
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2017

Auditing anti-malware tools by evolving Android malware and Auditing anti-malware tools by evolving Android malware and

dynamic loading technique dynamic loading technique

Yinxing XUE

Guozhu MENG

Yang LIU

Tian Huat TAN

Hongxu CHEN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
XUE, Yinxing; MENG, Guozhu; LIU, Yang; TAN, Tian Huat; CHEN, Hongxu; SUN, Jun; and ZHANG, Jie.
Auditing anti-malware tools by evolving Android malware and dynamic loading technique. (2017). IEEE
Transactions on Information Forensics and Security. 12, (7), 1529-1544.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4853

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4853&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yinxing XUE, Guozhu MENG, Yang LIU, Tian Huat TAN, Hongxu CHEN, Jun SUN, and Jie ZHANG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4853

https://ink.library.smu.edu.sg/sis_research/4853

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017 1529

Auditing Anti-Malware Tools by Evolving Android
Malware and Dynamic Loading Technique

Yinxing Xue, Guozhu Meng, Yang Liu, Tian Huat Tan, Hongxu Chen, Jun Sun, and Jie Zhang

Abstract— Although a previous paper shows that existing anti-
malware tools (AMTs) may have high detection rate, the report is
based on existing malware and thus it does not imply that AMTs
can effectively deal with future malware. It is desirable to have an
alternative way of auditing AMTs. In our previous paper, we use
malware samples from android malware collection GENOME to
summarize a malware meta-model for modularizing the common
attack behaviors and evasion techniques in reusable features.
We then combine different features with an evolutionary algo-
rithm, in which way we evolve malware for variants. Previous
results have shown that the existing AMTs only exhibit detec-
tion rate of 20%–30% for 10 000 evolved malware variants.
In this paper, based on the modularized attack features, we
apply the dynamic code generation and loading techniques to
produce malware, so that we can audit the AMTs at runtime.
We implement our approach, named MYSTIQUE-S, as a service-
oriented malware generation system. MYSTIQUE-S automatically
selects attack features under various user scenarios and delivers
the corresponding malicious payloads at runtime. Relying on
dynamic code binding (via service) and loading (via reflection)
techniques, MYSTIQUE-S enables dynamic execution of payloads
on user devices at runtime. Experimental results on real-world
devices show that existing AMTs are incapable of detecting most
of our generated malware. Last, we propose the enhancements
for existing AMTs.

Index Terms— Android feature model, defense capability,
malware generation, dynamic loading, linear programming.

I. INTRODUCTION

ACCORDING to a report from AV-TEST [1], the inde-
pendent IT-security lab, 26 off-the-shelf anti-malware

tools (AMTs) show high detection rate (DR) of above 90%
for existing Android malware. This test report proves that the
mainstream signature-based ATMs can effectively detect exist-
ing malware, provided with a comprehensive list of malware
signatures. However, generally, the development of AMTs usu-
ally lags behind the advance of new attack or malware variants.

Manuscript received August 24, 2016; revised December 20, 2016; accepted
January 16, 2017. Date of publication January 31, 2017; date of current version
April 13, 2017. This work was supported by the National Research Foun-
dation, Prime Ministers Office, Singapore under its National Cybersecurity
Research and Development Program under Award NRF2014NCRNCR001-30
and administered by the National Cybersecurity Research and Development
Directorate. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. H. T. Sencar.

Y. Xue, G. Meng, Y. Liu, H. Chen, and J. Zhang are with Nanyang
Technological University, Singapore 639798 (e-mail: tslxuey@ntu.edu.sg;
gzmeng@ntu.edu.sg; yangliu@ntu.edu.sg; zhangj@ntu.edu.sg; hchen017@
e.ntu.edu.sg).

T. H. Tan is with Acronis Software, Singapore 038988 (e-mail:
tianhuat.tan@acronis.com).

J. Sun is with the Singapore University of Technology and Design,
Singapore 487372 (e-mail: sunjun@sutd.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2661723

The consequence of the arms race in Android security leads
to the sophisticated malware, which may contain a variety
of attack behaviors and evasion techniques (e.g., multiple-
level obfuscation [2], [3], new transformation attacks [2], [3]
and collusion attacks [4], [5]). Besides, dynamically loaded
malware is becoming increasingly severe. Existing bench-
marks GENOME [6] and DREBIN [7] are not updated to the
aforementioned attack or evasion features.

Several existing studies relate to Android malware gen-
eration. DROIDCHAMELEON [2], [3] integrated three types
of transformation techniques to generate obfuscated malware,
which were used to audit the AMTs. ADAM [8] adopted
repackaging and obfuscation techniques to generate different
variants for a malware sample. Besides new evasion tech-
niques, mutation is also a common approach to generate new
malware. Aydogan and Sen [9] proposed to generate Android
malware with a genetic algorithm. The newly generated mal-
ware came from the crossover and mutation of malware in
GENOME [6], and they conducted experiments to show that
the new malware variants can easily bypass the detection
of AMTs. Cani et. al. [10] used µG P to automatically create
new malware undetectable for AMTs, and injected malicious
code into benignware to create a Trojan horse.

To sum up, the aforementioned studies mainly adopt new
evasion techniques or mutate malware samples for new pos-
sible variants. As shown in the study [10], using genetic pro-
gramming (GP) to mutate malware faces one critical problem:
deciding whether an evolved variant still retains the character-
istics of malware is a major issue of the evaluator. Behavioral
modification of existing malware via GP can neither guar-
antee the maliciousness of the generated one, nor produce
malware with the desirable attack behaviors in a systematic
way.

A desirable malware benchmark for AMT auditing should
label each sample with the contained fine-grained attack
features. We refer to attack feature (AF) as a step or a
component (i.e., triggers, permissions or concrete behaviors) of
a certain attack, which links to the configuration or implemen-
tation of the functional requirements (intention) of malware.
For example, phishing malware usually contains three AFs: a
faked GUI that tricks users to input the credentials, a source
component to steal the credentials, and a sink component to
leak the credential. Neither GENOME [6] nor DREBIN [7]
explicitly labels the AFs inside each malware sample, not
to mention allowing security analysts to derive new malware
variants for auditing AMTs.

In our previous paper [11], Android malware generation
is treated as a software product line engineering (SPLE)

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1530 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

problem [12], considering new malware variants as product
variants in software product line (SPL). We separate each com-
mon attack behavior into a basic reusable feature via domain
analysis [13] — to modularize the AFs of malware (§ III).
In this way, we develop a meta-model (i.e., feature model in
SPL, see § II-A and Fig. 2) of Android malware by modular-
izing AFs into building blocks. With SPL for malware genera-
tion, having a large set of valid and well-labeled malware is not
challenging. Our previous study shows that existing AMTs are
susceptible to new variants of old GENOME malware [11]. The
AMTs can detect 90% of GENOME malware on average. After
we apply multi-objective evolutionary algorithm (MOEA) to
combine different attack and evasion features that are modu-
larized from GENOME, the DR sharply drops to 20%-40% in
10 generations of evolution. Finally, for malware variants after
100 generations, existing AMTs only detect 10%-20% of them
on average [11].

However, our tool MYSTIQUE used in previous study
does not produce the attack of dynamically loaded mal-
ware [11]. Considering the severity of this attack [14], we
want to audit whether the AMTs can detect the evolved
malware that is assembled and loaded dynamically. Hence,
in this study, we extend MYSTIQUE to be service-oriented
and name it as MYSTIQUE-S. It adopts dynamic software
product line (DSPL) techniques [15] and delivers the generated
malware at runtime from the remote server to the client for
evading detection.

Technically, MYSTIQUE-S consists of three major steps.
First, its client app collects some hardware and software
information on device, which is achieved by a simple scan-
ning without root privilege. Then the information is sent to
the server side of MYSTIQUE-S (§ IV). Next, the server
automatically selects a set of AFs that satisfy the constraints
on the user device, and generates the malicious code on
the fly (§ V). For example, the details of the user scenario
(e.g., the model of device, OS version and installed AMTs)
are analyzed and converted to constraints. To guide the
AF selection, we propose three goals: aggressiveness, latency,
and detectability (§ V-B). Each AF has a score for latency and
a score for detectability. Linear programming (LP) is applied
to find the AFs that satisfy the constraints and optimize the
three goals. Lastly, the malicious code is delivered to the
client device via a web service, and executed via the reflection
mechanism (§ VI). We adopt the reflection mechanism offered
by DEXCLASSLOADER [14], which can load dex files and
execute the class files inside.

To assemble the code of different features, we introduce
the behavior description language (BDL) (§ VI-A and VI-B)
to serve as the bridge between the high level AFs and the low
level implementation code. Owing to the BDL, we validate
and generate malicious code in a model-driven way. Com-
pared with previous studies on auditing AMTs using different
evasion or obfuscation techniques [2], [3], [8] or at certain
time point [17], our studies aims too investigate the impact
of various AFs and evasion features (e.g., dynamic loading)
separately.

Beyond our previous work [11], we also make the following
novel contributions in this study:

• Previous study focuses on the modelling and code gen-
eration for the attack of privacy leakage [11]. Now, we
complement the meta-model with more attacks such as
financial charge, phishing and extortion. We modularize
the AFs of these attacks, and generate variants accord-
ingly.

• MYSTIQUE-S adopts a service-oriented architecture to
collect the client-end data and deliver the malware at run-
time. Meanwhile, to support the model-driven malicious
code generation, we propose the BDL to glue the high
level features with their low level implementation code.

• Our work in [11] relies on MOEA, which is computa-
tionally costly. In this work, we adopt linear program-
ming (LP) to select suitable AFs for optimizing the
objectives of malware inventor, since LP can rapidly solve
the constraints of feature model on the fly and avoid the
evolution time of MOEA.

• Instead of using static detection or dynamic detection via
virtual machine in the report [11], we evaluate our tool on
16 real Android devices. We observe that in most cases,
the malicious code generated by MYSTIQUE-S are not
detected. According to our findings, we propose some
enhancements for the AMTs.

II. BACKGROUND

A. Dynamic Software Product Line

SPLE is a software development paradigm that has received
much attention in the last decade [13]. SPLE usually adopts the
feature-oriented domain analysis (FODA) to identify the code-
base and variant features [18]. The codebase refers to the same
implementation shared by all product variants in a software
family (a set of similar products) [12]. Variant features, which
are different extra functions, are used to satisfy the needs
of various customers. Typically, SPLE includes two stages:
domain engineering that builds the architecture consisting of
the codebase and variant features, and application engineering
that derives new products by applying variant features onto the
codebase. Generally, automation of product derivation is the
main advantage of SPLE.

1) Feature Model (FM): It is a tree-like feature hierar-
chy that captures the structural and semantic relationships
between features in SPLE [18]. Given a feature f and its sub-
features { f ′1, . . . , f ′n}, there exist four types of tree-structure
constraints (TCs) (see Fig. 2 for example). We list them and
show their logical formula [19]:
• f ′i is a mandatory sub-feature — f ′i ⇔ f ,
• f ′i is an optional sub-feature — f ′i ⇒ f ,
• { f ′1, . . . , f ′n} is an or sub-feature group — f ′1∨ f ′2∨ . . .∨

f ′n ⇔ f ,
• { f ′1, . . . , f ′n} is an alternative sub-feature group — (f ′1∨

f ′2 ∨ . . .∨ f ′n ⇔ f) ∧ ∧

1≤i< j≤n
(¬(f ′i ∧ f ′j)).

Further, given two features f1 and f2, three types of
cross-tree constraints (CTCs) exist, i.e., requires, excludes and
iff [19]:
• f1 requires f2 — f1 ⇒ f2,
• f1 excludes f2 — ¬(f1 ∧ f2),
• f1 iff f2 — f1 ⇔ f2.

XUE et al.: AUDITING AMTs BY EVOLVING ANDROID MALWARE AND DYNAMIC LOADING TECHNIQUE 1531

In traditional SPLs, variant features are bound to different
products statically at compilation time (before the execution
of the system). In contrast, adaptive systems support feature
binding at runtime and are called dynamic SPLs (DSPLs) [15].
A recent progress in SPLE is the implementation of DSPL via
the rapidly emerging paradigm of service-orientation (SO).
By virtue of the dynamic composition of service, variants
features can be loaded into the system dynamically according
to user preferences and environmental scenarios. In SPLE,
a feature model (e.g., that of Linux kernel) may contain
thousands of features. It is a non-trivial problem to select
an optimal set of features which satisfies the constraints
(i.e., TCs and CTCs) among features. Selecting an optimal
feature set represents a searching problem [20]. Such problem
is normally addressed in SPLE community using techniques
such as MOEAs.

B. Android Attacks

We have witnessed the rapid development and evolution of
Android malware since the first Trojan malware was discov-
ered in 2010 [21], [22]. Here, we present four types of attacks
which are prevailing in the last two years. Based on [23],
these four types of attacks constitute 60% of Android attacks.

1) Privacy Leakage: Android malware may steal sensitive
information on Android devices, such as SMS messages,
contact information, geography locations and call logs [24].
The stolen information can be used to track users, make profits,
obtain Mobile Transaction Authentication Number (mTAN)
and so on. Privacy leakage constitutes a large portion of
Android malware (about 78.7% in GENOME).

2) Financial Charge: Premium Rate Services (PRS)
are value-added services provided by a telecom provider.
PRS include subscriptions to information, services of gaming,
charity donations and so on, which charge users beyond the
standard network charges. Android malware can stealthily text
or call a premium number, and cause extra fees [25].

3) Phishing: This attack uses social engineering techniques
and disguises malware to be a normal app, which tricks
users into exposing their credentials. Phishing is becoming
progressively severe, after it targets the financial apps [26].
SmiShing, a kind of phishing attacks, spreads fake SMS
to users and tricks them into opening the crafted phishing
web page and entering their credentials. In addition, malware
can also mimic GUIs of target apps (e.g., banking apps and
social apps). The credentials entered by users in the fake app
will be sent to the attacker.

4) Extortion: Since ransomware Simplocker was firstly
discovered in 2014 [27], plenty of variants have swarmed
into mobile devices. Extortion attack in ransomware basically
contains two steps — encrypting the files in the accessible
storage via cipher; deleting the original files. After receiving
the ransom from the user, the attacker may (or may not) release
the encryption key for the victims to decrypt the files.

It is observed that malware variants often share similar code,
especially for variants of the same attack. As reported by
Crussell et al. [28], software clones are common. Recently,
Chen et al. [29] detect malware based on the clone detec-
tion techniques. Thus, code clone analysis helps to identify

Fig. 1. Results of AMTs auditing by using MYSTIQUE [11].

common malicious code among variants [30]. In [11], rely-
ing on code clone analysis on malware variants of privacy
leakage [30], we adopt FODA to modularize attack behaviors
(and their code) into AFs. In this work, we conduct the same
analysis for malware of the three other attacks.

C. Summary of Previous Study

In [11], we apply MOEA to mimic malware evolution. In
particular, two genetic operators are applied on the current
generation to produce next malware generation: gene crossover
(i.e., exchanging features of two samples) and mutations (i.e.,
mutating the features of malware). To retain evasiveness and
aggressiveness of malware in evolution, we define multi-
ple evolution objectives (a.k.a. fitness functions) for select-
ing malware variants to survive into the next generation:
1) maximizing the number of attack behaviors, 2) minimizing
evasion techniques needed and 3) minimizing the detection
rate.

In Fig. 1, we summarize the results by two bars of each
of four types of AMTs. The first one is the DR for evolved
malware without evasion features; the second one “(E)” is
the DR for malware with evasion. “DA” denotes for dynamic
based AMTs; “SA” for static based AMTs; “ML” for machine
learning based AMTs; “AV” for the popular Anti-virus tools.
After malware evolves from 10-th to 100-th generation, the
DR of the audited AMTs sharply dropped. We attribute
the low DR for evolved malware to the modularity offered
by MYSTIQUE.

In this study, we extend our work in [11] to sup-
port more types of attacks and the dynamic loading tech-
nique for advanced evasion [14]. To improve the efficiency,
in MYSTIQUE-S, we adopt LP (not MOEA) to select AFs for
malware generation.

III. FEATURE MODEL OF ANDROID MALWARE

To create new malware variants by reusing the attacks
in existing malware, we first analyze the malicious code
in malware benchmark GENOME [6] and recent malware
samples. Then, we represent AFs as a feature model (FM) via
FODA aided by the domain knowledge of security experts.
In general, we categorize the AFs into three types, namely
trigger, permission and behavior features in § III-A.

For the four types of Android attacks introduced in § II-B,
the corresponding FM is partially shown in Fig. 2 under
the behavior node. Currently, we identify and modularize

1532 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

Fig. 2. The partial feature model of Android malware.

TABLE I

PARTS OF ATTACK FEATURES IN COVERED ATTACKS

93 AFs (§ III-A), and extract the CTCs among these fea-
tures. For the completeness of the classification, owing to the
extendibility of the FM, we can always add new AFs into the
FM (e.g., privilege escalation [31]). Note that the FM is
a conceptual modeling of features, and we also keep the
traceability between a feature and its modularized code in our
built SPL (§ III-C).

A. Attack Features

We identify different AFs according to the context, permis-
sion and functionality relevant to the attack, as shown below.

Trigger features refer to the configurations that customize
the entry points for malicious attack behaviors. Triggers can
be GUI-based or non GUI-based [32]. GUI-based triggers
can be easily identified by end users or AMTs, since it
requires interaction with visible GUI components [33]. We
only consider four types of non GUI-based triggers that have
no interactions with users: main, broadcast, listener, and
observer, which are identified in GENOME [11].

Permission features refer to the permission required for
the malware to conduct malicious behaviors [34]. Many
malicious behaviors in malware require certain permis-
sions to achieve attack goals. For example, the permission
android.permission.READ_PHONE_STATE is required to
obtain the IMEI code of the device via invoking the method
getDeviceId.

Behavior features refer to the malicious behaviors con-
ducted by the attack, to which trigger and permission features
are all assistant [35]. Behavior features are the core AFs that
mostly link with the modularized malicious code. For the
four types of attacks shown in § II-B, there are four types

of behavior features, respectively. For each type of behavior
features, several steps need to be carried out for the success
of the attack. For each attack step, it may have several sub-
features that represent different implementations. For instance,
in privacy leakage, two steps are carried out: obtaining the
privacy (i.e., feature source) and leaking the privacy (i.e.,
feature sink). For feature source, there are multiple sub-
features (SMS information, device information, etc.).

Note that the partial FM in Fig. 2 mainly illustrates the
high-level organization of these features. Each feature at
the bottom level in Fig. 2 may have several sub-features,
e.g., feature Source has 11 variant sub-features in an Or
relationship. Each variant feature in Table I may have several
sub-features of different implementations (modularized code)
in an Alternative relationship. Interested readers can refer to
our tool website [36] for the complete FM, the full list of
CTCs among the features.

B. Model Extraction

We design the feature model of Android malware based on
our manual analysis on the benchmark GENOME, and perform
a lightweight static analysis on malware to extract specific
features and associated implementation instances.

1) Model Architecture: Inspired by [6], we represent
Android malware with three necessary elements as discussed
in the previous section. From a high level of perspective, an
attack needs to satisfy certain external conditions first, and then
be waken up by triggers to execute specific malicious behav-
iors. The types of triggers are concluded from many previous
works [6], [37], [38], and all of them are defined either in the
manifest file or in the implementation. For simplicity, we only
take into account permissions as configurable conditions that
guarantee the execution of malicious behaviors. The types of
malicious behaviors comply with the mainstream classification
of attacks in the mobile world [6], [23], [26].

2) Feature Extraction: As GENOME is well-known and
studied for the malicious code inside the malware, manual
analysis of GENOME malware is feasible and effective. Still,
some manual effort is needed to derive 16 common attack
features (93 variant features at the implementation level).
However, with the manually identified malware features and
the aid of static analysis tools, we can scale this by the semi-
automatic process.1 We perform a lightweight static analysis
on Android malware to extract the concrete implementations
(variant features) for each common feature. The three kinds
of sub-features are extracted as follows:
• permission features, which can be extracted directly from

the manifest file. Additionally, we remove out self-defined
permissions and focus on dangerous permissions2;

• trigger features can be inferred either from the manifest
file or the implementation. For example, a broadcast
receiver can be defined as “〈receiver〉” in the manifest

1In the tool website, details are provided on how attack features are
derived manually or semi-automatically. To see an example — how
attack features are grouped, variant features are introduced, and how
composability is handled — interested readers can refer to this link:
https://sites.google.com/site/malwareasaservice/home/featuremodel

2https://developer.android.com/guide/topics/security/permissions.html#
normal-dangerous

XUE et al.: AUDITING AMTs BY EVOLVING ANDROID MALWARE AND DYNAMIC LOADING TECHNIQUE 1533

file, or dynamically registered by registerReceiver
in the code. Similarly, other triggers can be extracted
automatically from malware;

• behavior features, that are extracted from the code. Based
on [34] and acquired permissions in malware, we locate
the invocation of sensitive APIs, and subsequently iden-
tify the usage patterns of these APIs as feature instances.
Since dynamic code loading has been already widely
used in malware, some invocations of sensitive APIs may
bypass our scanning. Therefore, we specifically investi-
gate the reflection employed in the code and interpret the
real invocations.

Note that we modularize the common attack features that
explicitly own malicious code (in particular, malicious code
in Java), and the code of the covered attacks in this paper.
For malware GingerMaster that employs native code to gain
the root privilege, of which the attack is not considered in the
paper, we do not elicit malicious functionality from them.

The current FM is built according to the availability of an
attack and its possible implementation instances in GENOME.
For example, there are many implementation instances of
AF of privacy leakage. There are many sources of sensitive
information such as data that can be obtained by invoking
Android APIs, data that is stored in Content Provider, and data
that is sent by system broadcast of incoming SMS. Similarly,
there are many implementation instances for sink features
and ways to link the source and the sink. Therefore, we
have constructed most attacks of privacy leakage. The attack
of financial charge in GENOME basically sends a specific
message to a premium rate number. The primary difference
is the parameters of either the sent message or the premium
rate number, and hence the implementations are quite similar.
Thus, we only construct one sample to represent the attack
of financial charge. The situation is similar to the attack of
phishing. For the attack of extortion, it actually does not
exist in GENOME. Considering its emergency and increasing
popularity, we construct one sample for extortion. Since there
are few samples and variants for analysis nowadays, it is also
parameterized for more variants like financial charge. Never-
theless, owing to the extendibility of the FM and Mystique-S,
new variant features (e.g., extortion) can be added when more
implementation instances of the attack are available.

C. Feature Modularization

The code of AFs is modularized into code units of various
granularity, ranging from several packages to a single method.
The phishing AF usually contains the largest number of lines
of code (LOC), as it has the faked GUI or functionalities to
deceive the users. Hence, the corresponding code of phishing
attack can be close to the genuine app, with the LOC up to
a reasonably large number. In contrast, the implementation
of financial charge (or adware) can be just several lines of
code and easily modularized into a method. For example,
in Fig. 3, we show the modularized code for sending the
token by SMS (D1). The token is intercepted by registering a
BroadcastReceiver and listening to the incoming SMS mes-
sages and then sent out in an SMS message to a specific
number via SmsManager.

Fig. 3. The modularized code of sending token via SMS (D1).

IV. RUNNING EXAMPLE AND SYSTEM OVERVIEW

A. A Motivating Example

Fig. 4 depicts an exemplar of malware service that
dynamically loads malicious code from a remote server.3

The client app disguises itself as a benign app and tricks
users into entering credentials and then intercepts the SMS
with two-factor token. The basic steps are executed as
follows:

1. After being installed on device, the client app starts a
daemon service to communicate with the service provider.
It collects and sends the user information (e.g., hardware
and software information of the device) to the server, and
receives the malicious payloads from the server.

2. After the malicious code is delivered to the client, the
daemon service starts a fake bank activity from the
component A inside (Step 1 in Fig. 4). In the life-cycle of
the phishing activity, two code snippets are instrumented
into the component B and C, respectively.

3. The code in B is to change the view of activity to mimic
the specific bank app, and the code in C is to get the
entered credentials and send them to the server (Step 2).

4. Last, the daemon service registers a broadcast receiver
to listen to incoming SMS messages (Step 3). The
SMS message that contains the two-factor token
(the key for two-factor authentication) is leaked to the
attacker (Step 4).

As shown in Fig. 4, for the same attack step, there may
exist various implementations, which are also regarded as
candidate AFs. For example, for the phishing attack in Fig. 4,
there exist three AF candidates (i.e., different views) of
phishing attack (B1, B2, B3). For feature LeakCredential in
component C, there are two AF candidates: sending credentials
by Apache connection (C1) and sending them by SMS (C2).
For the feature LeakToken in component D, there are two
candidates: sending token via SMS (D1) and sending token
via socket (D2). For simplicity, we only show two or three
AF candidates for each attack step, and omit the finer-grained
AFs of the source and sink operations at step 2 and 3.

For this example, three TCs and five CTCs need to be
satisfied. For example, T C2 means if LeakCredential is
selected, at least one of C1 and C2 must be selected, and

3The original version of the example malware is found in March 2016 [39],
but it is neither service-oriented nor dynamically loaded.

1534 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

Fig. 4. A running example of MYSTIQUE-S.

vice versa. CT C3 means the selection of LeakToken requires
the selection of permission feature P3.

T C1 : B1∨ B2 ∨ B3⇔ Phish — or type
T C2 : C1 ∨ C2 ⇔ LeakCredential — or type
T C3 : D1 ∨ D2⇔ LeakT oken — or type
CT C1 : C1⇒ P1 (android.permission.I NT E RN ET) — require type
CT C2 : C2 ⇒ P2 (android.permission.S E N D_S M S) — require type
CT C3 : LeakT oken ⇒ P3 (android.permission.REC E I V E_S M S) — require type
CT C4 : D1⇒ P2 (android.permission.S E N D_S M S) — require type
CT C5 : D2⇒ P1 (android.permission.I NT E RN ET) — require type

The suitable AFs need to be automatically selected for the
sake of a better success ratio of attack, given different user
scenarios (e.g., model of device, OS version and installed
AMTs). For example, if the device installs NORTON, AFs {B2,
C1, D2, P1, P3} should not be selected. The reason is that
NORTON reports suspicious apps based on the permission P2.
If no AMT is installed, AFs (B2, C2, D1, P2, P3) are selected
as P2 can be selected for short latency due to the immediate
action of sending SMS messages.

B. System Architecture

MYSTIQUE-S is a framework of automated malware genera-
tion, which takes as input the client-end contextual information
and outputs the user-tailored malicious code. Based on the
Android malware FM (§ III), MYSTIQUE-S automatically
selects AFs according to the user scenario via linear program-
ming (LP in § V-C). Then, the selected AFs guide the model-
driven generation of malicious code (§ VI). Last, the payloads
are delivered to the user device and loaded dynamically (§ VI).
Here, payloads refer to the generated malicious code and the
corresponding instructions (i.e., the command for the client
app to load the code of AFs in sequence).

Fig. 5 depicts the architecture of our tool, which contains
three parts as we discuss below:
• Client app. Its task is to (periodically) collect the con-

textual information on the user device, receive malicious
code and instructions from the server, and launch the
attack by using the dynamic code loading mechanism
(§ VI-C). As shown in Fig. 5, three critical modules
are included in the client app: 1) daemon service inter-
acts with the service provider and starts an attack once

receiving the malicious code and instructions. 2) dynamic
instrumentation deploys the malicious code in different
components (e.g., Intent) of the client app, interprets
the received instructions and acts accordingly. 3) exe-
cution of malicious behavior executes the instructions.
Finally, the execution results are fed back to the daemon
service.

• Service provider. The service provider listens to the
requests from the client app on installed devices. After
receiving the user device information, it selects AFs
and generates the corresponding payloads. Four modules
are involved in the process: 1) request listener receives
attack requests and initializes the automatic generation of
payloads. 2) LP-based feature selection selects an optimal
combination of AFs from the Android malware FM.
3) instruction generation takes input as the selected AFs
and generates the instructions by considering the context
in the client app. One instruction, in the format of
BDL that specifies the workflow of malware (§ VI-A),
contains the execution context and the operation to exe-
cute. 4) code generation generates the malicious code by
assembling the code of AFs according to the BDL. After
the process, request listener sends the generated payloads
to the daemon service on user device.

• Communication infrastructure. It provides a connec-
tionless protocol that enables the asynchronous commu-
nication between the client app and the server. As an
attack needs multi-round interactions between the client
app and the server, the connection is not retained during
the lifecycle of an attack for the sake of hiding the attack.
Instead, the service provider will track the state where
the attack proceeds. In addition, the exchange message
follows the standard JSON-WSP [40] for a bidirectional
communication (see § VI-C).

V. USER-TAILORED ATTACK FEATURE SELECTION

In this section, we explain how the user-tailored AFs are
automatically selected by linear programming (LP). First,
we show how to convert TCs and CTCs among features to
inequalities for LP based constraint solving (§ V-A). Then we
define the malware generation goals (§ V-B). Last, we resolve

XUE et al.: AUDITING AMTs BY EVOLVING ANDROID MALWARE AND DYNAMIC LOADING TECHNIQUE 1535

Fig. 5. The overview of system.

TABLE II

BINARY INEQUALITIES FOR DIFFERENT TYPES OF CONSTRAINTS

the AF selection problem via LP (§ V-C), i.e., satisfying the
inequalities and optimizing the objective functions.

A. Converting Features Constraints to Binary Inequalities

To select features and generate the products that satisfy the
TCs and CTCs (defined in § II-A) inside the FM, Broek [41]
adopted integer programming (IP) for the feature selection
problem (i.e., initialization of valid product in [41]). Broek
converted the TCs and CTCs into the integer inequalities, and
then apply IP to resolve these inequalities. In this paper, we
further convert the TCs and CTCs into the inequalities of
binary variables. Given a feature f , the binary value repre-
sented by the selection of f (denoted as | f |) is 1 if selected,
and otherwise | f | is 0. According to the integer inequalities
deduced in [41], we can further deduce the corresponding
binary inequalities for the TCs and CTCs. In Table II, we
list the binary inequalities for different types of constraints.

B. Goals of Attack Feature Selection

Apart from the constraints to satisfy, we also need to define
the design goals for malware generation. We propose three
objectives to guide the AF selection: aggressiveness, latency,
and detectability. As the results of AF selection, malware is
getting more aggressive with shorter latency, but being less
detectable. Given a solution
x , we represent it as a bit vector
of all AFs, where { f1 . . . fn} denotes the set of n AFs. The
objective functions are defined as follows.

Obj1. Aggressiveness: to make the malware more aggressive,
we want to minimize the number of AFs that are not
selected. It is defined as: F1(
x) =∑n

i=1(1− | fi |).
Obj2. Latency: to shorten the time-delay in attack launch-

ing (e.g., leaking by SMS has less latency than
leaking by Internet), we aim to minimize the total
latency of all selected features. It is defined as:
F2(
x) =∑n

i=1(| fi |× li), where li denotes the latency
of AF fi .

Obj3. Detectability: to increase the chance for malware to
succeed, we minimize the probability to be detected
by AMTs. It is defined as: F3(
x) =∑n

i=1(| fi | × di),
where di denotes the detection ratio of AF fi if fi is
applied alone.

Intuitively, Obj1 and Obj2 are competing with Obj3, mean-
while Obj1 and Obj2 are mutually competing. For instance,
having more attacks or shorter latency will lead to earlier
and easier detection of the attack. Besides, having more AFs,
which is desired, can lead to an undesired side effect of higher
latency. With the feature constraints in § V-A that are linear,
the three objective functions are also linear. Hence, LP can
be applied to resolve this optimization problem. Note that
li ∈ [0, 3] and di ∈ [0, 10] are empirical values, according
to our preliminary studies. For example, latency l is set to 1
for C1, and 2 for C2; detectability d is set to 3 for C1, and 4
for C2. More discussions on the setup of values of li and di

can be found in § VIII.

C. Attack Feature Selection via LP

For the richness of possible solutions, we would not encode
three objectives into one weighted objective for one time
solving. Instead, we treat each objective equally and solve this
Multi-objective Optimization Problem (MOP) using the Pareto
dominance relation [42]. Generally, there exists no single
solution that simultaneously optimizes all objectives. Hence,
we are interested to find the non-dominated solutions. A
solution is called non-dominated, if none of the objectives can
be improved in value without degrading other objectives [42].

A k-objective optimization problem could be written in the
following form (in our case, k = 3):

Minimize
F = (F1(
x),F2(
x), . . . ,Fk(
x))

Subject to the inequalities on variables

(| f1| . . . | fn | in our case),

where
F is a k-dimensional objective vector, Fi (
x) is the value
of
F for i -th objective, and
x is the feature set { f1, . . . , fn}.

1) Technical Innovation: To resolve MOPs, MOEAs are
often applied [43], [44]. MOEAs are generally scalable, but
it requires some evolution time. As heuristic search tech-
niques, MOEAs cannot guarantee to find many non-dominated
solutions. Traditionally, LP can only solve single-objective
LP optimization. Considering the manageable feature size of
the FM, we apply LP to resolve the MOPs in an analytic way.

The basic idea is that: we retain an objective as the goal
function for optimization, and convert two other objective
functions into constraints by setting the concrete bounds

1536 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

Algorithm 1 LP-Guided Feature Selection
Input: f eatureMdl: the feature model of Android

malware
Input: user In f or : the contextual information of user

device
Output: solutions: a non-dominated solution set for

feature selection
Output: returned Sol: a solution returned to guide

malware generation
1 solutions ← ∅;
2 upper_o2 = get In f or(user In f or), lower_o2 = 0;
3 upper_o3 = get In f or(user In f or), lower_o3 = 0;
4 for i = lower_o2; i ≤ upper_o2; i = i+1 do
5 for j = lower_o3; j ≤ upper_o3; j = j+1 do
6 const_o2 = conver t (obj2, i), const_o3 =

conver t (obj3, j);
7 allConsts = T Cs ∪CT Cs ∪ const_o2∪ const_o3;
8 nondominated Sol = bintprog(allConsts, obj1);
9 solutions = solutions ∪ nondominated Sol;

10 returned Sol = solutions.First ();
11 for sol ∈ nondominated Sol do
12 if aggregated Obj (sol) <

aggregated Obj (returned Sol) then
13 returned Sol = sol;

14 return returned Sol;

for them. To find more non-dominated solutions, we need
to gradually adjust the bounds for these two objective
functions.

Algorithm 1 depicts the main process of LP-based AF
selection. At lines 1-3, the user information (e.g., the model
of device, OS version and installed software) is analyzed via
function get In f or() and the searching bound for obj2 and
obj3 are suggested. For the example in § IV-A, if the user
device installs many AMTs and the latest Android version,
the malware should have a low detection ratio (a small ratio
of the theoretic upper bound, e.g., 10%×∑n

i=1 di), and can
tolerate a little high latency (a large ratio of the theoretic
upper bound, e.g., 50%×∑n

i=1 li). At lines 4-9, we gradually
adjust the upper bounds of obj2 and obj3 and get the corre-
sponding solutions. At line 8, bintprog(allConsts, obj1) is
the LP solving function that optimizes obj1, subject to the
constraints of inequalities in allConsts. Finally, it reaches
the termination condition (i.e., the upper bounds) and gets the
candidate solutions into solutions.

For the constraints of the example in § IV-A, according
to Table II, we can convert these logical formula to the
inequalities for LP solving function bintprog. For the ter-
mination case of our example, lines 6-9 get the following
inequalities and perform the LP solving. Note that |B1|
returns 1, if B1 is selected; O2C is the constraint converted
from obj2, where

∑n
i=1 li refers to the sum of latency of

each feature; O3C is converted from obj3, where
∑n

i=1 di

refers to the sum of the chance of each feature to be
detected.

Minimize
F = (F1(
x)), where
x is the set of all features
Subject to: T C1 ∧ T C2 ∧ T C3 ∧ CT C1 ∧ . . . ∧ CT C5 ∧ O2C ∧ O3C
T C1 : |B1|≤Phish, |B2|≤Phish, |B3|≤Phish, |B1|+|B2|+|B3| ≥ Phish
T C2 : |C1|≤LeakCredential, |C2|≤LeakCredential, |C1|+|C2|≥LeakCredential
T C3 : |D1| ≤ LeakT oken, |D2| ≤ LeakT oken, |D1|+|D2| ≥ LeakT oken
CT C1 : |C1| ≤ |P1| CT C2 : |C2| ≤ |P2|
CT C3 : |LeakT oken| ≤ |P3| CT C4 : |D1| ≤ |P2|
CT C5 : |D2| ≤ |P1|
O2C : 0 ≤ F2(
x) ≤ 50%×∑n

i=1 li
O3C : 0 ≤ F3(
x) ≤ 10%×∑n

i=1 di

At lines 11-13, among the candidate solutions, we combine
several objectives into an aggregated one, by normalizing the
ranges of objectives and assigning them with different weights
via function aggregated Obj () at line 12. At lines 12-13, we
iterate all candidate solutions and identify the optimal solution
according to the weighting scheme. In addition, in practice, we
refine the returned optimal solution by applying some extra
constraints, which are not from the FM, but from the observa-
tions on AMTs and AFs. For example, if NORTON is installed
on the device, feature P2 android.permission.SEND_SMS
should not be selected — NORTON reports the third-party
app as suspicious if it requires P2. In other scenarios, if no
AMT is installed on the device, AFs (B2, C2, D1, P2, P3) are
selected as P2 can be selected for the short latency of sending
SMS immediately.

We clarify that to utilize the user contextual information,
the relaxed LP approach is proposed to run LP solving for
multiple times. With more candidate solutions, the variety of
selected AFs (and the generated code) is improved, prevent-
ing the signature- or clone-based detection. Instead, directly
combining 3 objectives into an aggregated one and solving it
once just yields one solution, which impairs the variety and
the unpredictability of the selected AFs.

VI. DYNAMIC GENERATION AND EXECUTION

OF MALICIOUS CODE

After the server conducts AFs selection via LP, we show
how to assemble the corresponding code of AFs via a model-
driven way (§ VI-A and § VI-B). Then, we explain how
the generated malicious code is sent to the client app via
JSON-WSP. Last, it is dynamically loaded and executed at
the client end (§ VI-C).

A. Behavior Description Language

Semantics of the selected AFs is represented in a modeling
language, named Behavior Description Language (BDL). The
BDL representation for the AFs is more implementation
oriented. BDL is used for two purposes: on the server side,
it bridges the gap between the malware FM and the workable
implementations; on the client side, it assures that behaviors
of AFs are executed as designed.

1) Backus Naur Form of BDL: We present the partial BNF
of BDL in Fig. 6 (refer to [36] for the complete definition
of BDL). An attack can be divided into several subsequen-
tial operations, i.e., 〈AT T AC K 〉 ::= 〈FU NCT I O N〉(′→′
〈FU NCT I O N〉)∗ . Hereby, 〈FU NCT I O N〉 is the basic step
(building block) for an attack, and it denotes the operation to
execute as well as the execution context. One function consists
of three elements — 〈C O M P O N E N T 〉, 〈P O I NT CU T 〉

XUE et al.: AUDITING AMTs BY EVOLVING ANDROID MALWARE AND DYNAMIC LOADING TECHNIQUE 1537

Fig. 6. Parts of BNF for BDL.

and 〈O P E R AT I O N〉, where 〈C O M P O N E N T 〉 denotes
the component, the building blocks of Android apps,
〈P O I NT CU T 〉 denotes the methods where malicious behav-
iors are located, and 〈O P E R AT I O N〉 denotes the operation
of malicious behaviors. The component and method together
identify the execution context for this operation.

2) Connection Between Feature and BDL: As the direct
assembly of code of the selected AFs may not yield a workable
(no compilation or runtime error) malicious code. Hence, BDL
is required to bridge the gap between the selected AFs and the
code implementation by adding the execution context of AFs
and auxiliary behavioral operations in implementation.

Conceptually, among the selected AFs, each behavior fea-
ture relates to one 〈FU NCT I O N〉 in BDL. As behavior
feature is defined at the atomic behavior level (one step of the
attack), its corresponding code is usually modularized into the
code unit of method. The modularized code of feature con-
ceptually links to one 〈O P E R AT I O N〉. Hence, assembling
modularized code of features essentially requires to describe
an 〈O P E R AT I O N〉 with the proper 〈C O M P O N E N T 〉
and 〈P O I NT CU T 〉. For example, one attack of privacy
leakage is to steal users’ SMS messages. According to the
FM, it needs a 〈FU NCT I O N〉 to get SMS messages (i.e.,
source), and a 〈FU NCT I O N〉 to send them out (i.e., sink).
These two steps comprise this attack. The code method of
source is an 〈O P E R AT I O N〉, and this method is invoked in
〈C O M P O N E N T 〉. The source operation needs a permission
android.permission.READ_SMS, and the behavior need to
be started in 〈P O I NT CU T 〉 — e.g., from bootup of an app
(i.e., trigger feature main) or from a change event of a Content
Provider (i.e., trigger feature observer).

Hence, BDL can provide details on: the component of activ-
ity or service, the method where the malicious code is injected
and executed; the data flow from source to sink, using Android
lifecycle and Inter-Component Communication (ICC).

B. Model Driven Malicious Code Generation

In MYSTIQUE-S, we have set some rules for automated gen-
eration of BDL for selected AFs, including various commonly-
used source-sink patterns [38], and information flows for
phishing attack. The service provider further interprets BDL to
generate the corresponding malicious code. As the malicious
code is dynamically loaded and executed in the client app,
MYSTIQUE-S will not bind or invoke the code snippets of AFs
at server side. Hence, the generated malicious code includes
two parts: the declaration of code for AFs (in the format of
Java method), and the invocation method to AFs.

1) An Illustrative Example: For the example in Fig. 4,
it is a composite attack with privacy leakage and phish-
ing. As the phishing feature can only be deployed in the
main thread of an activity, it is assigned to the context of
ACTIVITY::ONCREATE. The acquisition of incoming SMS
messages needs to be done in the context of a registered

Fig. 7. Generated code for the selected AFs (B2, C1 and D2).

broadcast receiver. Thus, the selected AFs (i.e., B2, C1, D2)
in § IV-A have the corresponding BDL:

ACT I V I T Y ::ONC RE AT E ::P H I S H ()

→ACT I V I T Y ::ONC RE AT E ::S I N K (H T T P :: AP AC H E_ P OST , C RE DE NT I AL S)

→B RO ADC AST _RECE I V E R::ON RECE I V E ::SOU RCE(SM S:: I NCOM I NG_ SM S)

→B RO ADC AST _RECE I V E ::ON RECE I V E ::S I N K (H T T P::SOCK ET _P OST ,

L OC AL_V ARI ABL E)

Based on the above BDL, MYSTIQUE-S generates the
malicious code in Fig. 7. Lines 3-14 provide the declarations
for these features, and lines 15-22 present the invocation to
these declarations. In method “operateOn”, it defines the
statements (i.e., the invocations to specific feature declarations)
as the instruction of attack for different steps.

C. Dynamic Loading and Execution of Malicious Code

Malicious code is dynamically loaded and executed in the
client app. The process relies on two mechanisms as below.

1) Single-Step Loading via JSON-WSP: JavaScript Object
Notation Web-Service Protocol (JSON-WSP) [40] is a web-
service protocol that uses JSON for service description.
We use JSON-WSP to exchange messages between client app
and the server.

Initially, the service provider generates a sequence of
instructions to execute an attack. The client app queries and
receives from the server an instruction each time, named
single-step loading. The main part of instructions contains
the type of instructions and the content of the instructions,
in the format of {“command”:“”, “value”:“”}. There are two
types of instructions — download that indicates the address
of the payload to download, and execute that provides a
serial of operations in BDL. For the running example, the
first instruction received by single-step loading is a download
instruction to download the malicious code, the following
execute instruction is to execute the behaviors defined in
the BDL (§ VI-B).

2) Dynamic Execution via Reflection: MYSTIQUE-S
employs Java Reflection to dynamically execute the malicious
code. Similar with the idea of XPOSED [45], MYSTIQUE-S
injects a small code snippet (shown in Fig. 8) into each
execution context of Android app. The code then checks the

1538 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

Fig. 8. A simple example of using reflection mechanism.

TABLE III

THE DETECTION RESULTS OF ODTs, WHERE ✓ MEANS

“PASSED” AND ✗ MEANS “DETECTED”

payloads whether there is a task to execute in this current
context. As the payloads (e.g., operateOn in Fig. 7) define the
operations to do in different contexts, the malicious behaviors
are dynamically loaded into a specific context. In Android,
reflection is based on the class DEXCLASSLOADER which
can load dex files and read the included class files. As shown
in Fig. 8, the client app needs to create an instance of
DexClassLoader by specifying the location of the dex file.
The class loader is used to instantiate the target class and
thereby the target method.

VII. EVALUATION

MYSTIQUE-S is implemented in about 4,187 lines of
Java code (23.9% for the client app, 76.1% for the service
provider, and modularized AF code is not included). It adopts
CPLEX [46] for solving LP. Considering the dynamic attack,
experiments are conducted on dynamic Analysis Tools (DATs)
or real devices installed with AMTs; the service provider is
deployed on a workstation running on Ubuntu 14.04 with Intel
Xeon(R) CPU E5-2697 and 64G memory. We aim to answer
the following research questions.

RQ1. Are the modularized AFs valid? Is the dynamically
assembly malicious code workable at runtime?

RQ2. Can the mainstream AMTs and online vetting process
detect the malware dynamically generated by our tool?

RQ3. Is MYSTIQUE-S adaptive to the different attacks in real
cases and helpful for the recurrence of an attack?

Evaluation Subjects: To evaluate the evasiveness of the
dynamic attack and audit the AMTs, we select several
state-of-the-art AMTs for detection in Table III and IV.

A. RQ1: Validity of Generated Malicious Code

In this section, we evaluate the validity of MYSTIQUE-S.
Specifically, we conduct experiments to show the validity
of malicious code that is generated from each AF. Further,
we evaluate the service-oriented communication mechanism
between the server and the client app.

Among the 93 AFs introduced in § III-A, we identify
44 behavior features. For each behavior feature, we select

TABLE IV

THE DETECTION RESULTS OF AMTs ON REAL DEVICES, WHERE
COLUMN ✓ MEANS “PASSED” AND ✗ MEANS “DETECTED”

its required permission features and trigger features, and
generate the BDL representation. MYSTIQUE-S generates the
corresponding malicious code according to the BDL. Then
we repackage the malicious code into a blank Android app
to wrap it as malware. Finally, we execute the malware on
the emulator to verify whether the carried malicious code
can be successfully executed. The results show that malicious
code can fulfill its malicious intent, e.g., leaking information,
extortion. In this experiment, we confirm that each behavior
feature, as single building block, is valid and workable.

To confirm the validity of the generated malicious code,
a honeypot is set up to receive the report of a success-
ful attack (e.g., the stolen information is sent to the hon-
eypot) in the experiment. Our honeypot has successfully
received the response from emulators or experimental devices.
It proves that our generated malicious code works in prac-
tice, which encourages us to conduct user studies on real
devices (§ VII-B).

During the communication between the client app and
the service provider, multiple sequential instructions are
exchanged to complete an attack. The bidirectional communi-
cation is asynchronous, which means that the client app may
receive and execute only one individual instruction each time.
To guarantee the client app has obtained all necessary mali-
cious code and instructions, MYSTIQUE-S employs periodical
querying in the client app and state retaining in the service
provider. The daemon service in the client app will periodically
enquire service provider to check: 1) it is alive; 2) what to do in
the next step. This mechanism avoids the tense work (e.g., high
network traffic and high memory usage rate) with launching an
attack, and thereby reduces the probability of being perceived
by users. After identifying the attack to launch with LP, the
service provider retains the state where the attack proceeds.
In our experiments, we set the time interval as 30 minutes for
periodical querying. Results show that this mechanism can
tolerate the loss of Internet connection, and restore the attack
state after the client app is reconnected to the Internet.

B. RQ2: Auditing the AMTs on Real Devices

We have evaluated the resistance of generated malicious
code to the detection in three aspects: offline detection tools,
dynamic analysis tools and AMTs on Android devices.

XUE et al.: AUDITING AMTs BY EVOLVING ANDROID MALWARE AND DYNAMIC LOADING TECHNIQUE 1539

1) Resistance to Offline Detection Tools (ODTs): To evalu-
ate the evasiveness of the client app against ODTs, we choose
several state-of-the-art static analysis tools and AMTs from
VIRUSTOTAL. To evaluate the efficacy of this dynamic and
optimal selection of AFs, we conduct an experiment that
uses the client app with/without the payloads, respectively.
As shown in Table III, column DS#A shows the results
of scanning the client app without payloads; column DS#B
shows results of scanning the client app with payloads. Here,
payloads are the malicious code generated according to the
44 behavior features.

Based on our observations from Table III, it is concluded
that MYSTIQUE-S can effectively bypass the detection of
ODTs. Generally, static analysis collects the evidences in the
apk file for detection. However, MYSTIQUE-S only dynami-
cally loads malicious code in an attack, and it does not store
any malicious code in the apk file. Hence, it has a very low
probability of being detected by ODTs.

2) Resistance to Dynamic Analysis Tools (DATs): We
deploy three state-of-the-art DATs to evaluate the evasiveness
of MYSTIQUE-S. These three tools are listed below:
• DROIDBOX4 automatically intercepts and modifies

API calls made by a targeted app. It captures the behav-
iors of apps at runtime, e.g., information leakage, cryp-
tographic operations, and invocations of Android APIs.

• DROZER5 allows to search for security vulnerabilities in
apps and devices by assuming the role of an app and
interacting with the Dalvik VM.

• TAINTDROID [47] can track how apps use sensitive
information via taint analysis. It has hooked several
transfer channels, including memory, file system, and
event dispatch.

We construct 22 attacks (requesting specific permissions)
of privacy leakage with regard to the types of sensitive
information, 1 attack of premium service, 3 attacks of phish-
ing, and 1 attack of extortion. DROIDBOX can successfully
capture many behavior logs of the client app, for example,
the download of malicious payload, the acquisition of contact
and SMS, the operation to send SMS messages (perhaps to
a premium rate number) and the cryptographic operation.
However, it still needs manual efforts to confirm whether these
behaviors are malicious or not. In comparison, DROZER can
only identify the started Android components and the acquired
permissions of the client app. Since TAINTDROID only targets
privacy leakage of apps, it only detects 10 attacks (45.5%) of
privacy leakage in our experiment, while it fails to detect other
kinds of attacks.

Summary: Compared to static analysis, the DATs can effec-
tively detect attacks via dynamically loaded malicious code.
It is reasonable because dynamic analysis can capture the
runtime information, which can facilitate the understanding of
current app operations. However, it has two issues that impede
its practical use: low scalability that makes it costly to detect
a huge amount of apps, especially for the Android app stores;
high dependency that makes it impossible to deploy it on real

4https://github.com/pjlantz/droidbox
5https://labs.mwrinfosecurity.com/tools/drozer/

devices, as DATs usually rely on an in-depth instrumentation
or modifications to Android OS.

3) The DR of Anti-Virus: Due to the aggressiveness of
the malware, we cannot conduct a large scale user study.
We manage to have 16 volunteers install the client app on
their devices. Before the experiments, they need to have at
least one AMT installed on their device. We also assure
them that the possible attack is just proof of concept (POC),
e.g., leaking IMEI, leaking number of contacts, leaking a file’s
name and size only, and deleting the copied one of a user file.
We replace the code of aggressive AFs (e.g., encryption) with
that for POC. The profiles of devices and the detection results
are presented in Table IV. Attack vectors for each device are
selected by LP-based AF selection module [36].

a) Evasiveness of malware: Generally, MYSTIQUE-S can
easily bypass the scanning of most of AMTs shown in
Table IV. Column Inst. means the scanning results of AMTs
just after installation; column Runt. means whether AMTs give
alerts when the attack is in progress; column Succ. means
whether attacks succeed on the device.

As the attack is conducted by dynamically loading
malicious code from the remote server and executing it
locally, most AMTs fail to identify the maliciousness of client
app after installation. There are only three AMTs that report
the installed app as suspicious — 360 SECURITY, AVAST

and NORTON.
Interestingly, in Table IV, the client app passes the scan-

ning of 360 SECURITY on Nexus 6P, while it is detected
by 360 SECURITY on Nexus 5. The detection capability
in latest Android OS is even degraded in some cases.
We speculate that some AMTs such as 360 SECURITY

requests root permission to perform an in-depth scanning.
So they even exploit n-day or zero-day vulnerabilities for
rooting the user device. However, the latest Android OS
(i.e., 6.0) fixes all known vulnerabilities and increases the
difficulty in rooting. In reality, this weakens the detection capa-
bilities of these AMTs. In addition, NORTON reports our client
app as suspicious. In further testing, we find that NORTON

also reports many commonly used apps (which are normally
regarded as benign) as suspicious, e.g., Facebook, GrabTaxi
and Line. The reason is that NORTON employs a strict
detection mechanism that gives many false positives. Note for
the three alerted cases by AMTs, the attacks still succeed.

No matter whether AMTs give alerts after installation or at
runtime, we confirm the attack results by checking whether
the honeypot (§ VII-A) receives the attack response. We find
the attack succeed on 15 out of 16 devices, while fails on
Xiaomi Note 2. Further inspection shows this Xiaomi phone
has compatibility problem with the client app that causes the
failure of attacks.

b) Transparency of malware: We collect the feedback
of user experiences from the 16 volunteers. They cannot
notice the malicious behaviors of the client app, without any
obvious symptom (e.g., high network traffic and high CPU
consumption) observed. Hence, MYSTIQUE-S can silently
conduct the malicious behaviors specified by the remote server
while causing no attention of users. We attribute this to the
adoption of LP-based AF selection for different user scenarios,

1540 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

which optimizes between the number of selected AFs, the
detection chance, and the latency (overheads) of the attack.

C. RQ3: Generating Recent Attacks in Real Cases

To show the adaptivity of our tool, we combine the AFs to
constitute the recent popular real-world attacks on Android.

1) Hacking Online Banking: Recently, numerous customers
of Australia’s largest banks are the victims of a sophisticated
Android attack that steals banking details and thwarts two-
factor authentication security. Our running example originates
from this attack. Customers of mobile banking apps are at risk
from the malware, which hides on infected devices waiting
until users open legitimate banking apps. The malware then
superimposes a fake login GUI over the top for intercepting
usernames and passwords. The malware can mimic up to 20
mobile banking apps from Australia, New Zealand and Turkey,
as well as login GUIs for PayPal, eBay, WhatsApp and etc.

a) Attack prerequisites: The following conditions
need to be satisfied before attacking: p1, the specified
malware is installed and started on victims’ devices; p2,
the malware is granted with sufficient permissions,
including android.permission.INTERNET and android.
permission.RECEIVE_SMS; p3, the banking app employs
the mechanism of two-factor authentication which needs
to send verification code to the register phone. The client
app of MYSTIQUE-S can ride on some benign apps
using “repackaging” [48]. In § VII-B, we show that the
client app can easily evade the detection by AMTs, which
guarantees p1. To satisfy p2, the client app asks for the
necessary permissions (defined in the manifest file), which
can be granted at installation (before Android 6.0) or at
runtime (since Android 6.0). To satisfy p3, we mimic the
login GUIs of the banking apps, such as CitiBank.

b) Attack vector: According to user’s installed mobile
banking apps (e.g., CitiBank), the user-tailored AFs (including
the phishing feature for CitiBank login GUI) are selected.
The service provider then generates the malicious payloads
that consist of malicious code and commands to execute. The
malicious code can be referred to Fig. 7, and the commands
in BDL can be referred to § VI-B.

c) Damage of attack: We have distributed this attack to
5 Android phones, from Android 4.0 to Android 6.0, and
successfully collected the credentials and two-factor authenti-
cation. We discuss the possible damage from two aspects: the
value of attack target and the user awareness of the attack.
Once the bank account has been hacked, the attacker can
obtain direct benefits from the victim which can cause a huge
damage to the victims. From the perspective of users, there
is no perceivable difference between the benign and phishing
app, as Android activity as well as the views on it provide
almost no hints for manual authentication. Unlike the phishing
website that uses the fake URLs, careful users can spot some
hints to authenticate. Therefore, it easily escapes from the
awareness of victims.

2) Extortion App — Simplocker: Since the extortion mal-
ware Simplocker was found in 2014, ransomware has been
swarming into the mobile app stores [49]. After launch,
Simplocker starts to encrypt files in a background thread.

The encrypted files can be any format, and the encryption is
by AES cipher. However, the encryption key is hard-coded in
the binary file, which can be used to decrypt the files. It is
believed that Simplocker is just a proof-of-concept or an early
development version of more severe and complicated variants
of ransomware.

a) Attack prerequisites: The attack needs to meet such
prerequisites: p1, the malware is installed and started on user
devices; p2, the malware is granted with sufficient
permissions, e.g., the permission (android.permission.
WRITE_EXTERNAL_STORAGE) to access to the storage.
The same to the first case, MYSTIQUE-S satisfies p1 and p2.

b) Attack vector: After installed, MYSTIQUE-S collects
the information of the user device. If many important files are
found on the device (e.g., many new taken photos or created
user files), the user-tailored AFs (e.g., encryption, deletion)
are selected. As the BDL below, four AFs are selected for this
attack, and there are three constraints for these four features.
Normally, the permission android.permission.INTERNET
is acquired by default, which ensures the downloading of
malicious payload. The features are deployed into the main
thread of the daemon service, which can be represented as
INTENT_SERVICE::MAIN.

Features:
encryption, deletion, android.permission.WRITE_EXTERNAL_STORAGE
android.permission.INTERNET (for downloading payload)
Constraints:
encryption ∧ delet ion ⇔ extort ion
encryption ⇒ android.permission.W RI T E_E X T E RN AL_ST O R AG E
delet ion ⇒ android.permission.W RI T E_E X T E RN AL_ST O R AG E
BDL:
I N T E N T _SE RV I C E :: M AI N :: E NC RY PT (C I P H E R, F O L DE R)

→I N T E N T _SE RV I C E :: M AI N :: DE L ET E(F O L DE R)

Execution of the payloads generated from the BDL above
performs the encryption on a certain folder, and deletes it.

c) Damage of attack: This attack is distributed via
MYSTIQUE-S, which is started by the client app. In this
experiment, we use the AES to encrypt the specify folder and
then delete the original files. The extortion attack can severely
damage users’ information properties. The target files, which
are encrypted with a unknown cipher, may be very important
to the victims. In addition, the extortion attack can optionally
have the AF sink, if the user device has 4G connection. This
operation can further cause the leak of users’ privacy.

Spamming: I N T E N T _SE RV I C E :: M AI N ::
SI N K (SM S, L OC AL_V ARI ABL E)
(→I N T E N T _SE RV I C E :: M AI N :: SI N K (SM S, L OC AL_V ARI ABL E))∗
Privacy: I N T E N T _SE RV I C E :: M AI N :: SOU RC E(C O N T ACT ::
C O N T ACT)
→I N T E N T _SE RV I C E :: M AI N :: SI N K (H T T P, L OC AL_V ARI ABL E)
Privilege escalation: I N T E N T _SE RV I C E :: M AI N :: RU N (SH E L L)

3) Miscellaneousness: MYSTIQUE-S can easily configure
and generate a variety of attacks. For example, spamming is
the kind of attacks which is annoying and exhaustive in recent
years [50]. This attack can be easily achieved by frequently
conducting sink operation. Hence, the SMS spamming can be
represented with the BDL as above. MYSTIQUE-S can easily

XUE et al.: AUDITING AMTs BY EVOLVING ANDROID MALWARE AND DYNAMIC LOADING TECHNIQUE 1541

deploy the attack of privacy leakage using various source-
sink patterns, which involve 11 types of sensitive information
such as contact and SMS (Full details of sensitive information
can be referred to [36]). As the above BDL, the client app
can obtain the contact information on the current device.
In addition, MYSTIQUE-S can be further used to launch the
attack of privilege escalation which needs shell code to root
the device.

VIII. DISCUSSION

A. Threats to Validity

The internal threats to validity of evaluation stem from
three aspects. First, regarding the completeness of attacks
considered in this study, we just focus on the four types
of attacks (§ II-B) at this stage. In future, we will consider
attacks such as privilege escalation that roots the device via
vulnerability exploitation. Supporting privilege escalation will
make MYSTIQUE-S similar to METASPLOIT on Android.
Second, for the three goals of malware generation (§ V-B),
aggressiveness and detectability are security related, but
latency is more on quality of service (QoS). In future, we
will consider other security or QoS related goals, e.g., to
minimize the communication times and data size to exchange
between the server and the client app. Last, for the values
of di and li of a feature (§ V-B), we now manually define
these values according to our understanding of these attacks
and results reported by the study [11]. According to our
preliminary study on different values of di and li , we find the
impact of values (di and li) for AFs is minor to the results of
feature selection, compared with the constraints among AFs.
As the variant features to be selected for one common AF
is usually less than 5, the optimal set of AFs to be returned
is often similar to an near-optimal set. A further empirical
study is required for better setup of di and li for different
attacks.

The external threats are mainly two-fold. First, the malware
samples for FODA are mostly from GENOME and DREBIN.
Both of them contain many out-of-date malware, due to the
everlasting malware evolution and creation. To ensure the
timeliness of the FM of malware, we have considered some
recent samples of attacks of information leakage and extortion
(§ VII-C). Another threat is about the availability of real
devices and AMTs. More real devices need to be tested with
more various AMTs.

B. To Be or Not Be Obfuscated?

In this study, we do not further adopt the possible obfusca-
tion techniques for the client app or the generated malicious
code. Owing to the low detectability that we observed in
the experiments (§ VII), it is not necessary to use extra
obfuscation techniques for evading AMT detection. We also
observe that existing AMTs do not sufficiently check the data
that is received by a client app from the remote server at
runtime. The rationale is that performing such check would
impose a heavy burden on the performance. Besides, applying
no obfuscation techniques eases the manual check of the
generated malicious code for the experts. In reality, bytecode

obfuscation techniques [2], [3] or wrapping payloads into
native dynamic-link library (DLL) are applied for malware.

C. Possible Enhancements for Existing AMTs

To detect malware generated by MYSTIQUE-S, we propose
three different solutions, which are discussed as follows:

1) Detecting C&C Communications Between the Client App
and the Service Provider: Actually, the first solution is usually
used for botnet or intrusion detection, but not a standard
feature of AMTs. We find that AMTs normally cannot afford
to check the data exchange of each app on Android. Firewalls
often adopt the network traffic or DNS analysis [51], [52]
to detect the C&C communication. Considering our tool as
a testing framework rather than a real attack tool, we do not
encode the C&C communication or use proxy strategies to
prevent the tracing of the service provider. So detecting C&C
communication is a topic different from this paper.

2) Detecting Dynamic Code Loading by Hybrid Analysis:
Hybrid Analysis (i.e., integrating static and dynamic analysis)
can help identify our malware. The first step is to conduct
static analysis on Android apps to find those that employ
dynamic loading techniques (e.g., by checking the existence of
DEXCLASSLOADER). Nevertheless, using dynamic loading
techniques does not imply that the app is malicious, as
many benign apps employ dynamic loading for unnoticed
update [14], [53], [54]. Then, we need to build a white list for
trusted apps and server IP domains that are relevant to dynamic
code loading. Last, for the app on the white list, we still need
to have dynamic analysis in order to verify the benignity of
the downloaded code or file at runtime. The study [14] refers
to the work on downloaded file check at runtime on android.

3) Detecting Attacks by Realtime Monitoring and Security
Verification: The above two solutions are to check the com-
munication manners and dynamic code loading mechanism,
which may not sufficiently prove the maliciousness of an app.
Thus, the last solution is to have runtime anomaly detection.
We have witnessed the effectiveness of realtime monitoring
in [11] to detect the malware of privacy leakage. However, it
encounters many issues when it deals with dynamically loaded
malware. Most of realtime monitoring is based on information
flow analysis, and therefore, the incompleteness of sensitive
information to be monitored can cause insufficient detection.
Moreover, information flow based detection mainly targets
malware of privacy leakage, while missing malware of other
attacks (e.g., ransomware). We propose to have some sand-
box [55] or instrumentation mechanism (e.g., ARTIST [56]) to
monitor the behaviors of an app with dynamically loaded code:
checking entities it accesses, alerting users about suspicious
changes to apps or system files, etc. Besides, information
obtained at runtime should be verified against the system
security properties and requirements [57], e.g., 1). no app
should request the GPS location, and later send it out via the
Internet (possibly to transmit the stolen location information);
2). no two apps should be able to have collusion attack (app a
requests the GPS location, app b gets the information by IPC
with a, and app b sends it out via the Internet).

1542 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

IX. RELATED WORK

A. AMT Auditing

ANDROTOTAL [58] is an integrated framework to auto-
matically test the detection capabilities of anti-virus tools.
Christodorescu and Jha [59] leverage four types of obfuscation
techniques to test the capabilities of commercial anti-virus
tools. ADAM [8] employs several transformation techniques
to generate polymorphic malware, and test 10 prestigious anti-
virus tools. DROIDCHAMELEON [2], [3] collects three types
of transformation attacks in Android, and the authors have
used these attacks to audit the AMTs. Huang et al. [17]
assess the detection capabilities of 30 top anti-virus tools
from two aspects: malware scanning and engine updating. The
study [60] also reports that existing AMTs are suspectable to
dynamically loaded malware, using the existing malware.

Among the above studies, [58], [60] aim to provide the
platform an automated process of AMT auditing. ADAM [8],
DROIDCHAMELEON [2], [3] utilize the evasion techniques
(e.g., obfuscation, repacking, transformation attacks) to gen-
erate malware variants for AMT auditing. Apparently, evasion
techniques generate no new valid malware, but variants with
the same malicious intent. In contrast, our study facilitates cre-
ating new malware via combinations of various modularized
AFs and evasion techniques.

Regarding to the advance of runtime based AMT eva-
sion attacks, Huang et al. identify the Android stroke vul-
nerability (ASV) of system service [61] and the weakness
of AMTs at time points of scanning and engine update
[17]. In this study, as using new system vulnerability (e.g.,
ASV) or AMT weakness certainly fails the AMTs, we just
modularize and then combine the AFs of existing GENOME

malware for generating new malware to audit AMTs. Note that
MYSTIQUE-S can easily add new AFs that are modularized
from the malicious code of vulnerability exploits (e.g., that
of ASV). However, such AFs might be too advanced for the
purpose of AMT auditing, but useful for the recurrence of an
attack.

B. Automated Malware Creation

Recently, genetic programming has been applied to create
malware in an automated way and evade the detection [9],
[10]. Cani et. al. [10] employ µG P to automatically cre-
ate new malware that is undetectable for AMTs, and inject
malicious code into a benign app to construct a Trojan horse.
Aydogan and Sen [9] also adopt genetic programming to create
Android malware. Different from the mutation operations on
instructions of executables [10], Aydogan et al. mutate the
CFGs (control flow graphs) that are extracted from smali
code of GENOME malware [6]. Their experiments show that
the new generated malware can easily bypass the detection
of AMTs. As shown in the study [10], mutating malware
faces one critical problem: deciding whether a mutant still
retains the characteristics of malware is a major issue of the
evaluator. Compared with these mutation-based approaches,
our approach evolves existing malware via combinations of the
modularized AFs, which easily guarantee the maliciousness of
new malware.

C. Evasive Malware Generation

Our work is also related to the generation of evasive or
dynamically loaded Android malware. To evade the detec-
tion of AMTs [2], [3], DROIDCHAMELEON integrates three
types of transformation techniques and generates obfuscated
Android malware. Some evasion techniques used in DROID-
CHAMELEON [2], [3] are identified as evasion features by
Meng et al. in [11]. Hence, for the malware that contains
malicious payloads at compile time before execution, the
obfuscation [62] or evasion techniques (i.e., [2], [3]) are very
useful in failing the detection of AMTs.

Maier et al. [63] propose SAND-FINGER to construct the
divide-and-conquer attack, which fingerprints the characteris-
tics of popular sandboxes and decides to (or not to) load mali-
cious code at runtime. Unlike our approach, SAND-FINGER

does not modularize AFs. Instead, it divides a malware sample
into benign and malicious part, and applies evasion features
of sandbox fingerprints against detection. Petsas et al. [64]
propose three heuristics (static heuristics, dynamic heuristics
and hypervisor heuristics) to fail dynamic analysis of Android
malware. According to results of checking heuristics rules,
the attack decides whether to launch the malicious payloads
at run-time. In contrast, our malicious payloads are delivered
from the remote server at runtime and can be purged after
execution.

Dynamic code loading, as a code updating technique on
its own, is not harmful. According to the recent empirical
study by Maier et al. [65], among 14,885 malicious and
22,032 benign apps, 36.4% of malicious samples and 13.1%
of benign apps use dynamic code loading. Hence, dynamic
code loading is becoming an important evasion feature for
Android malware. Based on the findings in [65] and our
observations, the protection from attacks with this technique
is still unsatisfactory for existing AMTs. Last, our study is
different from the empirical study [65] as below. Maier et al.
focus on dynamic code (and script) loading, and investigate
how it relates to malware [65] and how it can be addressed.
Our study focus on combining dynamic code loading with
different modularized AFs, and investigate the capability of
existing AMTs.

X. CONCLUSION

In this paper, we propose to adopt the SPLE in order to
modularize the common attack behaviors and construct the
corresponding conceptual model (i.e., the FM) for Android
malware. To provide a benchmark for dynamically loaded
malicious code, MYSTIQUE-S adopts the DSPL techniques
and makes attacks as a service, which facilitates the integra-
tion with other tools for AMT audit and penetration testing.
We also evaluate the effectiveness of MYSTIQUE-S and the
evasiveness of the generated malicious code on 16 real devices
with 4 different recent attacks. In future, we will investigate
the effectiveness of other attack and evasion features, such
as obfuscating the generated malicious code. In addition,
MYSTIQUE-S enables many studies on the malware generation
and AMT auditing. Lastly, we will investigate the detection
strategies for the generated malware on the fly.

XUE et al.: AUDITING AMTs BY EVOLVING ANDROID MALWARE AND DYNAMIC LOADING TECHNIQUE 1543

REFERENCES

[1] AV-TEST. AV-TEST Product Review and Certification Report-May/2016.
[Online]. Available: https://www.av-test.org/en/antivirus/mobile-
devices/android/may-2016/

[2] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating
Android anti-malware against transformation attacks,” in Proc. ASIA
CCS, 2013, pp. 329–334.

[3] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluating
Android anti-malware against transformation attacks,” IEEE Trans. Inf.
Forensics Security, vol. 9, no. 1, pp. 99–108, Jan. 2014.

[4] R. Schlegel, K. Zhang, X. Y. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound trojan
for smartphones,” in Proc. NDSS, 2011, pp. 17–33.

[5] H. Gunadi and A. Tiu, “Efficient runtime monitoring with metric
temporal logic: A case study in the Android operating system,” CoRR,
2013.

[6] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proc. IEEE SP, May 2012, pp. 95–109.

[7] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of Android malware in
your pocket,” in Proc. NDSS, 2014, pp. 1–15.

[8] M. Zheng, P. P. C. Lee, and J. C. S. Lui, “ADAM: An automatic and
extensible platform to stress test Android anti-virus systems,” in Proc.
DIMVA, 2013, pp. 82–101.

[9] E. Aydogan and S. Sen, “Automatic generation of mobile malwares using
genetic programming,” in Applications of Evolutionary Computation,
vol. 9028, A. M. Mora and G. Squillero Eds. Cham, Switzerland:
Springer, 2015, pp. 745–756.

[10] A. Cani, M. Gaudesi, E. Sanchez, G. Squillero, and A. Tonda, “Towards
automated malware creation: Code generation and code integration,” in
Proc. SAC, 2014, pp. 157–160.

[11] G. Meng et al., “Mystique: Evolving Android malware for auditing anti-
malware tools,” in Proc. ASIA CCS, 2016, pp. 365–376.

[12] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer, 2005.

[13] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product line
engineering,” IEEE Softw., vol. 19, no. 4, pp. 58–65, Jul./Aug. 2002.

[14] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! Analyzing unsafe and malicious dynamic code loading
in Android applications,” in Proc. NDSS, 2014.

[15] M. Rosenmüller, N. Siegmund, M. Pukall, and S. Apel, “Tailoring
dynamic software product lines,” in Proc. GPCE, 2011, pp. 3–12.

[16] D. A. Mundie and D. M. McIntire, “An ontology for malware analysis,”
in Proc. ARES, 2013, pp. 556–558.

[17] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu, and D. Wu, “Towards
discovering and understanding unexpected hazards in tailoring antivirus
software for Android,” in Proc. ASIA CCS, 2015, pp. 7–18.

[18] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, “Feature-oriented domain analysis (FODA) feasibility
study,” Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990.

[19] D. S. Batory, “Feature models, grammars, and propositional formulas,”
in Proc. SPLC, 2005, pp. 7–20.

[20] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang,
“Search based software engineering for software product line engineer-
ing: A survey and directions for future work,” in Proc. SPLC, 2014,
pp. 5–18.

[21] C. A. Castillo, “Android malware—Past, present, and future,” McAfee
Mobile Secur. Working Group, Santa Clara, CA, USA, Tech. Rep., 2012.

[22] “A brief history of mobile malware,” Trend Micro Inc., Tokyo, Japan,
Tech. Rep., 2012.

[23] Symantec, “Internet security threat report,” Symantec, Mountain View,
CA, USA, Tech. Rep. ISTR-21-2016-EN, 2016.

[24] M. Arapinis et al., “New privacy issues in mobile telephony: Fix and
verification,” in Proc. CCS, 2012, pp. 205–216.

[25] Y. Zhou and X. Jiang, “An analysis of the AnserverBot
trojan,” Dept. Comput. Sci., North Carolina State Univ., Tech.
Rep., Sep. 2011. [Online]. Available: http://www.csc.ncsu.edu/
faculty/jiang/pubs/AnserverBot_Analysis.pdf

[26] B. Snell, “Mobile threat report: What’s on the horizon for 2016,” McAfee
Inc., Tech. Rep., Dec. 2016.

[27] J. Hamada. Simplocker: First Confirmed Ransomware
for Android, accessed on Jun. 2016. [Online]. Available:
http://www.symantec.com/connect/blogs/simplocker-first-confirmed-
file-encrypting-ransomware-android

[28] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on Android markets,” in Proc. ESORICS, 2012,
pp. 37–54.

[29] J. Chen, M. H. Alalfi, T. R. Dean, and Y. Zou, “Detecting Android
malware using clone detection,” J. Comput. Sci. Technol., vol. 30, no. 5,
pp. 942–956, 2015.

[30] G. Meng, Y. Xue, Z. Xu, Y. Liu, J. Zhang, and A. Narayanan,
“Semantic modelling of Android malware for effective malware
comprehension, detection, and classification,” in Proc. 25th Int.
Symp. Softw. Test. Anal. (ISSTA), Saarbrücken, Germany, Jul. 2016,
pp. 306–317.

[31] M. Rangwala, P. Zhang, X. Zou, and F. Li, “A taxonomy of privilege
escalation attacks in Android applications,” Int. J. Secur. Netw., vol. 9,
no. 1, pp. 40–55, Feb. 2014.

[32] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware Android
malware classification using weighted contextual API dependency
graphs,” in Proc. CCS, 2014, pp. 1105–1116.

[33] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: Analyzing sensitive data transmission in Android for privacy
leakage detection,” in Proc. CCS, 2013, pp. 1043–1054.

[34] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the
Android permission specification,” in Proc. CCS, 2012, pp. 217–228.

[35] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid: Auto-
matic reconstruction of Android malware behaviors,” in Proc. NDSS,
2015, pp. 1–5.

[36] Mystique | Evolving Android Malware for Auditing Anti-
Malware Tools, accessed on Oct. 2015. [Online]. Available:
https://sites.google.com/site/malwareevolution/

[37] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppCon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in Proc. ICSE, 2014, pp. 303–313.

[38] V. Avdiienko et al., “Mining apps for abnormal usage of sensitive data,”
in Proc. ICSE, 2015, pp. 426–436.

[39] A. Turner. (2016). Malware Hijacks Big Four Australian Banks’
Apps, Steals Two-Factor SMS Codes. [Online]. Available:
https://t.co/ud5P7C8Zzq

[40] “ECMAScript 2015 language specification,” Ecma Int., Geneva,
Switzerland, Tech. Rep., 2015.

[41] P. van den Broek, “Optimization of product instantiation using integer
programming,” in Proc. SPLC, 2010, pp. 107–112.

[42] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in Proc. CEC, 2008,
pp. 2419–2426.

[43] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of user
preferences in search-based software engineering: A case study in
software product lines,” in Proc. ICSE, 2013, pp. 492–501.

[44] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, “Combining
multi-objective search and constraint solving for configuring large soft-
ware product lines,” in Proc. ICSE, 2015, pp. 517–528.

[45] (2016). Xposed Module Repository. [Online]. Available: http://repo.
xposed.info/

[46] (2016). Cplex. [Online]. Available: http://www-03.ibm.com/
software/products/en/ibmilogcpleoptistud

[47] W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. OSDI, 2010,
pp. 393–407.

[48] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of ‘piggybacked’ mobile applications,” in Proc. 3rd ACM Conf.
Data Appl. Secur. Privacy, 2013, pp. 185–196.

[49] “The rise of Android ransomware,” ESET, Bratislava, Slovakia,
Tech. Rep., 2014.

[50] TechEye. Android Malware MisoSMS One of the Largest
Botnets to Date, accessed on Jun. 2016. [Online]. Available:
http://www.tgdaily.com/security-brief/83076-android-malware-misosms-
one-of-the-largest-botnets-to-date

[51] A. Zand, G. Vigna, X. Yan, and C. Kruegel, “Extracting probable
command and control signatures for detecting botnets,” in Proc. SAC,
2014, pp. 1657–1662.

[52] S. García, A. Zunino, and M. Campo, “Survey on network-based botnet
detection methods,” Secur. Commun. Netw., vol. 7, no. 5, pp. 878–903,
2014.

[53] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis—1,000,000 apps later: A
view on current Android malware behaviors,” in Proc. 3rd Int. Workshop
Building Anal. Datasets Gathering Exper. Returns Secur. (BADGERS),
Sep. 2014, pp. 3–17.

1544 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

[54] A. I. Aysan and S. Sen, “‘Do you want to install an update of this
application?’ A rigorous analysis of updated Android applications,” in
Proc. IEEE 2nd Int. Conf. Cyber Secur. Cloud Comput. (CSCloud),
New York, NY, USA, Nov. 2015, pp. 181–186.

[55] S. Mutti et al., “BareDroid: Large-scale analysis of Android apps on
real devices,” in Proc. ACSAC, 2015, pp. 71–80.

[56] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and
S. Weisgerber, “ARTist: The Android runtime instrumentation and
security toolkit,” CoRR, 2016.

[57] A. Bauer, J.-C. Küster, and G. Vegliach, “Runtime verification meets
Android security,” in Proc. 4th Int. Symp. NASA Formal Methods (NFM),
Norfolk, VA, USA, Apr. 2012, pp. 174–180.

[58] F. Maggi, A. Valdi, and S. Zanero, “AndroTotal: A flexible, scalable
toolbox and service for testing mobile malware detectors,” in Proc.
SPSM, 2013, pp. 49–54.

[59] M. Christodorescu and S. Jha, “Testing malware detectors,” in Proc.
ISSTA, 2004, pp. 34–44.

[60] R. Fedler, M. Kulicke, and J. Schütte, “An antivirus API for Android
malware recognition,” in Proc. MALWARE, 2013, pp. 77–84.

[61] H. Huang, S. Zhu, K. Chen, and P. Liu, “From system services freezing
to system server shutdown in Android: All you need is a loop in an app,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Denver,
CO, USA, Oct. 2015, pp. 1236–1247.

[62] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Stealth
attacks: An extended insight into the obfuscation effects on Android
malware,” Comput. Secur., vol. 51, pp. 16–31, Jun. 2015.

[63] D. Maier, T. Müller, and M. Protsenko, “Divide-and-Conquer:
Why Android malware cannot be stopped,” in Proc. ARES, 2014,
pp. 30–39.

[64] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: Hindering dynamic
analysis of Android malware,” in Proc. EuroSec, 2014, Art. no. 5.

[65] D. Maier, M. Protsenko, and T. Müller, “A game of droid and mouse:
The threat of split-personality malware on Android,” Comput. Secur.,
vol. 54, pp. 2–15, Oct. 2015.

Yinxing Xue received the B.E. and M.E. degrees
from Wuhan University, China, and the Ph.D. degree
in computer science from the National University of
Singapore (NUS) in 2013. He is currently a Research
Scientist with Nanyang Technological University
(NTU). Since 2013, he has been a Research Scientist
with Temasek Laboratories, NUS. Since 2015, he
has been a Research Scientist with Temasek Labora-
tories, NTU. His research interest includes software
program analysis, software product line engineering,
cyber security issues, including malware detection,

intrusion detection, and vulnerability detection.

Guozhu Meng received the bachelor’s and master’s
degree from the School of Computer Science and
Technology from Tianjin University, China, in 2009
and 2012, respectively. He was with Temasek lab-
oratory, National University of Singapore, for one
year as an Associate Scientist. Since 2013, he has
been pursuing the Ph.D. degree with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His research
interests include mobile security, software engineer-
ing and program analysis.

Yang Liu received the bachelor’s degree in comput-
ing and the Ph.D. degree from the National Univer-
sity of Singapore (NUS), in 2005 and 2010, respec-
tively. He continued with his postdoctoral work
with NUS. Since 2012, he has been with Nanyang
Technological University, as an Assistant Professor.
His research focuses on software engineering, formal
methods, and security. In particular, he specializes
in software verification using model checking tech-
niques. This work led to the development of a state-
of-the art model checker, Process Analysis Toolkit.

Tian Huat Tan received the Ph.D. degree from
the School of Computing, National University of
Singapore. He was with the Singapore University
of Technology and Design as a Research Fellow.
He is currently a Senior Researcher with Acronis
Software. His research interests include artificial
intelligent, cyber-security, and system verification.

Hongxu Chen received the bachelor’s degree in
science from the Nanjing University of Science and
Technology in 2011, and the master’s degree in
computer science from Shanghai Jiaotong Univer-
sity in 2014. He is currently pursuing the Ph.D.
degree with Nanyang Technological University. His
research interests include program language theo-
ries, cyber-security, program analysis, and software
engineering.

Jun Sun received the bachelor’s and the Ph.D.
degrees in computing science from the National
University of Singapore in 2002 and 2006, respec-
tively. He was a Visiting Scholar with MIT
from 2011 to 2012. He is currently an Associate
Professor with the Singapore University of Tech-
nology and Design (SUTD). He has been a Faculty
Member with SUTD, since 2010. His research inter-
ests include software engineering, formal methods,
program analysis, and cyber-security. He is the co-
founder of the PAT model checker. In 2007, he

received the prestigious LEE KUAN YEW Post-Doctoral Fellowship.

Jie Zhang received the Ph.D. degree from the
Cheriton School of Computer Science, University
of Waterloo, Canada, in 2009. He is currently an
Associate Professor with the School of Computer
Science and Engineering, Nanyang Technological
University, Singapore. He is also an Academic Fel-
low of the Institute of Asian Consumer Insight and
an Associate of the Singapore Institute of Manufac-
turing Technology. He held the prestigious NSERC
Alexande Graham Bell Canada Graduate Scholar-
ship rewarded for top Ph.D. students across Canada.

He was a recipient of the Alumni Gold Medal at the 2009 Convocation
Ceremony. The Gold Medal is awarded once a year to honour the top Ph.D.
graduate from the University of Waterloo. His papers have been published by
top journals and conferences and received several best paper awards. He is
also active in serving research communities.

	Auditing anti-malware tools by evolving Android malware and dynamic loading technique
	Citation
	Author

	tmp.1579763432.pdf.KZ41o

