
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2018

A formal specification and verification framework for timed A formal specification and verification framework for timed

security protocols security protocols

Li LI

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yang LIU

Meng SUN

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LI, Li; SUN, Jun; LIU, Yang; SUN, Meng; and DONG, Jin Song. A formal specification and verification
framework for timed security protocols. (2018). IEEE Transactions on Software Engineering. 44, (8),
725-746.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4850

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4850&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Formal Specification and Verification
Framework for Timed Security Protocols

Li Li , Jun Sun, Yang Liu, Meng Sun, and Jin-Song Dong

Abstract—Nowadays, protocols often use time to provide better security. For instance, critical credentials are often associated with

expiry dates in system designs. However, using time correctly in protocol design is challenging, due to the lack of time related formal

specification and verification techniques. Thus, we propose a comprehensive analysis framework to formally specify as well as

automatically verify timed security protocols. A parameterized method is introduced in our framework to handle timing parameters

whose values cannot be decided in the protocol design stage. In this work, we first propose timed applied p-calculus as a formal

language for specifying timed security protocols. It supports modeling of continuous time as well as application of cryptographic

functions. Then, we define its formal semantics based on timed logic rules, which facilitates efficient verification against various

authentication and secrecy properties. Given a parameterized security protocol, our method either produces a constraint on the timing

parameters which guarantees the security property satisfied by the protocol, or reports an attack that works for any parameter value.

The correctness of our verification algorithm has been formally proved. We evaluate our framework with multiple timed and untimed

security protocols and successfully find a previously unknown timing attack in Kerberos V.

Index Terms—Timed security protocol, timed applied p-calculus, parameterized verification, secrecy and authentication

Ç

1 INTRODUCTION

TIME is a double edged sword for security protocols. On
one hand, time, as a globally shared measurement, pro-

vides a simple way to synchronize and coordinate multiple
processes. Thus, it is used in many security protocols as a
powerful tool. For instance, distance bounding protocols [3],
[4], [5] use transmission time to measure the distance
between protocol participants; interactive protocols [6], [7]
limit the lifetime of messages to achieve better security. In
fact, timeout is used almost universally in practice. On the
other hand, time also introduces a range of attack surfaces.
For instance, a security protocol, whose correctness heavily
relies on time, could be broken if the expected timing coor-
dination is compromised; or given a session key with lim-
ited lifetime, the adversary might be able to extend its
lifetime without proper authorization [8]. As a consequence,
we believe that verification of timed security protocols is an
important research problem.

Specifically, the time related security of distributed pro-
cesses relies on various timing constraints, which are
designed based on the knowledge of the protocol execution

context. For instance, in a message transmission protocol,
the message receiver can check the message freshness using
a timing constraint t0 � t � pm, where t0 is the message
receiving time, t is the message generation time and pm is
the maximummessage lifetime. More importantly, the max-
imum message lifetime pm should be configured based on
the knowledge of the minimal network latency pn, among
other things. That is, some correlation between pm and pn
must be satisfied. In practice, knowing the exact value of the
network latency at the protocol design stage is highly non-
trivial. Thus, it is desirable if one could leave pm and pn as
parameters (symbols with fixed but unknown values) and
automatically obtain their secure configurations (timing con-
straints) that ensure protocol security. The benefit is obvi-
ous: having the secure configurations of the above example,
for any particular value of the network latency pn observed
in practice, the users can easily select a secure (and perhaps
more efficient, e.g., in reducing system execution time)
value for the maximum message lifetime pm. Compared
with the standard verification problem where the values of the
parameters are given, computing the secure configurations
is more complicated as it boils down to verify timed security
protocols for any valuation of the parameters. It is often
known as the parameterized verification problem.

In view of the above research problems, in this work, we
develop a self-contained framework, which facilitates not
only formal specification but also automatic verification of the
timed security protocols. It can solve the above-mentioned
standard verification problem aswell as the parameterized verifica-
tion problem. It is highly non-trivial because of the following
technical challenges. (1) To model the timed security proto-
cols naturally, we need to develop a high-level specification
language with time related operations and measurements.
Furthermore, in order to facilitate an efficient verification

� L. Li and J. Sun are with ISTD, Singapore University of Technology and
Design, Singapore 487372. E-mail: {li_li, sunjun}@sutd.edu.sg.

� Y. Liu is with the School of Computer Engineering, Nanyang Technologi-
cal University, Singapore 639798. E-mail: yangliu@ntu.edu.sg.

� M. Sun is with the School of Mathematical Sciences, Peking University,
Beijing 100080, China. E-mail: sunmeng@math.pku.edu.cn.

� J.-S. Dong is with the School of Computing, National University of
Singapore, Singapore 487372. E-mail: yangliu@ntu.edu.sg.

Manuscript received 28 Aug. 2015; revised 6 May 2017; accepted 26 May
2017. Date of publication 5 June 2017; date of current version 21 Aug. 2018.
(Corresponding author: Li Li.)
Recommended for acceptance by T. Bulton.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2712621

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018 725

0098-5589� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7748-0012
https://orcid.org/0000-0001-7748-0012
https://orcid.org/0000-0001-7748-0012
https://orcid.org/0000-0001-7748-0012
https://orcid.org/0000-0001-7748-0012
mailto:
mailto:
mailto:
mailto:

method, it must have a concise and compact low-level seman-
tics. In this way, the timed security protocol can be naturally
specified as well as efficiently verified. (2) In the context of
vulnerable network such as Internet, where communications
are exposed to the adversary, we need to capture the capabil-
ity of the adversary precisely so as to check the security
properties, e.g., the critical information cannot be leaked and
the protocol works as intended. (3) Timestamps are continu-
ous values extracted from clocks to ensure the validity of
messages and credentials. Analyzing the continuous timing
constraints adds another dimension of complexity. (4) A pro-
tocol design might contain multiple timing parameters, e.g.,
the network latency and the session key lifetime, which
could affect the its security. Hence, calculating the secure
relation among these parameters automatically is far
more challenging than verifying the protocol with fixed
parameter values.

Contributions. In this work, we first propose a timed
applied p-calculusto specify timed security protocols, which
extends applied p-calculus [9] with time related operations
and measurements. As shown in Section 2, timed applied
p-calculus can be used to model timed and untimed security
protocols in a natural manner. In particular, symbolic
parameters can be specified in the timing constraints. As a
result, the protocol correctness can be verified by generating
secure configurations on these parameters automatically if
possible. Otherwise, an attack shall be identified for arbi-
trary parameter values. Additionally, secrecy property,
non-injective authentication property and injective authenti-
cation property can be formally specified in our framework
as shown in Section 3.

Given the timed applied p-calculus, we define its semantics
based on timed logic rules in Section 4. The adversary is also
modeled using a set of timed logic rules, which are originally
introduced in [1], [2]. Since all of the rules can be used for
an infinite number of times during the verification, the pro-
tocols are verified for an unbounded number of protocol
sessions.

Using the timed logic rules, we develop our verification
algorithms against different security properties in Section 5.
The verification result is (1) either an attack that breaks the
security property for any parameter value (2) or a constraint
that must be satisfied by the parameters to ensure the secu-
rity of the protocol. We prove that our verification algo-
rithms always produce correct results.

Finally, we implement our method into a tool named
Security Protocol Analyzer (SPA). In order to handle the
parameters in the timing constraints, we utilize the Parma
Polyhedra Library (PPL) [10] in our tool to represent and to
manipulate the timing constraints. We evaluate SPA with
several security protocols in Section 6. We have found a
time related attack successfully using SPA in the official
document of Kerberos V [11].

Structure of the Paper. In Section 2, we present the timed
applied p-calculusas a specification language for modeling
timed security protocols. We illustrate the Wide Mouthed
Frog (WMF) [6] as a running example. In Section 3, we for-
mally defined authentication and secrecy properties based
on the events and processes introduced in timed applied
p-calculus. In Section 4, we introduce the timed logic rule [1],
[2], and use it to define the semantics of the timed applied

p-calculus. The verification algorithms are given in Section 5.
We prove that our algorithms always give correct results if
the verification terminates. The experiment results are
shown in Section 6, where a new attack of Kerberos V is
found in RFC 4120 [11]. The related works are described in
Section 7. Finally, we draw conclusions and discuss future
works in Section 8.

2 TIMED APPLIED p-CALCULUS

In this section, we propose timed applied p-calculus as a speci-
fication language for timed protocols. It extends the applied
p-calculus [9] with timing related operations and measure-
ments. We use the Wide Mouthed Frog protocol [6] as a run-
ning example to demonstrate the language features.

2.1 Syntax

Compared with the applied p-calculus, generating, checking
and encoding timestamps are allowed in timed applied p-cal-
culus. The syntax of timed applied p-calculus is shown in
Table 1, which consists of five expression categories, i.e.,
messages, parameters, constraints, configurations and processes.
The new structures and expressions are highlighted with
the bold font in Table 1.

Generally, messages represent the data transmitted in
the process. They can be composed from functions, names,
nonces, variables and timestamps. Functions can be applied to a
sequence of messages; names are globally shared constants;
nonces are freshly generated random numbers in the pro-
cesses; timestamps are clock readings extracted during the
process execution; and variables are memory spaces for hold-
ing messages. Additionally, parameters are pre-configured

TABLE 1
Syntax of Timed Applied p-Calculus

Type Expression

Message(m) fðm1;m2; . . . ;mnÞ (function)

A;B;C (name)

n; k (nonce)

t; t1; ti; tn (timestamp)

x; y; z (variable)

Parameter(p) p; p1; pj; pm (parameter)

Constraint(B) CSðt1; t2; . . . ; tn; p1; p2; . . . ; pmÞ (timing constraint)

Configuration(L) CSðp1; p2; . . . ; pmÞ (parameter relation)

Process(P;Q) 0 (null process)

P jQ (parallel)

!P (replication)

nn:P (nonce generation)

mt:P (clock reading)

ifm1 ¼ m2 then P [else Q]a (untimed condition)

if B then P [else Q] (timed condition)

wait until mt : B then P (timing delay)

let x ¼ fðm1; . . .Þ then P [else Q] (function application)

cðxÞ:P (channel input)

cðmÞ:P (channel output)

insertm into db as unique then P (replay checking)

initðmÞ@t:P (initialization claim)

joinðmÞ@t:P (participation claim)

acceptðmÞ@t:P (acceptance claim)

secrecyðmÞ:P (secrecy claim)

openðmÞ:P (open claim)

aThe expression with the brackets ‘½E�’ means that E can be omitted.

726 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

constants (e.g., the maximum message lifetime pm) and per-
sistent environment settings (e.g., the minimal network
latency pn) in the protocol.

Functions can be generally defined as

fðm1;m2; . . . ;mnÞ) m@D,

where f is the function name, m1;m2; . . . ;mn are the
input messages, m is the output message and D is the con-
sumable timing range. When m is exactly the same as
fðm1;m2; . . . ;mnÞ, we call the function as constructor; other-
wise, it is a destructor. For instance, the symmetric encryp-
tion function encs is defined as encsðm; kÞ) encsðm; kÞ
@½0;1Þ. It means that a symmetric encryption encsðm; kÞ
can be generated from a message m and a key k using the
function encs with a non-negative amount of time. For sim-
plicity, we add some syntactic sugar as follows: (1) when
D ¼ ½0;1Þ which is the largest timing range of functions,
we omit ‘@D’ in the function definition; (2) for constructors,
we omit ‘) m’ in the definition. Then, we can simply write
the definition of symmetric encryption as encsðm; kÞ. Simi-
larly, the symmetric decryption function decs can be defined
as decsðencsðm; kÞ; kÞ) m where m and k have the same
meaning as above. For illustration purpose, some frequently
used functions are presented in Table 2. Notice that the
input and output messages in the function definition can
only be constructors or variables.

The constraint set B ¼ CSðt1; t2; . . . ; tn; p1; p2; . . . ; pmÞ rep-
resents a set of linear constraints over timestamps and
parameters, which can act as guard conditions and timing
assumptions in the protocol. Generally, each constraint can
be constructed as

a1 � t1 þ � � � þ an � tn þ b1 � p1 þ � � � þ bm � pm � c,

where �2 f< ;�g and for any i 2 f1 . . .ng; j 2 f1 . . .mg,
ai; bj; c are integers. For instance, given the maximum mes-
sage lifetime pm and the minimal network latency pn, when
a message generated at t is received at t0, t0 � t � pm can be
a timing constraint used by the receiver to check message
freshness and t0 � t 	 pn can be a timing constraint enforced
by the environment. Additionally, the configuration L ¼
CSðp1; p2; . . . ; pmÞ is a set of linear constraints constituted by
only timing parameters. In the above example, the con-
straint (configuration) pn > 0 should be satisfied to model

the physical message transmission delay. Before the verifi-
cation start, L should be specified with an initial configura-
tion, e.g., pn > 0. Whenever a security violation or a
function flaw is found during the verification, we update L
with new constraints. Afterwards, L is returned as the veri-
fication result, which contains the necessary constraints for
both system security and functionality. For instance,
pm 	 pn should be implied by the verification result,
because no message could be deliverable in the network
otherwise.

As shown in Table 1, processes are defined as follows. ‘0’ is
the null process that does nothing. ‘P jQ’ is a parallel composi-
tion of processes P and Q. The replication ‘!P ’ stands for an
infinite parallel composition of process P , which captures an
unbounded number of protocol sessions running in parallel.
The nonce generation process ‘nn:P ’ represents that a fresh
nonce n is generated and bound to process P . The clock read-
ing process ‘mt:P ’ similarly means that a timestamp t is read
from the user’s clock and bound to process P . The checking
condition c in the conditional process ‘if c then P else Q’ has
two forms: 1) the untimed condition m1 ¼ m2 is a symbolic
equivalence checking between two messages; 2) the timed
condition Cðt1; t2; . . . ; tn; p1; p2; . . . ; pmÞ is a numeric con-
straint over timestamps and parameters. When the condition
c evaluates to true, process P is executed; otherwise,Q is exe-
cuted. The timing delay process ‘wait until mt : B then P ’
means that P is executed until the current clock reading satis-
fies the timing condition B. The function application ‘let
x ¼ fðm1; . . . ;mnÞ then P else Q’ means if the function f is
applicable to a sequence of messages m1; . . . ;mn, its result is
bound to the variable x in process P ; otherwise, process Q is
executed. The channel input ‘cðxÞ:P ’ means that a message,
bound to the variable x, is received from the channel c before
executing P . The channel output ‘cðmÞ:P ’ describes that the
messagem is sent to the channel c before executing process P .
The channel name c can be any message, e.g., names, function
applications and nonces. In this work, we use c0 as the default
public channel name. The unique value insertion expression
‘insertm into db as unique then P ’ is an atomic operation that
inserts a messagem uniquely into a database named after db.
The database can use any message as its name, similar to the
channel name. This expression atomically ensures that (1) m
does not exist in db before this expression and (2)m is inserted
into db after this expression. The unique value insertion
expression is particularly useful to prevent replay attacks in
practice.

Additionally, the following special events are introduced
to specify the security claims.

� Right before the initiator finishes its role in starting
the protocol, which is usually indicated by sending
the last message, it emits initðmÞ@t to indicate its
belief (according to the protocol) such that a session
has been initiated using the argumentsm at time t.

� When the responder finishes the protocol success-
fully, it engages acceptðmÞ@t to indicate its belief
such that the protocol is accepted under the argu-
ments inm at time t.

� When other participants join the protocol, they can
engage joinðmÞ@t to show their participations in the
protocol run with the arguments inm at time t.

TABLE 2
Cryptographic Function Definitions

Scheme Definition

Symmetric encsðm; kÞ (encryption)

Encryption decsðencsðm; kÞ; kÞ) m (decryption)

Asymmetric pkðskeyÞ (compute public key)

Encryption encaðm; pkeyÞ (encryption)

decaðencsðm; pkðskeyÞÞ; skeyÞ) m (decryption)

Signature signðm; skeyÞ (compute signature)

checkðsignðm; skeyÞ; pkðskeyÞÞ) m (check signature)

extractðsignðm; skeyÞÞ) m (extract signature)

Hash hashðmÞ (compute hash value)

Tuple tuplenðm1; . . . ;mnÞ (construct tuple)

8i 2 f1ng : (extract tuple)

getinðtuplenðm1; . . . ;mnÞÞ) mi

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 727

� The protocol participant can engage secrecyðmÞ to
indicate that the message m is a secret that should
not be known to the adversary unless it is explicitly
revealed with by its owner.

� When the protocol participant intends to to publish a
message m that has been claimed as secret with
secrecyðmÞ, it can explicitly emit openðmÞ before
revealingm.

In this work, we verify security protocols against authen-
tication properties and secrecy properties, which are elabo-
rated in Section 3. The authentication properties are
specified with the init, join and accept events. The secrecy
properties are specified with the secrecy and open events.

When a message is destructed in any process other than
the function application process and the destruction fails,
the behavior is undefined. Hence, we require that all of the
messages (e.g., m, mi) shown in Table 1 do not contain
destructors. In this way, messages can only be destructed
by the function f in the function application process.

Notations and Definitions. Several widely accepted nota-
tions and definitions are adopted as follows. s ¼ fx1 7! m1

; . . . ; xn 7! mng stands for the substitution that replaces the
variables x1; . . . ; xn with the messages m1; . . . ;mn respec-
tively. Given two messages m1 and m2, when there exists a
substitution s such that m1 � s ¼ m2, we say that m1 can be
unified tom2, denoted asm1 ˆ s m2; when no substitution s

exists such that m1 ˆ s m2, we say that m1 cannot be unified
to m2, denoted as m1 6̂ m2. Given two messages m1 and
m2, if there exists a substitution s such that m1 � s ¼ m2 � s,
we say m1 and m2 are unifiable and s is an unifier of m1

and m2. If m1 and m2 are unifiable, the most general unifier
of m1 and m2 is an unifier s such that for any unifier s0 of
m1 and m2 there exists a substitution s00 such that
s0 ¼ s � s00. The most general unifier ofm1 andm2 is denoted
as mguðm1;m2Þ. For simplicity, the union function ‘]’
between a set and an element is defined as fx1; . . . ; xng
]y ¼ fx1; . . . ; xn; yg. A variable x is bound to a process P
when x is constructed by the function application process
‘let x ¼ fðm1; . . .Þ then P else Q’ or the channel input pro-
cess ‘cðxÞ:P ’ as shown in Table 1. When a variable x appears
in a process P while it is not bound to P , it is a free variable
in P . A process is closedwhen it does not have any free vari-
able. Notice that all of the processes considered in this work
are closed. When x is a tuple in the function application pro-
cess or the channel input process above, we simply write x
as hx1; x2; . . . ; xni.

Remarks on Processing Time. In this work, every process
defined in Table 1 can take arbitrary time to complete. For
instance, given P , nk:c0ðmÞ:c0ðencsðm; kÞÞ:0 where c0 is a
public channel, the time consumed between the operations
is unknown. If k is generated at t1, m is received at t2 and
encsðm; kÞ is sent at t3, we only have their order preserved
by the constraint t1 < t2 < t3. This is because in practice
the operation time can be affected by many runtime factors
such as network latency, computing power and execution
context switch. Similarly, init, join and accept events can
have delays. As a result, the users need to specify the timing
using timestamps in these events to indicate their beliefs of
the protocol engagements explicitly.

Remarks on Channels. Following applied p-calculus [12], any
message, e.g., names, function applications, noncescan be used

as channel names in timed applied p-calculus. However, we
recommend the users to specify their network communica-
tions using one public channel (public name) for the follow-
ing reasons. (1) Private channels used in practice are often
built with cryptography (encryptions and keys) using one
generic network, e.g., wifi networks and internet. Secret keys
with cryptography can be used as named private channels, and
publicly known names can be used as named public channels.
For instance, the protocol participants can use encsðhm;ni; kÞ
to securely transmit the message m, where k is a pre-shared
symmetric session key, encs is a symmetric encryption func-
tion and n is a fresh nonce (as the salt value). In order to build
this private channel, the protocol participants could either
use existing private channels or key exchange protocols to
exchange the key. (2) Explicitly building private channels
with cryptography in the protocol models can ensure that
the method for building the channels does not introduce
security flaws to the protocol in verification. For instance, if
the same asymmetric function is used in both of the security
protocol and the channel establishment, they may interfere
with each other and allow security attacks. (3) In order to
provide a strong security guarantee to the verified security
protocols, we assume that the network traffics in all of the
channels are observable to the adversary.1

2.2 Running Example: Wide Mouthed Frog

In the following, we use the Wide Mouthed Frog [6] proto-
col as a running example to illustrate our specification as
well as our verification method. WMF is designed to estab-
lish a timely fresh session key k from an initiator A to a
responder B through a server S. In WMF, whenever a mes-
sage is received, the receiver checks the message freshness
before accepting it. To make a flexible specification, we thus
use a parameter pm to represent the maximum message life-
time, ensuring that every message is received within pm. By
default, we consider the minimal network delay as a param-
eter pn. Since pn is a timing parameter related to the network
environment, it is not directly used in the protocol specifica-
tion. Instead, it is a delay that applies to all of the network
transmissions. In addition, we assume that the network
latency is always positive, which makes the initial parame-
ter configuration as L0 ¼ fpn > 0g. Notice that a positive
network delay is not compulsory in the protocol specifica-
tion. However, setting the minimal network latency as
pn 	 0 sometimes results in a misleading conclusion: the
protocol is correct if and only if pn equals to 0. Since the net-
work latency pn is unlikely to be 0 in practice, the security
protocol is thus proved as insecure. Because this final step
of manual deduction is undesirable, we remove it by simply
requiring a positive network latency in the first place.

1. Based on the adversary model (its capabilities) introduced in Sec-
tion 3.1, the communications in unobservable channels are completely
transparent to the adversary. Hence, if an error is introduce by unob-
servable channels, it is not considered as an attack from the adversary,
which is similar to other security protocol verification works, e.g., [13],
[14]. More importantly, considering channels as observable in general
can find strictly more security attacks if they exist. Hence, we assume
that all of the channels are observable to the adversary in this work. If
some unobservable channels are used in the protocol for special pur-
pose, we assume that the protocol designers have ensured their correct-
ness. Then, we can model the messages transmitted in these channels
as correctly delivered.

728 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

The WMF protocol is a key exchange protocol that
involves three participants, e.g., an initiator Alice, a
responder Bob and a server S. Alice and Bob register their
usernames as A and B at the server respectively. The gener-
ated key of a user u is written as keyðuÞ, where key is a secret
function. WMF then can be informally described as the fol-
lowing three steps.

(1) A generates a random session key k at ta
A! S : hA; encsðhta; B; ki; keyðAÞÞi

(2) S receives the request from A at ts
S checks : ts � ta � pm
S ! B : encsðhts; A; ki; keyðBÞÞ

(3) B receives the message from S at tb
B checks : tb � ts � pm
B accepts the session key k

First, A generates a fresh key k at time ta and initiates the
WMF protocol with B by sending the message hA; encsðhta;
B; ki; keyðAÞÞi to the server. Second, after receiving the
request from A, the server ensures the message freshness by
checking the timestamp ta and accepts her request by send-
ing a new message encsðhts; A; ki; keyðBÞÞ to B, informing
him that the server receives a request from A at time ts to
communicate with him using the key k. Third, B checks the
message freshness again and accepts the request from A if
the message is received timely. All of the transmitted mes-
sages are encrypted under the users’ long-term keys that
are pre-registered at the server.

In order to verify WMF in a hostile environment, we
assume that (1) the adversary can decide the protocol
responder for A, (2) the adversary controls the participation
time of all entities in the protocol, (3) S provides its session
key exchange service to all of its registered users and (4) the
adversary can register as any user at the server, except for A
and B. The precise attacker model employed in our work is
discussed in Section 3. In WMF, because we are only inter-
ested in the protocol acceptance between the legitimate
users, we ask B to only accept the requests from A. Addi-
tionally, a public channel c0 controlled by the adversary is
used in this protocol for network communication.

Before the protocol starts, all of its participants need to
register a secret long-term key at the server. We assume that
A and B have already registered at the server using their
names. Hence, the server can generate new keys for any
other user (personated by the adversary), which can be
shown as the process Pr below

Pr , c0ðuÞ:ifu 6¼ A ^ u 6¼ B then c0ðkeyðuÞÞ:0:

In WMF, A takes a role of the initiator as specified by Pa

below. She first starts the protocol by receiving a
responder’s name r from c0, assuming that r can be speci-
fied by the adversary. Then, A generates a session key k and
claims k should be unknown to the adversary. Later, A
records the clock reading ta and emits an init event to indi-
cate the protocol initialization with the protocol arguments
ma at ta. Notice that ma will be instantiated in Section 3
according to specific authentication properties. Finally, the
message hA; encsðhta; r; ki; keyðAÞÞi is sent from A to S. Since
the initialization time ta, the responder’s namer r and the
session key k are encrypted with A’s long-term key, which

is only known to A and the server, we may believe that they
are inaccessible to the adversary

Pa , c0ðrÞ:nk:secrecyðkÞ:mta:initðmaÞ@ta:

if r ¼ B then c0ðhA; encsðhta; r; ki; keyðAÞÞiÞ:0
else openðkÞ:c0ðhA; encsðhta; r; ki; keyðAÞÞiÞ:0:

As specified by the process Ps, after the server receives a
user’s request as a tuple hi; xi, the current time is recorded as
ts and the key keyðiÞ is used to decrypt x. If the decryption
function applies successfully, it stores the initialization time,
the responder’s name and the session key into ti, r and k
respectively. When the freshness checking ts � ti � pm is
passed, the server then believes its participation in a protocol
run at time ts. Similar to the init event, we specify the argu-
mentms in Section 3. Later, a newmessage encrypted by the
responder’s key, written as encsðhts; i; ki; keyðrÞÞ, is sent to
the responder over the public channel

Ps , c0ðhi; xiÞ:mts:lethti; r; ki ¼ decsðx; keyðiÞÞ then
if ts � ti � pm then joinðmsÞ@ts

:c0ðencsðhts; i; ki; keyðrÞÞÞ:0:

Additionally, as shown in the process Pb, when B
receives the message from the server, B records his current
time as tb and tries to decrypt request as a tuple of the
server’s processing time ts, the initiator’s id i and the ses-
sion key k. If i ¼ A and the freshness checking tb � ts � pm
is passed, B then believes that the request is sent from A
within 2
 pm (as the message freshness checking stacks)
and claims the acceptance at time tb

Pb , c0ðxÞ:mtb: let hts; i; ki ¼ decsðx; keyðBÞÞ then
if i ¼ A then if tb � ts � pm then acceptðmbÞ@tb:0:

Finally, we have a process Pp that broadcasts the public
names of Alice and Bob

Pp , c0ðAÞ:c0ðBÞ:0:
The overall process P is the parallel composition of the

infinite replications of the five processes described above

P , ð!PrÞjð!PaÞjð!PsÞjð!PbÞjð!PpÞ:

3 TIMED SECURITY PROPERTIES

In this work, we discuss two security properties, i.e.,
authentication and secrecy. In order to define them, we
introduce the formal adversary model first.

3.1 Adversary Model

We assume that an active attacker exists in the network,
whose capability is extended from the Dolev-Yao
model [15]. The attacker can intercept all communications,
compute new messages, generate new nonces and send the
obtained messages. For computation, it can use all the
publicly available functions, e.g., encryption, decryption,
concatenation. He can also ask the genuine protocol partici-
pants to take part in the protocol whenever he needs to.
Comparing our attack model with the Dolev-Yao model,
attacking weak cryptographic functions and compromising

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 729

legitimate protocol participants are allowed. A formal defi-
nition of the adversary model in timed applied p-calculus is
as follows.

Definition 1 (Adversary Process). The adversary process is
defined as an arbitrary closed timed applied p-calculus process
K which does not emit special events, i.e., init, join, accept,
secrecy and open.

3.2 Timed Authentication

In a protocol, we often have an initiator who starts the
protocol and a responder who accepts the protocol. For
instance, in WMF, Alice is the initiator and Bob is the
responder. Additionally, other entities, who are called
partners, can be involved during the protocol execution,
such as the server in WMF. Given all of the protocol partici-
pants, the protocol authentication generally aims at estab-
lishing some common knowledge among them when the
protocol successfully ends.

Since different participants take different roles in the pro-
tocol, we introduce the following three events for the initia-
tor, the responder and the partners respectively. In these
events, the message m stands for the arguments used in the
current protocol session and the timestamp t represents the
timing of the authentication claim. Examples are presented
later in this section for different types of authentication.

� The protocol initiator emits initðmÞ@t when he/she
initializes the protocol.

� The protocol responder engages acceptðmÞ@t to
claim that he/she finishes the protocol.

� The protocol partners emit joinðmÞ@t to indicate
his/her participation in the protocol.

The occurrence of an event means that the protocol par-
ticipant believes his/her participation of the corresponding
role in a protocol run. Hence, the above events should be
engaged immediately after the protocol participants suc-
cessfully process all of the received messages according to
their roles, as their knowledge of the protocol execution
state cannot be increased after this point.

Based on the init, join and accept events, the protocol
authentication properties then can be formally specified as
event correspondences, i.e., the non-injective and injective
timed authentication. Additionally, when particular argu-
ments are specified in the events, their correspondence can
be further categorized into an agreement property or a syn-
chronization property.

Given a timed security protocol, the timed non-injective
authentication is satisfied if and only if for every acceptance
of the protocol responder, the protocol initiator indeed ini-
tiates the protocol and the protocol partners indeed join in
the protocol, agreeing on the protocol arguments and timing
requirements. We formally define the non-injective timed
authentication as follows.

Definition 2 (Non-injective Timed Authentication). The
non-injective timed authentication, denoted as

Qn ¼ accept ½ B �� init; join1; . . . ; joinn,

is satisfied by a closed process P , if and only if, given the adver-
sary process K, for every occurrence of an accept event in

P jK, the corresponding init event and join events in Qn have
occurred before in P jK, agreeing on the arguments in the
events and the constraints in B.

The injective timed authentication additionally requires
an injective correspondence between the protocol initializa-
tion and acceptance comparing with the non-injective timed
authentication. Hence, the injective timed authentication,
which ensures the infeasibility of replay attack, is strictly
stronger than the non-injective one.

Definition 3 (Injective Timed Authentication). The injec-
tive timed authentication, denoted as

Qi ¼ accept ½ B � ! init; join1; . . . ; joinn,

is satisfied by a closed process P , if and only if, (1) the non-
injective timed authentication

Qn ¼ accept ½ B �� init; join1; . . . ; joinn,

is satisfied by P ; (2) given the adversary process K, for every
init event of Qi occurred in P jK, at most one accept event
can occur in P jK, agreeing on the arguments in the events
and the constraints in B.

For simplicity, given a non-injective queryQn ¼ accept
½B �� H and its injective version Qi ¼ accept ½ B � ! H,
we have injðQnÞ ¼ Qi and non injðQiÞ ¼ Qn. Similarly,
given two query sets Qn and Qi respectively, we have
injðQnÞ ¼ Qi and non injðQiÞ ¼ Qn.

Timed Agreement Properties.When the messagem encoded
in the authentication events stands for the common knowl-
edge established by the protocol among the participants, we
call these timed authentication properties as timed agree-
ment properties. The non-injective and injective timed agree-
ment properties generally ensure that certain common
knowledge is established among the protocol participants
under the timing restrictions.

Example 1. In WMF, when B accepts the protocol, the com-
mon knowledge established among A, S and B should be
the initiator’s name, the responder’s name and the session
key. Hence, we specify the message m in different pro-
cesses of WMF as follows:

ma ¼ hA; r; ki in Pa

ms ¼ hi; r; ki in Ps

mb ¼ hi; B; ki in Pb:

The non-injective timed agreement then can be written as

Qna ¼ acceptðhi; r; kiÞ@tr

 ½ ts � ti � pm ^ tr � ts � pm ��
initðhi; r; kiÞ@ti; joinðhi; r; kiÞ@ts.

(1)

Similarly, we have the injective one as Qia ¼ injðQnaÞ.
Timed Synchronization Properties. However, the timed

agreement properties do not necessarily guarantee the faith-
ful message transmissions between protocol participants, so
the messages received by the receiver may not be the same
message sent by the sender in the protocol. Based on the
synchronization defined in [16], when the message m

730 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

encoded in the authentication events reflects the network
input and output correspondence, we name these timed
authentication properties after timed synchronization prop-
erties. The synchronization properties ensure that the mes-
sages transmitted in the protocol are untampered, so the
message received by the receiver is the message sent from
the sender for every network transmission.

Example 2. In WMF, we first specify the arguments of the
authentication events as follows to reflect the network
communications

ma ¼ hr; hA; encsðhta; r; ki; keyðAÞÞii in Pa

ms ¼ hy; encsðhts; i; ki; keyðrÞÞi in Ps

mb ¼ hxi in Pb:

Then, we specify the input and output correspondence in
the non-injective timed synchronization property, writ-
ten as follows:

Qns ¼ acceptðhs2biÞ@tr

 ½ ts � ti � pm ^ tr � ts � pm ��
initðhr; a2siÞ@ti; joinðha2s; s2biÞ@ts:

Notice that ‘a2s’ is the message sent from A to S and ‘s2b’
is the message sent from S to B. Similarly, we have the
injective timed synchronization Qis ¼ injðQnsÞ.

3.3 Secrecy

When a messagem satisfies secrecy property, it often means
that m cannot be known to the adversary. However, in
some special protocols such as commitment protocols [17],
[18], we need a stronger secrecy property because the secret
owner may reveal the secret at some protocol stage inten-
tionally. Hence, we define message secrecy as a conditional
property [19], i.e., the message should not be known to the
adversary before its owner intentionally reveals it. Hence,
in timed applied p-calculus, before the secret owner reveals a
secret m, he/she must explicitly engages an openðmÞ event.
The secrecy property can be clearly illustrated and moti-
vated by commitment protocols [18] anaylzed in Section 6.2.
In this work, the secrecy property can be defined as follows.

Definition 4 (Secrecy Property). The secrecy property,
denoted as Qs ¼ secrecyðmÞ, is satisfied by a closed process P ,
if and only if for any adversary process K, m cannot be sent to
the public before openðmÞ has been engaged in P jK.

Remarks on Secrecy and Open Claims. In this work, com-
paring with the secrecy property defined in [12], we addi-
tionally introduced two secrecy and open events to specified
the secrecy property in the processes. In the following, we
illustrate the reasons of introducing these events using the
protocol role of Alice in WMF as an example. Based on the
original protocol specification of WMF, the protocol role of
the initiator Aliceshould be specified as Poa as follows:

Poa , c0ðrÞ:nk:mta:c0ðhA; encsðhta; r; ki; keyðAÞÞiÞ:0:
In Poa, (1) when the protocol responder claims to be Bob
(r ¼ B), the secrecy property of key k should be preserved,
which is the verification goal; (2) when the protocol

responder is a user controlled by the adversary, k becomes
known to the adversary trivially, which does not affect the
correctness of the protocol. Hence, we can conclude the
secrecy property of k in WMF as: k should not be known to
the adversary when the responder claims to be Bob, a benign
responder. It means that the secrecy property is a conditional
property.

However, the secrecy property defined in [12] (a message
m satisfies secrecy if and only if m cannot be known to the
adversary) is not conditional. Hence, the security protocols
need to be modified in some manner to reflect this condi-
tion. For instance, in [13], the specified protocol can only be
finished by benign users, and the protocol role of Alice in
WMF needs be changed to Pma as follows:

Pma , c0ðrÞ:nk:mta:
if r ¼ B then c0ðhA; encsðhta; r; ki; keyðAÞÞiÞ:0 else 0:

In Pma, the adversary cannot obtain the messages
hA; encsðhta; r; ki; keyðAÞÞi when r 6¼ B. Since they should be
known to the adversary in the original WMF protocol,
attacks could be missed.

As a result, we introduce the secrecy event in the process
calculus to claim the secrecy property based on the execution
conditions. When a secrecyðmÞ event is engaged in a pro-
cess, m instantiated in the current process branch should
satisfy the secrecy property. Then, the protocol role of Alice
in WMF could be modeled as Psa

Psa , c0ðrÞ:nk:mta:if r ¼ B

then secrecyðkÞ:c0ðhA; encsðhta; r; ki; keyðAÞÞiÞ:0
else c0ðhA; encsðhta; r; ki; keyðAÞÞiÞ:0:

Notice that Psa does not use the open event as Pa did in Sec-
tion 2.2. Both of Psa and Pa are correct specification for the
protocol role of Alice in WMF when authentication is not
considered.

In this work, we introduce the open event for additional
specification flexibility, which is illustrated by Pa in Section
2.2. The open event stands for the explicit revealing behavior
from the benign protocol participants. Given a secret mes-
sage m with secrecyðmÞ claimed previously, if m is known
to the adversary after openðmÞ has been engaged, the
secrecy property of m still holds. This is especially useful
where secrets can be revealed to the adversary at a later
stage in the protocol. For instance, in some commitment
protocols, e.g., [17], a commitment commitðm; oÞ can be
made by a user U to a public message m with a secret open
value o. During the protocol execution, commitðm; oÞwill be
sent to the public as a commitment claim, while the open
value o should stay as secret at this stage. Later, when U
wants to prove that he/she is the one who made the com-
mitment commitðm; oÞ, U can actively reveal the open value
o as a proof. Since the open value is not known to the others
(including the adversary) before it is revealed in the com-
mitment protocol, it can act as a proof to the commitment.
In the commitment protocol, an important property is that
the open value o should stay as secret before it is explicitly
revealed, which can be specified using the secrecy and open
events with ease. For illustration purpose, a simplified ver-
sion of the commitment protocol Pcm can be modeled as

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 731

follows:

Pcm , c0ðmÞ:no:secrecyðoÞ:c0ðcommitðm; oÞÞ:
if need commitment proof then openðoÞ:c0ðoÞ:0:

4 TIMED LOGIC RULES

In this section, we first introduce timed logic rules to spec-
ify the timed security protocols, which facilitate efficient
verification as shown in Section 5. Then, we define the
semantics of the timed applied p-calculus based on the
timed logic rules.

4.1 Timed Logic Rule

Analyzing the timed security protocols using the timed
applied p-calculus directly is unfortunately inconvenient,
because of its conditional branches, name bindings, etc.
Hence, in this section, we introduce timed logic rules as the
semantics of timed applied p-calculus to represent the attack
capabilities of the adversary that facilitate efficient protocol
analysis. However, since we need to describe the message
types without concrete processes, we introduce notations to
differentiate constants, nonces, timestamps, variables and
parameters as shown in Table 3. (1) The syntax of variables
and functions are unchanged. (2) Constants are appended
with a pair of square brackets from A to A½�. (3) Nonces are
put inside of a pair of square brackets from n to ½n�. (4)
Timestamps are written with a blackboard bold font from t
to t. (5) Parameters are prefixed with x from p to xp.

Generally, each capability of the adversary is specified as
a timed logic rule in the following form:

½G�e1; e2; . . . ; en � ½ B � ! e,

G is a set of untimed guards, fe1; e2; . . . ; eng is a set of prem-
ise events, B is a set of timing constraints and e is a conclu-
sion event. It means that if the untimed guard condition G,
the premise events fe1; e2; . . . ; eng and the timing constraints
B are satisfied, the conclusion event is ready to occur. The
timed and untimed conditions are extracted from the execu-
tion trace from the beginning of the process to the current

execution point. We discuss their extraction later. When G
is empty, we simply omit ‘½G�’ in the rule.

The events represent the things that can occur in the pro-
tocol. In the timed logic rules, several types of events are
introduced as shown in Table 3. Similar to timed applied
p-calculus, we have init, join and accept events that denote
the authentication claims made by the legitimate protocol
participants. The init, join events are premises and the
accept events are conclusions. However, their notations
have been changed as follows:

initðmÞ@t! initð½id�;m; tÞ
joinðmÞ@t! joinð½id�;m; tÞ
acceptðmÞ@t! acceptð½id�;m; tÞ:

The additional nonce ½id� represents the session id, which is
specifically introduced to check the injective authentication
properties.

In order to verify the secrecy property with event reach-
ability checking, we introduce leakðmÞ as an opposite event
of secrecyðmÞ, standing for the revealing of the secret mes-
sage m. For every secrecyðmÞ claimed in the process, we
fork a parallel sub-process ‘c0ðxÞ:if x ¼ m then leakðmÞ:0’,
where c0 is a public channel name. It receives a message x
from the network, compares it with m and claims leakðmÞ if
x ¼ m. In this way, we reduce a verification problem of
message secrecy to a reachability analysis of the leak event.
Furthermore, when a secret message m is revealed by its
owner with intention, an openðmÞ event should exist in the
rule premises. The open event in the timed logic rule has the
same meaning and syntax in the timed applied p-calculus. For
every openðmÞ event engaged in the process, an openðmÞ
event is added into the rule premises, indicating m is
revealed willingly. As a result, if a leakðmÞ event is reach-
able without having an openðmÞ event as its premises, the
secrecy property ofm is violated.

In addition, as shown in Table 3, we have the following
new events. First, knowðm; tÞ means that the adversary pos-
sesses the message m at time t. Because the adversary
observes all of the channel communications, for every net-
work input ‘cðxÞ’ at time t, we add knowðhc; xi; t0Þ satisfying
t0 � t to the premises. It means that the adversary needs to
know c and x before it can send x to c at time t. Similarly,
for every network output ‘cðmÞ’ at time t, we construct a
rule that concludes knowðm; tmÞ with an additional premise
of knowðc; tcÞ, satisfying tm � t 	 xpn ^ tc � t. It means that
the message m transmitted in the channel c at t can be inter-
cepted by the adversary after the network delay xpn if it
knows the channel name c before t. Second, given a unique
value insertion process ‘insert m into db as unique then P ’,
we add uniqueðm; db; hÞ into the premises means that the
message u is a unique value inserted into the database db.
The pair hm; dbi is thus globally unique, acting as an identi-
fication of the process replication history h. The process rep-
lication history consists of the network inputs, generated
nonces and read timestamps in the current process replica-
tion in the chronological order. Third, given a nonce genera-
tion process ‘nn:P ’, we add both of newð½n�; l½�Þ and
uniqueð½n�; l½�; hÞ to the rule premises, denoting the genera-
tion of nonce ½n� at the process location l½�, where h is the
process replication history. Notice that the process

TABLE 3
Syntax of Timed Logic Rules

Type Expression

Message(m) fðm1;m2; . . . ;mnÞ (function)
a½�; b½�; c½�; A½�; B½�; C½� (name)
½n�; ½k�; ½N�; ½K� (nonce)
t; t1; ti; tn (timestamp)
x; y; z;X; Y; Z (variable)

Parameter(p) xp (parameter)
Constraint(B) Cðt1; t2; . . . ; tn (timing relation)

; xp1; xp2; . . . ; xpmÞ
Configuration(L) Cðxp1; xp2; . . . ; xpmÞ (parameter config)
Event (e) initð?½id�;m; tÞ (initialization)

joinð?½id�;m; tÞ (participation)
acceptð?½id�;m; tÞ (acceptance)
openð?mÞ (opening)
leakð?mÞ (leakage)
knowð?m; tÞ (knowledge)
newð?½n�; l½�Þ (generation)
uniqueð?u; ?l½�;mÞ (uniqueness)

Rule(R) ½ G � e1; . . . ; en �½ B � ! e (rule)

732 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

replication history h ends when the null process 0 or the
replication process !P is reached. The location name l½� is
generated by a special function locðÞ, which returns a
unique location name for every process. For instance, given

P0 , !c0ðxÞ:nsk:c0ðsignðx; skÞÞ:0,
where c0 is a public channel, we can rewrite P0 as follows:

P0 , !P1 P1 , c0ðxÞ:P2 P2 , nsk:P3

P3 , c0ðsignðx; skÞÞ:P4 P4 , 0:

The function locðÞ returns a unique name for each process
Pi where i 2 ½0 . . . 4� .

Since we assume that different nonces must have differ-
ent values, every rule can have at most one new event for
every single nonce. When two new events have the same
nonce in a rule, we merge them into a single event. Simi-
larly, we need to merge other events in the following scenar-
ios: know events presented in a rule for the same message;
unique events with the same value and database; init, join
and accept events with the same session id; etc. Thus, we
introduce signature to events as shown in Table 3, event sig-
nature can be constructed by concatenating its event name
with a sequence of messages that prefixed with ‘?’. For
instance, in the event uniqueð?m; ?db;mÞ, the message m
and the database db is prefixed by ?, so its signature is
‘unique:m:db’, where ‘.’ concatenates and separates the
strings.

To provide a better understanding of the timed logic
rules, we show the following examples.

Example 3. For every pubic names in the protocol specifica-
tion, they should be known to the adversary by default. In
WMF, the public channel c0 is public known. We thus
have the following rule

�½ �!knowðc0½�; tÞ:
We recommend that the public channel name should be
the only public name in the protocol specification. tu

Example 4. Given that the symmetric encryption function
encs is public, the adversary can use it to encrypt mes-
sages. In order to use this function, the adversary first
need to know a message m and a key k for encryption.
Then, the encryption function can return the encrypted
message encsðm; kÞ. Hence, the encryption can be repre-
sented as the following rule:

knowðm; t1Þ; knowðk; t2Þ
�½ t1 � t ^ t2 � t �! knowðencsðm; kÞ; tÞ:

Notice that the timing constraints means that encsðm; kÞ
can only be known to the adversary after m and k are
known, following the chronological order. tu

Example 5. In WMF, the server provides its key registration
service to the public as follows.

Pr , c0ðuÞ:if u 6¼ A ^ u 6¼ B then c0ðkeyðuÞÞ:0:

Then, the server’s service can be written as follows:

½u 6¼ A½� ^ u 6¼ B½�� knowðu; t1Þ; knowðc0½�; t2Þ
�½ t� t1 	 xpn ^ t2 � t � ! knowðkeyðuÞ; tÞ:

It means that the adversary can register secret keys at the
server over c0 using any name other than A and B. tu

Example 6. Consider Bob’s role in the WMF. He receives a
message from the server, records his current time and
claims acceptance if the message is as expected

Pb , c0ðxÞ:mtb:lethts; i; ki ¼ decsðx; keyðBÞÞ then
ifi ¼ A then if tb � ts � pm then accept ðmbÞ@tb:0:

Since the adversary can start the protocol whenever it
wants to, we assume that tb is specified by the adversary.
In order to make the acceptance claim, the variable x
must be in the form of encsðhts; A; ki; keyðBÞÞ, where
tb � ts � pm. Thus, we have Bob’s rule as follows:

uniqueð½nb�; bob½�; hencsðhts; A½�; ki; keyðB½�ÞÞ; tb; ½nb�iÞ;
newð½nb�; bob½�Þ; knowðtb; tbÞ;
knowðhc0½�; encsðhts; A½�; ki; keyðB½�ÞÞi; t1Þ
�½ t1 � tb ^ tb � ts � xpm �! acceptð½nb�;mb; tbÞ:

The additional nonce ½nb� is introduced as the session id
of Pb. Since ½nb� is a random number that is unique glob-
ally, its value can identify the current session, including
the network input x, the recorded timestamp tb, and the
generated nonce nb in the process.

We show how the nonce can be used to identify the ses-
sion as follows. When two nonces in a single rule have the
same value ½n� and one of them is generated in Pb, we shall
have newð½n�; bob½�Þ and newð½n�; xÞ in the rule. Since they
have the same signature new:½n�, they must be unifiable
with fx 7!bob½�g. So, the other nonce is generated in Pb as
well. Then, the corresponding unique events have the same
signature and thus must be unifiable. As a result, they are
generated in the same process replication.tu

4.2 Semantic Definitions of Timed Applied
p-Calculus

The timed logic rules facilitate efficient protocol verification
because they represent the attack capabilities of the adversary
in a straightforward manner. Hence, we define the semantics
of timed applied p-calculus based on the timed logic rules.

Semantics of Functions. Given a function written in timed
applied p-calculus in the following form:

fðm1;m2; . . . ;mnÞ ¼ m@D:

The timed logic rules can be accordingly written as follows:

knowðm1; t1Þ; knowðm2; t2Þ; . . . ; knowðmn; tnÞ
�½ 8i 2 f1 . . .ng : t� ti 2 D �! knowðm; tÞ:

It means that the adversary can obtain the function result
after a certain time in D, when he/she knows all the func-
tion inputs.

Semantics of Processes. Given a process in timed applied
p-calculus, its execution forms various context information,

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 733

including generated nonces, timestamps, security claims,
validated conditions and network communications. Thus,
we need to keep the track of these execution contexts in
order to define its semantics. In general, the context of a pro-
cess P is a tuple htl; f; r; G;H;B; siwhere

� tl is the most recently generated timestamp before
the execution of P . We use it to maintain a chrono-
logical order of all generated timestamps, i.e., for
any newly generated timestamp t, we have tl � t.

� f is a variable representing the full execution trace of
the current process that can be identified by the non-
ces generated in P . The execution trace consists of
network inputs, read timestamps and generated
nonces in the chronological order. r is a variable rep-
resenting the rest of the execution trace started from
P . For simplicity, we call f and r as the head and the
tail of the execution trace until P . In the following,
the execution trace of hm1;m2i is represented by
hm1; hm2;m

0
2ii. Using this method, we can append

message m3 to the above trace with a substitution
m02 7!hm3;m

0
3i.

� G is a set of untimed guards that leads to P .
� H is a set of premise events before P .
� B is a set of timing constraints that leads to P .
� s is a substitution that is applicable to P .
Given a process P and its contexts htl; f; r; G;H;B; si, the

timed logic rules extracted from P can be denoted as
bPctlfrGHBs. These timed logic rules represent the capa-
bilities of the adversary, as illustrated in Section 4.1. Since
we target at verifying timed security protocols with an
unbounded number of sessions, when a protocol P0 is speci-
fied in the timed applied p-calculus as shown in Section 2, the
specification and verification are actually based on ‘mt0:!P0’,
where t0 is the starting time of the whole process. Then, the
semantic rule generation can be fired as bP0ct0f0f0;;U;,
where f0 is a variable representing the trace of P0.

First, we discuss three types of processes that either termi-
nate the current session or fork sub-sessions. They are the null
process ‘0’, the parallel composition process ‘P jQ’ and the
replication process ‘!P ’. Since the current session is completed
when the null process 0 is reached, no rule is defined. Given
the parallel composition process ‘P jQ’ as the next process,
nonces generated before P jQ can identify both traces ofP and
Q; nonces generated in P (Q resp.) can only identify the trace
of P (Q resp.). Hence, when r is the trace of P jQ, rp is the trace
of P and rq is the trace ofQ, r is mapped to hrp; rqi in P jQ, r is
mapped to rp in P and r is mapped to rq inQ. When the infi-
nite process replication ‘!P ’ is the next process, nonces gener-
ated before !P cannot identify P ; nonces generated in P can
identify P . Hence, when r is the trace of !P and rp is the trace
of P , r is mapped to a constant ? (representing the end of the
trace) in !P ; r and rp are the same inP

b0ctlfrGHBs ¼ ;
bP jQctlfrGHBs

¼ bPctlfrpGðH � s � fr 7! hrp; rqigÞBðs � fr 7! rpgÞ
[bQctlfrqGðH � s � fr 7! hrp; rqigÞBðs � fr 7! rqgÞ

b!PctlfrGHBs ¼ bPctlfrGðH � s � fr 7! ?gÞBs:

Second, when the nonce or timestamp generation process
is encountered, we append the nonce or timestamp to the
end of the execution trace. For the nonce generation process,
we add a new event toH for the nonce generation and insert
a unique event to H for its uniqueness, where locðÞ returns
the current location name in the process. For the timestamp
generation process, we add a timing constraint to describe
the chronological order of timestamps as well as a know
event to show that the adversary can control the timing of
process execution

bnn:PctlfrGHBs

¼ bPctlfrpGðH] newð½n�; locðÞÞ] uniqueð½n�; locðÞ; fÞÞ
Bðs � fr 7!h½n�; rpigÞ

bmt:PctlfrGHBs

¼ bPctfrpGðH] knowðt; tÞÞ
ðB ^ tl < tÞðs � fr 7!ht; rpigÞ:

Third, four conditional expressions exist in the timed
applied p-calculus. The equivalence checking between mes-
sages should be included in G, while the timing constraints
should be added to B. The timing delay expression first
reads the current timing and then checks the timing con-
straints. The function application process computes the
function result and stores it into a variable. Notice that we
do not consider the function application delay in the pro-
cess, because the computation delay specified in the func-
tion definition aims at describing the adversary rather than
the legitimate protocol participants. Since we can insert
additional timing delay into the process whenever neces-
sary, the protocol can be specified more flexibly and accu-
rately in this manner

bif m1 ¼ m2 then P else QctlfrGHBs

¼ bPctlfrGHBðs �mguðm1;m2ÞÞ
[bQctlfrðG ^m1 6¼ m2ÞHBs

bif B0 then P else QctlfrGHBs

¼ bPctlfrGHðB ^B0ÞsX
[ð[c2B0

bQctlfrGHðB ^ :cÞsÞ
bwait until mt : Bt then PctlfrGHBs

¼ bPctfrpGðH] knowðt; tÞÞ
ðB ^Bt ^ tl < tÞðs � fr 7! ht; rpigÞ

Given function f defined as fðm01; . . . ;m0nÞ) m0@D

and s0 ¼ mguðhm1; . . . ;mni; hm01; . . . ;m0niÞ; we have

blet x ¼ fðm1; . . . ;mnÞ then P else QctlUMGHBs

¼ bPctlfrHBðs � fx 7! m0g � s0Þ
[bQctlfrðG ^ hm01; . . . ;m0ni 6̂ hm1; . . . ;mniÞHBs:

Fourth, network communications can happen in the
timed applied p-calculus. For every network input, we
record the time when it is received and add a know
event into the premises, indicating that the adversary
must be able to send the message using the channel.
Similarly, we generate a time logic rule for every network
output, representing that the message will be known to
the adversary when it is sent using a channel known to
the adversary

734 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

bcðxÞ:PctlfrGHBs

¼ bPctfrpGðH] knowðhc; xi; t0ÞÞ
ðB ^ tl < t ^ t0 � tÞðs � fr 7! hx; rpigÞ

bcðmÞ:PctlfrGHBs

¼ bPctlfrGHBs

] ð½G�H] knowðc; tcÞ
�½ B ^ t� tl 	 xpn ^ tc � t �! knowðm; tÞÞ � s:

Fifth, we can check the uniqueness of messages in the
process, which is useful for preventing replay attacks and
thus ensure injective timed authentication. In practice, the
uniqueness checking is usually implemented by maintain-
ing a database and comparing the new values with the exist-
ing ones

binsert m into db as unique then PctlfrGHBs

¼ bPctlfrGðH] uniqueðm; db; fÞÞBs:

Sixth, three types of authentication events can be
engaged in the process. In order to check the injective
authentication properties, we introduce an additional nonce
½id� to represent the session id in the authentication events.
The corresponding new and unique events for the new
nonce ½id� are added as well, where locðÞ returns the current
location name in the process. The init and join events are
added into the rule premises. The accept events act as the
rule conclusions

Let H 0 ¼ H] newð½id�; locðÞÞ] uniqueð½id�; locðÞ; fÞ
and s0 ¼ s � fr 7! h½id�; rpig in the following.

binitðmÞ@t:PctlfrGHBs

¼ bPctlfrpGðH 0] initð½id�;m; tÞÞBs0

bjoinðmÞ@t:PctlfrGHBs

¼ bPctlfrpGðH 0] joinð½id�;m; tÞÞBs0
bacceptðmÞ@t:PctlfrGHBs

¼ bPctlfrpGH 0Bs0

] ð½G�H 0 �½ B �! acceptð½id�;m; tÞÞ � s0:

Seventh, the last two processes in the timed applied
p-calculus is for the secrecy claim. The secrecy property is
checked as an absence of information leakage during the
verification in Section 5, so a new event leakðmÞ is intro-
duced as a contradiction against secrecyðmÞ. Additionally,
if an openðmÞ is engaged before leakðmÞ, we deem the leak-
age ofm as intended by its owner

bopenðmÞ:PctlfrGHBs

¼ bPctlfrGðH] openðmÞÞBs

bsecrecyðmÞ:PctlfrGHBs

¼ bPctlfrGHBs

] ð½G�H] knowðm; tÞ �½ B �! leakðmÞÞ � s

Example 7. As shown in Example 6 previously, a timed
logic rule can be extracted from Pb manually. In this
example, we demonstrate how to extract the same seman-
tic rule from Pb automatically. The extraction procedure
is shown in Table 4. Initially, we have tl ¼ t0, f ¼ r ¼ f0,
G ¼ H ¼ s ¼ ; and B ¼ U. Since G remains empty, we
simply ignore it in the table. Then, after executing every
expression in Pb shown in the second column, we update
the execution contexts with new information. For the lat-
est timestamp tl, the trace variables f and r, we update
them with their new values. For the sets G, H and s, we
show the new elements (if any) that should be added. For
the timing constraint B, we write the new constraints that
should be applied. Hence, by following the semantic defi-
nition of timed applied p-calculus based on timed logic rules,
we can extract the following rule automatically

uniqueð½nb�; bob½�;
hencsðhts; A½�; ki; keyðB½�ÞÞ; htb; h½nb�; r3iiiÞ;

newð½nb�; bob½�Þ; knowðtb; tbÞ;
knowðhc0½�; encsðhts; A½�; ki; keyðB½�ÞÞi; t01Þ

�½ t0 � t1 ^ t01 � t1 � tb ^ tb � ts � xpm �!
acceptð½nb�;mb; tbÞ:

After we remove the unrelated timestamps t0 and t1,
rename the timestamp t01 into t1, and rewrite the execu-
tion trace from a binary tree hm1; hm2; . . . hmn; rii . . .i into
a message tuple hm1;m2; . . . ;mni, the automatically
extracted semantic rule becomes identical to the previ-
ously manually constructed rule. tu
Remarks on Execution Traces. In the automatically gener-

ated rules, the execution trace hm1;m2; . . . ;mni is repre-
sented as a binary tree structure hm1; hm2; . . . hmn; rii . . .i for
its extendable nature. For instance, suppose we have a pro-
cess Pxs as follows:

Pxs , c0ðxÞ:ns1:c0ðvalue1ðu; s1ÞÞ:ns2:c0ðvalue2ðu; s2ÞÞ:0:
When the first value value1ðu; s1Þ is sent in P , the execution
trace is trace1 ¼ hx; s1i. When the second value value2ðu; s2Þ
is sent in P , the execution trace is updated to

TABLE 4
Automatic Generation of Semantic Rule for Pb

bP ¼ Pbc tlðt0Þ fðf0Þ rðf0Þ Hð;Þ BðUÞ sð;Þ
bcðxÞc t1 f0 r1 knowðhc; xi; t01Þ t0 � t1 ^ t01 � t1 f0 7! hx; r1i
bmtbc tb f0 r2 knowðtb; tbÞ t1 � tb r1 7! htb; r2i
blet hts; i; ki ¼ decsðx; keyðBÞÞ thenc tb f0 r2 x 7! encsðhts; i; ki; keyðB½�ÞÞ
bif i ¼ A thenc tb f0 r2 i 7! A½�
bif tb � ts � pm thenc tb f0 r2 tb � ts � xpm
bacceptðmbÞ@tbc¼) tb f0 r3 newð½nb�; bob½�Þ, uniqueð½nb�; bob½�; f0Þ r2 7! h½nb�; r3i

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 735

trace2 ¼ hx; s1; s2i. Notice that even though trace1 and
trace2 represent the same trace, they are not unifiable
because they have different lengths. In order to support the
unification between traces with different lengths, we write
the trace in the binary tree structure. In this way, hu; hs1; r1ii
and hu; hs1; hs2; r2iii become unifiable with fr1 7!hs2; r2ig.

5 VERIFICATION ALGORITHM

After obtaining the initial timed logic rules denoted as IRinit

from the timed applied p-calculus process as shown in Sec-
tion 4, the satisfaction of the security properties then can be
verified using the algorithms presented in this section. Gen-
erally, after specifying an initial parameter configuration
L0, our verification method iteratively tries to find attacks
and then updates the parameter configuration to remove
the attacks. In the end, our approach can either compute the
parameter configurations that make the protocol satisfy all
of the security properties or report that no secure parameter
configuration can be found. Given a rule R in the form of
½G�H �½ B �! e, a set of rules IR and a parameter configura-
tion L, we use aðR;LÞ ¼ ½G�H �½ B ^ L �! e and aðIR; LÞ ¼
faðR;LÞjR 2 IRg to represent the rules under the configura-
tion L.

Specifically, the verification is divided into two sequen-
tial phases: the rule basis construction phase and the query
searching phase. In the rule base construction phase, we
generate new rules by composing two rules (through unify-
ing the conclusion of the first rule and the premise of the
second rule). Our verification algorithm uses this method
repeatedly to generate new rules until a fixed-point is
reached. This fixed-point is called the rule basis if it exists.
Subsequently, in the query searching phase, the query is
checked against the rule basis to find attacks. The verification
either proves the correctness of the protocol by providing
secure configurations of the parameters (represented as suc-
cinct constraints), or reports attacks if no secure parameter
configuration can be found. Since verifying security proto-
cols is undecidable [20], our algorithm cannot guarantee ter-
mination. However, as shown in Section 6, our algorithm
terminates on most of the evaluated security protocols,
which is similar to other security protocol verification works
such as [13], [21], [22]. Additionally, we adopted an on-the-
fly approach that checks the security properties (in the sec-
ond phase) as soon as a rule is generated (in the first phase),
so we could terminate early when no secure parameter con-
figuration can be found. Moreover, limiting the number of
protocol sessions is allowed in our framework which would
guarantee the termination of our algorithm.

5.1 Rule Basis Construction

Before constructing the rule basis, we need to introduce two
operators first:

� Given two rules R ¼ ½G�H �½ B �! e and R0 ¼ ½G0�
H 0 �½ B0 �! e0, if e and e0 2 H 0 can be unified with the
most general unifier s such that G � s ^G0 � s can be
valid, their composition is denoted as R �e0 R0 ¼
ð½G ^G0�H [ðH 0 � fe0gÞ �½ ðB ^B0Þ �! e0Þ � s.

� Additionally, given the above two rules R and R0, we
define R implies R0 denoted as R) R0 when
9s; e � s ¼ e0 ^G0) G � s ^H � s � H 0 ^B0 � B � s.

The rule basis bðIRinitÞ is constructed based on the initial
rules IRinit. First, we define IRv to represent the minimal clo-
sure of IRinit based on the rule composition and the rule
implication as follows. (1) 8R 2 IRinit; 9R0 2 IRv; R

0) R,
which means that every initial rule is implied by a rule in
IRv. (2) 8R;R0 2 IRv; R 6) R0, which means that no dupli-
cated rule exists in IRv. (3) 8R;R0 2 IRv and R ¼ ½G�H �
½B � ! e, if 8e0 2 H; e0 2 V and 9e0 62 V; S �e0 S0 is defined,
then 9S00 2 IRv; S

00) R �e0 R0, where V is a set of events that
can be provided by the adversary. In this work, V is a set of
trivially satisfiable events, consisting of the init, join, open,
new, unique events, and the knowðv; tÞ event where v is a
variable or a timestamp. The third rule means that for any
two rules in IRv, if all premises of one rule are trivially satis-
fiable and their composition exists, their composition is
implied by a rule in IRv. Based on IRv, we can then calculate
the rule basis

bðIRinitÞ ¼ fRjR ¼ ½G�H �½B �! e 2 IRv

^ 8e0 2 H : e0 2 Vg:

First, we define the derivation tree as follows. When a deri-
vation tree exists for a rule R based on a set of rules IR, we
say that R is derivable from IR.

Definition 5. Derivation Tree. Let IR be a set of closed rules
and R be a closed rule (a closed rule is a rule with its conclusion
initiated by its premises). Let R be a rule in the form of
½G�e1; . . . ; en �½ B � ! e. R can be derived from IR if and only
if there exists a finite derivation tree satisfying the following
conditions:

(1) edges in the tree are labeled by events;
(2) nodes are labeled by the rules in IR;
(3) if a node labeled by R has incoming edges of e01; . . . ; e

0
n

and an outgoing edge of e0, satisfying the untimed con-
dition G0 and the timed condition B0, then
R) ½G0�e01; . . . ; e0n �½ B0 � ! e0;

(4) the outgoing edge of the root is the event e;
(5) the incoming edges of the tree leaves are e1; . . . ; en.
Additionally, G is the conjunction of all the untimed condi-

tions in the derivation tree, and B is the conjunction of all the
timed conditions in the derivation tree. We name this tree as
the derivation tree of R based on IR.

Theorem 1. For any rule R in the form of ½G�H �½ B � ! e
where 8e0 2 H : e0 2 V, R is derivable from aðIRinit; LÞ if and
only if R is derivable from aðbðIRinitÞ; LÞ.
Theorem 1 means that we can derive the same set of rules

from aðIRinit; LÞ and aðbðIRinitÞ; LÞ. However, since the
premises of the rules in aðbðIRinitÞ; LÞ are trivially satisfiable
by the definition of the function b, the attack searching
based on aðbðIRinitÞ; LÞ would be much easier. In order to
prove Theorem 1, we prove the following two lemmas first.

Lemma 1. If Ro �e R0o exists, Rt) Ro and R
0
t) R0o, then either

there exists e0 such that Rt �e0 R0t is defined and
Rt �e0 R0t) Ro �e R0o, or R0t) Ro �e R0o.

Proof. Let Ro ¼ ½Go�Ho �½ Bo �! eo, R
0
o ¼ ½G0o�H 0o �½ B0o �! e0o,

Rt ¼ ½Gt�Ht �½ Bt �! et, R0t ¼ ½G0t�H 0t �½ B0t �! e0t. There
should exist a substitution s such that et � s ¼ eo,

736 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

Ht � s � Ho, Go) Gt � sBt � s Bo; e
0
t � s ¼ e0o,H

0
t � s � H 0o,

G0o) G0t � s, B0t � s B0o. Assume Ro �e R0o ¼ ð½Go ^G0o�
Ho [ðH 0o � eÞ �½ Bo ^B0o �! e0oÞ � s0. We discuss the two
cases as follows.

First Case. Suppose 9e0 2 H 0t such that e0 � s ¼ e. Since
Ro �e R0o is defined. e and eo are unifiable. Let s0 be the
most general unifier, e0 � s � s0 ¼ et � s � s0, then e0 and et
are unifiable, therefore Rt �e0 R0t is defined. Let st be the
most general unifier, then 9s0t such that s � s0 ¼ st � s0t.
We have Rt �e0 R0t ¼ ð½Gt � st ^G0t � st�ðHt [ðH 0t � e0ÞÞ�
st �½ Bt � st ^B0t � st �! e0t � stÞ. Since ðHt [ðH 0t � e0ÞÞ�
st � s0t ¼ ðHt [ðH 0t � e0ÞÞ � s � s0 � ðHo [ðH 0o � eÞÞ � s0,
e0t � st� s0t ¼ e0t � s � s0 ¼ e0o � s0, ðBt � st ^B0t � stÞ � s0t ¼ Bt �
st � s0t ^B0t � st � s0t ¼ Bt � s � s0 ^B0t � s � s0 Bo � s0 ^B0o�
s0Þ, and ðGt � st ^G0t � stÞ � s0t ¼ Gt � st � s0t ^G0t � st � s0t ¼
Gt � s � s0 ^G0t � s � s0 (Go � s0 ^G0o � s0, we have Rt�e0
R0t) Ro �e R0o.

Second Case. Since 8e0 2 H 0t such that e0 � s 6¼ e, we have
H 0t � s � H 0o � e. H 0t � s � s0 � ðHo [ðH 0o � eÞÞ � s0, B0t � s�
s0 B0o � s0 Bo � s0 ^B0o � s0, G0t � s � s0 (G0o � s0 (Go � s0^
G0o � s0, and e0t � s � s0 ¼ e0o � s0. Therefore,R0t) Ro �e R0o. tu

Lemma 2. For any rule R ¼ ½G�H �½ B �! e where 8e0 2
H : e0 2 V, R is derivable from IRinit if and only if R is deriv-
able from bðIRinitÞ.

Proof. (only if) Assuming R is derivable from IRinit, there
exists a derivation tree Ti for S on IRinit. Since we have
8R 2 IRinit; 9R0 2 IRv; R

0) R, we can replace all the labels
of nodes in Ti with rules in IRv and get a new derivation
tree Tv. Because some of the rules are filtered out from IRv

to bðIRinitÞwhen their premises do not all belong to V, we
further need to prove that the nodes in Tv can be com-
posed together until a derivation tree Tb is formed so that
all the nodes in Tb are labeled by rules in bðIRinitÞ.

To continue our proof, we assume that there exist two
nodes n and n0 in Tv and they are linked by an edge e0 as
shown in Fig. 1. We should have R;R0 2 IRv such that
R) ½G�H �½ B �! e, R0) ½G0�H 0 �½ B0 �! e0 and e 2 H 0.
Because ð½G�H �½ B �! eÞ and ð½G0�H 0 �½ B0 �! e0Þ can be
composed on the event e, according to Lemma 1, we
could merge these two nodes into one node based on the
two different cases given in the proof of Lemma 1. Let
Ro ¼ ð½G�H �½ B �! eÞ �eð½G0�H 0 �½ B0 �! e0Þ. In the first
case, because IRv is the fixed-point of the service compo-
sition, there should exist Rt 2 IRv such that Rt) Ro. In
the second case, we can remove the node n and link its
incoming links directly to the n0, so that the new node n0

is still implied by a rule Rt 2 IRv. We could continuously
replace the nodes in the derivation tree until no node can
be further processed and we denote the new tree as T .

For every node in T , we prove the rules labeled to the
nodes are in bðIRinitÞ as follows.

� For the leaves of the tree, their incoming edges are
labeled by the facts in V. So the leaves are labeled
by rules in bðIRinitÞ.

� For an inner node n0 of the tree with all its child-
ren’s rule premises in V. Because n0 cannot com-
posed by its children, the premises of the rule
labeled to n0 should also be in V. So the rules
labeled to all the inner nodes are in bðIRinitÞ.

As a consequence, all the nodes in T are labeled by
rules in bðIRinitÞ, so R is derivable from bðIRinitÞ.

(if) For every rule in IRv, it should be composed from
existing rules, which is in turn composed from IRinit.
Thus all the rules in IRv should be derivable from IRinit.
In the meanwhile, bðIRinitÞ does not include any extra
rule except for the existing rules in IRv, so 8R 2 bðIRinitÞ,
R is derivable from IRinit. tu
Based on the above two lemmas, we can then prove The-

orem 1 as follows.

Proof of Theorem 1. Given a derivation tree T of R, we
define GðT;LÞ as a derivation tree where every node’s
label R0 is replaced with aðR0; LÞ. According to Lemma 2,
R ¼ ½G�H �½ B �! e is derivable from IRinit if and only if R
is derivable from bðIRinitÞ. It means that we can construct
a derivation tree T of R based on IRinit if and only if we
can construct a derivation tree T 0 of R based on bðIRinitÞ.
After applying the configuration L to all of the labels of
T , we have the following two conditions.

� If B ^ L 6¼ ;, GðT;LÞ becomes a derivation tree of
aðR;LÞ based on aðIRinit; LÞ, and GðT 0; LÞ becomes
a derivation tree of aðR;LÞ based on aðbðIRinitÞ; LÞ.

� If B ^ L ¼ ;, aðR;LÞ becomes invalid, so both of
GðT; LÞ and GðT 0; LÞ do not exist.

Hence, aðR;LÞ is derivable from aðIRinit; LÞ if and only
if aðR;LÞ is derivable from aðbðIRinitÞ; LÞ. The theorem is
then proved. tu

5.2 Query Searching

In the following, we present how to verify security proper-
ties based on aðbðIRinitÞ; LÞ. A rule disproves non-injective
authentication if and only if its conclusion event is an accept
event, while it does not require all the init and join events as
premises or it has looser timing constraints comparing with
those in the query.

Definition 6 (Non-injective Authentication Contradic-
tion and Obedience). A rule R ¼ ½G�H �½ B �! e dis-
proves non-injective authentication Qn ¼ accept ½ B0 �� H 0

denoted as Qn 0 R if and only if G 6¼ false ^B 6¼ ;, e and
accept are unifiable with the most general unifier s such that
8e0 2 H; e0 2 V and 8s0; ðH 0 � s � s0 6� H � sÞ _ ðB � s 6� B0�
s � s0Þ. On the other hand, it is an obedience to Qn denoted as
Qn ‘ R if and only if G 6¼ false ^B 6¼ ;, e and accept are
unifiable with the most general unifier s such that
8e0 2 H; e0 2 V and 9s0; ðH 0� s � s0 � H � sÞ ^ ðB � s � B0�
s � s0Þ.
Furthermore, an injective authentication is violated if

and only if two conditions are satisfied. First, there exists a

Fig. 1. Two nodes in tree.

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 737

contradiction to the non-injective version of the query. Sec-
ond, given two obedience rules to the non-injective version
of the query, when the corresponding init events have iden-
tical session ids, the accept events in these two rules are not
necessarily the same. The second condition means that a
single init event can correspond to two different accept
events, which violates the injective authentication property.

Definition 7 (Injective Authentication Contradiction).
Given a pair of rules hR;R0i , it is a contradiction to the injec-
tive authentication query Qi ¼ accept ½ B0 �! init; J 0

denoted as Qi 0 hR;R0i if and only if (1) R and R0 are obedi-
ence rules to non injðQiÞ; (2) when the corresponding init
events in R and R0 have the same session id, the accept events
of R and R0 do not necessarily have the same session id.

Finally, a rule is a contradiction to the secrecy query
when the leak event is reachable without engaging its corre-
sponding open event before.

Definition 8 (Secrecy Contradiction). A rule R ¼ ½G�H
�½B �! e is a contradiction to the secrecy query Qs ¼
secrecyðmÞ denoted as Qs 0 R if and only if G 6¼ false,
B 6¼ ;, leakðmÞ ˆ s e, openðmÞ � s 62 H and 8e0 2 H : e0 2 V.

During the verification, we must ensure that no contra-
diction exists for all queries while at least one obedience
rule exists for every non-injective authentication query.
Hence, given non-injective authentication queries Qn, injec-
tive authentication queries Qi and secrecy queries Qs, our
goal is to compute the largest L that satisfies the following
three conditions:

ð1Þ 8Q 2 Qn [Qs [non injðQiÞ;
@R 2 aðbðIRinitÞ; LÞ : Q 0 R

ð2Þ 8Q 2 Qi;@R;R
0 2 aðbðIRinitÞ; LÞ;

non injðQÞ ‘ R;R0 : Q 0 hR;R0i
ð3Þ 8Q 2 Qn [non injðQiÞ;
9R 2 aðbðIRinitÞ; LÞ : Q ‘ R

These three conditions correspond to three “while loops” in
Algorithm 1 as follows.

(1) From line 8 to line 15, Algorithm 1 finds the contra-
diction rule R at line 9 and reduces the size of L to
remove R at line 12. After line 15, no contradiction
exists for the non-injective authentication queries
and the secrecy queries.

(2) From line 16 to line 23, Algorithm 1 finds a rule pair
hR;R0i that is a contradiction to an injective authenti-
cation query at line 17 and reduces the size of L to
remove the contradiction at line 20. After line 23, no
contradiction exists for the injective authentication
queries.

(3) From line 24 to line 28, Algorithm 1 traverses the
configurations in IL at line 25 and ensures that at
least one obedience rule exists for every non-injective
authentication query at line 26. If no obedience rule
exists for a non-injective authentication query, the
corresponding configuration L is removed. Thus,
after line 28, for every L remaining in IL, the rules in
aðbðIRinitÞ; LÞ satisfies all three conditions.

In order to prove the correctness of our algorithm, we
need to show that for any configuration L, a contradiction
exists in aðbðIRinitÞ; LÞ if and only if it exists in aðIRinit; LÞ.

Algorithm 1. Parameter Configuration Computation

1: Input: bðIRinitÞ - the rule basis
2: Input: L0 - the initial configuration
3: Input: Qn - the non-injective authentication queries
4: Input: Qi - the injective authentication queries
5: Input: Qs - the secrecy queries
6: Output: IL - a set of parameter configurations
7: IL ¼ fL0g;
8: for Q 2 Qn [Qs [non inj
ðQiÞ; L 2 IL; R ¼ ½G�H �½ B � ! e 2 aðbðIRinitÞ; LÞ do

9: if Q 0R then
10: IL ¼ IL� fLg;
11: for L0 : B ^ L0 ¼ ; _Q ‘ aðR;L0Þ do
12: IL ¼ IL [fL ^ L0g;
13: end for
14: end if
15: end for
16: for Q 2 Qi; L 2 IL; R ¼ ½G�H �½ B � ! e 2 aðbðIRinitÞ; LÞ;

R0 ¼ ½G0�H 0 �½ B0 � ! e0 2 aðbðIRinitÞ; LÞ do
17: if non injðQÞ ‘ R ^ non injðQÞ ‘ R0 ^Q0hR;R0i then
18: IL ¼ IL� fLg;
19: for L0 : Q 0 haðR;L0Þ;aðR0; L0Þi ¼ false do
20: IL ¼ IL [fL ^ L0g;
21: end for
22: end if
23: end for
24: for L 2 IL; Q 2 Qn [non injðQiÞ do
25: if @R 2 aðbðIRinitÞ; LÞ; Q ‘ R then
26: IL ¼ IL� fLg;
27: end if
28: end for
29: return IL;

Theorem 2. Partial Correctness. Let IRinit be the initial rule set.
When Q is a secrecy query or a non-injective authentication
query, there exists R derivable from aðIRinit; LÞ such that
Q 0 R if and only if there exists R0 2 aðbðIRinitÞ; LÞ such that
Q 0 R0. When Q is an injective authentication query, there
exists R1 and R2 derivable from aðIRinit; LÞ such that
Q 0 hR1; R2i if and only if there existsR01; R02 2 aðbðIRinitÞ; LÞ
such thatQ 0 hR01; R02i.

Proof (Partial Soundness). Given any rule in aðbðIRinitÞ;
LÞ, according to Theorem 1, they are derivable from
aðIRinit; LÞ. Hence, any contradiction found in aðbðIRinitÞ;
LÞ is a contradiction derivable from the initial rules
aðIRinit; LÞ. Partial Completeness. (1) When Q is a secrecy
query or a non-injective authentication query, suppose we
have a rule R derivable from aðIRinit; LÞ such that Q 0 R.
According to Theorem 1, R is also derivable from
aðbðIRinitÞ; LÞ. So there exists a derivation tree of R whose
nodes are labeled by rules in aðbðIRinitÞ; LÞ. We prove that
the rule Rt ¼ ½Gt�Ht �½ Bt �! et labeled on the tree’s root is
also a contradiction as follows. Notice thatR is a rule com-
posed byRt with other rules, soGt 6¼ false andBt 6¼ ;.
� If Q is a secrecy query, Rt has a leakðmÞ event as

conclusion because Q 0 R. Additionally, because

738 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

rules cannot be composed on any open event, open
should be absent in Rt as well. Since Rt 2
aðbðIRinitÞ; LÞ, 8e0t 2 Ht; e

0
t 2 V. Thus, Q 0 Rt.

� If Q ¼ accept ½ Bq �� Hq is a non-injective
authentication query, et should be an accept
event. So, Rt should satisfy either Q ‘ Rt or
Q 0 Rt. Suppose we have Q ‘ Rt. Since accept
must be unifiable to et, there exists a substitution
s of et and accept satisfying accept � s ¼ et,
and 9s0; ðHq � s � s0 � Ht � sÞ ^ ðBt � s � Bq � s � s0Þ.
Additionally, incoming edges of the tree root can-
not be init or join events, so they should persist
in R. Hence, Q ‘ R, which violates our precondi-
tion that Q 0 R. We then have Q 0 Rt.

(2) When Q is an injective authentication query,
suppose we have a rule pair hR;R0i derivable from
aðIRinit; LÞ such that Q 0 hR;R0i, in the following we
prove that there exists a pair of rules hRb; R

0
bi in

aðbðIRinitÞ; LÞ such that Q 0 hRb; R
0
bi. According to Theo-

rem 1, R and R0 are also derivable from aðbðIRinitÞ; LÞ. So
there exist two derivation trees for R and R0 respectively
whose nodes are labeled by rules in aðbðIRinitÞ; LÞ.
Suppose the root nodes of these two trees are labeled by
Rt and R0t respectively. We have already proved that Rt

and R0t are obedience rules to non injðQÞ above. Given s
is the substitution when the init events are merged in R
and R0, it should also work when the init events are
merged in Rt and R0t. Because s cannot merge the accept
events in R and R0, it cannot merge the accept events Rt

and R0t as well. Hence, we have Q 0 hRt;R
0
ti tu

Remarks on Non-Termination. Since verifying security pro-
tocols is undecidable [20], our algorithm cannot guarantee
termination in general. In the following, we describe two
common cases that can lead to non-termination.

One common cause of non-termination is the unbounded
depth of function application, which is illustrated with
Rules (2) and (3) below:

knowðx; t1Þ �½ t1 � t �! knowðfðfðxÞÞ; tÞ (2)

knowðfðxÞ; t1Þ �½t1 � t �! knowðfðfðxÞÞ; tÞ (3)

By composing Rules (2) to (3), we can get

knowðfðxÞ; t1Þ �½ t1 � t �! knowðfðfðfðxÞÞÞ; tÞ;
which does not imply and is not implied by Rules (2)
and (3). By composing Rule (2) to the newly generated
rules repeatedly, we can get infinite many rules with
increasing application depths of function f . Thus, the
verification cannot terminate. Notice that, given a prem-
ise event knowða½�; tÞ, the events obtainable from Rules
(2) and (3) are

knowða½�; tÞ;
knowðfðfða½�ÞÞ; tÞ;
knowðfðfðfða½�ÞÞÞ; tÞ;
. . . ;

where knowðfða½�Þ; tÞ is missing in the list. On the contrary,
when knowðfða½�Þ; tÞ is in the list, Rules (2) and (3) can be
replaced with

knowðx; t1Þ �½ t1 � t �! knowðfðxÞ; tÞ;
which does not have the non-termination problem.

Another common cause of non-termination is the unbou-
nded numbers of freshly generated nonces in a session with
unbounded timing constraints, which can be illustrated by
Rules (4) and (5) below. Note that gð½n�; tÞ has a limited life-
timewithin tþ xd

knowðt1; t1Þ; newð½n1�; l1½�Þ; uniqueð½n1�; l1½�; ht1; h½n1�; riiÞ
�½ t1 � t �! knowðgð½n1�; t1Þ; tÞ

(4)
knowðgðni; tiÞ; t0Þ; knowðtiþ1; tiþ1Þ; newð½niþ1�; l2½�Þ;
uniqueð½niþ1�; l2½�; hgðni; tiÞ; htiþ1; h½niþ1�; riiiÞ
�½ t0 � t ^ tiþ1 � t

^ tiþ1 � ti � xd � ! knowðgð½niþ1�; tiþ1Þ; tÞ:

(5)

Rule (4) means that gð½n1�; t1Þ can be known after a nonce
½n1� is generated. Rule (5) means that gð½niþ1�; tiþ1Þ can be
known for another fresh nonce ½niþ1� after gðni; t1Þ is
received within its lifetime tiþ1 � ti � xd. We can compose
Rules (4) to (5) as the following rule, which does not imply
and is not implied by Rules (4) and (5)

knowðt1; t1Þ; newð½n1�; l1½�Þ; uniqueð½n1�; l1½�; ht1; h½n1�; riiÞ;
knowðt2; t2Þ; newð½n2�; l2½�Þ;
uniqueð½n2�; l2½�; hgð½n1�; t1Þ; ht2; h½n2�; riiiÞ
�½t1 � t ^ t2 � t ^ t2 � t1 � xd � ! knowðgð½n2�; t2Þ; tÞ:

It means that gð½n2�; t2Þ can be known after sending the result
from Rules (4) to (5). Notice that, comparing with gð½n1�; t1Þ in
Rule (4), the lifetime of gð½n2�; t2Þ is extended. Since the results
from the newly composed rules can always be sent to Rule
(5), infinite many rules can be generated and thus the verifica-
tion cannot terminate. In this case, by limiting the application
times of Rule (5) in a session, the verification can become ter-
minable. In our future works discussed in Section 8, we plan
to develop a practical and generic abstraction method to help
the non-terminable cases.

6 CASE STUDIES

Our verification framework has been implemented as a tool
named Security Protocol Analyzer (available at [29]), using
C++ with 23K LoC . SPA relies on PPL [10] to check the sat-
isfaction of timing constraints, i.e., in order to tell whether a
generated rule is feasible or not. To improve the perfor-
mance, SPA computes the rule basis on-the-fly by updating
the parameter configuration as soon as a rule is generated.
Hence, the verification process can terminate early if an
attack is found.

We have applied SPA to check multiple security proto-
cols as shown in Table 5. All the experiments are conducted
using a Mac OS X 10.10.4 with 2.3 GHz Intel Core i5 and
16G 1333 MHz DDR3. In the experiments, we have checked
several timed protocols i.e., the WMF protocols [6], [7], the
Kerberos protocols [11], the distance bounding protocol [3],
[4] and the CCITT protocols [6], [23], [24]. Additionally, we
analyze the untimed protocols like the Needham-
Schroeder [25], [26] and SKEME [28]. Most of the protocols
can be verified or falsified quickly for an unbounded

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 739

number of protocol sessions. Notice that the secure configu-
ration is given based on the satisfaction of all of the queries,
so we do not show the results for different queries sepa-
rately in the table. Particularly, we have successfully found
a new timed attack in Kerberos V [11]. Since Kerberos V is
the latest version, we simply refer to it as Kerberos. In the
following, we illustrate how SPA works with our running
example first and then other protocols.

6.1 Wide Mouthed Frog

After checking WMF described in Section 2, an attack is
found against the non-injective timed agreement. The two
key rules in bðIRinitÞ are shown below. Notice that we avoid
generating a new nonce for the init event by reusing the
existing session key ½k� as the session id of Pa. Since any
nonce generated in the current session can act as its session
id, this simplification does not weaken nor strengthen our
method. More importantly, it makes the rules much easier
to read. Rule (6) represents the execution trace that the
server transmits the request from Alice to Bob for once. It is
obedient to the non-injective timed agreement query (1).
However, rule (7) represents a possible execution trace that
contradicts the query (1). Compared with the timing con-
straint ‘tb � ta þ 2� xpm’ in the query, rule (7) has a weaker
timing range ‘tb � ta þ 4� xpm’ if xpm > 0. This rule stands
for the execution trace that the adversary sends the message
from the server back to server twice and then forwards it to
Bob as follows, whereK is the adversary.

(1) A generates a random session key k at ta
A! S : hA; encsðhta; B; ki; keyðAÞÞi

(2) S receives the request from A at ts
S checks : ts � ta � pm
S ! B : encsðhts; A; ki; keyðBÞÞ

(3) K forwards the message to S before ts þ pm
K ! S : hB; encsðhts; A; ki; keyðBÞÞi

(4) S receives the request fromK at t0s
S checks : t0s � ts � pm
S ! A : encsðht0s; B; ki; keyðAÞÞ

(5) K forwards the message to S before t0s þ pm
K ! S : hA; encsðht0s; B; ki; keyðAÞÞi

(6) S receives the request fromK at t00s
S checks : t00s � t0s � pm
S ! B : encsðht00s ; A; ki; keyðBÞÞ

(7) B receives the message from S at tb
B checks : tb � t00s � pm
B accepts the session key k

According to the process Ps, the timestamp in the mes-
sage can be updated in this method. Hence, Bob would not
notice that the message is actually delayed when he receives
it. In order to remove the contradiction rule, we need to con-
figure the parameters as either xpm < xpn or xpm � 0. How-
ever, applying any of these constraints to the initial
configuration xpn > 0 leads to the removal of rule (6),
which is the only obedience rule in aðbðIRinitÞ; LÞ. Hence, an
attack is found

fknow & new & unique events . . .g;
initð½k�; hA½�; B½�; ½k�i; taÞ; joinðhA½�; B½�; ½k�i; tsÞ
�½ tb � ts þ xpm � ta þ 2� xpm;
ta þ 2� xpn � ts þ xpn � tb; �!

acceptð½n�; hA½�; B½�; ½k�i; tbÞ

(6)

fknow & new & unique events . . .g;
initð½k�; hA½�; B½�; ½k�i; taÞ; joinð½ns�; hA½�; B½�; ½k�i; tsÞ;
joinð½n0s�; hB½�; A½�; ½k�i; t0sÞ; joinð½n00s �; hA½�; B½�; ½k�i; t00sÞ
�½ tb � t00s þ xpm � t0s þ 2� xpm
� ts þ 3� xpm � ta þ 4� xpm;

ta þ 4� xpn � ts þ 3� xpn
� t0s þ 2� xpn � t00s þ xpn � tb �!

acceptð½n�; hA½�; B½�; ½k�i; tbÞ:

(7)

Corrected WMF for Non-Injective Timed Agreement. The
attack of WMF is caused by the symmetric structure of
the messages that are sent and received by the server, so
the adversary can send the messages from the server
back to the server. Hence, this attack can be defended by
inserting two different constants m1 and m2 into the
messages that are sent and received by the server respec-
tively

TABLE 5
Experiment Results

Protocol Parameterizeda Bounded]Rb Result Time

Wide Mouthed Frog [6] Yes No 112 Attack [8] 225 ms
Wide Mouthed Frog non-injective [7] Yes No 80 Attack 46 ms
Wide Mouthed Frog injective Yes No 80 Secure 49 ms
Kerberos V [11] Yes No 285 Attack 11.2 s
Kerberos V (c) Yes Yes 1,138 Secure 115.9 s
Auth Range [3], [4] Yes No 53 Secure 36 ms
CCITT X.509 (1) [23] No No 92 Attack [24] 114 ms
CCITT X.509 (1c) [24] No No 101 Secure 119 ms
CCITT X.509 (3) [23] No No 433 Attack [6] 1,943 ms
CCITT X.509 (3) BAN [6] No No 298 Secure 887 ms
NS PK [25] No No 123 Attack [26] 94 ms
NS PK Lowe [26] No No 150 Secure 89 ms
NS PK Commitment [27] No No 179 Secure 114 ms
NS PK Time Yes No 173 Secure 174 ms
SKEME [28] No No 294 Secure 621 ms

aThe network latency parameter is considered by default .
bThe number of rules generated in the verification.

740 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

Pa , c0ðrÞ:nk:secrecyðkÞ:mta:initðhA½�; r; kiÞ@ta

:c0ðhA; encsðhta; r; k;m1i; keyðAÞÞiÞ:0
Ps , c0ðhi; xiÞ:mts:lethti; r; k;m1i ¼ decsðx; keyðiÞÞ then

if ts � ti � pm then joinðhi; r; kiÞ@ts

:c0ðencsðhts; i; k;m2i; keyðrÞÞÞ:0
Pb , c0ðxÞ:mtb:lethts; i; k;m2i ¼ decsðx; keyðBÞÞ then
if i ¼ A then if tb � ts � pm then

acceptðhi; B½�; kiÞ@tb:0:

Then, the server can distinguish the messages that it sent
out previously, and refuse to process them again. Our algo-
rithm proves the non-injective timed agreement of this
modified WMF protocol and produces the timing con-
straints 0 < xpn � xpm with rule (6). However, given two
instances of rule (6) with the same session key ½k�, we cannot
conclude that they have identical ½n�. This violates the third
condition of Algorithm 1, so the injective timed agreement
of WMF is still unsatisfied.

Corrected WMF for Injective Timed Agreement. In fact, there
exist two methods to modify the WMF protocol so that the
injective timed agreement can be satisfied.

In the first approach that we proposed, Bob can maintain
a database that stores the previously used session keys to
avoid duplicate requests. When a new request is received,
Bob checks the new session key ½k� in database db as unique
to ensure that it has not been used before

Pb , cðxÞ:mtb:lethts; i; k;m2i ¼ decsðx; keyðBÞÞ then
if i ¼ A then if tb � ts � pm then

insert k into db as unique then

acceptðhi; B½�; kiÞ@tb:0:

Hence, any session key generated by Alice can only be
accepted by Bob for once (i.e., injective). In the correspond-
ing timed logic rule, an additional premise uniqueð½k�; db½�;
hencsðhts; A½�; ½k�; m2½�i; keyðB½�ÞÞ; htb; h½n�; rbiiiÞ is added.
When two rules use the same ‘½k�’, the unique events then
have the same signature ‘unique:½k�:db½�’, leading to the uni-
fication of session id ‘½n�’. So, the injective timed agreement
can be verified in our framework.

In the second approach [26], we add another round of
communications between the protocol initiator and the pro-
tocol responder. Before Bob engages the accept event in the
process Pb, Bob can generate a fresh nonce nb and send it
back to Alice under the newly agreed encryption key k.
When Alice receives the nonce nb, she send incðnbÞ back to
Bob, where incðxÞ increases x by 1

Pa , cðrÞ:nk:secrecyðkÞ:mta
:cðhA; encsðhta; r; k;m1i; keyðAÞÞiÞ:cðxÞ
:letnb ¼ decsðx; kÞ:initðhA½�; r; kiÞ@ta

:cðencsðincðnbÞ; kÞÞ:0
Pb , cðxÞ:mtb:lethts; i; k;m2i ¼ decsðx; keyðBÞÞ
then if i ¼ A then if tb � ts � pm then

nnb:cðencsðnb; kÞÞ:cðyÞ:let yb ¼ decsðy; kÞ then
if yb ¼ incðnbÞ then accept ðhi; B½�; kiÞ@tb:0:

Since Alice only replies once, Bob then can make sure the
authentication is injective. During the verification, the
unique event of k ensures that at most one nb will be
accepted by Aliceand the unique event of nb ensures that Bob
will establish at most one session for every nb. Thus, the
injective timed agreement can be proved in our framework.

6.2 Commitment Protocols

In commitment protocols, a nonce are often sent out at the
end of the protocol session as a proof to the commitment
made previously. Since the nonce generated in the legiti-
mated process is unpredictable to the adversary, the adver-
sary cannot get the proof before it is sent out by the process.
Consider the following process P , where s is a secret con-
stant that should not be known to the adversary and c0 is a
public channel name

P , nn:c0ðxÞ:c0ðnÞ:ifx ¼ n then c0ðsÞ:secrecyðsÞ:0:
Since P receives the message x before it sends out the nonce
n, the checking condition x ¼ n can never be satisfied and
the secrecy property of s should be preserved. This process
P is initially proposed in [18] to illustrate possible false
alarms in ProVerif [13], and later used in [27] as an example
of verifying commitment protocols. According to [18], [27],
ProVerif returns false alarms because it makes over-approx-
imation to nonces. In order to remove the false alarms, Tom
et al. [27] proposed to add phases into the protocol execu-
tion. Comparing with their approach, our framework can
natively prove the secrecy property of s in the process P ,
because no abstraction is made to the nonces during the ver-
ification. Additionally, we use our method to verify Need-
ham-Schroeder protocol with commitment [27] successfully.

More importantly, since the protocol participants can
explicitly engage open events to reveal secret messages, we
can model commitment protocols in a more straight for-
ward manner. For instance, we can verify the secrecy prop-
erty in the following process P 0, which is infeasible by
adding phases in ProVerif [27]

P 0 , nn:secrecyðnÞ:openðnÞ:c0ðnÞ:0:
To be specific, the following two timed logic rules can be
extracted from P 0

newð½n�; gen½�Þ; uniqueð½n�; gen½�; h½n�; riÞ;
knowð½n�; tÞ �½ �!leakð½n�Þ (8)

newð½n�; gen½�Þ; uniqueð½n�; gen½�; h½n�; riÞ;
openð½n�Þ �½ �!knowð½n�; tÞ: (9)

After composing rules (9) to (8) on the know event, we find
that the leakð½n�Þ event is only reachable with the openð½n�Þ
event engaged before. So the secrecy property of the nonce
n in P 0 is preserved.

6.3 Kerberos

Kerberos is a widely used security protocol for accessing
services. For instance, Microsoft Window uses Kerberos as
its default authentication method; many UNIX and UNIX-
like operating systems include software for Kerberos
authentication. Kerberos has a salient property such that its

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 741

user can obtain accesses to a network service within a
period of time using a single request. In general, this is
achieved by granting an access ticket to the user, so that the
user can subsequently use this ticket to complete authenti-
cation to the server. Kerberos is complex because multiple
ticket operations are supported simultaneously and many
fields are optional, which are heavily relying on time. So,
configuring Kerberos is hard and error-prone.

Kerberos consists of five types of entities: User, Client, Ker-
beros Authentication Server (KAS), Ticket Granting Server (TGS)
and Application Server (AP). KAS and TGS together are also
known as Key Distribution Centre (KDC). Specifically, Users
usually are humans, and Clients represent their identities in
the Kerberos network. KAS is the place where aUser can initi-
ate a logon session to the Kerberos network with a pre-regis-
tered Client. In return, KAS provides theUserwith (1) a Ticket
Granting Ticket (TGT) and (2) an encrypted session key as the
authorization proof to access TGS. After TGS checks the
authorization from KAS, TGS issues two similar credentials
(1) a Service Ticket (ST) and (2) a new encrypted session key to
the User as authorization proof to access AP. Then, the User
can finally use them to retrieve the Service fromAP. Addition-
ally, both of the TGT and the ST can be postdated, validated
and renewed by KDCwhen these operations are permitted in
the Kerberos network.

Specification Highlights. Generally, by following the
method described in Section 2, the specification for Kerberos
itself can be modeled easily. In order to verify Kerberos com-
prehensively, wemodel several keys and timestamps (which
could be optional) by following its official document RFC
4120 [11] precisely.

� The user and the server are allowed to specify sub-
session keys in the messages. When a sub-session
key is specified, the message receiver must use it to
transmit the next message rather than using the
default session-key.

� Optional timestamps are allowed in the user
requests and the tickets. In the following, tfq, ttq and
trq denote the start-time, the end-time and the maxi-
mum renewable end-time requested by the users.
Similarly, tsp, tep and trp denote the start-time, the
end-time and the maximum renewable end-time
agreed by the servers. tsp, tep and trp are encoded in
the tickets, corresponding to tfq, ttq and trq respec-
tively. An additional timestamp ap is encoded in the
ticket to represent the initial authentication time of
the ticket. Furthermore, tcq represents the current-
time when the request is made by the user, and tcp
stands for the current-time when the ticket is issued
by the server. In Kerberos, tfq, trq, tsp and trp are
optional. So the servers need to check their presence
and construct replies accordingly.

In the Kerberos model, two parameters are considered in
Kerberos, i.e., the maximum lifetime xl and the maximum
renewable lifetime xr of the tickets. Based on these parame-
ters, the servers can only issue tickets whose lifetime and
renewable lifetime are shorter than xl and xr respectively.
Furthermore, five operations are modeled for the Kerberos
servers as follows. (1) Postdated tickets can be generated for
future usage. They are marked as invalid initially and they

must be validated later. (2) Postdated tickets must be vali-
dated before usage. (3) Renewable tickets can be renewed
before they expire. (4) Initial tickets are generated at KAS
using user’s client. (5) Sub-tickets are generated at TGS
using existing tickets. Notice that the end-time tep of the
sub-ticket should be no larger than the end-time of the exist-
ing ticket. The Kerberos model is available in [29].

Queries. In order to specify the queries, we define three
events as follows.

� When an initial ticket is generated at KAS, an
initauthðhk; u; siÞ@t event is engaged, where k is the
fresh session key, u is the client’s name, s is the target
server’s name, and t is the beginning of the ticket’s
lifetime.

� Whenever a new ticket is generated at KAS or TGS,
an initgenðhk; u; siÞ@t event is engaged. Its arguments
have the same meaning as those in initauth.

� Whenever a ticket is accepted by the server, an
acceptðhk; u; siÞ@t event is engaged, where k is the
agreed session key, u is the client’s name, s is the cur-
rent server’s name, and t is the acceptance time.

In Kerberos, we need to ensure the correctness of two non-
injective timed agreements. First, whenever a server accepts a
ticket, the ticket should be indeed generated within xl time
units using the same session key. Second, whenever a server
accepts a ticket, the initial ticket should be indeed generated
within xr time units. Notice that the injective timed agreement
is unnecessary in Kerberos because it is intended to allow the
users to authenticate themselves to the servers for multiple
times by using the same unexpired authorization proof

acceptðhk; u; siÞ@t ½ t� t0 � xl �� initgenðhk; u; siÞ@t0 (10)

acceptðhk; u; siÞ@t ½ t� t0 � xr �� initauthðhk0; u; s0iÞ@t0:
(11)

Verification Results. For the termination of the verification,
we need to initially configure the parameters as xr < x
 xl,
where x can be any integer larger than 1. The requirement
for this constraint is justified as follows. Algorithm 1
updates parameter configuration at line 15 to eliminate the
contradiction rules. Suppose we have a rule
initauthðhk; C; Si; t0Þ �½ t� t0 � y
 xl � ! acceptðhk; C; Si; tÞ
in the rule basis, where y > 1. This rule is a contradiction to
the query (11) because xr is not necessarily larger than y
 xl.
However, Algorithm 1 can add a new constraint y
 xl � xr
to the existing configuration and then continue searching.
Since we have infinitely many such rules in bðIRinitÞ with
different values of y, the verification cannot terminate.
Hence, in this work, we set the initial configuration as
xr < 2
 xl to avoid the non-termination. Notice that this
initial configuration does not prevent us from finding
attacks because it does not limit the number of sequential
operations allowed in the Kerberos protocol.

By using SPA, we have successfully found a security flaw
in its specification document RFC 4120 [11]. The attack trace
is depicted in Fig. 2. Suppose the Kerberos is configured
with xl ¼ 3 and xr ¼ 5,2 and a user Alice has already

2. xl and xr are represented by symbols during the verification.

742 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

obtained a renewable ticket at time 0. Then, she can request
for a sub-ticket of AP at time 2 that is renewable until time
7, satisfying trq1 � tcp1 � xr. Notice the new sub-ticket’s end-
time tep2 cannot be larger than the end-time tep1 of the exist-
ing ticket. Later, she renews the new sub-ticket before it
expires and gets a ticket valid until time 6. Finally, she
requests the service at time 6 and engages an event
acceptðh½k3�; A½�; AP ½�i; 6Þ. However, this accept event does
not correspond to any initauth event satisfying Query (11),
which leads to an attack. In fact, Alice can use this method
to request sub-ticket for AP repeatedly so that she can have
access to the service forever. Obviously, the server who
made the authentication initially does not intend to do so.
Fortunately, after checking the source code of Kerberos, we
find that this flaw is prevented in its implementations [30],
[31]. An additional check3 has been inserted to regulate that
the renewable lifetime in the sub-ticket should be smaller
than the renewable lifetime in the existing ticket. We later
confirmed with Kerberos team that this is an error in its
specification document, which could have led to a security
issue but has not done so in its current implementation.

Corrected Version. After adding the timing constraints on
renewable lifetime between the base-ticket and the sub-ticket,
the verification cannot terminate. This is caused by an infinite
dependency trace formed by tickets, as we do not limit its
length. Hence, we bound the number of tickets that can be
generated during the verification, which in turn bounds the
number of initgen events in the rule. In this work, we bound
the ticket number to five. This is justified as we have five dif-
ferent methods to generate tickets in Kerberos: the servers can
postdate, validate, renew tickets, generate initial tickets and
issue sub-tickets. After bounding the ticket number that can
be generated, our tool proves the correctness of Kerberos and
produces the configuration 0 � xl � xr < 2
 xl.

7 RELATED WORKS

We discuss the related works from the following aspects.
Extensions from Previous Works. This work is a substantial

extension of [1], [2]. In this work, we additionally introduce
the timed applied p-calculus as an intuitive specification lan-
guage for timed security protocols. In order to verify the
protocols specified in timed applied p-calculus automatically,
we further define its semantics based on the timed logic
rules [1], [2]. Furthermore, we extend our framework to ver-
ify the injective timed authentication and stronger secrecy
properties. During the evaluation, we rewrite all of the
existing case studies in [1], [2] using timed applied p-calculus.
More importantly, we add several new case studies to show
our extensions, e.g., the injective version of Wide Mouthed
Frog protocol and the commitment protocols.

Timed Related Security Protocol Verification. The analyzing
framework closest to ours was proposed by Delzanno and
Ganty [7] which applies MSRðLÞ to specify unbounded
crypto protocols by combining first order multiset rewriting
rules and linear constraints. According to [7], the protocol
specification is modified by explicitly encoding an addi-
tional timestamp, representing the initialization time, into
some messages. Thus the attack can be found by comparing
the original timestamps with the new one in the messages.
However, it is unclear how to verify timed protocol in gen-
eral using their approach. On the other hand, our approach
can be applied to protocols without any protocol modifica-
tion. Additionally, a verification method was proposed in
[32] to verify timed equivalence property for untimed proto-
cols. It verification result ensures that the adversary cannot
observe differences between protocol executions consider-
ing time. Notice that timed operations, e.g., reading, using
and comparing timestamps, cannot be specified using their
verification method. Hence, their work is proposed for a dif-
ferent security analysis goal comparing with SPA. Further-
more, [33] was proposed to find timed attacks in cyber-
physical security protocols, considering dense time and

Fig. 2. Attack found in Kerberos V.

3. For krb5-1.13 from MIT, the checking is located in the file src/
kdc/kdc_util.c at line 1740 - 1741. We also checked other implementa-
tions, like heimdal-1.5.2.

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 743

processing circle. Comparing with their work, we do not
consider the attacks that could be introduced by specific
physical properties, like processing circle, at present.
Instead, we aims at finding the logic flaws introduced by
the cryptography application with time.

Kerberos Verification. Kerberos has been scrutinized over
years using formal methods. In [34], Bella et al. analyzed Ker-
beros IV using the Isabelle theoremprover. They checked var-
ious secrecy and authentication properties and took time into
consideration. However, Kerberos is largely simplified in
their analysis and the specification method in their work is
not as intuitive as ours. Later, Kerberos V has been analyzed
by Mitchell et al. [35] using state exploration tool Mur’. They
claimed that an attack is found in [36] when two servers exist.
However, this attack is actually infeasible in Kerberos’s offi-
cial specification document RFC 1510 [37]. The Kerberos spec-
ification RFC 4120 [11] analyzed in thiswork later superseded
RFC 1510. Comparedwith the state exploration approach [35],
our method can verify protocols with an unbounded number
of sessions.Additionally, the above literatures do not consider
alternative options supported in Kerberos that may acciden-
tally introduce attacks. Similar to our work, Kerberos V has
been analyzed in a theorem proving context by Butler
et al. [38]. They tookmany features into consideration, i.e., the
errormessages, the encryption types and the cross-realm sup-
port. These features are not covered in our work since we
focus on the timestamps and timing constraint checking.
Meanwhile, our framework can provide intuitive modeling
and automatic verifying, whereas Kerberos V is analyzed
manually in [38].

Untimed Security Protocol Verifiers.Many tools are proposed
to verify untimed protocols, e.g., ProVerif [13], Athena [14],
Scyther [22] and Tamarin [21]. ProVerif [13] and our tool
SPA both useHorn logic rules to represent the protocol execu-
tion. Horn logic reasoning makes the verification process
extremely efficient compared with others. ProVerif relies on
the nonce abstraction [13]. SPA does not have the nonce
abstraction and guarantees partial correctness for its verifica-
tion result, which makes it suitable for verifying timed proto-
cols and commitment protocols. Athena [14] and Scyther [22]
use strand space for the protocol verification, andTamarin [21]
uses multiset rewriting rules. Comparing with our method,
strand space and multiset rewriting rules consider the proto-
col execution as non-monotonic. Hence, they are suitable for
specifying compromised adversaries [39] and verifying state-
ful protocols [40], [41].

Timed Modeling Languages. Many languages have been
proposed to model timed systems and protocols, e.g., Timed
Automata [42], [43], Timed CSP [44]. Furthermore, many
verification tools have been proven successful, e.g.,
Uppaal [45], KRONOS [46]. However, they are not suitable
for modeling timed security protocols for the following rea-
sons. First, they are initially proposed for timed systems
and protocols without the adversary. Adding the adversary
is non-trivial, e.g., the events and the channel communica-
tions do not need to be synchronized in the protocol model
considering the presence of the adversary. Furthermore,
these models are often verified by model checking for a
bounded number of processes using state-space traversal
searching algorithm, which is not applicable to security
protocol verification that typically requires checking an

unbounded number of processes. More importantly, applied
p-calculus [12] is a widely-used security protocol modeling
language in the security community [13], [41], [47]. Hence,
we extend applied p-calculus with time to model timed
security protocols.

8 CONCLUSIONS AND FUTURE WORKS

In this work, we developed an automatic verification frame-
work for timed parameterized security protocols. It can
verify authentication properties as well as secrecy properties
for an unbounded number of protocol sessions. We have
implemented our approach into a tool named SPA and used
it to analyze a wide range of protocols shown in Section 6. In
the experiments, we have found a timed attack in Kerberos
V document that has never been reported before.

Since the problem of verifying security protocols is unde-
cidable in general, we cannot guarantee the termination of
our verification algorithm. When we use SPA to analyze
the corrected version of Kerberos, SPA cannot terminate
because of the infinite dependency chain of tickets. Hence,
we have to bound the number of tickets generated in the
protocol. However, in Kerberos, generating more tickets
may not be helpful to break its security. Based on this obser-
vation, we want to detect and prune the non-terminable ver-
ification branches heuristically without affecting the final
results in our future work. This could help us to verify
large-sized and complex protocols that we cannot verify
currently, as our verification algorithm only considers the
general approach at present. Furthermore, comparing with
other process algebraic languages, e.g., CSP, other time
operations like timeout, interruption are supported. They
could be useful in security protocol design and specifica-
tion. Hence, we plan to extend the timed applied p-calculus
with these timed operations in our future works. Moreover,
considering other related properties, e.g., observational
equivalence [32], [48], forward secrecy [49], [50], in the tim-
ing domain, could be interesting as well. Hence, we plan to
extend SPA with more verification supports for complex
security properties and strong adversary models in our
future works.

ACKNOWLEDGMENTS

This work is a substantial extension to [1], [2] with the fol-
lowing extra contents. First, we develop an intuitive proto-
col specification language for timed security protocols.
Second, the semantics of our specification language is for-
mally defined using timed logic rules proposed in [1], [2].
Third, in addition to the secrecy [2] and non-injective
authentication [1] properties, the verification method for
injective authentication properties is developed in this
work. Lastly, several case studies are added in this work,
e.g., the injective version of Wide Mouthed Frog protocol
and the commitment protocols.

REFERENCES

[1] L. Li, J. Sun, Y. Liu, and J. S. Dong, “TAuth: Verifying timed secu-
rity protocols,” in Proc. Int. Conf. Formal Eng. Methods, 2014,
pp. 300–315.

[2] L. Li, J. Sun, Y. Liu, and J. S. Dong, “Verifying parameterized
timed security protocols,” in Proc. Int. Symp. Formal Methods, 2015,
pp. 342–359.

744 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

[3] S. Brands and D. Chaum, “Distance-bounding protocols
(extended abstract),” in Proc. Workshop Theory Appl. Cryptographic
Techn., 1993, pp. 344–359.

[4] S. Capkun and J.-P. Hubaux, “Secure positioning in wireless
networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 2, pp. 221–232,
Feb. 2006.

[5] N. Sastry, U. Shankar, and D. Wagner, “Secure verification of loca-
tion claims,” in Proc. 2nd Workshop Wireless Secur., 2003, pp. 1–10.

[6] M. Burrows, M. Abadi, and R. M. Needham, “A logic of
authentication,” ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36,
1990.

[7] G. Delzanno and P. Ganty, “Automatic verification of time sensi-
tive cryptographic protocols,” in Proc. Int. Conf. Tools Algorithms
Construction Anal. Syst., 2004, pp. 342–356.

[8] G. Lowe, “A family of attacks upon authentication protocols,”
Dept. Math. Comput. Sci., Univ. Leicester, Leicester, U.K., 1997.

[9] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” in Proc. 28th ACM SIGPLAN-SIGACT Symp.
Principles Programm. Languages, 2001, pp. 104–115.

[10] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill, “Possibly not
closed convex polyhedra and the parma polyhedra library,” in
Proc. Int. Static Anal. Symp., 2002, pp. 213–229.

[11] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, The Kerberos Net-
work Authentication Service (Version 5). RFC-4120. RFC Editor, 2005.

[12] M. Abadi and B. Blanchet, “Analyzing security protocols with
secrecy types and logic programs,” J. ACM, vol. 52, no. 1, pp. 102–
146, 2005.

[13] B. Blanchet, “An efficient cryptographic protocol verifier based on
Prolog rules,” in Proc. 14th IEEE Workshop Comput. Secur. Found.,
2001, pp. 82–96.

[14] D. X. Song, S. Berezin, and A. Perrig, “Athena: A novel approach
to efficient automatic security protocol analysis,” J. Comput. Secur.,
vol. 9, no. 1/2, pp. 47–74, 2001.

[15] D. Dolev and A. C.-C. Yao, “On the security of public key proto-
cols,” IEEE Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–207, Mar.
1983.

[16] C. J. F. Cremers, S. Mauw, and E. P. de Vink, “Injective synchroni-
sation: An extension of the authentication hierarchy,” Theoretical
Comput. Sci., vol. 367, no. 1/2, pp. 139–161, 2006.

[17] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” in Proc. 11th Annu. Int. Cryptology Conf.,
1991, pp. 129–140.

[18] X. Allamigeon and B. Blanchet, “Reconstruction of attacks against
cryptographic protocols,” in Proc. IEEE Workshop Comput. Secur.
Found., 2005, pp. 140–154.

[19] L. Li, J. Pang, Y. Liu, J. Sun, and J. S. Dong, “Symbolic analysis of
an electric vehicle charging protocol,” in Proc. 19th Int. Conf. Eng.
Complex Comput. Syst., 2014, pp. 11–18.

[20] I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and
A. Scedrov, “A meta-notation for protocol analysis,” in Proc. IEEE
Workshop Comput. Secur. Found., 1999, pp. 55–69.

[21] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMA-
RIN prover for the symbolic analysis of security protocols,” in
Proc. 25th Int. Conf. Comput. Aided Verification, 2013, pp. 696–701.

[22] C. Cremers, “The Scyther tool: Verification, falsification, and anal-
ysis of security protocols,” in Proc. Int. Conf. Comput. Aided Verifi-
cation, 2008, pp. 414–418.

[23] CCITT, “The directory authentication framework - Version 7,”
1987, draft Recommendation X.509.

[24] M. Abadi and R. M. Needham, “Prudent engineering practice for
cryptographic protocols,” IEEE Trans. Softw. Eng., vol. 22, no. 1,
pp. 6–15, Jan. 1996.

[25] R. M. Needham and M. D. Schroeder, “Using encryption for
authentication in large networks of computers,” Commun. ACM,
vol. 21, no. 12, pp. 993–999, 1978.

[26] G. Lowe, “An attack on the Needham-Schroeder public-key
authentication protocol,” Inf. Process. Lett., vol. 56, pp. 131–133,
1995.

[27] T. Chothia, B. Smyth, and C. Staite, “Automatically checking com-
mitment protocols in ProVerif without false attacks,” in Proc. Int.
Conf. Principles Secur. Trust, 2015, pp. 137–155.

[28] H. Krawczyk, “SKEME: A versatile secure key exchange mecha-
nism for internet,” in Proc. Symp. Netw. Distrib. Syst. Secur., 1996,
pp. 114–127.

[29] SPA tool and experiment models. [Online]. Available: http://
lilissun.github.io/r/time.html

[30] MIT, “Kerberos V implementation krb5–1.13,” 2014. [Online].
Available: http://web.mit.edu/kerberos/

[31] LDAP Account Manager, “Kerberos V implementation heimdal-
1.5.2,” 2014. [Online]. Available: http://www.h5l.org

[32] V. Cheval and V. Cortier, “Timing attacks in security protocols:
Symbolic framework and proof techniques,” in Proc. 4th Int. Conf.
Principles Secur. Trust, 2015, pp. 280–299.

[33] M. I. Kanovich, T. B. Kirigin, V.Nigam,A. Scedrov, andC. L. Talcott,
“Discrete versus dense times in the analysis of cyber-physical
security protocols,” in Proc. 4th Int. Conf. Principles Secur. Trust, 2015,
pp. 259–279.

[34] G. Bella and L. C. Paulson, “Kerberos version 4: Inductive analysis
of the secrecy goals,” in Proc. 5th Eur. Symp. Res. Comput. Secur.,
1998, pp. 361–375.

[35] J. Mitchell, M. Mitchell, and U. Stern, “Automated analysis of
cryptographic protocols using Mur’;,” in Proc. IEEE Symp. Secur.
Privacy, 1997, pp. 141–151.

[36] J. T. Kohl, B. C. Neuman, and T. Y. T’so, “The evolution of the
Kerberos authentication system,” in Distributed Open Systems. Los
Alamitos, CA, USA: IEEE Comput. Soc. Press, 1994, pp. 78–94.

[37] J. Kohl and B. C. Neuman, The Kerberos Network Authentication
Service (Version 5). Internet Request for Comments RFC-1510. RFC
Editor, 1993.

[38] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad,
“Formal analysis of Kerberos 5,” Theoretical Comput. Sci., vol. 367,
pp. 57–87, 2006.

[39] D. A. Basin and C. J. F. Cremers, “Modeling and analyzing secu-
rity in the presence of compromising adversaries,” in Proc. 15th
Eur. Symp. Res. Comput. Secur., 2010, pp. 340–356.

[40] J. D. Guttman, “State and progress in strand spaces: Proving fair
exchange,” J. Autom. Reasoning, vol. 48, no. 2, pp. 159–195, 2012.

[41] S. Kremer and R. K€unnemann, “Automated analysis of security
protocols with global state,” in Proc. IEEE Symp. Secur. Privacy,
2014, pp. 163–178.

[42] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994.

[43] N. A. Lynch and F. W. Vaandrager, “Action transducers and
timed automata,” Formal Aspects Comput., vol. 8, no. 5, pp. 499–
538, 1996.

[44] S. Schneider, Concurrent and Real Time Systems: The CSP Approach,
1st ed. New York, NY, USA: Wiley, 1999.

[45] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”
Int. J. Softw. Tools Technol. Transfer, vol. 1, no. 1/2, pp. 134–152,
1997.

[46] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and
S. Yovine, “Kronos: A model-checking tool for real-time systems,”
in Proc. 10th Int. Conf. Comput. Aided Verification, 1998, pp. 546–550.

[47] M. Arapinis, J. Liu, E. Ritter, and M. Ryan, “Stateful applied pi
calculus,” in Proc. 3rd Int. Conf. Principles Secur. Trust, 2014,
pp. 22–41.

[48] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” J. Logic Algebraic Pro-
gram., vol. 75, no. 1, pp. 3–51, 2008.

[49] C. G. G€unther, “An identity-based key-exchange protocol,” in
Proc. Advances Cryptology Workshop Theory Appl. Cryptographic
Techn., 1989, pp. 29–37.

[50] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of
Applied Cryptography, 1st ed. Boca Raton, FL, USA: CRC Press,
1996.

Li Li received the bachelor’s degree of information
security from the Huazhong University of Science
and Technology (HUST), in 2011 and the PhD
degree in software engineering and computer
security from National University of Singapore
(NUS), in 2015. He was a postdoctoral fellow with
Singapore University of Technology and Design
(SUTD) for a year. He is currently working at SEA
as senior software engineer. His research inter-
ests focus on security protocol verification, secure
system design, and formal methods.

LI ETAL.: A FORMAL SPECIFICATION AND VERIFICATION FRAMEWORK FOR TIMED SECURITY PROTOCOLS 745

http://lilissun.github.io/r/time.html
http://lilissun.github.io/r/time.html
http://web.mit.edu/kerberos/
http://www.h5l.org

Jun Sun received the bachelor’s and PhD
degrees in computing science from the National
University of Singapore (NUS), in 2002 and 2006,
respectively. He is currently an associate profes-
sor with Singapore University of Technology and
Design (SUTD). In 2007, he received the presti-
gious LEE KUAN YEW postdoctoral fellowship.
He has been a faculty member of SUTD since
2010. He was a visiting scholar at MIT from 2011-
2012. His research interests include software
engineering, formal methods, program analysis,
and cyber-security. He is the co-founder of the
PATmodel checker.

Yang Liu received the bachelor of computing
from the National University of Singapore (NUS),
in 2005 and the PhD degree and continued with
his post doctoral work in NUS, in 2010. Since
2012, he joined Nanyang Technological University
as an assistant professor. His research focuses
on software engineering, formal methods and
security. Particularly, he specialises in software
verification using model checking techniques.
This work led to the development of a state-of-the-
art model checker, process analysis toolkit.

Meng Sun received bachelor’s and PhD degrees
in applied mathematics from Peking University, in
1999 and 2005, respectively. He is currently an
associate professor with Peking University. He
spent one year as a postdoctoral researcher with
National University of Singapore. From 2006 to
2010, he worked as a scientific staff member at
CWI. He has been a faculty member of Peking
University since 2010. His research interests
include software engineering, formal methods,
software verification and testing, coalgebra the-
ory, and cyber-physical systems.

Jin-Song Dong received the bachelor’s (Hons. I)
and PhD degrees in computing from the Univer-
sity of Queensland, in 1992 and 1996. From 1995
to 1998, he was research scientist at CSIRO
Australia. Since 1998, he has been in the School
of Computing, National University of Singapore
(NUS), where he received full professorship in
2016. He is on the editorial board of the ACM
Transaction on Software Engineering and Meth-
odology and the Formal Aspects of Computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

746 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 8, AUGUST 2018

	A formal specification and verification framework for timed security protocols
	Citation

	A Formal Specification and Verification Framework for Timed Security Protocols

