero
matrix. The effect of post-multiplying a matrix by S is the
same as multiplying its first six columns by ε while pre-
multiplying a matrix by S−1 is the same as multiplying its
first six rows by 1

ε
. So, we have

S−1(ε)QT (ε)B(ε,M)Q(ε)S(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1 (ε)Bq1(ε) · · · qT

1 (ε)Bq6(ε)
1
ε
qT

1 (ε)Bq7(ε) · 1
ε
qT

1 (ε)Bq9(ε)
...

...
...

...

qT
6 (ε)Bq1(ε) · · · qT

6 (ε)Bq6(ε)
1
ε
qT

6 (ε)Bq7(ε) · 1
ε
qT

6 (ε)Bq9(ε)

εqT
7 (ε)Bq1(ε) · · · εqT

7 (ε)Bq6(ε) qT
7 (ε)Bq7(ε) · qT

7 (ε)Bq9(ε)

· · · · · · · · · · · ·
εqT

9 (ε)Bq1(ε) · · · εqT
9 (ε)Bq6(ε) qT

9 (ε)Bq7(ε) · qT
9 (ε)Bq9(ε)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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in which the diagonal sub-matrices of the above matrix
S−1(ε)QT (ε)B(ε,M)Q(ε)S(ε) remain the same as those of
QT (ε)B(ε,M)Q(ε).

Note that the above transformation does not affect the
eigenvalues. Thus, we have

S−1(ε)QT (ε)ÃT (ε)Ã(ε)Q(ε)S(ε)

= Diag(λi(ε)) + S−1(ε)QT (ε)B(ε,M)Q(ε)S(ε).

By Proposition 8, where K = Q(ε)S(ε), every eigen-
value of ÃT (ε)Ã(ε) lies in at least one of the circular discs
G̃k with center λk(ε) and radius

dk(ε,M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑6
i=1 |qT

k (ε)B(ε,M)qi (ε)|
+ 1

ε

∑9
i=7 |qT

k (ε)B(ε,M)qi (ε)|
= O(ε)m, 1 ≤ k ≤ 6,

ε
∑6

i=1 |qT
k (ε)B(ε,M)qi (ε)|

+∑9
i=7 |qT

k (ε)B(ε,M)qi (ε)|
= O(ε2)m, 7 ≤ k ≤ 9.

(32)

Using the above, we may now prove that the desired prop-
erty that the 9th circular disc G̃9 is disjoint from the rest.

Proposition 5 For a sufficiently small ε and m, the 9th cir-
cular disc G̃9 is disjoint from the union G̃7 ∪ G̃8 of the 7th
and 8th circular discs, which in turn is disjoint from the
union

⋃6
i=1 G̃i of the first six circular discs.

Proof First, the 9th circular disc G̃9 is disjoint from the
union G̃7 ∪ G̃8 of the 7th and 8th circular discs if the gap
(Λ8ε

2 + O(ε3)) between the disc centers λ8(ε) and λ9(ε)

satisfies the following:

Λ8ε
2 + O(ε3) > d9(ε,M)

+ max(d7(ε,M), d8(ε,M)). (33)

For a sufficiently small ε such that the left hand side is more
than 1

2Λ8ε
2, and the right hand side is O(ε2)m, by (32), we

have a uniform bound on m (independent of ε) such that for
a sufficiently small m, the above condition (33) is satisfied.

Next, the union
⋃6

i=1 G̃i of the first six circular discs is

disjoint from the union G̃7 ∪ G̃8 of the 7th and 8th circular
discs, if the gap between the two nearest disc centers λ6(ε)

and λ7(ε) satisfies the following:

λ6(ε) − λ7(ε) > max
j=7,8

(dj (ε,M)) + max
1≤k≤6

dk(ε,M).

From Proposition 4, we note that

λk(ε) = λk + O(ε) where λk > 0, for 1 ≤ k ≤ 6,

while under a non-degenerate scene, (27) holds:

λj (ε) = Λjε
2 + O(ε3) where Λj > 0 for 7 ≤ j ≤ 8.

Thus the above condition is satisfied if

λ6 − Λ7ε
2 + O(ε) > max

j=7,8
(dj (ε,M))

+ max
1≤k≤6

dk(ε,M). (34)

However, from (32), we have

max
j=7,8

(dj (ε,M)) = O(ε2)m,

and

max
1≤k≤6

dk(ε,M) = O(ε)m.

Thus, since λ6 > 0, the condition (34) is satisfied for a suffi-
ciently small ε when m is sufficiently small (i.e., when there
is a sufficiently small percentage noise).

Therefore, for a sufficiently small m, and a sufficiently
small ε, the 9th circular disc G̃9 is disjoint from the union
G̃7 ∪ G̃8 of the 7th and 8th circular discs, which in turn
is disjoint from the union

⋃6
i=1 G̃i of the first six circular

discs. �

It follows from the second part of Proposition 8 that λ̃9(ε)

lies in G̃9, and from (32), we record the following result:

Theorem 2 For a sufficiently small m, and a sufficiently
small ε, the eigenvalue λ̃9(ε) is simple and

λ̃9(ε) = O(ε2)m.

Moreover,

λ̃i (ε) = Λiε
2 + O(ε2)m, i = 7,8;

(35)
λ̃i (ε) = λi + O(ε) + O(ε)m, i = 1,2,3,4,5,6.

6 Projection of q̃9(ε) along qk(ε)

From the preceding section, when m is small, λ̃9(ε) is sim-
ple for sufficiently small ε. Therefore, its corresponding
eigen-space is 1-dimensional. Let q̃9(ε) (which may not be
a unit vector) be an eigenvector corresponding to the eigen-
value λ̃9(ε) and expressed in the form

q̃9(ε) =
9∑

i=1

αi(ε,M)qi (ε). (36)

Then the perturbation introduced to q̃9(ε) can be analyzed
by looking at the projection coefficients αi(ε,M) using the
same technique in Wilkinson (1965).

The following result is simple yet useful in the sequel.
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Lemma 3

(̃λ9(ε) − λj (ε))αj (ε,M)

=
9∑

i=1

αi(ε,M)qT
j (ε)B(ε,M)qi (ε). (37)

Proof Substituting (36) into (30), and using

AT (ε)A(ε)qi (ε) = λi(ε)qi (ε),

we have

9∑
i=1

αi(ε,M)λi(ε)qi (ε) +
9∑

i=1

αi(ε,M)B(ε,M)qi (ε)

= λ̃9(ε)

(
9∑

i=1

αi(ε,M)qi (ε)

)
.

Pre-multiplying the above equation with qT
j (ε), we obtain

the required relation (37) by noting that

qT
j (ε)qi (ε) =

{
1, if i = j,

0, if i �= j. �

Lemma 4 Suppose the maximum projection is given by

max{|αi(ε,M)| | 1 ≤ i ≤ 9} = |αi∗(ε,M)|
for some i∗ in 1 ≤ i ≤ 9. Then

|̃λ9(ε) − λi∗(ε)| ≤
9∑

i=1

|qT
j (ε)B(ε,M)qi (ε)| = O(ε)m.

Proof Dividing (37) by αi∗(ε,M) yields

(̃λ9(ε) − λi∗(ε)) =
9∑

i=1

αi(ε,M)

αi∗(ε,M)
qT

j (ε)B(ε,M)qi (ε)

with | αi(ε,M)
αi∗ (ε,M)

| ≤ 1 for 1 ≤ i ≤ 9. Thus we have

|̃λ9(ε) − λi∗(ε)| ≤
9∑

i=1

∣∣∣∣
αi(ε,M)

αi∗(ε,M)
qT

j (ε)B(ε,M)qi (ε)

∣∣∣∣

≤
9∑

i=1

|qT
j (ε)B(ε,M)qi (ε)| = O(ε)m.

The order follows from Lemma 2. �

Theorem 3 For a sufficiently small noise m (and hence M)
and a sufficiently small ε, the maximum projection is given
by

max{|αi(ε,M)| |1 ≤ i ≤ 9} = |α9(ε,M)|.

Proof We first prove that for every j in 1 ≤ j ≤ 6,

|αj (ε,M)| �= max{|αi(ε,M)| |1 ≤ i ≤ 9}
for a sufficiently small ε (for a given M).

Suppose on the contrary that, for some j∗ in 1 ≤
j ≤ 6, there is a sequence {εs} with lims→∞ εs = 0 and
|αj∗(εs,M)| = max{|αi(εs,M)| | 1 ≤ i ≤ 9}.

By Lemma 4, we have

|̃λ9(εs) − λj∗(εs)| ≤
9∑

i=1

|qT
j (εs)B(εs,M)qi (εs)|

As s → ∞, we note that the right hand side of the above
inequality approaches 0, by Lemma 4. Using Theorem 2 and
Proposition 4, the left hand side approaches λj∗ , which is
positive. This yields a contradiction.

Therefore, |αj (ε,M)| is non-maximal for 1 ≤ j ≤ 6,
when ε is sufficiently small.

Now, we shall prove, again by contradiction, that for
every j where 7 ≤ j ≤ 8,

|αj (ε,M)| �= max{|αi(ε,Ms)| |1 ≤ i ≤ 9}
for a sufficiently small M and a sufficiently small ε.

Suppose for some j∗ ∈ {7,8}, there is a sequence
{Ms} with lims→∞ ‖Ms‖ = 0 and |αj∗(ε,Ms)| =
max{|αi(ε,Ms)| |1 ≤ i ≤ 9}. By Lemma 4, we have

|̃λ9(ε) − λj∗(ε)| ≤
9∑

i=1

|qT
j (ε)B(ε,Ms)qi (ε)|.

As s → ∞, we note that the right hand side approaches
0, since lims→∞ ‖Ms‖ = 0. The left hand side approaches
Λj∗ε

2, by Theorem 2 and Proposition 1. However, Λj∗ε
2 is

positive for a sufficiently small ε > 0. This yields a contra-
diction.

Therefore, for a sufficiently small m (and hence M) and a
sufficiently small ε, the projection |αj (ε,M)|, for 7 ≤ j ≤ 8,
is non-maximal.

We conclude that for a sufficiently small m and a suffi-
ciently small ε, the projection |α9(ε,M)| is maximal. �

Note that the following vector

1

α9(ε,M)
q̃9(ε) =

9∑
i=1

αi(ε,M)

α9(ε,M)
qi (ε)

is an eigenvector of ÃT (ε)Ã(ε) corresponding to the eigen-
value λ̃9(ε) with | αi(ε,M)

α9(ε,M)
| ≤ 1 for 1 ≤ i ≤ 8.

Thus, from now on, for a sufficiently small ε and m, we
may assume that

q̃9(ε) =
9∑

i=1

αi(ε,M)qi (ε), (38)
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where α9(ε,M) = 1 and |αi(ε,M)| ≤ 1 for 1 ≤ i ≤ 8. Note
that with α9(ε,M) = αi∗(ε,M) = 1, both Lemmas 3 and 4
still apply. We shall now proceed to determine the upper
bounds on αi(ε,M) for 1 ≤ i ≤ 8.

Proposition 6 For 1 ≤ j ≤ 6, for sufficiently small m and ε,
we have

αj (ε,M) = O(ε)m.

Proof From Lemma 3, we have

|̃λ9(ε) − λj (ε)| |αj (ε,M)| ≤
9∑

i=1

|qT
j (ε)B(ε,M)qi (ε)|,

as each |αi(ε,M)| ≤ 1. By Theorem 2 and Proposition 1, we
have |̃λ9(ε) − λj (ε)| = λj + O(ε) while

9∑
i=1

|qT
j (ε)B(ε,M)qi (ε)| = O(ε)m,

by Lemma 2. Therefore, we have

αj (ε,M) = O(ε)m

for a sufficiently small ε and m. �

Lemma 5 For j = 7 or 8, when m is sufficiently small, we
have∣∣∣∣∣

9∑
i=1

αi(ε,M)qT
j (ε)B(ε,M)qi (ε)

∣∣∣∣∣= O(ε2)m.

Proof Note that

9∑
i=1

|αi(ε,M)qT
j (ε)B(ε,M)qi (ε)|

≤
6∑

i=1

|αi(ε,M)qT
j (ε)B(ε,M)qi (ε)|

+
9∑

i=7

|αi(ε,M)qT
j (ε)B(ε,M)qi (ε)|.

For 7 ≤ i ≤ 9, we use |αi(ε,M)| ≤ 1 and Lemma 2 to obtain

9∑
i=7

|αi(ε,M)qT
j (ε)B(ε,M)qi (ε)| = O(ε2)m.

For 1 ≤ i ≤ 6, by Proposition 6 and Lemma 2, we have

|αi(ε,M)qT
j (ε)B(ε,M)qi (ε)| = O(ε2)m2.

Therefore,

9∑
i=1

|αi(ε,M)qT
j (ε)B(ε,M)qi (ε)| = O(ε2)m.

�

We have the following bound on αj (ε,M) for j = 7 or 8.

Proposition 7 For 7 ≤ j ≤ 8, for sufficiently small m and
ε, we have

|αj (ε,M)| = O(ε0)m.

Proof Using Lemma 3, we obtain

|αj (ε,M)| ≤
∑9

i=1 |αi(ε,M)qT
j (ε)B(ε,M)qi (ε)|

|̃λ9(ε) − λj (ε)| .

By Lemma 1 and Theorem 2, we have, for sufficiently small
ε and m,

|̃λ9(ε) − λj (ε)| = Λjε
2 + O(ε3)m

= Λjε
2(1 + O(ε)m) > 0,

where Λj > 0. Therefore, together with Lemma 5, we con-
clude that |αj (ε,M)| = O(ε0)m. �

As a consequence of the preceding proposition, we are
able to set a uniform bound on m, i.e., independent of ε,
such that |αj (ε,M)| < 1 (and are as small as we like) for
7 ≤ j ≤ 8. With this m, for a sufficiently small ε > 0, we
will also have |αj (ε,M)| < 1 (and are as small as we like)
for 1 ≤ j ≤ 6. The above result proves that stability of the
estimated solution q̃9(ε) under the differential condition of
small motion and a bounded percentage noise.

For comparison with other statistical analysis, we would
like to find an explicit expression for the lowest order noise
terms (i.e., the m terms) of αj (ε,M), via (37) in conjunc-
tion with the results obtained in Propositions 6 and 7 and
Lemma 2. We shall state and prove the result in our last the-
orem:

Theorem 4 Given a sufficiently small m, and a sufficiently
small ε,

q̃9(ε) =
9∑

i=1

αi(ε,M)qi (ε)

where α9(ε,M) = 1,

αi(ε,M) = −qT
i (ε)B(ε,M)q9(ε)

λi(ε)
+ O(ε)m2

= O(ε)m, for 1 ≤ i ≤ 6,

αi(ε,M) = −qT
i (ε)B(ε,M)q9(ε)

λi(ε)
+ O(ε0)m2

= O(ε0)m, for 7 ≤ i ≤ 8.

Proof From (37) and (38) and Propositions 6 and 7, we have

(̃λ9(ε) − λj (ε))αj (ε,M)



Int J Comput Vis (2010) 86: 87–110 101

= qT
j (ε)B(ε,M)q9(ε)

+
8∑

i=1

αi(ε,M)qT
j (ε)B(ε,M)qi (ε)

=
{

qT
j (ε)B(ε,M)q9(ε) + O(ε)m2, 1 ≤ j ≤ 6,

qT
j (ε)B(ε,M)q9(ε) + O(ε2)m2, 7 ≤ j ≤ 8.

(39)

Applying Proposition 4 and Lemma 1, we have

λ̃9(ε) − λj (ε) = −λj (ε)

(
1 − λ̃9(ε)

λj (ε)

)

=
{

−λj (ε)(1 + O(ε2)m), if 1 ≤ j ≤ 6,

−λj (ε)(1 + O(ε0)m), if 7 ≤ j ≤ 8.

Hence, by (3), we have

1

λ̃9(ε) − λj (ε)
=
{ 1

−λj (ε)
(1 + O(ε2)m), if 1 ≤ j ≤ 6,

1
−λj (ε)

(1 + O(ε0)m), if 7 ≤ j ≤ 8.

Dividing (39) throughout by λ̃9(ε) − λj (ε) and using
Lemma 2, we have the desired expression stated in the the-
orem. �

The above result shows that the lowest order terms in
noise are the same as those derived in Wilkinson (1965),
pages 70, 71, 83, where the noise is denoted by ε. It al-
lows us to extend much of the unbiasedness/noise whitening
analysis carried out on the discrete eight point algorithm to
the differential case, because the foundation of such analysis
is the lowest order noise terms in the perturbation analysis.
One example is the work of Muhlich and Mester (1998),
which showed that for the so-called TLS-FC normalized
variant of the discrete eight point algorithm,1 the expected
value of the αi(ε,M) is zero for i �= 9, that is, the estimated
solution is unbiased.

7 Obtaining the Rotation and Translation Parameters

To complete our investigation, we need to ensure that the
subsequent decomposition of the fundamental matrix F̃ (ε)

1In the TLS-FC variant (Muhlich and Mester 1998), matrix perturba-
tion analysis was used to formulate a new data matrix Ã′(ε) given by
Ã′(ε) = Ã(ε) + M ′(ε) = A(ε) + εM + M ′(ε), where M ′(ε) is cho-
sen such that Ã′(ε) satisfies the rank 8 constraint without making any
changes to the columns of Ã(ε) in which noise is not present, and
that ‖M ′(ε)‖ is minimized. A straightforward application of the re-
sult in (41) in Sect. 7 shows that this new Ã′(ε) is bounded by the
same proportional noise regime, and thus the results from our paper
are applicable to this TLS-FC variant.

into the translation and the rotation estimates are stable. Sev-
eral intermediate steps are also involved, including the cor-
recting of F̃ (ε) to the nearest rank-two matrix, and the cor-
recting of the recovered essential matrix Ẽ(ε) to the nearest
matrix with the desired property of having the first two sin-
gular values being equal.

In addition, to establish a proper comparison between the
discrete and the differential formulation, we need to con-
vert the rotational and translational displacements recovered
from the discrete algorithm into the corresponding velocity
formulations. As mentioned previously, the differential two
view formulation converts the SFM problem into one inde-
pendent of ε but involving differential entities like velocity.
Accordingly, the required orders in the errors of the discrete
estimates so that the corresponding velocity estimates have
errors independent of ε are given by:

Error in the translation direction = O(ε0)m,

Error in the rotation estimate = O(ε)m.
(40)

The above means that when the discrete rotation estimate
is divided by the time ε to get the rotational velocity, the
latter’s error would be independent of ε. The error in the
translation estimate only needs O(ε0)m instead of O(ε)m

because the terms Tc and T in our formulation in fact rep-
resent velocities already (see (5) and (19)). This is related
to the fact that we can only recover the translation direction
anyway.

The overall order of the error provided in Theorem 4 is
O(ε0)m and superficially, does not give us much hope that
the discrete eight point algorithm can meet the condition set
out in (40) for rotation, which requires error of the order
O(ε)m. Fortunately, Theorem 4 also shows that the orders
of the perturbation coefficients αi(ε,M)′s are not all equal.
In fact, only two coefficients, α7(ε,M) and α8(ε,M), are of
order O(ε0)m, whereas the rest are of order O(ε)m.

We can obtain a better bound if we split the recovered

fundamental matrix F̃ (ε) =
︷ ︸︸ ︷
q̃9(ε) into a sum of two terms,

such that the large O(ε0)m noise only perturbs the transla-
tion vector. The rest of this section and Appendix A.2 are
devoted to doing just such a split and keeping track of how
the errors are propagated and apportioned in the subsequent
decomposition into the translation and rotation estimates.

7.1 Some Preliminaries

Before proceeding further, the following short note on ‘near-
est matrix’ will be used extensively in the discussion of the
various errors throughout this section.

Let C̃(ε) be the noise corrupted version of a matrix C(ε).
Due to the noise, C̃(ε) may lack some desired properties
which are present in C(ε) (an example of such property is
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that the first two singular values are identical or the rank
is 2).

As is often the case, we use the ‘nearest’ C̃′(ε) to C̃(ε)

(if it exists) instead of C̃(ε) in the following sense:

(a) C̃′(ε) possesses the desired properties, and
(b) ‖C̃′(ε) − C̃(ε)‖ = min{‖K − C̃(ε)‖ |K possesses the

desired properties}.

Thus, we have,

‖C̃′(ε) − C̃(ε)‖ ≤ ‖C(ε) − C̃(ε)‖. (41)

This ensures that in using the nearest matrix, the ‘correction’
introduced has the same order of error.

Note that the essential/fundamental matrix is only de-
fined up to a scale factor. We regard the ‘true’ fundamental
matrix Ft (ε) as one having unit Frobenius norm and given
by

Ft(ε) =
︷ ︸︸ ︷
q9(ε) = T̂tΘRT (ε)(Θ(ε))−1 (42)

where Tt is parallel to T defined in (19) but scaled such that
‖Ft(ε)‖ = 1. The true essential matrix Et(ε) is defined as
the de-normalized version of Ft(ε),

Et(ε) = ΘT Ft (ε)Θ(ε) = ΘT T̂tΘRT (ε). (43)

The estimated fundamental matrix is given by

F̃ (ε) =
︷ ︸︸ ︷
q̃9(ε) .

With noise,
︷ ︸︸ ︷
q̃9(ε) may not be a unit vector and thus may

not have unit norm. Letting F̃ (ε) stay un-normalized has
the virtue of keeping the following proof simple while still
obtaining error expressions that suffice for our purpose.

7.2 Splitting the Fundamental Matrix

We know from Theorems 1 and 4 that our estimated solution
vector q̃9(ε) can be expressed as

q̃9(ε) = q9(ε) +
8∑

i=7

αi(ε,M)r′
i (ε) +

8∑
i=7

αi(ε,M)zi (ε)

+
6∑

i=1

αi(ε,M)qi (ε)

= q9(ε) +
8∑

i=7

αi(ε,M)r′
i (ε) + O(ε)m,

where

︷︸︸︷
r′
i (ε) = T̂′

i (ε), 7 ≤ i ≤ 8.

Therefore, using the definition of Ft(ε) in (42), we have

F̃ (ε) =
︷ ︸︸ ︷
q̃9(ε)

= Ft(ε) +
8∑

i=7

αi(ε,M)T̂′
i (ε) + O(ε)m. (44)

Utilizing the relation ΘRT (ε)(Θ(ε))−1 − I = O(ε), we
can modify (44) such that

F̃ (ε) = Ft(ε) +
8∑

i=7

αi(ε,M)T̂′
i (ε){ΘRT (ε)(Θ(ε))−1

+ O(ε)} + O(ε)m

= Fa(ε,M) + O(ε)m

where

Fa(ε,M) = Ft (ε) +
(

8∑
i=7

αi(ε,M)T̂′
i (ε)

)

× ΘRT (ε)(Θ(ε))−1

= Ft (ε) + O(ε0)m (45)

is a part of F̃ (ε) that contains the true rotation but an in-
correct translation. As F̃ (ε) may lack the rank two property
associated with a fundamental matrix, we apply the algo-
rithm described in Ma et al. (2003) that chooses a rank 2
matrix F̃ ′(ε) with the minimum ‖F̃ (ε)− F̃ ′(ε)‖. If we con-
sider F̃ (ε) to be a perturbed version of the valid fundamental
matrix Fa(ε,M) (i.e., having rank 2), then from (41),

‖F̃ (ε) − F̃ ′(ε)‖ ≤ ‖F̃ (ε) − Fa(ε,M)‖ = O(ε)m.

Hence, the error in F̃ ′(ε) takes the form

F̃ ′(ε) = Fa(ε,M) + O(ε)m.

7.3 Errors in the Motion Estimates

The essential matrix Ẽ(ε) is obtained by de-normalizing
F̃ ′(ε):

Ẽ(ε) = ΘT F̃ ′(ε)Θ(ε) = Ea(ε,M) + O(ε)m (46)

where using (2), (43) and (45), we have

Ea(ε,M)

= ΘT Fa(ε,M)Θ(ε)

=
(

ΘT T̂tΘ + det(Θ)

8∑
i=7

αi(ε,M) ̂Θ−1T′
i (ε)

)
RT (ε)

= Et(ε) + O(ε0)m. (47)
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Observe that from (47), Ea(ε) is a valid essential matrix (in
the sense that it has rank 2 and two identical non-zero singu-
lar values), since it is a product of a skew symmetric matrix
and a rotation matrix R(ε) in SO(3).

We can treat Ẽ(ε) as a perturbed version of Ea(ε). There-
fore, using the algorithm in Ma et al. (2003) to enforce on
Ẽ(ε) the condition of having the first two singular values
being equal, we can obtain a valid essential matrix Ẽ′(ε),
where from (41) and (47), we have

‖Ẽ′(ε) − Ẽ(ε)‖ ≤ ‖Ea(ε,M) − Ẽ(ε)‖ = O(ε)m. (48)

Using triangle inequality and the orders from (46) and (48),
we have

‖Ẽ′(ε) − Ea(ε,M)‖
≤ ‖Ẽ′(ε) − Ẽ(ε)‖ + ‖Ea(ε,M) − Ẽ(ε)‖
= O(ε)m. (49)

Similarly, using the orders from (46), (47) and (48), we
have

‖Ẽ′(ε) − Et(ε,M)‖
≤ ‖Ẽ′(ε) − Ẽ(ε)‖ + ‖Et(ε,M) − Ẽ(ε)‖
= O(ε0)m. (50)

The rest of the proof basically keeps track of how the
errors are propagated when one uses singular value de-
composition on Ẽ′(ε) to obtain the rotation and transla-
tion estimates. The steps are nontrivial but the arguments
are straightforward. Interested readers can refer to Appen-
dix A.2 for the details. In particular, using the order in (50)
and Proposition 9 in Appendix A.2, we obtain:

Error in the unit translational vector = O(ε0)m.

With regards to rotation, if one considers Ẽ′(ε) to be a
perturbed version of Ea(ε) which contains the true rotation,
then using the order in (49) and Proposition 10 in Appen-
dix A.2, we obtain:

Error in the rotational matrix = O(ε)m,

completing the requirements set out in (40).

8 Simulation Results

We present simulation results for the following linear algo-
rithms:

HN denotes the eight point algorithm using Hartley normal-
ization (Hartley, 1997),

HNC denotes the eight point algorithm with Hartley nor-
malization and estimated by Total Least Squares—Fixed
Column (TLS-FC) (Muhlich and Mester 1998),

E denotes the un-normalized eight point algorithm
(Longuet-Higgins 1981),

M denotes the differential essential matrix (Ma et al. 2000),
and

S denotes the linear subspace differential algorithm (Heeger
et al. 1992).

8.1 Decreasing Baseline

Simulation results for decreasing baseline are given in
Figs. 1 and 2, with those of the discrete algorithms rep-
resented by dotted lines and those of the differential al-
gorithms by solid lines. The simulation conditions are as
follows. The “scene” consisted of a point cloud containing
1000 points with an average depth of 10 units. The points
were uniformly distributed between depths of 7 and 13 units.
The simulated camera had a 45◦ field of view (FoV) with
a focal length of 1 unit. The initial translation was set at
(0,0.1,0) unit, and the initial rotation at (0.01,0,0.01) ra-
dians. Both the baseline and rotation were steadily decreased
by factors of 10 to simulate increasingly small motion. This
baseline was decreased until 10−16, the limit of arithmetic
precision, in order to verify our theoretical prediction. The
optical flow noise was 3.5% of the average magnitude of the
optical flow. The rotational errors presented in Fig. 2 have
been normalized such that

normalized rotational error = rotational error in degrees

baseline
.

As such, a constant normalized rotation error in the graphs
indicates that the actual error is decreasing proportionally to
the amount moved by the camera.

Fig. 1 Error in estimating the
translation direction with
decreasing baseline. For lateral
translation (b), the errors in E,
M , and S are large
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Fig. 2 Error in estimating the
rotation with decreasing
baseline

Fig. 3 This figure illustrates the performances of various linear algo-
rithms as the noise increases. The rotation parameters for all simula-
tions in this figure is given by Rotation = (0 0 0). Figures (a) to (c)

show the error in estimating the translation direction. Figures (d) to (f)
show the error in estimating the rotation

8.2 Increasing Noise

The scene is similar to that in Sect. 8.1. However, in this
scenario, we fix the translation (see Fig. 3 for the transla-
tion) and rotation while increasing the amount of noise. The
results are presented in Fig. 3, with each column represent-
ing different types of translational motions.

8.3 Observations

1. From Figs. 1 and 2, one can see that there was no deterio-
ration in the computation of the motion parameters using

the discrete eight point algorithms (E, HN and HNC) de-

spite reductions in the baseline to the limit of arithmetic

precision. Note that the errors for the discrete algorithms

shot up at about 10−12 or 10−13: At this small baseline,

the magnitude of the optical flow, being two to three or-

ders of magnitude smaller than the baseline, reached the

limit of arithmetic precision, rendering the proportional

noise model invalid and thus resulting in the breakdown

of the discrete algorithms. This simulation clearly veri-

fies that the theoretical predictions made in the previous

section are correct.
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2. The performances of the differential essential matrix
algorithm (M) and the linear subspace algorithm (S)
were extremely poor (Figs. 1(b) and 3), especially in
the lateral motion configuration which is susceptible to
the bas-relief ambiguity (Chiuso et al. 2000; Daniilidis
and Spetsakis 1997; Ma et al. 2001; Xiang and Cheong
2003). Their performances were more or less compara-
ble to that of the un-normalized discrete approach (E).
In contrast, the normalized discrete eight point algo-
rithm with Total Least Squares—Fixed Column estima-
tion (HNC) appeared to give very much superior results
even when the motion was small, with HN ’s not far be-
hind.

3. In Fig. 2, the absolute rotational error declined propor-
tionally with the baseline as predicted (i.e. the rotational
error was of the order O(ε)m).

4. Referring to Fig. 3, the impact of noise was keenly felt
for the un-normalized discrete approach (E) and the dif-
ferential algorithms (M and S). Under all motion types
tested, the well-known forward bias (Chiuso et al. 2000;
Daniilidis and Spetsakis 1997; Ma et al. 2001) reared
its ugly head at even a low level of noise. For in-
stance, in Fig. 3(c), when the noise was about 10%,
the forward-biased solution of 0◦ for the translation re-
sulted in an error of about 45◦ (the true translation vec-
tor lies in the 45◦ direction). In the same token, for
the forward translation case (Fig. 3(a)), the excellent re-
sults of E, M , and S should be treated with caution.
These algorithms had a strong forward bias and irre-
spective of the true motion, tended to give a forward
translation estimate whenever the noise was moderately
large. On the other hand, the normalized discrete al-
gorithms (HN and HNC) exhibited much less sensitiv-
ity to noise under all conditions tested, except in the
translational estimate of HN under forward translation
(Fig. 3(a)) with the noise level greater than 10%. The
results of this simulation imply that we could expect
a stable performance from the discrete HNC algorithm
when dealing with small motions, provided that the pro-
portional noise in the optical flow computation is small
enough.

9 Results on Real Image Sequences

With conventional CCD imaging technology and the me-
chanical stability of the measurement apparatus, it is clearly
impossible to replicate with real image sequences the ex-
tremely small baseline scenario in the preceding section.
Our goal in this section is to show that over a practical range
of decreasing baselines, the normalized discrete algorithms
can perform as well, if not better than the differential coun-
terparts. The range of flow magnitude simulated is indicated
in the first row of Table 1; our smallest baseline corresponds
to the case where the average flow magnitude is of the order
10−1 pixel. This limit is reasonable as at the current tech-
nology level, the imaging noise expected for a high-quality,
12-bit, scientific imaging system may cause flow variation
on the order of 0.01 pixels to 0.001 pixels, depending on
the image content (Timoner and Freeman 2001). Such noise
level would already constitute a 10% noise for a subpixel
image motion of the order 10−1 pixel, which would be a
problem for both the discrete and the differential algorithms.

Three sequences were taken by moving a camera along
a linear rail using two different consumer-grade cameras.
For sequence A in Fig. 4(a), the FoV was 31◦. For se-
quences B and C in Figs. 4(b) and (c), the FoV was 53◦.
Optical flow was estimated using the state-of-the-art algo-
rithm provided by Sand and Teller (2006). 4000 flows were
obtained from sub-sampling the available flows and filtered
using RANSAC to remove obvious outliers. In most scenes,
99% of the tested flows were considered inliers and differ-
ent RANSAC trials gave little variation in the results. There
was no scene-specific tuning of either the RANSAC thresh-

Fig. 4 Scenes that have been tested. Field of view ranges from 31
to 53◦. Sequences A and B involve a pure lateral translation, while
Sequence C involves a pure forward translation

Table 1 Translation errors for
sequences in Fig. 4. (NL) in the
bottom half of the table
indicates that a nonlinear bundle
adjustment step was used to
refine the results obtained by the
corresponding linear algorithm
in the top half. The first row
indicates the average magnitude
of the optical flow for the
sequence in that particular
column

Error (◦) A1 A2 A3 B1 B2 B3 C1 C2 C3

Flow Mag. 0.53 1.0 4.1 0.73 1.17 1.35 0.8 1.1 2.8

HNC 16.5 22.3 5.2 6.5 24.2 14.3 4.4 4.1 3.8

M 89.1 48.5 7.0 87.1 80.6 88.6 2.6 2.5 2.8

S 89.1 48.5 7.0 87.1 80.6 88.6 2.5 2.5 2.8

HNC (NL) 1.8 6.0 1.1 6.7 2.2 7.3 3.3 4.3 2.8

M (NL) 83.0 4.8 1.0 87.3 7.2 84.5 3.2 2.8 2.2

S (NL) 87.2 38.0 5.6 82.9 7.4 87.8 2.3 2.4 2.9
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olds or the parameters in the optical flow estimation algo-
rithm. Here, we gave the average error over three trials. For
computational efficiency, the number of flows were further
reduced to 2000 by sub-sampling before being used for cam-
era pose recovery. For comparison purpose, the camera pose
estimated from all the linear algorithms was also refined us-
ing the bundle adjustment algorithm (Hartley and Zisserman
2000). The results of the linear algorithms are tabulated in
the top half of Table 1, with the corresponding results re-
fined by bundle adjustment reported in the bottom half of
Table 1. As we have no means of accurately measuring the
ground truth for small rotations, only the translational error
is reported.

Sequences in Figs. 4(a) and (b) involve a pure lateral
translation, while that in Fig. 4(c) involves a pure forward
translation. Observe that the discrete linear estimator HNC
of Muhlich and Mester (1998) performed much better than
the differential estimator M from Ma et al. (2000). For ex-
ample in the lateral motion sequences (Figs. 4(a) and (b)),
the discrete algorithm was able to give a good estimate
even under circumstances in which its differential coun-
terpart failed completely. These experimental results show
clearly that for SFM problems involving a practical range
of small motions, the normalized discrete linear algorithms
out-performed their differential counterparts by a large mar-
gin, especially in lateral motion configuration which are
liable to the bas-relief ambiguity. For forward translation
(Fig. 4(c)), the performance of the normalized discrete al-
gorithms remained on par with the differential ones and
was stable over decreasing baseline. We also note that ran-
dom noises have apparently substantial effects on the per-
formances of all algorithms, as can be seen from the non-
smooth error figures over changing baseline in Table 1. This
means that the subsequent step of bundle adjustment to re-
fine the pose estimate is especially important. Given a nor-
malized discrete algorithm that can provide an initial esti-
mate stably over a large range of motion and over differ-
ent motion configurations, the non-linear bundle adjustment
step would have a higher chance of finding the global min-
imum and will do so more quickly (see bottom half of Ta-
ble 1).

10 Conclusion

We have proven that the eight point algorithm and its vari-
ants are “differential algorithms” in the sense that they can
handle arbitrarily small motions given a sufficiently tight
bound on the percentage noise. This proof was done us-
ing tools from matrix perturbation analysis. It shows that
for a sufficiently small percentage noise proportional to the
feature displacement magnitude, the eigenvalues of the data
matrix remain separate and the solution vector can be recov-
ered well even under very small motion. That is, there is no

degeneracy inherent in the discrete linear formulation as the
baseline approaches zero. Using both real and simulation re-
sults, we have validated the theoretical analysis and shown
that even under small motion, the normalized discrete eight
point algorithms can perform well and indeed significantly
outperform their linear unnormalized differential counter-
parts. Given that much efforts have been spent in improving
the discrete algorithms, and in view of our theoretical and
experimental results, it seems that for linear algorithms at
least, a properly normalized eight point algorithm should be
used for SFM even in small motion.

Having obtained the theoretical result that there is no de-
generacy for the two-view SFM case, it would also be in-
teresting to investigate whether the many so-called insta-
bilities associated with small motion in various other prob-
lems are due to the instability of the specific discrete algo-
rithms rather than the inherent sensitivity of small motion.
For instance, Triggs (1999) considered the case where the
third view of a trifocal tensor is obtained by an infinitesimal
change of a discrete two-view system. The additional con-
straint was obtained by differentiating the discrete epipolar
constraint pT Ep′ = 0 with both E and p′ changing, which
yields pT Eṗ′ + pT Ėp′ = 0. While such formulation has the
virtue of simplicity, the additional differential information
pT Eṗ′ + pT Ėp′ can be drowned out when combined with
the existing epipolar constraint pT Ep′, leading to apparent
degeneracy under small changes in E and p′. The problem
is not inherently sensitive however; rather, a proper weigh-
ing and normalization scheme can do much to enhance the
usefulness of the differential information and generally im-
prove the stability of the algorithm. A full treatment of this
question is beyond the scope of this paper and presents a
very interesting subject for future research.

Appendix A

A.1 Perturbation of Eigenvalues and Eigenvectors

We record some results on perturbation theory from Wilkin-
son (1965). The first two results are due to Gerschgorin.
These Gerschgorin Disc Theorems give us a method of es-
timating the eigenvalues of a matrix based solely on the en-
tries of the matrix.

Theorem 5 (Wilkinson 1965, Theorem 3, page 71) Every
eigenvalue λ of an n × n matrix C lies in at least one of the
circular discs with centers cii and radii

∑
j �=i |cij |, where

cij is the entry of the matrix C on its ith row and j th column.

The above circular disc is called a Gerschgorin disc.
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Theorem 6 (Wilkinson 1965, Theorem 4, page 71) If k of
the Gerschgorin disc form a connected domain which is iso-
lated from the other discs, then there are precisely k eigen-
values of C within this connected domain.

The next result is a slight modification of the above Ger-
schgorin’s Theorems. It is applied to the matrix ÃT (ε)Ã(ε)

in (28) in Sect. 5.1.

Proposition 8 Let C̃ = C+H , where C̃,C and H are n×n

matrices. Suppose there is an invertible matrix K such that
K−1CK = D, where D = Diag(di) is a diagonal matrix
with diagonal entries di . Then every eigenvalue λ̃ of C̃ lies
in at least one of the circular discs G̃i with center di and
radius

∑n
j=1 |(K−1HK)ij |, where (K−1HK)ij is the (ij)-

entry of the matrix K−1HK .
Moreover, if k of the above circular discs form a con-

nected domain which is isolated from the other discs, then
there are precisely k eigenvalues of C̃ within this connected
domain.

Proof Firstly, we note that the matrices K−1C̃K and C̃ have
the same set of eigenvalues. Now, by the first Gerschgorin’s
result, namely Theorem 5, every eigenvalue of K−1C̃K , and
hence of C̃, lies in one of its Gerschgorin discs. The ith Ger-
schgorin disk Gi of the matrix K−1C̃K is given by

Gi =
{

λ | |λ − (di + (K−1HK)ii)| ≤
∑
j �=i

|(K−1HK)ij |
}

.

(51)

Applying the triangle inequality to the inequality in (51)
gives

|λ − di | ≤
∑
j

|(K−1HK)ij |,

which defines a circular disc G̃i centered at di and with ra-
dius
∑

j |(K−1HK)ij |. This circular disc contains the ith

Gerschgorin disk Gi . Consequently, every eigenvalue of C̃

lies in one of such circular discs. The second part of the
proposition now follows readily from Theorem 6. �

Before we proceed to obtain the perturbation of eigen-
vectors, we first include a simple proof of the next lemma
which is used to provide us with a unit vector.

Lemma 6 Suppose q(ε) = r(ε) + z(ε) where r = O(ε0)

and z(ε) = O(ε). Then the unit vector

q̆(ε) = q(ε)

‖q(ε)‖

can be expressed as

q̆(ε) = r̆(ε) + w(ε)

where r̆(ε) = r(ε)
‖r(ε)‖ and w(ε) = O(ε).

Proof Note that ‖q(ε)‖ = ‖r(ε)‖ + O(ε). Thus,

q̆(ε) = q(ε)

‖q(ε)‖
= 1

‖r(ε)‖ + O(ε)
(r(ε) + z(ε))

= 1

‖r(ε)‖(1 + O(ε))
(r(ε) + z(ε))

= r̆(ε) + w(ε)

where w(ε) = O(ε). We have made use of 1
1+O(ε)

= 1 +
O(ε) from (3). �

For a perturbed symmetric matrix, we first have the fol-
lowing result on its perturbed eigenvalues from Wilkinson
(1965).

Theorem 7 (Wilkinson 1965, Wielandt-Hoffman Theorem,
page 104) Suppose C̃(H) = C + H , where C̃(H),C and
H are n × n real symmetric matrices. If C̃(H) and C

have eigenvalues λ̃i (H) and λi respectively and they are
arranged in non-increasing order, then

n∑
i=1

(̃λi(H) − λi)
2 ≤ ‖H‖2.

It follows that for each i,

|̃λi(H) − λi | ≤ ‖H‖. (52)

In the above statement, we have used the symbol C̃(H)

instead of C̃ for C +H to stress the dependence of its eigen-
value λ̃i (H) on H .

To obtain the perturbed eigenvectors, we may apply a
technique in Wilkinson (1965) which we have also used in
Sect. 6. The idea is quite simple and we thus state the result
without proof.

Lemma 7 Let C̃(H) = C + H , where C̃(H),C and H are
n × n real symmetric matrices. Suppose {ri |1 ≤ i ≤ n} is a
basis of eigenvectors of C, where each ri is an eigenvector
that corresponds to eigenvalue λi . For a fixed k, let

qk(H) =
n∑

i=1

αi(H)ri
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be an eigenvector of C̃(H) corresponding to eigenvalue
λ̃k(H). Suppose j is such that λj �= λk . Then for a suffi-
ciently small ‖H‖, the projection αj (H) of qk(H) on rj is
non-maximal, i.e.,

|αj (H)| �= max{|αi(H)| |1 ≤ i ≤ n}.

Theorem 8 Suppose C̃(H) = C + H , where C̃(H),C and
H are n × n real symmetric matrices. The unit eigenvectors
q̃k(H) and rk of C̃(H) and C corresponding to λ̃k(H) and
λk respectively are related by

q̃k(H) = q′
k(H) + O(‖H‖),

where q′
k(H) is a unit vector and is a linear combination of

all those eigenvectors rj of C, whose associated eigenvalue
λj is identical to λk .

A.2 Errors in the Translation Vector and Rotation Matrix

In this subsection, we show that the decomposition of an
essential matrix into its rotational and translational terms is
stable. This means that in general, lowering the amount of
noise will improve the rotational as well as the translational
estimate, rather than only one or the other.

Let E(ε) be an essential matrix with a finite Frobenius
norm. Recall Ẽ′(ε) is the corrupted version of E(ε) but it
has been corrected to possess the desired properties of an
essential matrix. The rotation and translation estimates are
obtainable from the SVD of Ẽ′(ε) using the algorithm in
Hartley and Zisserman (2000). The SVD process involves
the eigenvalues and eigenvectors of the real symmetric ma-
trices Ẽ′T (ε)Ẽ′(ε) and Ẽ′(ε)Ẽ′T (ε), of whom we note the
following (ε is here suppressed temporarily):

‖Ẽ′T Ẽ′ − ET E‖ = ‖Ẽ′T (Ẽ′ − E) + (Ẽ′T − ET )E‖
≤ ‖Ẽ′T ‖ ‖Ẽ′ − E‖ + ‖(Ẽ′T − ET )‖ ‖E‖
≤ ‖Ẽ′ − E‖(2‖E‖ + ‖Ẽ′ − E‖), (53)

which has the same order as ‖Ẽ′(ε) − E(ε)‖, since ‖E(ε)‖
is finite. The same result can be obtained for ‖Ẽ′(ε)Ẽ′T (ε)−
E(ε)ET (ε)‖. Thus, both errors have the same order as
‖Ẽ′(ε) − E(ε)‖.

Consider the SVD of the matrix E(ε)

E(ε) = U(ε)

⎡
⎣

√
λ(ε) 0 0
0

√
λ(ε) 0

0 0 0

⎤
⎦V T (ε) (54)

where λ(ε) = λ + O(ε) is a positive real number, and U(ε)

and V (ε) are orthogonal matrices. Each ith column vi (ε) of
V (ε) is a unit eigenvector of ET (ε)E(ε) that corresponds to
the eigenvalue λ(ε) for i = 1,2 and 0 for i = 3.

Likewise, we have the corresponding SVD of Ẽ′(ε):

Ẽ′(ε) = U ′(ε)

⎡
⎣

√
λ′(ε) 0 0
0

√
λ′(ε) 0

0 0 0

⎤
⎦ (V ′(ε))T , (55)

where the ith column of V ′(ε) is the unit eigenvector of
Ẽ′T (ε)Ẽ′(ε).

Using (54) and (55), for i = 1,2, the ith columns ui (ε),
vi (ε), u′

i (ε) and v′
i (ε) of the respective matrices U(ε), V (ε),

U ′(ε) and V ′(ε) are related as follows,

√
λ(ε)vi (ε) = ET (ε)ui (ε),

(56)√
λ′(ε)v′

i (ε) = Ẽ′T (ε)u′
i (ε).

From Hartley and Zisserman (2000), the translation di-
rections associated with Ẽ′(ε) and E(ε) are given by the
third columns u′

3(ε) and u3(ε) respectively. The next result
gives the error involved in these translation vector estimates.

Proposition 9 For the unit translational vectors u3(ε) and
v3(ε), the errors ‖u′

3(ε)− u3(ε)‖ and ‖v′
3(ε)− v3(ε)‖ have

the same order as ‖Ẽ′(ε) − E(ε)‖.

Proof The vectors u3(ε), v3(ε) u′
3(ε) and v′

3(ε) are unit
eigenvectors corresponding to the simple eigenvalue 0
of the real symmetric matrices ET (ε)E(ε), E(ε)ET (ε),
Ẽ′T (ε)Ẽ′(ε) and Ẽ′(ε)Ẽ′T (ε) respectively.

The result now follows readily from Theorem 8 in Ap-
pendix A.1 and the error obtained in (53). �

Next, we relate U(ε) to U ′(ε) and V (ε) to V ′(ε) when ε

is sufficiently small. This relationship is then used to deter-
mine the error in the estimate of the rotation matrix.

Lemma 8 Both ‖U ′(ε) − U(ε)‖ and ‖V ′(ε) − V (ε)‖ have
the same order as ‖Ẽ′(ε) − E(ε)‖.

Proof The non-zero eigenvalue of the real symmetric ma-
trix ET (ε)E(ε) (and hence also E(ε)ET (ε)) is repeated
twice. Hence, the corresponding eigen space has dimension
2. Therefore, we choose u2(ε) and u′

2(ε) such that

u′
2(ε) = u2(ε) + O(‖Ẽ′(ε) − E(ε)‖). (57)

(Here we have used (53).)
Now, we view Ẽ′T (ε)Ẽ′(ε) as a perturbation of

ET (ε)E(ε) with ‖Ẽ′T (ε)Ẽ′(ε) − ET (ε)E(ε)‖ =
O(‖Ẽ′(ε) − E(ε)‖). By the Wielandt-Hoffman Theorem
(recorded as Theorem 7 in Appendix A.1), the perturbed
eigenvalue λ′

i (ε) is

λ′
i (ε) = λi(ε) + O(‖Ẽ′(ε) − E(ε)‖), i = 1,2,
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so that, using (56), (57) and (3), we obtain

v′
2(ε) = (Ẽ′(ε))T u′

2(ε)√
λ(ε) + O(‖Ẽ′(ε) − E(ε)‖)

= 1√
λ(ε)

(Ẽ′(ε))T u2(ε) + O(‖Ẽ′(ε) − E(ε)‖).

Therefore, we have

‖v′
2(ε) − v2(ε)‖ ≤ ‖Ẽ′(ε) − E(ε)‖ ‖u2(ε)‖√

λ(ε)

+ ‖O(‖Ẽ′(ε) − E(ε)‖)

which is of the same order as ‖Ẽ′(ε) − E(ε)‖.
Now, the vector u1(ε) (respectively v1(ε)), being orthog-

onal to both u2(ε) and u3(ε) (respectively v2(ε) and v3(ε)),
can be obtained by taking the unit vector along û2(ε)u3(ε)

(respectively v̂2(ε)v3(ε)).
Similarly, we have u′

1(ε) as the unit vector along

û′
2(ε)u

′
3(ε). The error

‖u′
1(ε) − u1(ε)‖ = ‖û′

2(ε)u
′
3(ε) − û2(ε)u3(ε)‖

can be shown to have the same order as ‖Ẽ′(ε)−E(ε)‖. The
same argument applies for the error

‖v′
1(ε) − v1(ε)‖.

Hence, we have proven the result. �

Finally, we discuss the error in the rotation matrix.

Proposition 10 Let the rotation matrices associated with
E(ε) and Ẽ′(ε) be denoted as R(ε) and R′(ε) respectively.
Then the Frobenius norm of the error in estimating the rota-
tion matrix is of the same order as ‖Ẽ′(ε) − E(ε)‖.

Proof The rotation matrices associated with E(ε) and Ẽ′(ε)
are R(ε) and R′(ε) respectively. Using the algorithm in
Hartley and Zisserman (2000), R(ε) and R′(ε) are given by

R(ε) = U(ε)W(V (ε))T ,
(58)

R′(ε) = U ′(ε)W(V ′(ε))T ,

where W may take the form

⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦ or

⎡
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎦ .

The correct form of W can be identified by enforcing the
positive depth constraint.

Assume that we have identified the true W and we call
it W0. Using (58), the difference between R(ε) and R′(ε) is
given by (ε is again suppressed temporarily)

‖R − R′‖ = ‖U ′W0V
′T − UW0V

T ‖
≤ ‖U ′W0V

′T − U ′W0V
T ‖

+ ‖U ′W0V
T − UW0V

T ‖
≤ ‖U ′‖ ‖W0‖ ‖V ′T − V T ‖

+ ‖U ′ − U‖ ‖W0‖ ‖V T ‖
which has the same order as ‖Ẽ′(ε) − E(ε)‖. �
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