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Abstract Traditionally, the camera pose recovery problem
has been formulated as one of estimating the optimal cam-
era pose given a set of point correspondences. This criti-
cally depends on the accuracy of the point correspondences
and would have problems in dealing with ambiguous fea-
tures such as edge contours and high visual clutter. Joint es-
timation of camera pose and correspondence attempts to im-
prove performance by explicitly acknowledging the chicken
and egg nature of the pose and correspondence problem.
However, such joint approaches for the two-view problem
are still few and even then, they face problems when scenes
contain largely edge cues with few corners, due to the fact
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that epipolar geometry only provides a “soft” point to line
constraint. Viewed from the perspective of point set regis-
tration, the point matching process can be regarded as the
registration of points while preserving their relative posi-
tions (i.e. preserving scene coherence). By demanding that
the point set should be transformed coherently across views,
this framework leverages on higher level perceptual infor-
mation such as the shape of the contour. While thus poten-
tially allowing registration of non-unique edge points, the
registration framework in its traditional form is subject to
substantial point localization error and is thus not suitable
for estimating camera pose. In this paper, we introduce an
algorithm which jointly estimates camera pose and corre-
spondence within a point set registration framework based
on motion coherence, with the camera pose helping to lo-
calize the edge registration, while the “ambiguous” edge
information helps to guide camera pose computation. The
algorithm can compute camera pose over large displace-
ments and by utilizing the non-unique edge points can re-
cover camera pose from what were previously regarded as
feature-impoverished SfM scenes. Our algorithm is also suf-
ficiently flexible to incorporate high dimensional feature de-
scriptors and works well on traditional SfM scenes with ad-
equate numbers of unique corners.

Keywords Structure from Motion · Registration

1 Introduction

The process of recovering 3-D structure from multiple im-
ages of the same scene is known in the vision community
as the Structure from Motion (SfM) problem. One central
issue that must be addressed in solving SfM is camera pose
recovery. Traditionally, the camera pose recovery problem
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has been formulated as one of estimating the optimal cam-
era pose given a set of point correspondences. Such ap-
proach includes, among many others, improved linear es-
timation (Hartley 1997; Nister 2004), bundle adjustment
(Triggs et al. 1999) as well as globally optimal estimators
(Enqvist and Kahl 2009; Kahl et al. 2008). However, despite
many advances in matching techniques (Bay et al. 2006;
Harris and Stephens 1988; Lowe 2004), obtaining corre-
spondences across two images remains a non-trivial prob-
lem and contains a strong underlying assumption that the
features are sufficiently distinct to enable unique point to
point correspondence. This limits camera pose recovery to
well textured scenes with abundant corner features. In this
paper, we seek to design an algorithm which can incorpo-
rate ambiguous features such as edge points into the camera
pose recovery process. This allows pose recovery on more
challenging SfM scenes where there are few corners; such
scenes are particularly common in man-made environment
(Wong and Cipolla 2001a, 2001b), one example of which is
illustrated in Fig. 1. Our algorithm is, however, not limited
to such scenes. Natural scenes where the visual features are
highly similar or whose extraction is non-repeatable across
large viewpoint change can also benefit from our approach.

While correspondence is needed to obtain camera pose,
knowledge of camera pose also facilitates point correspon-
dence. In recent years, a number of works (Dellaert et al.
2000; Georgel et al. 2009; Lehman et al. 2007; Makadia
et al. 2007; Ricardo et al. 2005) have proposed joint pose
and correspondence algorithms (JPC) which explicitly ac-
knowledge the chicken and egg nature of the pose and cor-
respondence problem. Rather than choosing a camera pose
in accordance with a pre-defined set of matches, these al-
gorithms choose camera pose on the basis of whether the
feature points can find a correspondence along the associ-
ated epipolar line. This permits the utilization of non-unique
features to contribute to camera pose computation. Note
that we should distinguish such JPC works from other joint
estimation works such as 2D image or 3D surface regis-
tration (Besl and MacKay 1992; Enqvist and Kahl 2008;

Fig. 1 This scene illustrates the difficulty in obtaining reliable
matches when there are few corners. The correspondences are the re-
sults of a SIFT matcher. There are insufficient corners available for
matching, with most of the few corners available suffering from am-
biguity. Pose recovery on these scenes would be substantially easier if
we could use the clear contour cues present

Li and Hartley 2007; Zhang 2004) using say, the Iterative
Closest Point (ICP) technique. These registration works in-
variably involve a global transformation that is parameter-
ized by a few variables (such as the affine parameters) and
provides a well-defined mapping from point to point. This
one-to-one mapping means the global parameters automati-
cally preserves the relative alignment of features and largely
accounts for the success in solving the registration. In con-
trast, in the JPC algorithms, the 3D camera pose does not
define a point to point correspondence but rather a point to
epipolar line relationship on the 2D image plane. This ad-
ditional ambiguity means a much greater degree of freedom
and associated problem complexity. More importantly for
our problem scenario where the features are highly ambigu-
ous, it also means that the epipolar constraint alone is insuf-
ficient to resolve the ambiguity, even with the JPC approach.
For example, if the feature points consisted of edge pixels
that form a long connected contour, an epipolar line in any
direction will eventually intersect with the contour. Thus, a
JPC algorithm will have difficulty choosing a correct camera
pose.

Despite such apparent ambiguity, we note that the mo-
tion-induced deformation of a 2D contours’ shape contains
clear perceptual cues as to the relative camera pose. One
possible reason that humans can infer the camera pose might
be that they perceive the contour points as a collective entity
in motion (i.e. the law of shared common fate), rather than
as independently moving individual points. This motivates
us to impose a coherent motion constraint on the feature
point displacements such that the displacements approxi-
mately preserve the overall shape of these points; in other
words, points close to one another should move coherently
(Yuille and Grzywacz 1988).

While general non-rigid registration algorithms such as
in Chui and Rangarajan (2000), Myronenko et al. (2007) are
generally able to preserve the overall shape of a point set,
they are not designed for point-to-point correspondence and
suffer from the aperture problem. As was shown in our pre-
liminary work (Lin et al. 2009), individual contour points are
poorly localized using the registration algorithm proposed in
Myronenko et al. (2007). The registration is not consistent
with any epipolar geometry and, hence, is not useful for ob-
taining camera pose.

In this paper, we propose jointly estimating the camera
pose and point correspondence while enforcing a coherent
motion constraint. Such joint estimation scheme is complex
because the goodness of any point match depends not only
on the camera pose and its local descriptor, but also on the
matching position allocated to all other image points. The
complexity is further increased because the smooth coher-
ent motion of a contour is essentially a continuous concept,
but we wish to work on discrete point sets containing pos-
sibly both corners and edge information. We adapt for this
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Fig. 2 The dotted region
represents the localization
uncertainty present in the
matching provided by the
registration algorithm. On the
right, the horizontal epipolar
line allows the localization of
the contour point

purpose the Coherent Point Drift framework of Myronenko
et al. (2007), which overlaid a continuous displacement field
over the sparse point set, and regularized the displacement
field to achieve motion coherence. The resultant scheme can
compute camera pose using “ambiguous” features such as
edge points (as well as the conventional corner points). It
also removes the localization uncertainty of the edge point
correspondence from using registration algorithm. This is il-
lustrated in Fig. 2. To our knowledge, this is the first attempt
to integrate motion coherence, correspondence over a sparse
point set and camera pose estimation into a common frame-
work. The result makes a big difference in the perceived dif-
ficulty of a SfM scene. Our experiment showed that our al-
gorithm can work well across large viewpoint changes, on
scenes which primarily consist of long edges and few cor-
ners, as well as natural scenes with high visual clutter.

1.1 Related Works

The core concept of using an iterative refinement of pose
and correspondence has a long and rich history in SfM. Ex-
amples include RANSAC-flavored algorithms (Fischler and
Bolles 1981; Goshen and Shimshoni 2008; Moisan and Sti-
val 2004), and the Joint Pose and Correspondence/Flow al-
gorithms (Makadia et al. 2007; Lehman et al. 2007; Del-
laert et al. 2000; Ricardo et al. 2005; Georgel et al. 2009;
Papadopoulo and Faugeras 1996; Sheikh et al. 2007; Val-
gaerts et al. 2008). Many of these are landmark works
which greatly improve SfM’s stability in previously difficult
scenes.

A large number of JPC works can be classified as work-
ing on discrete features like corners. The optimality of a
specific pose is evaluated on the basis of whether its as-
sociated epipolar constraint permits good correspondence.
A variety of methods are then proposed to minimize the
cost function, such as the Radon transforms in Makadia
et al. (2007), line matching in the Fourier space (Lehman
et al. 2007), or an EM-based search of the space (Dellaert
et al. 2000). The problem of searching the solution space
can also be simplified and made more robust (though at the

expense of generality) by introducing restrictions on antic-
ipated scene type or camera motion. As such, a number of
these works focus on the affine camera (Ricardo et al. 2005;
Lehman et al. 2007), while others like Georgel et al. (2009)
restricted the camera to motion on a plane, thus limiting po-
tential camera pose space to a 2-dimensional region. Also
related to the JPC scheme is Georgel et al. (2008), where
although pre-computed correspondence is used, the corre-
spondences’ photometric properties are used to help restrict
camera pose. Our work also focuses on using pre-detected
features and edges, however, unlike the previously discussed
works, we incorporate a smoothness term, thus permitting
the handling of ambiguous edge features and their associ-
ated aperture problem over large displacements.

Conceptually, our work is similar to flow based JPC al-
gorithms such as of Sheikh et al. (2007), Papadopoulo and
Faugeras (1996), Valgaerts et al. 2008. They overcome the
aperture problem by finding an optical flow that is consis-
tent with a camera motion. While this approach can be ex-
tended to wider baselines by applying a point set registra-
tion algorithm as initialization, such an algorithm would be
inelegant and is likely to suffer from large amount of noise
caused by approximating a large displacement by flow. Our
approach handles large displacement naturally. It also han-
dles the problem of disconnected point sets and isolated cor-
ners more naturally than that of optical flow formulation and
would be especially useful in incorporating recently pro-
posed edge descriptors (Meltzer and Soatto 2008). Lastly,
our approach can incorporate high-dimensional feature de-
scriptors which give greater robustness to photometric noise.

There are many other works that jointly estimate a global
transformation between two sets of points and the point cor-
respondence between them, but they differ from our work
in some important aspects. Some of these involve multi-
ple frames (Engels et al. 2006; Klein and Murray 2007;
Mouragnon et al. 2006), where an initial 3D map was built
from say, five-point stereo (Nister 2004). Subsequent camera
poses were tracked using local bundle adjustment over the N

most recent camera poses, and features are constantly added
to allow the 3D map to grow in the SLAM style. In other
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works, the 3D models are available a priori (e.g. from a CAD
model) (David et al. 2002; Klein and Drummond 2003;
Moreno-Noguer et al. 2008; Enqvist et al. 2009). In con-
trast, our joint estimation is carried out over two frames in
the absence of any 3D model or initial map. Other joint esti-
mation works (Besl and MacKay 1992; Jiang and Yu 2009;
Li and Hartley 2007; Rangarajan et al. 1997; Zhang 2004)
involve aligning two sets of points which are related by some
simple transformations defining a point to point mapping.
The one to one mapping automatically preserves the relative
alignment of the features within the point set without hav-
ing a need for an additional coherence constraint. Our work
differs in that the epipolar geometry does not enforce a one-
to-one mapping. Instead, the unknown depth of the feature
points means that the camera pose provides a point to epipo-
lar line constraint. It also means that an additional coherence
term is needed to enforce a greater coherence of shape, lead-
ing to a significantly more complex problem formulation.

For multiple views, it is also possible to make use of
structure from lines algorithms to overcome the aperture
problem (Bartoli and Sturm 2005; Faugeras and Mourrain
1995; Hartley and Zisserman 2000; Faugeras et al. 1987).
Interested readers might like to peruse other works deal-
ing with various aspects of curve/line reconstruction (Bartoli
and Sturm 2001; Chang 1997; Hou 2008; Szeliski and Weiss
1993; Wong and Cipolla 2001a, 2001b) as well as the merger
of intensity and edge information (Masson et al. 2003;
Pressigout and Marchand 2005; Vacchetti et al. 2004).

2 Formulation

In this paper, the problem addressed is the recovery of cam-
eras’ relative pose (i.e. orientation and position) given two
different views of a static scene. The formulation empha-
sizes generality, allowing easy adaptation for different in-
puts such as corners and edges. Edges are simply described
by point sets obtained by sampling the edge map of the im-
age.

2.1 Definitions

Each feature point takes the form of a D dimensional feature
vector,

[
x y r g b . . .

]T
1×D

,

with x and y being image coordinates, while the remain-
ing optional dimensions can incorporate other local descrip-
tors such as color, curvature, etc. We are given two point
sets. A base point set B0M×D = [b01, . . . , b0M ]T describing
M feature points in the base image and a target point set
T0N×D = [t01, . . . , t0N ]T describing N feature points in the

target image. b0i , t0i are D dimensional point vectors of the
form given above.

We define another matrix BM×D = [b1, . . . , bM ]T which
is the evolved version of B0. We seek to evolve B until it
is aligned to the target point set T0N×D , while still preserv-
ing the coherence of B0 (that is, the overall 2D geometric
relationships between points in B0 should be preserved as
much as possible). The evolution of B consists of chang-
ing only the image coordinates (first two entries) of the bi

vectors. The remaining entries are held constant to reflect
the brightness/feature constancy assumption. When attempt-
ing to align the evolving base set B to the target set T0, we
try to ensure that the resulting mapping of the image co-
ordinates of b0i to bi are consistent with that of a moving
camera viewing a static scene (i.e. abide by some epipolar
constraint).

As many equations only involve the first two dimensions
of b0i , bi , to simplify our notation, we define them as the
sub-vectors β0i , βi respectively. We further denote the first
two columns of B0 and B by B0 and B, which are M × 2
matrices formed by β0i and βi . As B0 and B uniquely de-
fine B0 and B respectively in our case, the matrices can often
be used interchangeably in probabilities and function decla-
rations. The constancy of much of the bi vector also means
that the algorithm’s run time is largely independent of the
size of D. Hence one can apply high dimensional descrip-
tors on the contour points with little additional cost.

2.2 Problem Formulation

We seek an aligned base set B and the associated motion of
an uncalibrated camera F (for calibrated cameras, one could
parameterize F using the rotation and translation parame-
ters without changing the formulation), which has maximum
likelihood given the original base and target point sets B0

and T0 respectively. Mathematically, this can be expressed
as maximizing P(B,F|B0,T0). Using Bayes’ rule, this can
be formulated as,

P(B,F|B0,T0) = P(T0,B|F,B0)P (F,B0)

P (B0,T0)

= P(T0,B|F,B0)P (F|B0)P (B0)

P (B0,T0)

It is clear that the likelihoods P(B0),P (B0,T0) are con-
stants with respect to the minimization variables F,B. Fur-
thermore, if we assume a uniform (un-informative) prior for
the motion, it makes sense to assign P(F|B0) to be a con-
stant.1 This allows us to simplify the probabilistic expres-

1An intuitive explanation for a uniform prior is that a camera can move
to any position in the 3D world and similarly have any calibration pa-
rameters.
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sion into

P(B,F|B0,T0) ∝ P(T0,B|F,B0)

= P(B|F,B0)P (T0|B,F,B0). (1)

Observe that by expressing our formulation in terms of a
warping from a base image to a target image, we treat the
information from the two views in an asymmetrical man-
ner. A symmetrical formulation may be able to better han-
dle spurious feature and validate whether the algorithm has
converged to an adequate minimum. However, the resultant
scheme will be complex and is beyond the scope of this pa-
per.

We first study the term P(B|F,B0). Given camera pose F
and assuming independent isotropic Gaussian noise of stan-
dard deviation σb , the evolving base point set B has an asso-
ciated probability given by the “improper” (the non-essential
scale is dropped for simplicity) distribution

P(B|F,B0) = P(B|F,B0) = e−λ�(B)
M∏

i=1

g(di, σb), (2)

where g(z, σ ) = e
− ‖z‖2

2σ2 is a Gaussian function. The first,
e−λ�(B) term is a coherence term which we discuss in
Sect. 2.3, while the second term contains the epipolar con-
straint, with di denoting distance from the epipolar line, with
the detailed discussion in Sect. 2.4.

2.3 Coherence Term

The first exponent in (2) contains the regularization term
�(B) with λ controlling the relative importance of this reg-
ularization term.

Recall that we desire to enforce smoothness over a dis-
crete point set whose points are sparsely distributed, a
rather difficult operation to perform. One option is to di-
rectly penalize any deviation in the relative position of
points considered as neighbors. Such an approach fits nat-
urally into the discrete point set problem and is amenable to
graph based minimization (Schellewald and Schnörr 2005;
Torresani et al. 2008). However, because only the first or-
der smoothness is imposed, it tends to penalize all devia-
tions in relative position, rather than penalizing discontinu-
ous changes in shape much more heavily than smooth de-
formation in shape caused by viewpoint changes. In other
words, such first-order smoothness does not supply enough
coherence of shape.

To overcome the aforementioned difficulties, we define
a fictitious continuous field over the sparse point set and
call it the displacement field or velocity field (in this paper,
the terms velocity and displacement are used loosely and do
not imply any small motion approximation for the former).
We utilize the motion coherence framework of Yuille and

Grzywacz (1988) in which higher order of smoothness is
enforced on the velocity field. The smoothness is imposed
mathematically by regularization in the Fourier domain of
the velocity field. Our scheme has a number of advantages:

1. By imposing higher-order smoothness, it permits smooth
changes in relative position that nevertheless maintains
coherence in shape, rather than penalizing all changes.
In fact, Yuille and Grzywacz (1988) explicitly showed
that for isolated features, a smoothing operator with only
first-order derivatives does not supply enough smooth-
ness for a well-posed solution.

2. The formulation of this fictitious velocity field acts as
a unifying principle for all types of motion information
(isolated features, contours, brightness constancy con-
straint). It allows us to integrate the information provided
by isolated features and contours, and yet does not re-
quire the declaration of a specific region of support when
deciding which points are neighbors that should influ-
ence each others’ motion.

3. While the interaction of the velocity field falls off with
distance and is thus local, we obtain a resultant interac-
tion between the isolated features that is nonlocal. This
is desirable on account of the Gestalt principle. On the
other hand, when there is local motion information that
suggests discontinuous change in the velocity field, the
rapidly falling off local interaction of the velocity field
will ensure that it will be the locally measured data that
are most respected, thus allowing discontinuous change
in the velocity field. Preservation of such discontinuous
changes is further aided by additional mechanisms intro-
duced in the regularization scheme (more of that, later).

We define v(.) as this 2D velocity field function. The ve-
locity field covers the entire image, and at image locations
β0i where feature points exist, it must be consistent with the
feature points’ motion. Mathematically, this means that they
obey the constraint

βi = v(β0i ) + β0i . (3)

�(B) is defined in the Fourier domain to regularize the
smoothness of the velocity field function v(.):

�(B) = min
v′(s)

(∫

�2

|v′(s)|2
g′(s) + κ ′(s)

ds

)
, (4)

where v′(s) is the Fourier transform of the velocity field v(.)

which satisfies (3) and g′(s) is the Fourier transform of a
Gaussian smoothing function. The Gaussian function has a
spatial standard deviation of γ which controls the amount
of coherence desired of the velocity field. Without the κ ′(s)
term, the above smoothness function follows the motion co-
herence form proposed in Yuille and Grzywacz (1988) and
has been used in general regularization theory (Girosi et al.
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1995); it was also subsequently adopted in the contour reg-
istration work of Myronenko et al. (2007). Such definition
allows us to impose a continuous coherent motion field over
the motion of a discrete point set specified by (3). Suppress-
ing the high frequency components of the velocity field en-
sures that adjacent contour points have similar motion ten-
dencies, thus preserving the overall 2D geometric relation-
ships between points in B0. However, the Gaussian function
drops off very sharply away from the mean, greatly penaliz-
ing the high frequency terms. In SfM where there may be oc-
clusion and sharp velocity changes, such a penalty function
can be overly restrictive. As such, we introduce the addi-
tional κ ′(s) term, which should have limited spatial support
and hence wide frequency support. In this paper, spatial sup-
port is taken to be less than the smallest separation between
any two points in B0. Given such limited spatial support,
the exact form of the function κ is immaterial. We simply
specify that κ(.) must have the property:

κ(z) =
{

k, z = 0

0, |z| > ε
(5)

where k is some pre-determined constant and ε denotes the
smallest separation between any two points in B0.

2.4 Epipolar Term

The second term in (2) contains the epipolar constraint de-
fined by camera pose, F. As mentioned earlier, we de-
sire that the image coordinate pairs β0i , βi , to be consis-
tent with F. Hence, di is the perpendicular distance of the
point βi from the epipolar line defined by point β0i and
pose F, with a cap at ζ . Observe that since β0i is a fixed
point of unknown depth, di is the geometric error (Hart-
ley and Zisserman 2000) associated with β0i , βi,F, with an
additional capping function. The capping function basically
expresses the fact that the Gaussian noise error model is only
valid for inlier points, while there exist a number of ran-
domly distributed outlier points which result in much thicker
tails than are commonly assumed by the Gaussian distribu-
tion.

Practically, such robust functions allow outliers to be re-
moved from consideration by paying a certain fixed penalty.
In this regards, its function is similar to statistical form of
RANSAC (Triggs et al. 1999). Formally, the capped geo-
metric distance can be written as

di = min(‖lTi (βi − ri)‖, ζ ) (6)

where ri is a two dimensional vector representing any point
on the epipolar line. li is a two dimensional unit vector per-
pendicular to the epipolar line defined by F and β0i . ζ is the
maximum deviation of a point from the epipolar line, before
it is considered an outlier. As our point sets often contain

huge numbers of outliers, we usually set ζ to a very low
value of 0.01 (the distance is defined in the normalized im-
age space after Hartley’s normalization (Hartley 1997)).

2.5 Registration Term and Overall Cost Function

We now consider P(T0|B,F,B0) in (1). Since T0 is inde-
pendent of the ancestors F and B0 given the immediate par-
ent B, this probability can be simplified to just the confi-
dence measure of T0 given B. Note that the T0 and B con-
tain a mix of descriptor and coordinate terms. We let each bi

be the D dimensional centroid of an equi-variant Gaussian
function with standard deviation σt (we assume that the data
has been pre-normalized, the normalization weights being
given in Sect. 3.3). The following forms the Gaussian mix-
ture probability of T0:

P(T0|B,F,B0) =
N∏

j=1

M∑

i=1

g(t0j − bi, σt ). (7)

This is the registration error term which includes both ge-
ometric and intensity information for the entire set of fea-
tures but does not force a strict one-to-one feature corre-
spondence. Initially, B is not necessarily close to T0, thus
making the above probability very small. However, using
the Expectation Maximization (EM) algorithm, we use these
initial, low probabilities to better align B with T0. Note that
we use the term EM loosely to describe the general mini-
mization style although the exact mechanism is slightly un-
conventional.

Substituting (2) and (7) into (1) and taking the negative
log of the resultant probability, our problem becomes one of
finding the F and B which maximize the probability in (1),
or equivalently, minimize A(B,F), where

A(B,F) = −
N∑

j=1

log
M∑

i=1

g(t0j −bi, σt )+
M∑

i=1

d2
i

2σ 2
b

+λ�(B).

(8)

The first term in A(B,F) measures how well the evolving
point set B is registered to the target point set T0. The sec-
ond term measures whether the evolving point set B adheres
to the epipolar constraint. Finally, the third term ensures that
the point set B evolves in a manner that approximately pre-
serves the coherence of B0.

3 Joint Estimation of Correspondence and Pose

We seek the B and F which optimize (8) (recall that B is
the first two columns of B). Observe that this is a constrained
minimization but as the li , ri terms in the geometric distance
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di have a non-linear relationship with the camera pose F and
image point β0i , as well as due to the presence of the regu-
larization term, it precludes other more straightforward min-
imization techniques. Using a method similar to expectation
maximization, we minimize A(B,F) by alternately updat-
ing B and F. The procedure is described in the following
subsections.

3.1 Updating Registration, B

In this subsection, we hold the camera pose Fold constant
while updating B. This results in a Bnew whose associated
evolving base point set Bnew is better aligned to the tar-
get point set T0, while preserving the point set’s coherence
and respecting the epipolar lines defined by the camera pose
Fold . The new registration Bnew can be computed from the
M × 2 linear equations in (13).

Here we provide the derivations. We define

φij (bi, t0j ) = g(t0j − bi, σt )

φij (B, t0j ) = φij (bi, t0j )∑
z φzj (bz, t0j )

.
(9)

For more robust correspondence with occlusion, we use
a robust version of φij (B, t0j ) in (9). This is given by

φij (B, t0j ) = φij (bi ,t0j )
∑

z φzj (bz,t0j )+2μπσ 2
t

. The second, 2μπσ 2
t de-

nominator term provides a thickening of the tail compared
to those of the Gaussian. The idea is similar to the robust
implementation of the regularization in (6).

Using Jensen’s inequality and observing that the maxi-
mum value of di is ζ , we can write the inequality

A(Bnew,Fold) − A(Bold,Fold)

≤ −
N∑

j=1

M∑

i=1

φij (Bold, t0j ) log
φij (b

new
i , t0j )

φij (b
old
i , t0j )

+
∑

i∈inlier

(dnew
i )2 − (dold

i )2

2σ 2
b

+ λ
(
�(Bnew) − �(Bold)

)

= �A(Bnew,Bold,Fold), (10)

where a point i is an inlier if dold
i < ζ .

Observing from (10) that �A(Bold,Bold,Fold) = 0, the
Bnew which minimizes �A(Bnew,Bold,Fold) will ensure that

A(Bnew,Fold) ≤ A(Bold,Fold)

since the worst A(Bnew,Fold) can do is to take on the value
of A(Bold,Fold).

Dropping all the terms in �A(Bnew,Bold,Fold) which are
independent of Bnew, we obtain a simplified cost function

Q = 1

2

N∑

j=1

M∑

i=1

φij (Bold, t0j )
‖t0j − bnew

i ‖2

σ 2
t

+
∑

i∈inlier

(dnew
i )2

2σ 2
b

+ λ�(Bnew). (11)

Using a proof similar to that in Myronenko et al. (2007),
we show in the Appendix that the regularization term �(B)

at the minima of A(B,F) is related to B and B0 by

�(B) = tr(
G−1
T ), (12)

where G is a M × M matrix with its (i, j) entry given by
G(i, j) = g(β0i − β0j , γ ) + kδij (δij being the Kronecker
delta), 
 = (B − B0)

T , and tr(.) represents the trace of a
matrix. Substituting the above expression of �(B) into Q
and taking partial differentiation of Q with respect to each
element of Bnew, we can construct the matrix ∂Q

∂Bnew , where

each entry is ∂Q
∂Bnew(i,j)

. The conditions needed for achieving
the minimum of Q can be obtained by setting all the entries
of this matrix to zero:

∂Q

∂Bnew
= [

c1 c2 . . . cM−1 cM

]

+ 2λ
newG−1 = 02×M
(13)

C + 2λ
newG−1 = 02×M

CG + 2λ
new = 02×M

Here, the column vector ci is computed as

ci =
N∑

j=1

φij (Bold, t0j )

(
βnew

i − t̂0j

σ 2
t

)

+
{

qi
old(βnew

i −rold
i )

σ 2
b

i ∈ inlier

02×1 otherwise,

where qi2×2 is a 2 × 2 matrix given by qi2×2 = (li)(l
T
i ), t̂0j

stands for the truncated vector of t0j with the latter’s first
two elements, and the definitions of li , ri are as given in (6).
Equation (13) produces M × 2 linear equations which can
be solved to obtain Bnew.

Observe that the minimization step in (13)—in particular,
the computation of ci—is in keeping with the spirit of the
outlier rejection scheme discussed in (6): “outliers” are no
longer over-penalized by the camera pose but they remain
incorporated into the overall registration framework.

3.2 Updating Camera Pose, F

We now update the camera pose on the basis of the new
correspondence set Bnew,B0. Replacing B in (8) with Bnew
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and holding it constant, we seek to minimize the cost func-
tion A(Bnew,Fnew) with respect to only Fnew. Only the mid-
dle term in A(B,F) depends on F. Using the definition of
the geometric distance di in (6), we minimize the simplified
cost function

M∑

i=1

min
(∥∥(lnew

i )T (βnew
i − rnew

i )
∥∥2

, ζ 2) (14)

with βnew
i being the image coordinates of the point set Bnew.

Observe that the problem of finding the Fnew which in
turn produces lnew

i and rnew
i that minimize the above cost

function can be formulated as a bundle adjustment problem
(Triggs et al. 1999) with camera pose F initialized to Fold .

After these two steps, Bold , Fold are replaced with Bnew,
Fnew and the algorithm returns to the first step in Sect. 3.1.
The process is iterated until convergence as the evolving
base set B registers itself to the target set T0.

3.3 Initialization and Iteration

Hartley normalization is performed on the image coordi-
nates of both point sets, thus pre-registering their centroids
and setting the image coordinates to have unit variance. In
this paper, SIFT (Lowe 2004) feature descriptors were also
attached to the points. These descriptors are normalized to
have magnitudes of σt of (7).

For initialization of the correspondence, we use SIFT
flow (Liu et al. 2008) to give initial values of Bnew. How-
ever, SIFT flow is not used to initialize the camera pose.
As can be seen from (8), setting li to zero for the first
EM iteration will cause the algorithm to ignore the epipo-
lar constraint during this first iteration. Once Bnew is cal-
culated, Fnew can be calculated from Bnew and B0, after
which Bold,Fold are replaced with Bnew,Fnew. Normal EM
resumes with li restored, and the process is iterated until
convergence.

For stability, we set σt , σb to artificially large values, then
steadily anneal them smaller. This corresponds to the in-
creased accuracy expected of the camera pose estimate and
the point correspondence. A summary of the algorithm is
given in Fig. 3.

4 System Implementation

In this section, we consider how one might build a complete
SfM system using our proposed joint estimation framework.
To do this, we must address issues such as point set acquisi-
tion, occlusion detection and initialization under real world
conditions.

The first step of any such system has to be the identifica-
tion of point sets in both images. As our algorithm is capa-
ble of utilizing non-unique features such as edges, we do not

Input: Point sets, B0, T0

Initialize σt , σb;
Initialize Bold as B0, li to zero vector;
while σt , σb above threshold do

while No convergence do
Use eqn (9) to evaluate φij (b

old
i , t0j ) from

Bold , Fold;
Use eqn (13) to determine Bnew from
φij (b

old
i , t0j );

Use bundle adjustment to obtain Fnew from
Bnew and B0;
Replace Bold,Fold with Bnew,Fnew;

end
Anneal σt = ασt , σb = ασb , where α = 0.97.

end

Fig. 3 Algorithm

Fig. 4 Left to right: Output of SIFT feature detector with and without
its cornerness function

wish to use a corner detector, which would reject all edge-
like features. Edge detectors would provide edge informa-
tion; however, they often detect many spurious edges (Vac-
chetti et al. 2004). In order to overcome these problems, we
detect features following the seminal SIFT algorithm (Lowe
2004). However, as we are not interested in uniqueness, we
disabled the cornerness term which otherwise would remove
feature points that are considered too edge-like. The result
appears to resemble that of a rather sparse but robust edge
detector as illustrated in Fig. 4 but will also provide corner
information when available. The descriptors that come with
the SIFT detector also contribute greatly to stability.

The next issue is one of initialization and occlusion de-
tection. At this stage, we do not require a well localized im-
age registration but rather a crude initialization and a gen-
eral idea of which sections of the image are occluded (fea-
ture points in the occluded regions need to be removed from
the point sets B0 and T0). For these purposes, we utilize the
dense SIFT flow algorithm to give us a crude mapping. Oc-
cluded regions are defined as regions where the SIFT flow is
inconsistent, i.e. point A in image 1 maps to point B in im-
age 2, however, point B does not map back to anywhere near
point A. At very large baselines, the occlusion detector may
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Fig. 5 Pose computation pipeline. Top to bottom: Input images, key–
point detection, occlusion detection (with occluded pixels set to zero)
and our joint correspondence and camera pose recovery algorithm

declare the entire image as occlusion. In such situations the
occlusion mask is discarded. (Note that a more sophisticated
form of occlusion detection can be obtained in Bellile et al.
2007.) The complete pipeline for camera pose recovery is
shown in Fig. 5.

5 Experiments and Evaluation

We run a series of real and simulated experiments to evalu-
ate our algorithm, with errors reported as deviations from
ground truth rotation and translation. All parameters re-
ported are with respect to the Hartley normalized coordi-
nates. All images are evaluated at a resolution of 480 × 640,
except the Strecha sequence in Fig. 9. which is evaluated at
288 × 432.

The rotational error R̃ refers to the rotation angle in de-
gree needed to align the reference frame of the computed
pose to that of the true pose. The translational error T̃ is the

angle in degree between the computed translation and the
ground truth translation. Although both the rotational and
translational errors are given in degrees, in general, for typ-
ical camera and scene configuration, a large rotational error
is more serious than a translational error of similar magni-
tude.

We test our system on a wide range of scene types and
baselines. These include many “non-traditional” SfM scenes
in which there are few/no distinct corners available for
matching, such as natural vegetation scenes where there is
a large amount of self occlusion and thus spurious corners,
architectural scenes where the available corners are very
repetitive as well as more traditional SfM scenes. This is
followed by a systematic evaluation of our algorithm’s han-
dling of increasing baseline. For most scenes, ground truth
camera pose is obtained by manually obtaining point cor-
respondences until the computed camera pose is stable. An
exception is made for the last two images in Fig. 7, where
the extremely textureless scenes were taken using linear rail
with known motion and the Leuven Hall sequence from
Christoph Strecha, which has known ground truth. A cali-
brated camera was used for all these tests.

To give the reader a general feel for the scenes’ difficulty,
our results are benchmarked against that of a traditional SfM
technique. Correspondences are obtained using SIFT (Lowe
2004). Camera pose is obtained using the five point algo-
rithm (Nister 2004) together with outlier removal by the
RANSAC implementation in (Kovesi 2011), the outliers re-
jection threshold being set at a Sampson distance of 0.001.
The RANSAC step is followed by a bundle adjustment us-
ing the implementation of Lourakis and Argyros (2009) to
minimize the reprojection error.

The same set of parameters are used throughout the en-
tire experiments. The two Gaussian parameters σb and σt

in (2) and (7) are given an initial value of σt = σb = 0.1.
They are decreased using the annealing parameter α = 0.97
over 150 levels. The occlusion handling parameter μ in (9)
is set to 0.5, while the epipolar outlier handling parameter
ζ in (6) is set to 0.01. λ, which controls the relative weight
given to the smoothness function, is set to 1. k, the degree
of tolerance for high frequency components in (5), was set
to 0.0001, while γ , the standard deviation of the Gaussian
smoothness function, was set to 1. The algorithm can handle
approximately 1500 SIFT features in 5 minutes.

5.1 Evaluation

We evaluate our algorithm on a variety of real and simu-
lated scenes. In the simulated scene in Fig. 6, we illustrate
our system’s performance over depth discontinuities and the
role of the discontinuity parameter k in (5). It shows that
our algorithm can handle depth discontinuities and the pose
computed is robust to the smoothness perturbations that the
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Fig. 6 The vertical bars have a different depth and color (color not
shown in results) from the horizontal bars. As the camera moves, the
depth discontinuity causes the vertical bars to slide over the horizon-
tal one. Setting the high frequency tolerance parameter k to 0.0001,
the system retains both the smoothness constraint while accommodat-
ing the discontinuities. While there are some correspondence errors,
our system is sufficiently robust to ensure that there is negligible error
in the overall pose estimation. Using the standard motion coherence,
where k = 0, the conflict between registration, smoothness and epipo-
lar geometry cannot be resolved. The resultant pose estimate suffers,
with a translational and rotation errors of 13.5◦ and 5◦ respectively

discontinuities induce. This is also illustrated in a number of
real images of trees in Fig. 8 and the Leuven hall sequence
in Fig. 9. For the outdoor scenes, the baseline is usually a
few meters. For the indoor scenes where objects are closer
to the camera, the baseline is typically half a meter.

In Fig. 7, we investigate real images of scenes with
sparsely distributed corners. Errors in the recovered cam-
era parameters are reported below the images. “Ours” in-
dicates the errors obtained by our algorithm, “SIFT flow”
those obtained by running the five point algorithm and bun-
dle adjustment on SIFT flow as correspondence input and fi-
nally, “Traditional” those obtained by running the five point
algorithm with RANSAC and bundle adjustment on SIFT
matches as correspondence input (traditional here refers to
the dependence on unique features such as corners). In some
scenes, SIFT matching returns too few matches for the tra-
ditional algorithm to give a pose estimate. In such circum-
stances, the pose error is given as Not Applicable (NA).
The first two test images are of buildings. As in many man-
made structures, lines and edges are the predominant cues
present. The problem of identifying matches needed for tra-
ditional SfM is compounded by the wide baseline. By relax-
ing the uniqueness requirement, our algorithm can utilize a
much greater amount of information compared to the tradi-
tional approach, leading to a stable camera pose recovery.
The third and fourth scenes consist of extremely sparsely
distributed sets of corners. Here the primary SfM cue is the
edge information. Our algorithm can utilize this edge infor-
mation to convert an information-impoverished scene with
very few point matches into an information-rich scene. This
allows it to circumvent the difficulties faced by the tradi-
tional SfM algorithms.

In Fig. 8, we further our investigation on scenes which
contain a large number of non-unique corners. This is true
for the floor image, where the grid pattern tiling results
in multiple corners with nearly identical feature descrip-
tor. It also occurs in natural vegetation scenes, where the
leaves form many repetitive features. For plants, the prob-
lem is made more severe because the extensive self occlu-
sion caused by the interlocking of leaves and branches fur-
ther degrades potential corner descriptors. Hence, despite
the large number of corners available (nearly 1000 for some
of the images), there are few SIFT matches on the foliage.
For the floor scene, jointly estimating the correspondence
and pose allows the handling of non-unique features and the
subsequent pose recovery. For the plant images, our algo-
rithm can ignore the noise in the degraded feature descrip-
tors and utilize the tree trunks and their outlines to obtain a
camera pose estimate. We also illustrate a failure case in the
last column of Fig. 8. With most of the feature descriptors
badly perturbed by self occlusion, the primary SfM cue lies
in the edge information which in this case is the extremal
contour of the plant. Unlike polyhedral objects, the extremal
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Fig. 7 We show a number of scenes where there are few corners
and correspondingly few matches. The correspondences obtained from
SIFT matching (Lowe 2004) are shown in the third row. The matches
that exist are also poorly distributed, with the majority of matches be-
ing clustered in a small region. The fourth row shows the SIFT points

used by our algorithm. By relaxing the need for unique correspon-
dence, we can use a much richer and better distributed point set, which
in turn permits a better recovery of the camera pose. The pose errors are
reported below the images (see the text for the meanings of R̃ and T̃ )

contour of the plant is view-dependent (i.e. the points on the
plants that participate in generating the contour are view-
dependent). This dependency effect is especially significant
when the displacement is quite large (at smaller displace-
ments our algorithm can handle this scene).

Finally, in Fig. 9 we evaluate our algorithm on tradi-
tional SfM scenes, choosing the Leuven Hall sequence from
Christoph Strecha. This scene has an adequate number of
unique features and shows that our algorithm also works
well when the primary cue lies in disconnected but discrim-
inative corner information. Although some scenes contain
significant depth discontinuities, our algorithm can produce
the same accuracy in the camera pose estimate when com-
pared to the results of the traditional SfM algorithms.

5.2 Performance with Increasing Baseline

In Fig. 10, we investigate our algorithm’s behavior with in-
creasing baseline. The sequences consist of a moving cam-
era fixated upon a scene and are arranged in increasing
baseline and thus level of difficulty. The color-coded depth

maps obtained by reconstructing the scene using PMVS (Fu-
rukawa and Ponce 2007) are also included. The first se-
quence is a traditional, well textured SfM scene. The base-
line is fairly large, with the camera rotating through 33.9
degrees while fixated on the table. Our algorithm gives a
stable estimate of camera pose for all images in that se-
quence, achieving comparable performance with the tradi-
tional approach, and slightly outperforming it for the case
of the widest baseline. The second sequence is of a mod-
erately difficult scene where our algorithm outperforms the
traditional approach by remaining stable over the entire se-
quence. This enhanced stability is the result of our algorithm
being able to utilize the edge features provided by the door
frame, while the traditional approach is limited to the tightly
clustered features on the posters, giving it a small effective
field of view. Finally, the last sequence shows a very dif-
ficult scene. There are very few feature matches (the point
matches from the second image pair are shown in Fig. 1)
and by the third image of the sequence, there are insufficient
matches for a traditional SfM algorithm to make a pose es-
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Fig. 8 Here we experiment on images where corners are plentiful
(some of the tree images have over 1000 features detected) but unique
matching remains challenging. This lack of uniqueness is due to the
strong repetitive pattern. For the plant images, the problem is com-
pounded by the interlocking leaves which induce self-occlusion and
corresponding feature degradation. For the floor image, our algorithm

can utilize the non-unique SIFT feature to recover camera pose, while
for the tree images, we can utilize the features lying along the trees
branches. The final image shows a failure case where the stem is hid-
den by the foliage and the problem is further compounded by a view-
dependent extremal contour

Fig. 9 Evaluating our algorithm on a traditional structure from motion sequence with known ground truth from Christoph Strecha. Camera pose
is computed between adjacent image pairs. Observe that our algorithm also performs well on well-textured structure from motion scenes

timate. Furthermore, the baseline is slightly larger than that
shown in the previous two scenes, with a maximum cam-
era rotation of 35.9 degrees about the object of interest. Al-
though the performance of our algorithm at larger baselines
degrades, an estimate of the camera pose and the depth can
still be recovered at very large baselines.

5.3 Unresolved Issues and Discussion

Throughout this paper, we have emphasized our algorithm’s
ability to utilize more information than traditional SfM al-
gorithms. However, we should caution that unless properly
weighted, more information is not necessarily better. This
is illustrated in Fig. 11, where an undulating cloth surface
means that the edge information is subject to a great deal of
“occlusion” noise, caused by the extremal contours varying

with viewpoint changes, inconsistent edge detection. De-
spite the large amount of occlusion, our algorithm could still
return a fairly good estimate; however, re-running our algo-
rithm using only corner information improves the results.
This indicates that it is the inclusion of “noisy” informa-
tion without proper weighting that degrades somewhat the
performance of our algorithm. We note that unique corner
matches can be better incorporated into our algorithm by
allowing these point matches to influence the σt values in
our Gaussian mixture. A principled fusion of these different
sources of match information, together with a well thought-
out data weighting scheme would be of great practical value
and remains to be properly addressed.

While our algorithm cannot attain the global minimum
and more research in that direction is necessary, we would
like to make some final remarks on the stability of our al-
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Fig. 10 Sequences in increasing order of difficulty. Camera pose is
with respect to the base image on the extreme left, with each scene’s
color coded depth map below it. Warm colors representing near depths
and cold colors far depths. Observe that in scenes with sparse sets of
corners, our algorithm has greater stability over large baselines, com-
pared to the traditional approach. In the second image sequence, our
algorithm also exhibits an advantage over the traditional SfM in han-
dling wider baselines. This is because our algorithm allows the uti-

lization of the entire door contour, rather than focusing on the tightly
clustered feature points available on the poster. In the third image se-
quence where point to point feature matching is extremely difficult (in
the fourth image of this sequence, there are insufficient matches to
make an estimate of the camera pose using traditional methods), our
algorithm still remains stable. Although the baseline is wider than the
previous two scenes, our algorithm deteriorates gracefully

gorithm against local minima, whether arising from the in-
herent ambiguity of the SfM problem, or caused by errors
in the initialization. Referring to Figs. 7, 8, and 10, it can
be seen that both “SIFT flow” and “Traditional” sometimes
returned a translation estimate that was almost 90 degrees

off the correct solution. This is caused by the well known
bias of the translation estimate towards the center of the
image (the true translation is lateral in these sequences),
which becomes more acute when the feature matches are
insufficient or of poor quality. Our algorithm suffers less
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Fig. 11 Computed point sets on two images of a textured cloth. This
image is easy for traditional SfM. However, our point set recovery faces
large amount of “self-occlusion” caused by the extremal contours on
the blanket varying under viewpoint changes. Under Ours*, we applied
our algorithm using only traditional SIFT corner features. The results
improve significantly, showing that when there is abundant high quality
corner information present, including more noisy edge information can
have a negative impact on performance. This scene also illustrates our
algorithm’s ability to give a reasonable estimate despite large amount
of noise and occlusion

from these well known local minima of SfM because we
can use ambiguous edge features in these circumstances.

While initialization with SIFT flow helps reduce the lo-
cal minima problem, it can be seen from our results that
we can converge to a correct solution even when the orig-
inal SIFT flow initialization is fairly erroneous. This is es-
pecially obvious in the sequences with varying baseline in
Fig. 10, where our algorithm degrades gracefully with in-
creasing displacement induced noise and worsening SIFT
flow initialization.

6 Conclusion

In this paper we have extended the point registration frame-
work to handle the two-frame structure from motion prob-
lem. Integrating the motion coherence constraint into the
joint camera pose and matching algorithm provides a princi-
pled means of incorporating feature points with non-unique
descriptors. This in turn allows us to recover camera pose
from previously difficult SfM scenes where edges are the
dominant cues and point features are unreliable.

While the results obtained so far are promising, there is
also much scope for further improvements in terms of im-
proving the initialization, incorporation of multiple views,
proper weighting of cues, as well as basic improvement to
the point registration mechanism.
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Appendix

This appendix deals with how the smoothness function
�(B) can be simplified into a more tractable form for the
minimization process. In particular, we want to show that at
the minima of A(B,F), �(B) is related to B and B0 by
�(B) = tr(
G−1
T ).

At the minima, the derivative of (8) with respect to the
velocity field expressed in the Fourier domain v′(.) must
be zero. Hence, utilizing the Fourier transform relation,
v(β0i ) = ∫

�2 v′(s)e2πk〈β0i ,s〉ds, we obtain the constraint

∂A(v′,F)

∂v′(z)
= 02×1, (15)

which can be expanded into

−
N∑

j=1

∑M
i=1(

1
σ 2

t

(βi − t̂0j ))g(t0j − bi, σt )
∫
�2

∂v′(s)
∂v′(z) e

2πk〈β0i ,s〉ds
∑M

i=1 g(t0j − bi, σt )

+
∑

i∈inlier

1

σ 2
b

li l
T
i (βi − ri)

∫

�2

∂v′(s)
∂v′(z)

e2πk〈β0i ,s〉ds + λ

∫

�2

∂

∂v′(z)
|v′(s)|2

g′(s) + κ ′(s)
ds
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= −
N∑

j=1

∑M
i=1(

1
σ 2

t

(βi − t̂0j ))g(t0j − bi, σt )e
2πk〈β0i ,z〉

∑M
i=1 g(t0j − bi, σt )

+
∑

i∈inlier

1

σ 2
b

li l
T
i (βi − ri)e

2πk〈β0i ,z〉 + 2λ
v′(−z)

g′(z) + κ ′(z)
,

= 02×1 (16)

where t̂0j denotes a two dimensional vector made of the
first two elements of t0j .

Simplifying (16), we obtain

−2λ

M∑

i=1

wie
2πk〈β0i ,z〉

+ 2λ
v′(−z)

g′(z) + κ ′(z)
= 0

where the two dimensional vectors wi act as placeholders
for the more complicated terms in (16).

Substituting z with −z into the preceding equation and
making some minor rearrangements, we have

v′(z) = (g′(−z) + κ ′(−z))

M∑

i=1

wie
−2πk〈β0i ,z〉, (17)

where the two dimensional vectors, wi , can be considered
as weights which parameterize the velocity field.

Using the inverse Fourier transform relation
∫

�2
wT

i wj (g
′(z) + κ ′(z))e+2πk〈β0j −β0i ,z〉dz

= wT
i wj (g(β0j − β0i , γ ) + κ(β0j − β0i )),

and (17), we can rewrite the regularization term of (8) as

�(B) =
∫

�2

(v′(z))T (v′(z))∗

g′(z) + κ ′(s)
dz

=
∫

�2

(g′(z) + κ ′(s))2 ∑M
i=1

∑M
j=1 wT

i wj e
+2πk〈β0j −β0i ,z〉

g′(z) + κ ′(s)
dz

=
M∑

i=1

M∑

j=1

∫

�2
wT

i wj (g
′(z) + κ ′(s))e+2πk〈β0j −β0i ,z〉dz

= tr(WTGW),

(18)

where ∗ represents the complex conjugate operation, tr(.)
represents the trace of a matrix, and

WM×2 = [w1, . . . ,wM ]T ,

G(i, j) = g(β0i − β0j , γ ) + κ(β0i − β0j ).

If, as in the main text, one takes κ(.) to be a function with
spatial support less than the smallest separation between two
feature points in B0, the above expression for G(i, j) can be
simplified into

G(i, j) =
{

g(β0i − β0j , γ ) + k, i = j

g(β0i − β0j , γ ), i �= j
(19)

where k is some pre-determined constant.

Lastly, taking the inverse Fourier transform of (17), we
obtain

v(z) = (g(z, γ ) + κ(z)) ∗
M∑

i=1

wiδ(z − β0i )

=
M∑

i=1

wi(g(z − β0i , γ ) + κ(z − β0i )),

where δ is the Dirac delta. Hence,

B − B0 = GW. (20)

Substituting (20) into (18), we see that the regularization
term �(B), has the simplified form used in the main text

�(B) = tr(WTGW) = tr((B−B0)
T G−1(B−B0)). (21)
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