Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

2-2020

Five challenges in cloud-enabled intelligence and control

Tarek ABDELZAHER
Yifan HAO

Kasthuri JAYARAJAH
Singapore Management University, kasthurij@smu.edu.sg

Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Per SKARIN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Citation

ABDELZAHER, Tarek; HAQ, Yifan; JAYARAJAH, Kasthuri; MISRA, Archan; SKARIN, Per; YAO, Shuochao;
WEERAKOON MUDIYANSELAGE, Dulanga Kaveesha Weerakoon; and ARZEN, Karl-Erik. Five challenges in
cloud-enabled intelligence and control. (2020). ACM Transactions on Internet Technology. 20, (1), 1-19.
Available at: https://ink.library.smu.edu.sg/sis_research/4852

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4852&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author

Tarek ABDELZAHER, Yifan HAOQ, Kasthuri JAYARAJAH, Archan MISRA, Per SKARIN, Shuochao YAOQ,
Dulanga Kaveesha Weerakoon WEERAKOON MUDIYANSELAGE, and Karl-Erik ARZEN

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4852

https://ink.library.smu.edu.sg/sis_research/4852

Five Challenges in Cloud-Enabled Intelligence and Control

TAREK ABDELZAHER?, University of Illinois at Urbana Champaign
YIFAN HAO, University of Illinois at Urbana Champaign
KASTHURI JAYARAJAH, Singapore Management University
ARCHAN MISRA, Singapore Management University

PER SKARIN, Lund University

SHUOCHAO YAO, University of Illinois at Urbana Champaign
DULANGA WEERAKOON, Singapore Management University
KARL-ERIK ARZEN, Lund University

ACM Reference format:

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao, Dulanga Weerakoon,
and Karl-Erik Arzén. 2019. Five Challenges in Cloud-Enabled Intelligence and Control. ACM Trans. Internet
Technol. 00, 0, Article 000 (2019), 19 pages.

https://doi.org/lo. 1145/1122445.1122456

1 INTRODUCTION

A growing category of cloud applications will be ones that support edge intelligence. These
applications are brought about by a confluence of three global trends: (i) the proliferation of
connected embedded devices, (ii) the growing need for intelligent sensing and control solutions to a
broad set of problems, from home-automation to industrial control, and (iii) the promise of LAN-
like speeds offered by the emerging 5G wireless infrastructure, breaking communication barriers
and better supporting computational offloading. These directions will change the nature of cloud
workloads, motivating new research challenges [1].

In this envisioned world, embedded devices (or “things") will be capable of human-like inter-
actions with their environment, including speech recognition, vision, and gesture understanding.
These capabilities will bring about such features as verbal device control, user authentication, and
gesture-based human machine communication. Control loops will be closed by separating simple
reflex-like functions that ensure safety from more computationally-involved planning, reasoning,
and learning functions that will improve performance over time and offer additional assurances.

These goals will be accomplished by allowing offloading (the heavier) machine intelligence and
optimization tasks, both on the sensing and control sides. Indeed, the disparity between the resource-
constrained nature of embedded IoT devices and the computational needs of the aforementioned
interactions suggests that data processing will be increasingly offloaded to external servers. Today,
precursors of such services include speech recognition for home control chatbots (e.g., Amazon

* Authors listed alphabetically. Per Skarin and Karl-Erik Arzén contributed the most to the Journal revision.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1533-5399/2019/0-ART000 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,
000:2 Dulanga Weerakoon, and Karl-Erik Arzén

Echo and Google Home), as well as language translation for mobile phones (e.g., SIRI and Google
Assistant), done mostly in the cloud. With the increasing popularity of edge computing, external
servers will likely move closer to the clients, and some functionality will be “cached" on the local
device. On the control side, improved control strategies will be learned using computationally
heavy techniques such as deep reinforcement learning. These learned techniques will set parameter
values of simpler controllers that themselves could execute closer to their clients (the controlled
processes).

A business, such as a management service for a shopping mall, for example, might host its own
edge servers to satisfy the information processing and actuation needs of its local IoT devices. On
the sensing side, these devices might include mall surveillance cameras, smart fitting rooms that
suggest better-fitting items to customers, audio-based chatbots that offer directory assistance, and
indeed customers’ own phones (that run the appropriate app). Inference models that support such
user interactions might be downloaded (after simplification to reduce size) to the individual IoT
devices engaged in those interactions as a form of “caching". On the control side, the infrastructure
might run reinforcement learning algorithms to optimize such actuation decisions as mall lighting,
color, temperature, and background music to best complement the merchandise, encourage a more
productive customer flow, and create better shopping experiences.

This paper describes key research challenges that arise in realizing the above vision. We focus
on challenges specific to the introduction of machine learning and control as a service into the
overall framework. The broader scope of research challenges in building a viable distributed IoT
service infrastructure is clearly much more versatile. Issues, such as privacy, security, reliability,
and availability must be addressed. To keep this paper focused, we limit ourselves to challenges
that arise specifically from implementing the machine intelligence and control service to support
future multitier IoT applications that span embedded devices, edge computing, and cloud tiers. A
primary theme lies in computational offloading of key service functions while reducing aspects of
service cost. We call these challenges cloud-enabled intelligence and control challenges.

The rest of this paper is organized as follows. To set some context, Section 2 introduces the
key architectural assumptions of the discussed cloud-enabled intelligence and control services.
Section 3 through Section 7 discuss the five key challenges; namely, (i) learning, (ii) quality-assured
sensing, (iii) control and optimization, (iv) closed-loop guarantees, and (v) collaborative execution.
Finally, we conclude in Section 8, and outline other possible future work.

2 CORE ARCHITECTURE

To set the context for the upcoming discussion of challenges, we present some broad architectural
assumptions below. Consistently with common definitions of 10T, the hardware infrastructure
considered here consists at the lowest level of a set of sensor and actuator devices including both
low-end embedded devices such as small sensors and RFIDs, and more powerful devices such
as actuators, cameras, smartphones, mobile robots, industrial robots, local control devices, and
even vehicles. However, they all share the property that they have limited compute and/or storage
capacity in relation to the task at hand and therefore need support for offloading. The devices are
either connected directly to the Internet using cellular radio technology such as 4G/LTE or 5G or
communicate with a dedicated edge node using, for example, Wifi, Zigbee or Bluetooth. The edge
node can either itself participate in the offloading or serve as gateway to the Internet.

On the software side, advances in virtualization suggest an architecture where computations
can be placed anywhere from an edge node or a local edge data center (e.g., one connected to
a radio base station) to conventional remote data centers, and possibly even in between within
the core network nodes. This software model comes in many names, including Edge, Cloudlet or
Fog architecture [28]. Local data centers within the core communication network are becoming a

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Five Challenges in Cloud-Enabled Intelligence and Control 000:3

Internet

Edge data center

Fig. 1. System Architecture, from [2].

reality due to the network function virtualization (NFV) trend [7], where network functions (e.g.,
domain naming functions, caching, intrusion detection functions, and firewalls) are implemented
using virtualized software and cloud technology rather than as monolithic hardware and software
components. In a 5G-like framework, the timing constraints of NFVs require that these computations
be located close to the wireless radio base stations. The resulting system architecture is shown in
Fig. 1.

The resource characteristics of this architecture are as follows. The closer to the remote data
center a computation is performed, the longer the communication delay will be, the shorter the
computational delay will be (more powerful servers), and the larger the compute capacity will
be (more servers). The same relationship exists for storage resources. The further up towards the
remote data center, the larger the storage capacity will be. However, due to legal reasons and
privacy issues, many applications have restrictions on where data may be stored. For example,
some data may only be stored in a very close vicinity of the device or other data may only be stored
in a node that is localized in a certain geographical region.

3 CHALLENGE I: LEARNING AS A SERVICE

How can one implement learning as a general-purpose service? The answer perhaps depends on
the type of learning algorithm and the type of application. To offer more concrete examples, in
this section, we focus specifically on deep learning for IoT applications with rich sensing data. In
data-rich contexts, deep neural networks will likely be used increasingly as instruments of machine
intelligence in the foreseeable future. This choice is motivated by the emergence of deep learning as
the state-of-the-art computational intelligence solution for a large spectrum of IoT applications [26].
Besides breakthroughs in processing images and speech using deep learning techniques [8, 10],
specific neural network structures have been designed to fuse multiple sensing modalities and
extract temporal relationships [22]. The increasing number of studies on applying deep learning
in the area of cyber-physical systems (CPS) and IoT [12, 22, 24, 27] make it a prime candidate for
realizing the intelligent capabilities. Most importantly, deep learning solutions require very little
customization and parameter tuning, making them convenient as a general intelligence support
engine.

An interesting advantage of deep learning lies in that neural networks offer a great portable
representation of learning service implementation. Much like language virtual machines (e.g., Java
and Python), new services will allow the expression of processing/inference tasks in an efficient

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,
000:4 Dulanga Weerakoon, and Karl-Erik Arzén

intermediate form: This form, we argue, could be the neural network model. The model specifies
network topology and edge weights, as well as other hyperparameters such as the type of activation
functions used. With those parameters, it becomes possible to implement inference algorithms
(specified by the model) that perform classification, prediction, estimation, or control functions. By
distributing the neural network across multiple machines, it further becomes possible to distribute
the service implementation.

Cloud services may then fully or partially offload from IoT devices the training and/or execution
of machine learning algorithms, such as classifiers or predictors, to do a myriad of common
estimation and recognition tasks based on device data such as visual inputs, speech, or gestures.
Clients would ask the service to (i) generate deep neural network models (from client-supplied
training data), (i) help with (automatic) labeling of data sets, and (iii) perform model reduction
(if needed for caching). Generated models might be executed as appropriate on the server, client,
or any device that supports the “neural network virtual machine”. System support is needed on
servers to enable efficient scheduling of inference tasks (that execute the neural network models on
incoming client-supplied data in real-time). A scheduler might maximize a suitably defined notion
of utility to improve quality of inference results. Auxiliary functions are needed such as profiling.
They will allow enhanced (neural network) model parameterization to improve accuracy and/or
cost. Deep learning frameworks have at least two further advantages over alternative solutions:

e Arguably, in many scenarios, one can use laws of physics to derive the needed inference
results from sensor data. For example, in a location estimation task, one can double-integrate
inputs that comprise accelerometer data to obtain velocity and position. The problem with
such approaches is two-fold. First, they require that application-specific models of underlying
physical phenomena be developed and given to the service. Second, they rely on under-
standing accurate models of noise. Most estimators make assumptions on the statistical
distribution of noise offering accurate results only when such assumptions are satisfied. In a
complex environment, noise is hard to model. It may be non-linear, non-additive, correlated,
and biased. Recent results in deep learning demonstrate that the network can learn very
complex nonlinear relations, allowing better extraction of signals from noise (even when the
two are intertwined in a complex nonlinear fashion) [22]. Best of all, such extraction is fully
automated, thus requiring no human intervention or expertise.

e Furthermore, unlike other machine learning approaches that rely on the design of clever
input features (to support the intended estimation or classification tasks), deep learning
has the advantage of being able to ingest raw data directly and automatically compose
relevant features by adjusting link weights. Hence, less human effort is consumed in feature
engineering.

In a world dominated by data and computing devices, saving human cognitive bandwidth by
employing a machine is a great trade-off. With that in-mind, we describe two key tasks that are
needed to implement deep intelligence as a service. We argue that these tasks constitute the service
core, although additional (more general) challenges should be solved, including privacy, security,
and availability, in a typical service implementation.

3.1 Training and Data Labeling

To facilitate learning from data collected by the embedded devices, training and data labeling
services will execute on the back-end to produce the (trained) neural networks necessary for
various inference and estimation tasks. The most basic service is to ingest labeled raw data from
clients and train the eventual neural network model on the server. Since it is expensive to label

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Five Challenges in Cloud-Enabled Intelligence and Control 000:5

a lot of data manually, another service would be to assist with automatic labeling. Recent work
suggests the viability of automating such services:

e Training: In many cases, IoT devices will have already collected large amounts of sensory
data (such as video footage from security cameras). Often, labels are available retrospectively
(such as instances of various security breaches caught on camera). This offers opportunities
for training the system to identify (and alert to) similar instances in the future. The feasibility
of such a service was recently discussed in DeepSense [22], a general-purpose learning
framework for sensor fusion systems. It integrates convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) to extract spatio-temporal features of input signals.
Sensory data are aligned and divided into time intervals for processing. For each interval,
DeepSense first applies an individual CNN to each sensor data stream, encoding relevant local
features. A (global) CNN is then applied to the respective outputs to model interactions among
multiple sensors for effective sensor fusion. Next, an RNN is applied to extract temporal
trends. Intelligent IoT applications will generally need two important functions: estimation
and classification (depending on whether the sought results are continuous or categorical,
respectively). Hence, at the last stage, either an affine transformation or a softmax output
is used by DeepSense, depending on whether the output is an estimation or a classification
result. Accordingly, it becomes possible to perform complex multi-sensor fusion tasks for
purposes of estimation or classification from time-series data.

e Labeling: A general disadvantage of deep learning methods lies in the need for large amounts
of labelled data. To learn well from empirical measurements, the neural network must be given
a sufficient number of labelled examples from which network parameters are to be estimated.
Since the number of parameters is large, so is the required number of labelled examples. In
order to make deep learning services practical, a key challenge is thus to reduce the need for
labeled data. One could address this challenge by employing a recently proposed approach
that uses Generative Adversarial Networks (GAN) to learn from mostly unlabeled data [25].
Unlabeled data carries information on the structure of the input space. By overlaying it with
labeled data, one can better observe the emergence of input data clusters corresponding
to different labels. A small number of labeled points within a cluster can thus inform the
labeling of the remaining points. Using this intuition, the GAN learns by playing a game of
progressive refinement of both the dimensions in which points are virtually clustered and the
rules for cluster separation. In this game, one entity proposes labels for unlabeled samples,
whereas another tries to distinguish the resulting labeled samples from the original labeled
ones. As the game proceeds, both entities learn from each other ultimately producing labels
that are hard to falsify. Empirical results show that these eventual artificially produced labels
(for originally unlabeled data) help improve accuracy of learning applications almost as much
as the ground-truth labels themselves [25]. The approach significantly reduces reliance of the
learning service on availability of large amounts of labeled data, allowing the exploitation of
more easily attainable unlabeled data instead.

The limitations of automated deep learning and labeling services remain to be investigated, but
preliminary evidence suggests that they are effective compared to more traditional machine learning
approaches and can work well even when most data are unlabeled.

3.2 Model Reduction and Caching

Once trained, deep neural networks can be used to perform complex estimation, prediction, detec-
tion, or identification/classification tasks. Typical networks produced by deep learning techniques
are very large. They may include several hundreds of layers, each composed of possibly thousands

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,
000:6 Dulanga Weerakoon, and Karl-Erik Arzén

of nodes. As such, they need to execute on appropriately well-resourced machines, resulting in
communication between end-devices (e.g., sensors making new observations) and well-resourced
back-ends every time the device needs to run the service on a new data item. In environments where
the communication bandwidth of the end-device is not plentiful, it is advantageous to execute
some inference tasks locally. This need calls for reducing the relevant neural network models to a
footprint that fits the end device. Hence, a model reduction service is needed.

The feasibility of an efficient neural network model reduction service is attributed to two
observations. First, it is often the case that phenomena observed by sensors evolve over lower-
dimensional manifolds. In this case, the large neural network is an overkill and compression is
possible. Second, in many applications, the most frequent inputs to a device comprise only a very
small fraction of the much larger potential input space. For example, in a service where users
typically give yes/no answers, recognizing responses such as “yes" and “no" versus neither (referring
to all other utterances besides these two) should be easier than distinguishing all possible spoken
words. In this scenario, neural networks produced by deep learning methods can be reduced in size
without significant loss of accuracy in the common case. Much like caching, a reduced network
model can run locally on the resource-limited embedded device to handle common inputs (e.g., to
recognize “yes" and “no" in the above example). The identification of an uncommon occurrence
(e.g., the occurrence of other words) is viewed as a cache miss that triggers full network execution
on the server.

Several attempts were made to simplify deep neural networks after they have been trained.
Commonly, a compression service removes edges that have low weights. The removal produces a
sparse matrix (to represent the neural network), where most of the cells are zeros. The sparsity of
the matrix allows for reductions in storage and computation time. Unfortunately, prior work has
shown that these reductions do not scale proportionally to the fraction of zero entries in the sparse
matrix [27]. This is because sparse matrix algebra is not as efficient as dense matrix algebra. Hence,
as the matrix becomes sparse, additional overhead is introduced to take advantage of sparsity
(compared to when it was dense), thereby offsetting some of the savings. A promising solution for
a model reduction service is one that removes nodes instead of edges in the neural network to fix
the above sparse matrix problem. Removal of entire nodes from the neural network is equivalent to
removal of entire rows/columns from the corresponding matrix. This produces a new matrix that
is also dense, but that has smaller dimensions. The approach was shown to be significantly more
effective at reducing resource consumption without degrading quality [27]. The resulting compact
neural network models are therefore suitable for execution on resource-limited nodes.

To automate caching, the system must decide on what constitutes frequent inference tasks. The
inference models (i.e., neural networks) pertaining to those specific tasks can then be reduced and
cached. Several interesting questions arise in implementing this mechanism. For example, when
exactly should the system decide that an item or set of items are frequent? How small or large
should the set of items be to make it worth developing a reduced model for? How to automatically
adapt answers to the above two questions according to the capability of the local device, and the
bandwidth of its communication link? Finally, when should the cached model be removed from the
device? These questions are a topic of future work.

4 CHALLENGE II: SENSING QUALITY ASSURANCE

The complexity of sensing and control applications and the presence of learning components leads
to a very important challenge: how to make guarantees on quality of results? Furthermore, in an
environment where cloud-assisted execution incurs cost, it is important to understand the trade-offs
between incurred resource demand and result quality. This need gives rise to several key research
opportunities.

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Five Challenges in Cloud-Enabled Intelligence and Control 000:7

4.1 Profiling Support

Going back to the deep learning example, on the server side, execution efficiency considerations
suggest the need to understand the relation between neural network structure and execution
overhead. Prior work has shown that simply counting the number of neural network parameters
and/or the total FLOPs involved in processing does not lead to good estimates of execution time
because the relation between these predictors and execution time is highly non-linear [23]. Table 1
(reproduced from [23]) shows that neural networks with the same number of FLOPs (e.g., CNN1
and CNNZ2) can differ significantly in execution time. In fact, networks with fewer FLOPs can take
longer to execute (e.g., CNN3 compared to CNN4).

Table 1. Execution time of convolutional layers with 3 X 3 kernel size, stride 1, same padding, and 224 X 224
input image size on the Nexus 5 phone.

[[in_channel [out_channel | FLOPs [Time (ms) |
CNN1 8 32 4524 M 114.9
CNN2 32 8 4524 M 300.2
CNN3 66 32 37323 M 908.3
CNN4 43 64 4863.3 M 751.7

Understanding the causes of nonlinear relations between neural network parameter settings and
the resulting execution time, energy, and memory consumption is thus key to developing efficient
deep learning service implementations. One may leverage recent work [23] that addressed the
above challenge by implementing an automated profiling system that breaks execution models
into piece-wise linear regions, and uses regression over the (automatically identified) relevant
neural network parameters within each region to develop a predictive model of execution time
in that region. A similar approach can be developed for modeling/minimizing energy or memory
consumption. Such a profiling tool would optimize performance on the server side (as it will
typically not have access to profiling results on the client). For example, leveraging the identified
nonlinear behavior, it might become possible to increase neural network size and accuracy while at
the same time reduce its execution overhead (as illustrated by comparing CNN4 to CNN3 in Table 1).

4.2 Result Quality Estimation

To assess the trade-off between resource cost and result quality, it remains to assess the quality of
inference results produced by learning models. To support mission-critical applications, the service
must offer principled uncertainty estimates that faithfully reflect the correctness of its predictions.
Methods are needed that provide accurate uncertainty estimates in results obtained from deep
learning models. Moreover, the uncertainty estimation must be resource efficient.

Recently, a well-calibrated and efficient uncertainty estimation algorithm was proposed for
multi-sensor data fusion, called RDeepSense [24] (as an extension of DeepSense [22]). It emits
a distribution estimate instead of a point estimate at the output layer. Intuitively speaking, the
algorithm models node outputs with random variables and estimates their distribution parameters.
Estimation of the mean of the random variable is what traditional learning does. Estimation of the
variance, however, is what yields confidence in results. A smaller estimated variance corresponds
to a higher confidence in the computed mean.

Interestingly, the estimation of the mean and the estimation of the variance are interrelated.
Typically, the estimator jointly determines both by minimizing some error function. The choice of
that function has an important effect on estimation accuracy of the two parameters. Specifically,
using common error functions, such as the mean square error, were shown to underestimate the
uncertainty. This is so because such an estimator predicts a very accurate mean value. If the mean

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,
000:8 Dulanga Weerakoon, and Karl-Erik Arzén

value is estimated well, the variance observed around that mean on training data is small and may
thus underestimate variance encountered later during testing. In contrast, when using a nonlinear
error function, such as the negative log-likelihood, the estimated mean is often biased (because
the nonlinearity penalizes erring on one side more than erring on the other, causing the estimated
mean to drift towards the heavily penalized side). The biased (i.e., incorrect) mean estimate results
in increased measured variance around the mean, leading to an artificially inflated uncertainty
estimate.

One can exploit the above intuition to arrive at an estimate of variance that neither underestimates
nor overestimates the true value. The idea is to use a weighted sum of the above two error functions
(namely, mean square error and negative log-likelihood) as the combined loss function [25]. The
weights are adjusted (calibrated) such that the underestimation and overestimation roughly cancel
out. RDeepSense was shown to generate very good uncertainty estimates that allow defining
accurate confidence intervals for outputs of the deep learner.

The ability to compute confidence in deep learning results offers another interesting resource
optimization possibility. Namely, one may structure a deep neural network into stages, each
consisting of several layers, and compute confidence in (intermediate) results after each stage. Once
a high-enough confidence is reported, it becomes possible to skip the execution of the remaining
stages. For example, consider a deep neural network whose job is to identify the presence of
humans in a landscape. The presence of humans may be easier to identify in some images than
others. Consequently, it could be that fewer stages need to be executed for some images to reach
an acceptable level of confidence in results.

4.3 Assured-Quality Run-time Inference

Putting profiling and quality estimation together, it is possible to offer an assured-quality run-time
inference service. The goal is to perform inference with a required degree of quality. The service
would accept data from end devices that may choose to offload inference processing to the server,
and return inference results together with a confidence estimate. An important design consideration
is scalability, which calls for execution efficiency. Recent studies on deep learning have shown that
improvements in result accuracy diminish with increased depth of the neural network [8]. Hence,
efficiency considerations suggest that once the desired quality is achieved, the service should refrain
from executing additional layers.

One idea would be to schedule inference tasks in a way that optimizes total utility. The resulting
overall run-time inference architecture is described in Figure 2. As shown in Figure 2, the deep
neural network is separated into multiple layers. These layers are grouped into a small number of
stages (of multiple layers each). At the end of each stage, a thin softmax function layer is attached to
compute a classification at selected internal layers, as well as confidence in such classification. The
scheduler determines how many stages to execute to avoid diminishing returns. This architecture
is described in more detail in [1].

5 CHALLENGE IIIl: OFFLOADING OPTIMIZATION AND CONTROL

Complementing the challenges described so far, that focus on intelligent (open loop) inference
from sensor data, we now describe challenges in closing the loop. Much like intelligent sensing,
certain control functions can be offloaded to more capable nodes. Hence, while the previous sections
focused on the neural network model as the element of characterization (to compute its parameters),
offloading, or caching, in this section we consider the controller to be that element. Below we
explore characteristics of control models and give several examples of cooperation between client,
edge, and cloud nodes for executing them.

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Five Challenges in Cloud-Enabled Intelligence and Control 000:9

Trained with Confidence Calibration

r-— - - - - - — = —_— — — - T ¢ -
| —> Staget T Stage 2 T Stage 3 —l | }é
S
§
l (ClassiﬁeD (CIassiﬁeD (ClassiﬁeD I g —
L — — — =/ — — T ¢ - = = _¢ — 4 Stage
| Dynamic Confidence Curve e
L=
r— - - — — — — — —. — = — — Bl g =
3 e B
|—> Stage 1 T Stage 2 T Stage 3 —l | ‘E >
5
o <
l (ClassiﬁeD (ClassiﬁeD (CIassiﬁeD I g o
L — — — T — —] Stage C
Y A 4 =
| Dynamic Confidence Curve _g
o ()
H e
M4 |9}
. w
r— - - — —_ - — — — — — — — a g
|—> Stage 1 T Stage 2 T Stage 3 —l | % ~
S
$
l (ClassiﬁeD (ClassiﬁeD (CIassiﬁeD I §
L] Stage
Y Y Y

| Dynamic Confidence Curve

Fig. 2. An Architecture for Utility Maximization in Deep Intelligence Services.

5.1 Control Characteristics

A first question to ask is what type of control that may benefit from offloading. In industrial process
control the basic control is often provided by Proportional, Integral, and Derivative (PID) controllers.
These controllers require very few computations (e.g., around 15-20 lines of C code is enough
for a good PID controller including the code for the logical safety network). The same holds for
control in home automation, where often even simpler controllers are used (e.g., on-off controllers,
proportional controllers, or integral controllers). For these types of controllers offloading is not
worthwhile.

However, there are a number of control loop examples for which offloading is realistic. One such
example is when a (possibly simple) controller interacts with a more complex sensor of the sort
described earlier in this paper. In that category are controllers based on vision feedback. Consider
a camera used as a sensor. Compute-intensive image processing may be needed. For example, in a
self-driving car, a deep neural network might be used to extract object information from a video
stream in order to recognize obstacles, determine positions and trajectories of other vehicles, and
finally control the trajectory of the autonomous car.

Another example is optimization-based control. Here, the control algorithm consists of the
on-line solution to an optimization problem. The computational demands of this optimization
problem depend on both the nature of the underlying control problem and the related safety
and performance requirements. The simplest case consists of a linear controlled process and an
optimization problem with a quadratic cost function and linear constraints. This gives rise to a
quadratic programming problem for which very efficient solvers are available. Yet, even with state-
of-art solvers, the computation time may vary substantially depending on whether the constraints
are active or not. In the case of nonlinear processes, either gain-scheduling between a set of linear
optimization problems can be used or a nonlinear optimization problem must be formulated. The

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,
000:10 Dulanga Weerakoon, and Karl-Erik Arzén

latter can be very time consuming and require far more compute resources than what is available
on local devices.

The third example is control based on models derived using machine learning. Here a number of
settings are possible. One possibility is to model the controlled process using the nonlinear neural
network equivalent of a auto-regression, moving aggregate (ARMA) model. The ARMA model of a
linear single-input, single-output (SISO) process is given by

y(k) + aiyk = 1) + -~ + any(k —n) =
boutk —d) + -+ + bp,u(k —d — np)

where y(k) is the process output at time k, u(k) is the process input at time k, n is the order of the
process, d is the pole excess of the process, and ny, is the number of zeros of the the process. Using
a, possibly deep, recurrent neural network (RNN), the corresponding nonlinear process model can
be obtained as:

(1)

y(k) = RNN(y(k — 1),...,y(k — n),)

wk—-d),...,ulk—d—-nyp)) @

This model can then be trained, for example, using stochastic gradient descent by observing true

process input and output as training data. The model can also be extended to cover noise in the

form of an ARMAX model (ARMA model with exogenous inputs). Another example of machine
learning-based control is reinforcement learning, see Section 5.3.

5.2 Challenges and Opportunities in Controller Offloading

A general problem with offloading controllers is the increased latency from the sensing to the
actuation that it incurs. Control performance and stability crucially depend on the latency and the
variations in latency, also known as jitter. The longer the latency, the worse the performance. It is
often possible to partially compensate for the effects of the latency, but it can never be completely
undone. In general, the compensation becomes easier the smaller the jitter is.

A second problem with offloading, in particular when wireless networks are involved, is the risk
of completely losing the connectivity between the local device that is connected to the process under
control and the node to which the computations have been offloaded. Many control applications
are mission-critical and require that the controller promptly reacts to disturbances and commands
(e.g., changes in the set-point or reference signal). Therefore it is essential that the control that is
offloaded and is executing remotely (e.g., at the edge or in a remote data center) is complemented
with a local controller executing on the local device that is able to provide some basic level of
performance in case of connectivity loss. Related to this is also the question of when to switch
between the local and remote controllers, and which information the decision to switch should be
based on. A problem related to this is dynamic changes in the latency characteristics caused by
migration of the offloaded computations between different nodes in the network due to resource
load balancing and other cloud artifacts. This means that latency will not only vary due to varying
computation times (e.g., in an optimization algorithm) and communication delays (e.g., due to
packet collisions), but also due to changes in the placement of the computations and to varying
request admission times.

However, using the cloud for offloading also has several advantages. The illusion of infinite
compute and storage resources that the cloud and the edge/fog provide opens up a number of
interesting possibilities for control applications. The resources can be used for executing more
advanced control strategies (e.g., based on online optimization and learning using massive data
sets), than what is possible on the local device. The cloud can scale resources with the problem and
implement efficient strategies for each computation. This allows the controller to evaluate complex
problems that are too computationally demanding to perform locally. Information made available

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Five Challenges in Cloud-Enabled Intelligence and Control 000:11

through the communication network (e.g., additional more complex models and information about
other similar application types) can be incorporated and used to improve the control, avoiding the
overhead and potential concerns of communicating this information to the local device.

5.3 Learning-Based Control

The use of learning techniques in closed loop control has a long history. One of the first examples
is dual control proposed in the mid 1960s [5]. The term dual refers to the need for the controller to
both online identify, or estimate, the model of the process, and to utilize this model to control the
process under uncertainty. This trade-off is the same as what is known in the machine learning
community as the trade-off between exploration and exploitation. The optimal solution to the
dual control problem can be found using value functions and dynamic programming [3]. Dual
control was relatively popular in the control research community during the 1970s but because
the approach suffers from the curse of dimensionality this interest soon decayed due to the lack
of computing power at the time. Instead the focus shifted to adaptive control formulations based
either on approximations or reformulations of the optimal dual control problem.

The interest for learning-based control has exploded during the last 10 years, mainly as a result of
the success that reinforcement learning (RL) has had for various applications [21]. A major reason
for this success is the availability of large-scale compute facilities based on hardware acceleration
and cloud technology which is available now but not during the 1970s. RL has many similarities
with dual control. Both frameworks are based on dynamic programming and for both the trade-off
between exploration and exploitation is essential, see [17] for a comparison. The major successes
of RL have, however, been found for applications where the state space and the action space are
discrete, e.g., different game playing applications such as Atari [15], AlphaGo for playing Go [19]
and AlphaZero for playing chess [18]. There the results have been spectacular, by far outperforming
the best human players. However, as soon as the state and/or action spaces are continuous the
results are so far less convincing. Also for discrete domain applications it is very common that
the size of the state space is so large that it cannot be represented explicitly, e.g., the size of the
state space of Go is ~ 10'7°. Instead, the value functions are approximated using some function
approximation method, e.g., a deep neural network, and then the difference between applications
with discrete and continuous state-spaces becomes smaller. For example, Google and DeepMind are
currently developing RL-based systems for autonomous data center cooling control [13]. Hence,
a generic deep NN service that supports offloading of machine learning applications for IoT as
described in Section 3 is applicable also to on-line learning-based control.

5.4 Optimization-Based Control

An increasingly popular control technique is optimization-based control. Here, an optimization-
problem is solved repeatedly at each sampling instant. The optimization problem is formulated
so that it minimizes some cost function subject to the dynamics of the process under control and
constraints on, e.g., the control signal, the process output, or the process states. Depending on the
process model and the cost function this can be more or less time-consuming. It is also typically such
that the time it takes to perform the optimization varies depending on how close the constraints
are to being violated, i.e., the closer the constraints are to being violated the longer time it takes to
solve the optimization problem.

The most commonly used form of optimization-based control is Model-Predictive Control
(MPC) [16]. In the common case it is assumed that the process is linear and that the cost func-
tion to be minimized is quadratic in the process state and control signals. This leads to a convex
optimization problem.

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,
000:12 Dulanga Weerakoon, and Karl-Erik Arzén

A discrete-time linear Model Predictive Control (MPC) is specified by Equation (3). It uses the
cost function I(xg, ur) = xZka + u,{Ruk, a cost P applied to the final state (referred to as the
terminal cost), a system model defined by matrices A and B, and inequality and equality constraints
set by the matrix vector pairs G, g and H, h respectively. The cost matrix Q penalizes moving away
from the desired state while R penalizes the control signal.

k+N-1
minimize J = Z xiTQxi + ul-TRu,- + le+Nka+N
u
i=k
subject to x;41 = Ax; + Bu; ®3)

X; X;

G l]Sg,H[’]:h
Uuj Uu;

The optimization is executed at each sample and the output from the optimization is a time
sequence of control signals that should be applied to the process from time step k + 1 to k + N,
where N is the prediction horizon. However, only the first signal in the sequence is normally used
and applied as an input to the process. The remaining signals are simply discarded and the entire
operation is performed anew at the next sampling instant. The latter is what gives rise to the
feedback property in the MPC approach. An issue that still often is approached heuristically is how
to chose the prediction horizon N. A small horizon implies a smaller optimization problem that is
faster to solve, but which may lead to an unstable closed loop control system and an unfeasible
optimization problem, i.e., where it is not possible to find a solution that fulfills the constraints. A
long horizon is advantageous with respect to stability but generates a larger optimization problem
that takes longer time to solve. The prediction horizon can be viewed as a hyper-parameter for
MPC.

The large computation time required for MPC compared to most other controller types makes
it a natural candidate for offloading. In the next section a cloud-assisted approach to offloading
of the MPC computations is presented that takes latency variations and connectivity losses into
account and offers guarantees on closed-loop behavior in the presence of delays and connectivity
disruptions between edge and cloud.

6 CHALLENGE IV: CLOSED LOOP GUARANTEES

A key challenge in controller offloading is to provide some guarantees on closed loop performance,
even in the presence of unpredictable latency or loss of connectivity. Specifically, we shall address
the problem of guaranteeing closed loop stability. Stability often requires that the control loop remain
closed. The general solution is thus to use a local controller that can take over from the remote
controller when communication is lost or the latency is too long. A challenge is to understand the
conditions under which such a hybrid scheme might offer stability assurances. Beyond stability,
one can also consider other guarantees, such as those on worst-case response time, maximum
overshoot, or worst-case settling time.

Control theory offers rich literature on techniques used to attain the aforementioned guarantees
in the context of controlling both physical [4] and computational [9] systems. Most of that literature
assumes sufficient connectivity between the control algorithm on one hand, and the sensors and
actuators on the other. When the controller is in the cloud, this basic connectivity assumption
underlying (most) existing literature may be violated. Lack of predictable connectivity makes it
challenging to offload control algorithms away from the controlled system. Below, we exemplify
that challenge in the context of offloading MPC controllers.

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Five Challenges in Cloud-Enabled Intelligence and Control 000:13

Data center
Optimization

Y — Optimization

2 -

Device o
——— MPC } Optimization
LQR T
Edge

— Optimization

Fig. 3. Cloud assisted MPC

The local controller implemented in the device is a Linear Quadratic Regulator (LQR) [11]. The
LOR and the MPC controllers have strong connections. For example, the LQR controller is obtained
as the solution to Equation (3) when the horizon N goes to infinity and there are no constraints.
However, the LQR can be derived analytically through solving a Riccati equation without requiring
on-line optimization. The resulting controller is a simple state feedback controller, see Equation
(4), of low complexity making it straightforward to implement it on a local resource-constrained
device.

up = —Kxy (4)

The idea behind the cloud-assisted offloading approach described here is to, under normal and
fault-free conditions, execute the MPC in the cloud. The estimated state variables are communicated
from the local device to the cloud at every sampling instant and the resulting control sequence is
returned to the local device where the actuation is performed. The state estimator is setup so that
it at time instant k estimates the state at time k + 1 and uses this as the input to the MPC. When
results are returned, which we here assume takes place sometime between time k and k + 1, the
actuation is delayed until time k + 1. This results in a constant control latency of one sampling
period, a period during which the controller continuously collects results. However, the approach
can be extended to multiple sampling periods.

What is particular to this cloud-assisted MPC approach is that, due to the freedom that is available
in selecting the horizon N, not only one MPC optimization request is performed in the cloud, but
several, each with a different value of N. The requests could be executed at the same node or at
different nodes, e.g., some could execute in an edge node and some in a remote data center, see
Figure 3. Depending on where the execution takes place the communication and computation
latency will be different. Some of the request responses will be lost, either because the optimization
problem was unfeasible or that the latency caused the response to arrive at the local device too
late, i.e., after time k + 1, and therefor was discarded. The result of this is that at time k + 1 when
the actuation should be performed several control signal sequences are available corresponding to
different horizons. he way the problem has been constructed all of these responses, if selected, give
rise to a working MPC controller. This leads to a choice in the selection of N and the possibility to
modify the placement of subsequent requests based on a trade-off between operational cost and
control performance. In the next sample the procedure is repeated. With connectivity maintained
this creates a closed loop MPC which is stable, feasible, and uses a variable prediction horizon.

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,
000:14 Dulanga Weerakoon, and Karl-Erik Arzén

If no responses have returned in time at time k + 1 then the cloud-assisted controller switches
to the local LQR controller. However, if this is done instantly the controller may rapidly change
course and violate constraints. An alternative would be to use an available control signal sequence
generated from a request at an earlier time instant, e.g., k — 1. This sequence would contain
u(k +1),u(k+2),...u(k+N),ie., itisin theory possible to use these pre-calculated control signals
during the prediction horizon while still issuing MPC optimization requests every sampling instant.
As a result of this new MPC responses may become available, making it possible to switch back to
the nominal operating mode, or the control signal sequence would terminate and then the switch
to the LQR controller would have to be performed. The drawback with this scheme is that the
process would run in open-loop as long as the pre-calculated control signal sequence was used,
ignoring disturbances and operator commands to, e.g., change the desired set-point of the controller.
Therefore an approach is used where a weighted control law gradually shifts the dominant control
signal from the one obtained from the cloud MPC to the one obtained using local LQR control,
according to below,

up = pli () + (1 = p(k)k, (), p € [0,1] ®)

where k;(-) and x,(-) are the LQR and the pre-calculated MPC control laws. When the transition
starts 3 is set to zero. When the transition is finished it is set to one, i.e., only LQR control is used.
During the transition f§ gradually increases from zero to one. In the case there are multiple "old"
control signal sequences to chose among, the one with the shortest horizon can be is used in order
to switch to LQR mode as quickly as possible, thus improving the disturbance handling. During
the LOR mode the local controller still issues MPC requests making it possible to switch back to
the nominal mode once the network connectivity is restored.

The proposed cloud-assisted MPC control scheme is described in more detail in [20]. A benefit
of this approach is that the stability conditions can be strictly imposed while allowing the horizon
to be undefined. By using the cloud, the design provides flexibility and solves some of the inherent
difficulties of MPC.

7 CHALLENGE V: COLLABORATIVE EXECUTION

In many environments, IoT devices are not deployed individually, but rather as a collection of
possibly heterogeneous nodes that together support an application. In this distributed environment,
how can one support such collaborative inferencing?

7.1 Distributing the Inference Model

Consider again a neural network that performs complex inferencing tasks that require substantial
resources. The multistage nature of neural networks allows for an interesting possibility to share
the load between clients and servers. Namely, in performing inference, it may be possible to execute
some stages of the neural network on the client, leaving other stages to execute on the server. If
the confidence in results obtained on the client is sufficiently high, no subsequent offloading to the
server is needed. Otherwise, processing continues on the server. The approach raises questions
regarding optimal partitioning of the model between the client and server. An ideal partitioning
should maximally reduce client reliance on remote processing on the server, while observing
client-side resource constraints as well as communication bandwidth constraints between the client
and server.

An extension of this collaboration model is one where multiple distributed sensors (the clients)
contribute data to be collectively used as input to the inference process. In one realization, clients
would send their raw data to the server. The server would execute the entire neural network model
on received data from all clients in order to compute inference results. In many cases, however, it

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Five Challenges in Cloud-Enabled Intelligence and Control 000:15

Bounding Boxes e

/ People Detection

f: - Mobilenet SSD
fj Person Recognizer \\
Inference of / - Mobilenet (128 person; ~
/ Bounding Boxes Baseline
Camera C [9 = \
| Person \
| Feature 1
V! Feature Extractor b8 |
/ k - Parallel Processing l.
2 [\ (Movidus) Person Recognizer C°"ah°r}’twe
/ \ - 128 Element Vectors] -
(Distance, Correlation) /

Inference Shared Y [\ (GAN)
by Camera B

Inference Shared
by Camera A

.
W a,
.

.

Legend
v i, Collaborating
.
e Cameras

ae
Shared
Inferences

4= >
!/{" Camera

Fig. 4. Collaborative loT (Camera) environment & Deep Inferencing Pipelines.

may be more efficient for clients to execute some part of the inference network locally on their
own data then send intermediate results to the server to continue model execution remotely. In the
latter case, how should the inference model be partitioned among nodes in the distributed system?
Optimal partitioning can take into account resources available on individual nodes, communication
bandwidth among them, as well as any end-to-end requirements such as maximum allowable
latency. Viewing neural network models as the intermediate code representation for a virtual
machine implies potential for great flexibility in how execution is partitioned in the distributed
system. Adaptive algorithms are needed to maximally exploit this flexibility (e.g., in mobile or
dynamic environments) where connectivity, power, and other local resources may change over
time.

7.2 Orchestrating Collaboration

A more interesting form of cooperative processing is one where the distributed devices cooperate
to mutually enhance each other’s performance. For example, two cameras may realize that they are
looking at the same target (e.g., because of the way they are positioned, and because of the location
of the target in their respective fields of view). Hence, rather than performing target classification
twice in two independent tasks, each running on inputs from one of the cameras, it might be
possible to join the tasks for better accuracy. How and when should one perform such a join to best
enhance classification results based on the collective data of both cameras? Note that, individually,
the two cameras might not have enough information to conclude that they are observing the same
target (e.g., they might not know that they have overlapping fields of view). However, a server,
observing classification outputs of the two cameras over time, may conclude that their fields of
view are indeed overlapping. This knowledge can thereafter be used to determine if their outputs
should be processed jointly to improve accuracy of classification. The same wisdom may apply to
sensors of different modalities, such as microphones and vibration sensors. In short, an edge server
offering intelligence as a service for a number of IoT devices may serve the additional function of
discovering correlations among their data (e.g., inferred from correlations in produced labels) that
can thereafter be used to reconfigure, and possibly re-train, the neural network model to better
exploit the data from these correlated sources.

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,

000:16 Dulanga Weerakoon, and Karl-Erik Arzén
Table 2. Collaborative Deep loT Inferencing
Approach Detection Accuracy | Recognition Latency
Individual 68% 550 msec
Collaborative 75.5% 25 msec

Consider, for example, a set of surveillance video cameras, deployed across a smart university
campus (as illustrated in Figure 4) to support applications such as people counting (estimating the
aggregated occupancy in different parts of the campus) or people tracking (capturing the movement
trajectory of a specific individual throughout the campus). Conventionally, we can envisage that
each camera operates as an isolated 10T device, applying state-of-the-art DNN-based techniques,
such as MobileNet Single-Shot Detectors (SSD) [14], to perform object (people) detection, followed
by object (people) identification, on each frame. Such an approach, however, has two limitations:
(a) poor processing efficiency: executing 2 independent DNNs even on a specialized edge node
(e.g., Intel’s Movidius™neuromorphic co-processor) consumes ~ 550 msecs/frame, implying a
processing throughput < 2fps; (b) lower accuracy: individual cameras may often be affected by
specific context-based artifacts (e.g., occlusions, poor lighting) that impair the object detection
process.

To overcome these limitations, it is possible to explore the notion of collaborative inferencing,
where the inferencing pipelines of different IoT devices exchange state information in near real
time and subsequently adapt their individual execution logic. As a specific illustrative example,
consider Figure 4, where each camera has a field-of-view (FoV) with varying degrees of overlap
with neighboring camerasiASe.g., cameras B and C both observe two individuals and a tree (from
different perspectives) concurrently. In this scenario, the cameras may collaborate to improve their
overall operational efficiency and accuracy. For example, one camera that detects individual bound-
ing boxes (individuals) in its FoV may share those bounding box coordinates with its neighboring
cameras. The other peer cameras can then supplement their own DNN-based inferences with these
additional object coordinates (suitably remapped to a common coordinate space) to improve both
their detection accuracy (for people counting) and reduce their processing latency (for individual
tracking).

The collaborative paradigm described above was evaluated with the PETS dataset [6], consisting
of 8 outdoor cameras. Table 2 summarizes the performance differences between the baseline (non-
collaborative) vs. the collaborative deep inferencing approach. We see that such collaboration
is indeed beneficial: it increases the people counting accuracy by >8%, and achieves a 20-fold
reduction in the average per-frame processing latency.

7.3 Services for Collaborative Inferencing

To realize the benefits of such collaborative deep inferencing, we believe that it will be important
to provide several new forms of functionality. These include:

e Collaboration Brokering: The collaborative video monitoring example provided earlier implic-
itly assumes that the cameras are aware of each other’s identity & the extent of FoV overlap.
Note that, such overlap need not be concurrent: one can envisage future scenarios where the
camera views are temporally correlated with a variable lag. For example, two corridors at two
ends of a campus building corridor are likely to observe the same individuals 20 seconds apart.
To easily support such dense [oT deployments, it is necessary to discover such correlations,
and establish the identity of collaborators, in a more autonomous fashion. By operating
on the metadata and higher-level inferences from individual nodes, it becomes possible to
discover and establish the relevant collaboration parameters. For example, a broker node

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Five Challenges in Cloud-Enabled Intelligence and Control 000:17

may instruct cameras A & B to apply the collaborative tracking mechanism discussed above,
but with a time lag of 20 seconds. Developing suitable mechanisms that uncover such useful
spatiotemporal correlations among IoT devices, while satisfying the requirements of low
communication overheads and privacy, is an open challenge.

e Resilient Collaboration: Collaborative deep inferencing, however, introduces a new form of
failure: their operation is vulnerable to incorrect or malicious behavior by individual IoT
nodes. For example, false or noisy bounding box estimates by one camera can reduce the
people detection accuracy of other peer cameras by over 20%. To promote practical use of
such collaboration paradigms, the architecture must also provide resiliency services that offer
protection against such adversarial behavior. One may need to continuously monitor the
output inference streams, and the internal parameters of relevant deep pipelines, of individual
IoT devices to first (a) proactively uncover faulty operational situations and subsequently (b)
provide suitable pipeline modifications to compensate for such faults.

8 CONCLUSIONS

This paper described five challenges in endowing future IoT applications with cloud-assisted
machine intelligence. Several service components were presented together with related challenges
at both training and inference time. Both sensing and control applications were considered. The work
aims to produce early prototypes of machine intelligence services for IoT systems, and contribute to
the realization of a new smart edge, where each device appears endowed with unlimited knowledge
and intelligent behavior. Indeed, understanding the true potential, capabilities, and limitations of
cloud-assisted intelligence and control may be the first step towards revolutionizing our interactions
with physical surroundings in the near future.

It should be understood that many other challenges exist in exploiting cloud computing to
support future IoT applications in general. Different types of applications may have different
emphasis, requirements, customers, and hence different challenges. The five challenges described in
this paper deal more directly with computational offloading to support intelligence and control as
a service, distilled from the authors’ own hand-on experience with related research projects. While
limited in scope, the work hopefully makes a step forward towards understanding the broader
eventual challenge landscape.

ACKNOWLEDGMENTS

This material is supported partially by the National Research Foundation, Prime Ministers Office,
Singapore, under its International Research Centers in Singapore Funding Initiative. It was also
partially supported by the Nordforsk University Network HI2OT, Sweden, and by the ITEA3 project
AutoDC. The research was also sponsored in part by NSF under grants CNS 16-18627 and CNS
13-20209, in part by the US Army Research Laboratory under Cooperative Agreements W911NF-
09-2-0053 and W911NF-17-2-0196, and in part by WASP (Wallenberg Al, Autonomous Systems
and Software Program) funded by the Knut and Alice Wallenberg foundation. The views and
conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the sponsors, the Army Research
Laboratory, NSF, or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation here on.

REFERENCES

[1] Tarek Abdelzaher, Shuochao Yao, Yifan Hao, Yiran Zhao, Ailing Piao, Huajie Shao, Dongxin Liu, Shengzhong Liu,
Shaohan Hu, Dulanga Weerakoon, Kasthuri Jayarajah, and Archan Misra. 2019. Eugene: Towards Deep Intelligence as
a Service. In In Proc. 39th IEEE International Conference on Distributed Computing Systems (ICDCS).

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra, Per Skarin, Shuochao Yao,
000:18 Dulanga Weerakoon, and Karl-Erik Arzén

[2] Karl-Erik Arzén, Per Skarin, William Tarneberg, and Maria Kihl. 2018. Control over the edge cloud - an MPC example.
In Ist International Workshop on Trustworthy and Real-Time Edge Computing for Cyber-Physical Systems, Nashville,
USA.

[3] Richard Bellman. 1957. Dynamic Programming (1 ed.). Princeton University Press, Princeton, NJ, USA.

[4] Richard C Dorf and Robert H Bishop. 2011. Modern control systems. Pearson.

[5] A.A.Feldbaum. 1965. Optimal Control Systems. Academic Press. https://books.google.se/books?id=_dEXtQEACAA]

[6] James Ferryman and Ali Shahrokni. 2009. Pets2009: Dataset and challenge. In 2009 Twelfth IEEE International Workshop

on Performance Evaluation of Tracking and Surveillance. IEEE.
[7] B.Han, V. Gopalakrishnan, L. Ji, and S. Lee. 2015. Network function virtualization: Challenges and opportunities for
innovations. IEEE Communications Magazine 53, 2 (Feb 2015), 90-97. https://doi.org/10.1109/MCOM.2015.7045396
[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 770-778.
[9] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury. 2004. Feedback control of computing systems.
Wiley Online Library.

[10] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Processing Magazine 29, 6 (2012), 82-97.

[11] R. E. Kalman. 1960. Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana 5, 2

(1960), 102-119.

Nicholas D Lane, Petko Georgiev, and Lorena Qendro. 2015. DeepEar: robust smartphone audio sensing in unconstrained

acoustic environments using deep learning. In Proceedings of the 2015 ACM International Joint Conference on Pervasive

and Ubiquitous Computing. ACM, 283-294.

[13] Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and Greg Imwalle. 2018. Data center cooling
using model-predictive control. In Advances in Neural Information Processing Systems. 3814-3823.

[14] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg.

2016. SSD: Single Shot MultiBox Detector. In ECCV.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin A.

Riedmiller. 2013. Playing Atari with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602

http://arxiv.org/abs/1312.5602

J.B. Rawlings and D.Q. Mayne. 2009. Model Predictive Control: Theory and Design. Nob Hill Pub.

Benjamin Recht. 2018. A Tour of Reinforcement Learning: The View from Continuous Control. CoRR abs/1806.09460

(2018). arXiv:1806.09460 http://arxiv.org/abs/1806.09460

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-

rent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A general

reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 6419 (2018), 1140—

1144. https://doi.org/10.1126/science.aar6404 arXiv:https://science.sciencemag.org/content/362/6419/1140.full.pdf

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,

Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den

Driessche, Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without human knowledge. Nature

550 (Oct. 2017), 354-. http://dx.doi.org/10.1038/nature24270

Per Skarin, Johan Eker, Maria Kihl, and Karl-Erik Arzén. 2019. An assisting Model Predictive Controller approach to Con-

trol over the Cloud. arXiv e-prints, Article arXiv:1905.06305 (May 2019), arXiv:1905.06305 pages. arXiv:cs.SY/1905.06305

Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning (1st ed.). MIT Press, Cambridge,

MA, USA.

Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher. 2017. DeepSense: a Unified Deep Learning

Framework for Time-Series Mobile Sensing Data Processing. In Proceedings of the 26th International Conference on

World Wide Web. International World Wide Web Conferences Steering Committee.

Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu, Dongxin Liu, Lu Su, and Tarek Abdelzaher. 2018. FastDeeploT:

Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices. In

Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (SenSys '18). ACM, New York, NY, USA,

278-291. https://doi.org/10.1145/3274783.3274840

Shuochao Yao, Yiran Zhao, Huajie Shao, Aston Zhang, Chao Zhang, Shen Li, and Tarek Abdelzaher. 2018. RDeepSense:

Reliable Deep Mobile Computing Models with Uncertainty Estimations. Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies 1, 4 (2018), 173.

Shuochao Yao, Yiran Zhao, Huajie Shao, Chao Zhang, Aston Zhang, Shaohan Hu, Dongxin Liu, Shengzhong Liu, Lu

Su, and Tarek Abdelzaher. 2018. SenseGAN: Enabling Deep Learning for Internet of Things with a Semi-Supervised

Framework. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 144 (Sept. 2018), 21 pages. https:

3

[12

—

(15

[

[16
[17

—

(18

[t

(19

[

[20

[t

[21

—

[22

—

[23

—

[24

flan)

[25

[

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

https://books.google.se/books?id=_dEXtQEACAAJ
https://doi.org/10.1109/MCOM.2015.7045396
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1806.09460
http://arxiv.org/abs/1806.09460
https://doi.org/10.1126/science.aar6404
http://arxiv.org/abs/https://science.sciencemag.org/content/362/6419/1140.full.pdf
http://dx.doi.org/10.1038/nature24270
http://arxiv.org/abs/cs.SY/1905.06305
https://doi.org/10.1145/3274783.3274840
https://doi.org/10.1145/3264954
https://doi.org/10.1145/3264954

Five Challenges in Cloud-Enabled Intelligence and Control 000:19

//doi.org/10.1145/3264954

[26] Shuochao Yao, Yiran Zhao, Aston Zhang, Shaohan Hu, Huajie Shao, Chao Zhang, Su Lu, and Tarek Abdelzaher. 2018.
Deep Learning for the Internet of Things. Computer 51, 5 (May 2018), 32-41. https://doi.org/10.1109/MC.2018.2381131

[27] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher. 2017. Deepiot: Compressing deep neural
network structures for sensing systems with a compressor-critic framework. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems. ACM.

[28] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong,
and Jason P. Jue. 2019. All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A
Complete Survey. Journal of Systems Architecture (February 2019).

ACM Transactions on Internet Technology, Vol. 00, No. 0, Article 000. Publication date: 2019.

https://doi.org/10.1145/3264954
https://doi.org/10.1145/3264954
https://doi.org/10.1109/MC.2018.2381131

	Five challenges in cloud-enabled intelligence and control
	Citation
	Author

	1 Introduction
	2 Core Architecture
	3 Challenge I: Learning as a Service
	3.1 Training and Data Labeling
	3.2 Model Reduction and Caching

	4 Challenge II: Sensing Quality Assurance
	4.1 Profiling Support
	4.2 Result Quality Estimation
	4.3 Assured-Quality Run-time Inference

	5 Challenge III: Offloading Optimization and Control
	5.1 Control Characteristics
	5.2 Challenges and Opportunities in Controller Offloading
	5.3 Learning-Based Control
	5.4 Optimization-Based Control

	6 Challenge IV: Closed Loop Guarantees
	7 Challenge V: Collaborative Execution
	7.1 Distributing the Inference Model
	7.2 Orchestrating Collaboration
	7.3 Services for Collaborative Inferencing

	8 Conclusions
	Acknowledgments
	References

