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Towards Model Checking Android Applications
Guangdong Bai , Quanqi Ye, Yongzheng Wu, Heila Botha,

Jun Sun, Yang Liu, Jin Song Dong, and Willem Visser

Abstract—As feature-rich Android applications (apps for short) are increasingly popularized in security-sensitive scenarios, methods

to verify their security properties are highly desirable. Existing approaches on verifying Android apps often have limited effectiveness.

For instance, static analysis often suffers from a high false-positive rate, whereas approaches based on dynamic testing are limited in

coverage. In this work, we propose an alternative approach, which is to apply the software model checking technique to verify Android

apps. We have built a general framework named DROIDPF upon Java PathFinder (JPF), towards model checking Android apps. In the

framework, we craft an executable mock-up Android OS which enables JPF to dynamically explore the concrete state spaces of the

tested apps; we construct programs to generate user interaction and environmental input so as to drive the dynamic execution of the

apps; and we introduce Android specific reduction techniques to help alleviate the state space explosion. DROIDPF focuses on common

security vulnerabilities in Android apps including sensitive data leakage involving a non-trivial flow- and context-sensitive taint-style

analysis. DROIDPF has been evaluated with 131 apps, which include real-world apps, third-party libraries, malware samples and

benchmarks for evaluating app analysis techniques like ours. DROIDPF precisely identifies nearly all of the previously known security

issues and nine previously unreported vulnerabilities/bugs.

Index Terms—Software model checking, security verification, android application

Ç

1 INTRODUCTION

IN recent years, Android has gained an astonishing popu-
larity. According to a recent study, it has reached nearly

87 percent smartphone market share [1]. The popularity of
Android could be partially attributed to its well-evolved
application ecosystem and the active developer community.
Take Google Play, the official app market, as an example—
so far, it has hosted more than 2,800,000 Android apps, with
60,000 new ones joining per month on average [2]. Besides,
various alternative markets also host numerous apps. These
apps are readily accessible and provide feature-rich func-
tionalities for the mobile end users (simply users hereafter).

Android apps have been extensively used in security-
sensitive scenarios. The users heavily rely on them to handle
personal data (e.g., contacts, financial data and geographic
location) and consume premium services (e.g., online bank-
ing, online shopping and sending SMS messages). More-
over, Android apps are playing an increasingly important
role in enterprise, government and military bureaus.

Nonetheless, various security issues of Android apps are
continually being discovered and discussed, ranging from
sensitive data leakage [3], [4], [5], to privilege escalation [6],
[7], [8]. To enjoy the benefit of apps while preserving secu-
rity, verifying them ahead of releasing and installation
becomes imperative by app market operators and users.

Most of the prior studies rely on static analysis and
dynamic testing for security analysis, for instance, detecting
sensitive data leakage [9], [10], [11], [12] and analyzing capa-
bility leakage [6], [13]. These approaches may have their limi-
tations. Static analysis may generate false alarms due to its
inherent limitations in capturing runtime context (e.g., actual
parameters and index of arrays) and tackling late-binding
programming paradigms such as polymorphism and reflec-
tion. For instance, points-to analysis (which yields an over-
approximation) is often used so that all potential violations
are identified. In addition, the effectiveness of static analysis
is restricted due to the distinctive features of Android’s pro-
gramming paradigm.Android apps are based on theAndroid
OS,which can be regarded as a giant set of libraries containing
both Java code and native code (so far, Android has consisted
of more than 13 million lines of code [14]). The API calls to
Android OS usually make a large part of the OS relevant to
the verification and often lead to path explosion. To make the
problem even worse, Android depends heavily on the call-
back mechanism (due to its event-driven and rich-interaction
nature), which makes the API calls ubiquitous in the apps.
Contrary to static analysis, dynamic testing only executes
selected program paths and thus can precisely identify prop-
erty violations [15], [16], but never proves their absence.

In thiswork, we seek an alternative approach for verifying
Android apps against security properties. A potential tech-
nique is the software model checking [17], [18], which pro-
poses an automatic way to verify properties of a finite-state
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system. The advantages of software model checking, com-
pared with the above mentioned approaches, include that it
does not generate false alarms if the model checker (e.g., Java
Pathfinder (JPF) [17] for Java programs) actually executes the
program under investigation and that it is capable of proving
the absence of violations with an exhaustive state-space
search. Inspired by software model checking, we started an
effort to build an Android model checker named DROIDPF
upon JPF. The core technique of software model checking we
use in this work is the dynamic state-space exploration which
runs through the possible executions of an app. In the explo-
ration engine, we also implement a taint-style system to track
sensitive information flow for privacy property checking,
and additional reachability checking for the privilege proper-
ties (e.g., blocking incoming SMSmessages).

Using the state-of-the-art model checker JPF allows us
to benefit from well-developed techniques of JPF, as well
as the various evolving features from JPF’s active developer
community. Nonetheless, the challenge on applying JPF to
verify Android apps is at least threefold. First, unlike ordi-
nary Java programs, Android apps are tightly coupled with
the Android OS which consists of a set of libraries contain-
ing both Java and native code, and complex inter-process
communications. Although written in Java, the apps
are compiled to bytecode that only runs on the Dalvik
virtual machine instead of the traditional Java virtual
machine (JVM). Therefore, it is hard for JPF to execute apps
without using a real device or an emulator, not to mention
storing and recovering program states. Second, due to the
asynchronicity and event-driven execution paradigm, an
app can have many entry points, whereas JPF allows only
one entry at a time. One way to solve this problem is to con-
struct a driver program that enumerates all possible event
permutations, which would then activate all possible paths
within the app. However, this approach could lead to false
positives because some of the paths may never appear in
practice. Lastly, there is the infamous state space explosion
problem for model checking.

In order to tackle the first challenge, DROIDPF includes
an extensible mock-up Android OS that abstracts the
Android OS using ordinary Java programs so that analysis
techniques/tools developed for ordinary Java can be
employed. There are techniques available to automatically
generate mock-ups of the environment [19], [20], but since
the dependencies within the environment are complex,
these techniques are not mature enough [21]. Thus, we cre-
ate the mock-ups manually, which is the same approach
used by other tools that require a mock-up of their envi-
ronment for model-checking purpose [17], [22], [23], sym-
bolic execution purpose (e.g., KLEE [24] and S2E [25]) and
so on. Mocking up an entire OS manually is a major effort,
and DROIDPF has supported a range of functionalities
of Android OS which allows us to verify a number of
small- and intermediate-scale (from 1 to 30 K lines of smali
code) apps. Furthermore, DROIDPF provides an extensible
framework so that analysts can incrementally develop
the mock-up. Our experience suggests that, based on the
mock-up provided by DROIDPF, it takes an analyst who
has basic knowledge on Android OS a few days to incre-
mentally develop the necessary mock-up for a given
intermediate-scale app.

In order to tackle the second challenge, DROIDPF gener-
ates driver programs which simulate and schedule event
occurrences to drive the execution of the tested apps. We
develop a technique called dependency-constrained event per-
mutation. This technique reduces the event permutations by
excluding impossible event sequences based on the depen-
dency among the events. The details are in Section 6.1.

Lastly, in order to cope with the problem of state-space
explosion, DROIDPF applies static analysis first to reduce
the app and then model check (i.e., dynamically explore)
only the remaining parts of the app which are relevant to
the checked properties. Fig. 1 shows the high-level work
flow of our approach, which consists of two stages. First,
we obtain an over-approximation of the program paths
which might lead to property violations. We remark that
though it is over-approximation (and therefore no precise
points-to analysis is required), DROIDPF does not produce
false alarms as bugs are reported only after actually exe-
cuting the app. Afterward, the approximation is used to
reduce the program by removing the assured safe parts of
the app and we then model check the reduced app against
the properties. As a result, the efficient but imprecise static
analysis reduces the state space, whereas the precise
dynamic exploration pinpoints the actual violations of the
properties.

To summarize our main contributions, we propose
DROIDPF, a verification framework which employs the state-
of-the-art software model checking techniques to Android
apps. It enables JPF-based dynamic state-space exploration,
by including an extensible mock-up Android OS that pro-
vides the major OS functionalities. To the best of our knowl-
edge, DROIDPF is the first attempt to apply software model
checking to verify security properties of Android apps.

We acknowledge that the effectiveness of DROIDPF is lim-
ited by not only the underlying JPF engine, but also the cor-
rectness and completeness of the mock-up OS. However,
verifying the equivalence of the mock-up and the Android
OS, or the correctness of the mock-up is a far more challeng-
ing task, and therefore is not discussed within the scope of
this paper. Nonetheless, we empirically show that DROIDPF
not only can find bugs but also verify apps in a number of
cases. We evaluate DROIDPF using three sets (a total of 131) of
apps: thirteen real-world apps (including two ad libraries
embedded by them) downloaded fromGoogle Play, F-Droid
and Anzhi app markets, seven known malware samples
and the DroidBench [10] which itself is a comprehensive
benchmark (including 62 apps of version 1.0 and 49 of ver-
sion 2.0) built to evaluate information leakage analysis.
DROIDPF detects nearly all (except those with implicit infor-
mation flow) of the known security issues from the malware
samples, five previously unreported data leakages from
three apps and both ad libraries, a use-after-free bug from the
benchmark, a deadlock from a real-world app, and two soft-
ware bugs leading to app crash.

Fig. 1. High-level overview of our approach.
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2 BACKGROUND

In the following, we present an overview of the Android
framework and exemplify the difficulties in verifying
Android apps.

2.1 Overview of Android

Android apps consist of four types of app components: activ-
ity, service, content provider and broadcast receiver. An activity
implements the foreground logic, such as Graphical User
Interface (GUI); a service runs in the background; a content
provider is devoted to datamanagement, which can use files,
SQLite databases or the web as its back-end persistent stor-
age, and a broadcast receiver handles the broadcasts sent by
the OS and other components. The app components interact
through inter-component communication (or ICC), and the
exchanged messages are called intents. The components
included in an app can be either statically defined in itsmani-
fest file (AndroidManifest.xml) or dynamically created
at runtime.

Unlike a traditional Java program with a mainmethod as
its only entry point, Android adopts an event-driven execu-
tion mechanism, where an app implements a set of callbacks
as event handlers (which can be registered/unregistered
either statically or dynamically). Whenever a particular
event occurs (e.g., launching an app or clicking a button),
the corresponding callback methods are invoked. Therefore,
an app usually has multiple entry points and event
handlers (entry points and event handlers are used inter-
changeably). The events can be categorized into three types.

� Lifecycle Events. A component’s lifecycle consists of
multiple stages. As the user launches, pauses and
resumes an app, its components of the app change
their stages accordingly. When a component enters a
new stage, the corresponding callback that is pre-
implemented by the app is invoked. For instance, an
activity has multiple stages such as launched,

running, paused and stopped. When the user
clicks the app’s launcher icon, the activity enters the
launched stage. Accordingly, themethod onCreate

() is invoked first and afterwardsonStart().
� GUI Events.GUI events occur when the user interacts

with the apps, which include two types: data inputs
from the user and actions taken by the user.

� ICC Events. The ICC events are mostly used for com-
munication among apps/components. Besides,
when some particular events occur, the OS broad-
casts a message or invokes the callback methods
implemented by the app. For example, when there is
an incoming SMS message, the OS broadcasts an
intent containing the SMS message encoded in PDU
format to notify the apps, and the onReceive() of
the registered broadcast receivers will be invoked
with the intent as a parameter. As another example,
when the system is running low on memory, the
onLowMemory() which is pre-implemented by the
apps is invoked.

2.2 A Running Example

In the following, we present a simple app and illustrate the
challenges in verifying Android apps. Fig. 2 shows a
made-up app which combines features of three apps in the
DroidBench [10] and a malware sample named Pincer. In
this app, there exists a path through which the IMEI of the
device is leaked, which is commonly seen in real-world
malware samples [3]. Although we show source code in
this section, DROIDPF directly works with the Java bytecode
of the apps.

This app contains three components, i.e., two activity
components MotivatingAct and DummyAct, and a
content provider component CProvider. The code of
DummyAct and CProvider is omitted in the figure to save
space. DummyAct does nothing but just displays an empty
canvas (i.e., not security-sensitive). Besides, two buttons

Fig. 2. The code snippets of the running example. (The numbered arrows stand for the data flow through the app.)
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are defined in the MotivatingAct’s xml layout file and
their click handlers are set as leak and noleak,
respectively (Fig. 2b). When MotivatingAct is started, it
reads the IMEI by invoking getDeviceID() (line 12) and
stores it in the database maintained by CProvider (line 16).
When MotivatingAct is paused (onPause() is invoked),
the IMEI is read from CProvider (line 19-21). After that,
once button1 is clicked, the IMEI is sent to a particular
phone number through an SMS message (line 34). Here the
names of the class and method are obfuscated using reflec-
tion to obstruct security analysis. The concrete names are
decrypted from a byte array at runtime (line 32-33).

This example demonstrates several technical challenges
that may lead to imprecision in app verification.

� Dependency on the OS.The apps heavily depend on the
Android OS—even a small app contains multiple
Android API calls. These API calls are relevant to the
app’s behaviors such as the event handlers, and thus
cannot be simply ignored during the analysis. For
instance, if an analyzer does not examine the logic in
setContentView (where the xml layout in Fig. 2b
is registered), the binding between the button and the
click handler would be missed. As a result, the data
leakage would not be detected because it is activated
by the onClick handler. An intuitive remedy would
be to analyze the part of the OS which becomes rele-
vant given an API call. However, due to the complex-
ity of the OS, even a simple API call would imply that
a big portion of the OSmust be analyzed.

� Data Management with Native Code.Android apps rely
on the OS to manage the data. Unfortunately, data
management in the OS is mostly implemented in
native code. For example, after MotivatingAct

requests CProvider for data management (line
16&19), CProvider uses SQLite which is imple-
mented in native code tomanage the database. To pre-
cisely track the data flow, the internals of the database
management must be taken into consideration. None-
theless, analyzing native code is highly non-trivial.

� Asynchronous Event Occurrences. Events in Android
may asynchronously occur. The order of these events
is unpredictable and nondeterministic, but may be
relevant to the checked properties. For example, in
the running example, onCreate!onStart! but-

ton1.onClick is safe but onCreate!onStart!
onPause!button1.onClick causes data leakage.

� Obfuscation. To obstruct malware detection, mal-
ware developers may employ obfuscation techni-
ques [26], [27]. This example shows an obfuscation
technique similar to what Pincer uses. It stores
seemingly random and meaningless bytes into the
byte array cOIcOOo (line 5), and calculates the
name of the method to be invoked at runtime using
an intentionally complicated function decrypt based
on three delicately designed indices of the byte
array (lines 32-33). We demonstrate more details on
this technique later in Section 7.1.

� Dynamic Valuation.The API sendTextMessage is
invoked to send an SMS message (line 34). To decide
whether this call leaks sensitive information (i.e., the

IMEI), the actual values of the parameters have to be
examined. However, line 37-40 make it difficult to
statically determine the value of index.

3 PROBLEM DEFINITION AND OVERVIEW

In this section, we define the problem of model checking
Android apps (e.g., what is the model and what is the prop-
erty) and present an overview on how DROIDPF solves the
problem.

3.1 Goal and Scope

The goal of DROIDPF is to provide a framework for dynami-
cally and systematically exploring the state space of Android
apps. During the exploration, DROIDPF identifies malicious
behaviors (e.g., abusing and misusing permissions and sen-
sitive data). In this work, we focus on application-level
threats and exclude those in the OS, since according to our
study of the vulnerabilities impacting Android which are
listed in CVE [28], most (86.8 percent of 387) security threats
on the Android platform reside in the apps.

In our threat model, the attacker is able to develop and
release malicious apps, or embed his malicious bytecode
into benign apps (e.g., via the repackaging attack). The
attacker can use obfuscation techniques, such as complicat-
ing code flow, inserting extraneous code blocks or using
reflection. In addition, similar to related work in the litera-
ture [10], [29], DROIDPF cannot handle hybrid apps that
include native code (in the app itself not from the Android
OS) and JavaScript code. In this work, we also do not con-
sider implicit information leakage (discussed in Section 8).

3.2 The Model

In order to model check an app, we first formalize its behav-
iors. The semantics of an app can be defined as a transition
system Lapp ¼ ðS; init; TranÞ, where S is the set of states;
init 2 S is an initial state; and Tran � S � S is a transition
relation.

A state in S is a program state of the app, which is a snap-
shot of the execution status. It consists of the status of the
heap (e.g., the values of the program variables), the status of
files and databases that the app possesses, the program
counter and threads states. We remark a program state here
is the same as a state in JPF. We refer the readers to [17] for
details on how program states are represented and com-
pared in JPF. A transition is a state change caused by execut-
ing an atomic sequence of instructions (i.e., a block).

Given the above transition system semantics of an app,
we then define relevant terms in the standard way. The exe-
cution of an app is formalized as runs, which are sequences
of states in the transition system t ¼ hs0; s1; . . .i, and a state
sn is reachable if there exists a run t such that s0 ¼ init and
ðsi; siþ1Þ 2 Tran for all i < n. Furthermore, given a property
(e.g., a temporal logic formula), the truth value of the prop-
erty is defined based on the above-defined transition system
in the standard way (discussed soon in Section 3.3).

As an example, Fig. 3 shows part of the transition system
generated from our running example. Each state contains
the values of the global variables and status of the
database (other information such as the program counter is
not shown). At each state, there are multiple choices for
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different behaviors. The different choices correspond to dif-
ferent thread scheduling and different event occurrences.

3.3 The Property

DROIDPF focuses on checking the so-called privilege proper-
ties and privacy properties, which, according to the research
of Android Malware Genome Project [3] (shown in Fig. 4),
cover most of the behaviors of the existing malware. For
instance, privilege escalation, remote control and financial charges
require invocation of particular APIs, violating the privilege
property; information stealing violates the privacy property.

A privilege property is related to the use of the sensitive
permissions, e.g., stealthily sending SMS messages, deleting
contacts and blocking incoming SMS messages. A privilege
property is violated if there is a finite path in Lapp which
leads to an invocation of the high-privileged APIs. In order
to model check privilege properties, we extend Lapp with
information on whether any high-privileged API is invoked
or not. That is, for each state, we introduce an auxiliary
Boolean variables escalated whose truth value tells whether
a high-privileged API is invoked during the transition that
leading to the current state. For each transition (si; siþ1) in
Lapp, escalated is true at siþ1 if and only escalated is true at si
or the transition is due to invocation of a high-privileged
API. We remark that DROIDPF includes a set of APIs which
are commonly considered high-privileged (discussed soon
in Section 4.2), and the analysts can customize this setting. It
can be seen that the problem of model checking privilege
properties is effectively reduced to a reachability analysis,
i.e., whether a state where escalated is true is reachable.

A privacy property is related to the actions of disclosing
the private information, e.g., IMEI, GPS location and con-
tacts. A private property is violated if there is a finite path
in Lapp from a private information source (e.g., contacts) to
an information sink (e.g., the invocation of messaging send-
ing API), and furthermore, the data at the sink must be
tainted by the data at the source, i.e., there is a data depen-
dency between them.

Privacy properties are often checked with the so-called
taint analysis [10], [30]. The taint analysis can also be
reduced to reachability checking. Similarly, in order to
model checking privacy properties, we extend Lapp with
information on data dependency. That is, for each data vari-
able in the app, we introduce an auxiliary Boolean variable
tainted whose truth value tells whether the variable in a
state s 2 S is tainted. Initially, tainted is false. For each tran-
sition ðsi; siþ1Þ in Lapp, tainted is true at siþ1 if and only if the
transition is caused by executing an introduction which is
consider an information source (e.g., an API call for getting
the GPS location), or there is a data-dependency between
the data variable at siþ1 to a tainted variable at si. It can be
seen that the problem of model checking private properties
is effectively reduced to a reachability analysis, i.e., whether
a state where the program counter points to a sink (e.g., an
API call for sending a message) is reachable with the tainted
of the variable to be used being true.

3.4 Overview of DROIDPF

Based on the above discussion, the problem of model check-
ing an Android app is reduced to reachability analysis and
thus can be solved using model checkers like JPF, which
supports reachability analysis, among other things. JPF
works by systematically and dynamically enumerating the
states of a Java program. However, as discussed previously,
there are three challenges that we need to solve before JPF
can be applied. In the following, we present an overview of
how DROIDPF solves the challenges and leave the details in
the following sections.

The high-level workflow of DROIDPF is shown in Fig. 1.
First, given a privilege property or privacy property,
DROIDPF performs a static analysis (i.e., program slicing) to
remove the program paths which are assured to never lead
to property violation. For instance, in Fig. 3, the state space
contains some parts which are obviously irrelevant and can
be identified statically, such as the state space of DummyAct
and the partial space led by onStop(). Once the irrelevant
parts are identified, DROIDPF uses this information in the
later exploration step, such that they are pruned and thus
avoided during dynamic exploration. The details of this
step is presented in Section 4.

Second, DROIDPF relies on JPF to model check the
reduced apps. DROIDPF provides a mock-up of the Android
OS so that JPF can dynamically execute the app. The details
on how the mock-up OS in DROIDPF is constructed is in
Section 5. In addition, in order to systematically explore the
state space, we need an environment which generates not
only different scheduling but also possible valid event
sequences. The former is solved by relying on JPF, which

Fig. 3. Partial state space of the running example. (The numbers before
the instructions/variables stands for the line numbers in Fig. 2; CP
stands for a valid instance of the content provider; the emphasized
path (in bold) shows the shortest path leading to a violation of privacy
property.)

Fig. 4. The distribution of behaviors of existing malware. (The statistics is
based on the Android malware genome project data set [3].)
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implements a backtrackable JVM that provides non-
deterministic choices and control over thread scheduling.
The latter (specific to the event-driven nature of Android
apps) is solved by constructing driver programs which gen-
erates the relevant event sequences. On this step, we exclude
the event sequences that are impossible to happen in reality,
e.g., onStart ! onCreate in the app shown in Fig. 2.
Notice that these infeasible event sequences rely on domain
knowledge to reduce and cannot be reduced by those general
reduction techniques used in JPF. The details on how the
driver program is constructed are presented in Section 6.

4 STATIC APP REDUCTION

Recall that the problem of model checking a privilege prop-
erty or a privacy property is reduced to the problem of
checking whether certain bad state is reachable or not. The
problem can be solved using JPF by exploring program
paths. The trouble is of course there may be too many pro-
gram paths. Thus, DROIDPF performs a preprocessing step
to eliminate the program paths that are guaranteed to be
“safe”-executing which never leads to any bad state. To do
this, we introduce a static app reduction based on static
backward program slicing.

4.1 Overview of Slicing-Based Reduction

Program slicing [31] is a popular tool for program debug-
ging, testing, abstraction and verification [32]. It takes as
input a program and a slicing criterion, i.e., a particular pro-
gram point of interest and a set of variables at that program
point, and identifies the part of the original program which
influences the slicing criterion, i.e., the part of program
which the slicing criterion has a dependency on (including
control and data dependence).

In [33], it has been shown that static program slicing is
effective in reducing the size of the finite-state transition
system generated from a program. In theory, only the part
of program identified by program slicing is relevant to the
property and the rest are safe and thus can be pruned. In
practice, it is not that simple because standard program slic-
ing typically may not guarantee to generate an executable
slice, while DROIDPF requires the reduced program to be
executable (for dynamic exploration). To achieve this,

DROIDPF does not remove the irrelevant instructions from
the original app. Instead, it only records the irrelevant event
handlers and prevents them from being invoked during
subsequent dynamic exploration. In this sense, program
slicing used in DROIDPF is coarser than traditional slicing
algorithm. Recall that an Android app typically has more
than one entry points. After the reduction, DROIDPF only
needs to execute the rest of entry points in the dynamic
exploration. Fig. 5 illustrates how this works.

How effective this reduction can be depends onwhether a
large part of the app is irrelevant to the violation of verified
property. Furthermore, in practice, given the presence of
challenges like reflection, aliasing and polymorphism, the
program slice is often an over-approximation, i.e., it may
contain part of programwhich is in fact irrelevant to the slic-
ing criteria. Nonetheless, by a simple argument, it is clear
that as long as it is over-approximation, a program path rele-
vant to the violation of the property is never pruned.

4.2 Slicing Criteria in DROIDPF

Since DROIDPF focuses on privilege and privacy properties,
which can be violated only through invocation of a set of par-
ticular APIs, DROIDPF sets the slicing criteria to be set of pro-
gram instructions which contain those API calls. In addition,
for conservativeness, it also includes the program instruc-
tions which may invoke those potentially sensitive APIs. In
summary, depending on what the property is, the slicing cri-
teria used in DROIDPFmay include the following categories.

� High-privileged APIs. Invocations of APIs that require
privilege equal or higher than the Android’s dan-

gerous level may violate a privilege property, for
example, abortBroadcast() which may block
incoming SMS. Thus, we include the APIs that are
mapped to Android’s permission levels of dangerous,
signature and signatureOrSystem, similar to the previ-
ous related studies [34], [35].

� Taint Sources and Sinks. In order to model check a pri-
vacy property, we need to examine the programpaths
which involve a taint source and a taint sink. Reaching
a taint sink (e.g., an invocation of the system function
to send an SMS) would potentially violate a privacy
property and thus the taint sinks are included. In
addition, we include taint sources in the set so that we
can tell whether a path reaching a sink goes through a
source. Identifying sources and sinks has been well
researched in the literature [10], [36], [37] and thus
DROIDPF simply uses those defined by them, which
include file/network/database I/OAPIs (e.g., line 12,
16&19 in Fig. 2) and ICCAPIs (e.g., line 29).

� Reflection APIs. Since the exact class/method/field
accessed through reflection is hard to decide stati-
cally, reaching an API for reflection, such as java.

lang. reflect.Method.invoke(), might lead to
violation of the property and thus they are included
(e.g., line 34 in Fig. 2).

� APIs for Dynamic Registration. Android allows an app
to register components and event handlers both stat-
ically and dynamically. For example, Fig. 2b shows
how to register the button and its onClick listener
statically through a layout file. Equivalently, the

Fig. 5. Paradigm of entry-point-wise static slicing. (After static reduction,
DROIDPF avoid exploring the states led by ep3 and ep6. Note that at static
reduction step, DROIDPF does not consider whether the data flow (the
doted arrow in (b)) between source and sink is feasible or not.)
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code snippet in Fig. 6 registers a button at runtime.
Due to this flexibility, it is hard to predicate statically
whether the dynamic registration would lead to a
property violation and thus they are included.

4.3 Workflow

Our reduction works by starting the backward slicing from
each slicing criterion in the set. It tracks both intra- and
inter-component data and flow dependency. Since program
slicing is a relatively mature technique, in the following, we
merely brief the workflow of DROIDPF.

Intra-Component Backward Slicing. For intra-component
backward slicing, DROIDPF searches for use-def chains and
call chains. The former captures data flow relations while the
latter captures call relations. Fig. 7 demonstrates these two
relations in the intra-component backward slicing. First,
based on the use-def chains, DROIDPF identifies 1) registers
and fields that have data dependency with the criteria, and
2) methods in which the depended data are modified (we
call them relevant methods). For instance, tracking the
parameter array at line 34 of Fig. 2 leads to identification
of the method onPause. Second, based on the call chains,
DROIDPF identifies the paths which start from an event han-
dler and lead to the invocation of any relevant method.

The more precise the slicing is, the more we can prune
statically from the app. Nonetheless, because DROIDPF relies
on dynamic execution afterwards to find actual problems,
we can afford to over-approximate (without worrying about
false alarms) when a precise points-to analysis is expensive.
In particular, the following strategies are adopted in
DROIDPF for efficiency. First, once an element of an array/
string becomes relevant, the whole array/string becomes
relevant. Second, once a field of an object becomes relevant,
the whole object becomes relevant. Third, for polymor-
phism and overriding, whenever we cannot decide pre-
cisely, methods with the same signature are included.

Aliasing. For each variable contained in the slice, DROIDPF
searches backwards for its aliases. Once aliases detected,
DROIDPF adds them into workqueue as new criteria for fur-
ther tracking. Fig. 8 demonstrates this process.

Reflection. As discussed in Section 4.2, the invocation sites
of reflection APIs are taken as slicing criteria by DROIDPF,

but there may be some whose caller cannot be identified if
multi-layer reflection calls are used. One of such examples
is shown in Fig. 9. After tracking back to f2 from the reflec-
tion API, DROIDPF fails to find an entry point leading to f2,
since f2 is invoked through reflection. Under this circum-
stance, there is no need for DROIDPF to approximate the
caller who invokes f2. Because the reflection APIs are
included in the slicing criteria, the functions which invokes
f2 using reflection, including f1, will be reached by the
dynamic exploration.

Inter-Component Dependency.DROIDPF tracks inter-compo-
nent flow as well. After identifying relevant methods within
components, the next step is to collect the relevant compo-
nents. The approach is to over-approximate the receivers of
each ICC. Although it is sometimes feasible to statically
identify the exact receivers of each ICC (e.g., using the
approach in [38] which requires string analysis), for
the same reason above, we approximate the ICC by treating
the components which receive intents and include at least a
sink (i.e., the components which are likely to send out the
sensitive data it has received from ICC) to be relevant.

We extract the components and entry points from the sli-
ces and only execute them in the dynamic exploration step.
Taking the running example for instance, after static reduc-
tion, the paths starting from onStop and the state space of
DummyAct can be excluded.

5 DYNAMIC STATE SPACE EXPLORATION

After static reduction, DROIDPF obtains the app slices (in
terms of relevant components and events) to be explored
dynamically so as to check whether a property violation can
indeed occur. In this section, we introduce the platform for
dynamic exploration and property checking in DROIDPF.

5.1 Overview of Dynamic Exploration

Fig. 10 shows the overall design of dynamic exploration. We
use JPF as our exploration engine. It explores an app’s state

Fig. 6. Dynamic event handler registration.

Fig. 7. Demonstration of intra-component slicing.

Fig. 8. Processing aliasing.

Fig. 9. An example of two-layer reflection.
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space by dynamically executing possible paths that are acti-
vated by choices. At a program point where two or more
choices become possible, e.g., scheduling points, human
interaction and random system events, JPF records current
state and executes possible choices individually; after com-
pleting one choice, it backtracks to the previous point and
restores the state. During the exploration, JPF calls back
analyst-defined listeners which can be used to check
whether a property is violated given a particular state of
Lapp. The details are presented in Section 5.2.

As discussed before, the execution of Android apps
heavily relies on the underlying OS, which poses a chal-
lenge for DROIDPF. Our solution is to provide an abstract
and executable mock-up Android OS in Java to support the
dynamic execution of the apps. We present the details on
the OS abstraction in Section 5.3.

The exploration strategy in JPF only handles programs
with single entry point, but an app usually contains multi-
ple event handlers as entry points. The solution of DROIDPF
is to generated drivers to simulate Android’s event-driven
execution mechanism by directly invoking the event han-
dlers in a scheduled order. We leave the detail of driver gen-
eration to Section 6 and in the remaining of this section, we
focus on our platform for supporting dynamic exploration
and property check.

5.2 Security Property Checking in JPF

During exploration conducted by JPF, a notification mecha-
nism is provided to enable dynamic observation and inter-
action with the listeners. This notification mechanism is
based on callbacks, which enables us to implement the
property checkers for privilege and privacy properties.

As discussed in Section 3.3, the privilege and privacy
properties can be encoded as reachability analysis. A privi-
lege property is violated if a state where an app conducts an
over-privileged behavior is reachable, such as sending SMS
messages and accessing camera/microphones. DROIDPF lis-
tens on the methodEntered callback to check whether the
over-privileged APIs are invoked.

Although privacy property checking can be reduced to
readability analysis, it is slightly more complicated because
DROIDPF needs to track the tainted variables. DROIDPF uses
the standard dynamic taint analysis [30], [39] for privacy
property checking. It tracks the flow of the sensitive infor-
mation within the app, and raises an alert if the information
is exfiltrated. The information tracker consists of three
aspects. First, DROIDPF listens on the methodExited call-
back to detect the invocations to the sources and then labels
the return values of those calls as tainted. Second, it listens
on the instructionExecuted callback to track the taint
flow. Third, it listens on the methodEntered to check

whether the parameters of the invocations to the sinks con-
tain tainted values.

5.3 Mocking Up Android OS

In this section, we tackle the challenge of executing Android
apps in a traditional JVM, which is necessary for JPF. A
straightforward way might be to use an Android emulator
as a stub and interact with DROIDPF through JPF’s native peer
mechanism. However, DROIDPF would not be able to track
the execution in the stub since from its perspective, the stub
is a black box. As a result, the logic in the OS which might
be relevant to the checked property would be lost. One such
example, in the content provider (CProvider) of our run-
ning example, is the sensitive data flow through the data-
base file. Without tracking the behaviors of the OS, the data
flow would become untraceable for DROIDPF.

DROIDPF’s solution is to develop a set of mock-ups of OS
functionalities in Java. The main challenge of OS abstraction
is to balance scalability and correctness. For instance, while
it might be feasible to mock-up native code in the Android
OS, it may not be easy to ensure that the mock-up is correct,
due to lack of specification of the native code. Rather, we
choose to develop the mock-up at such a level that the
semantics relevant to the property are easy to understand.
For instance, instead of mocking up only the native code in
the database component in Android (which contains both
naive code and Java code), we mock up the entire database
component instead (by implementing a HashMap essen-
tially). In addition, instead of building the mock-up OS
from scratch, we reuse the source code of the Android OS
as much as possible.

Table 1 lists the main modules of the Android OS that we
have mocked up. DROIDPF intercepts the invocations to the
native code and mocks-up their expected behaviors in Java.
Some mock-ups are straightforward. For example, the
resource managers (e.g., location manager and SMS man-
ager), can be substituted with dummy ones which simply
return faked values without invoking the real managers in
native code. Some are rather complicated, including the
GUI and the I/O management. We have thus devoted most
of our efforts to those.

GUI. GUI plays a crucial role in Android apps. However,
it relies on enormous native code to render images and han-
dle the user’s interaction, which makes it difficult, if not
impossible, to implement the entire GUI system in JVM. In
addition, it cannot be simply ignored since it determines the
control flow of the apps.

GUI events include interaction events (e.g., clicking a
button) and data inputs (for example, typing texts through
a TextEdit). DROIDPF mocks them up in different ways.

� Interaction events. For an action event, DROIDPF
directly invokes the event handler from the drivers.

� Data inputs. For the data inputs, DROIDPF relies on the
analyst to configure the range of the input values
with a choice generator. Since most of the GUI events
are related to the actions in the mobile application
domain, we consider this approach practical.

Other approaches such as symbolic execution can
be used to generate data input in our future work.We
acknowledge that deciding the data input is a

Fig. 10. Overview of dynamic exploration.

602 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018



complicated problem. Currently, DROIDPF can facili-
tate in figuring out the data inputs that activate differ-
ent branches, by offering a callback whenever a
branch condition is evaluated. In Section 7.2, we
showhow this approach is useful for identifying com-
mands that activate hidden behaviors of malware.

I/O Management. As shown in the running example, the
sensitive information can flow through the database and
files, which may become untraceable. To address this chal-
lenge, we simulate the database and files I/O with in-
memory data structures. When the app performs a write

operation to store a data item into an external file, the item is
written into an in-memory buffer (under control of DROIDPF).
Similarly, file-based SQL databases are simulated using in-
memory tables. With the interception and proper implemen-
tation of a set of I/O APIs, such as read, cursor, uri and
SQLiteOpenHelper, the mock-up I/O is completely trans-
parent to the apps.

Limitation. Mocking up the Android OS indeed requires
significant engineering effort, as we have experienced. The
current basic mock-up costs six months effort of the first
three authors. The same approach is used by other tools
that require a mock-up of their environment, such as
KLEE [24] and S2E [25]. Having said that, mocking up the
whole OS before analyzing any app is perhaps not smart.
Thus, in our work, besides mocking up commonly used
components like GUI and I/Omanagement, we always start
with static app reduction and then focus on mocking up
only the relevant components. As has been learned from
our experience with the tested apps in this work, it takes an
analyst who has basic knowledge on Android OS a few
days to adapt the mock-up for a given intermediate-scale
app, and a significant portion is spent on modelling the
objects returned from the mock-up OS because if the mock-
up does not match the app’s requirement (e.g., non-null), the
app would simply crashes.

6 DRIVER GENERATION

Unlike ordinary Java programs, Android apps are driven by
user interaction (e.g., through GUI) or environmental input
(e.g., calls for service from other apps). The goal of driver
generation is to construct a driver programwhich allows JPF
to systematically explore the state space of the app. Mean-
while, for the sake of precision, DROIDPF must be designed to
generate only feasible event sequences relevant to the app.

6.1 Dependency-Constrained Event Permutation

One challenge for the driver generation is that events can
occur asynchronously. Enumerating all permutations of the
events would be complete but would at the same time result
in many infeasible sequences. Therefore, we introduce a
dependency-constrained event permutation, which exploits
the dependency relations among the events so as to reduce
the event sequences.

We use deterministic finite automata (DFA) to specify the
dependency relations among the events. An event sequence
is valid iff it is accepted by the DFA. A DFA is a 5-tuple:
ðQ;S;D; q0; SaÞ, where Q is a finite set of states; S is a finite
set of events (alphabet); D is a transition relation; q0 is the
start state and Sa is the set of accepting states. We start with
defining a full lifecycle DFA (L-DFA) for each of the four
types of app components, based on the official documenta-
tions of Android [40]. The alphabet of the full L-DFA
includes all of the lifecycle event handlers. As an example,
Fig. 11 shows the full L-DFA of the activity component.

Often, not all of the lifecycle events are relevant to the
checked properties. Therefore, at the second step, DROIDPF
projects the full L-DFA with respect to the app’s alphabet
using Algorithm 1. We call the obtained DFA a concrete
L-DFA. This algorithm works as follows. For each transition
qi

e!qj in the full L-DFA, if e is in the app’s alphabet, this
transition is preserved in the concrete L-DFA. Otherwise,

Fig. 11. Full L-DFA of activity component.

TABLE 1
Main Modules Modified in DroidPF

Types Modules

Components android.app.(ActivityjServicejContextImpljDialog), android.content.(BroadcastReceiverjContextWrapper),
android.content.pm.PackageManager, android.os.(AsyncTaskjBundlejLooper), android.content.res.AssetManager

GUI android.widget.(TextViewjButtonjCheckBoxjEditTextjImageViewjLinearViewjToastjLinearLayout),
android.opengl.GLSurfaceView, android.view.(ViewjSurfacejWindowManagerImpljMenuItemjMenu),
android.graphics.Bitmap, android.webkit.WebView

ICC android.content.Context.(startActivityjsendBroadcastjregisterReceiverjunregisterReceiverjstartService
jstopServicejbindServicejunbindService), android.content.Intent, android.os.CountDownTimer

Resource android.location.LocationManager, android.net.ConnectivityManager, android.media.AudioManager
Manager android.telephony.(TelephonyManagerjSmsManager), android.hardware.SensorManager

I/O java.io.*, android.database.sqlite.*, android.content.SharedPreferences
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the algorithm first combine qj into qi (line 3); then transitions
starting from qj are changed to start from qi (line 6-7), and
transitions destinating to qj are changed to qi (line 8-9).

Algorithm 1. L-DFA Projection Algorithm

Input: dfa�full L-DFA, EvntSet�lifecycle event set
Output: cdfa�concrete L-DFA

1 foreach t ¼ qi
e!qj in dfa:D do

2 if e =2 EvntSet then
3 qi  combineðqi; qjÞ;
4 dfa:Q dfa:Q� qj;
5 dfa:D dfa:D� t;
6 foreach t0 ¼ qj

e0!qk do
7 dfa:D dfa:D [ fqi e

0
!qk};

8 foreach t0 ¼ qk
e0!qj do

9 dfa:D dfa:D [ fqk e
0
!qi};

10 dfa:S EventSet;
11 return dfa

After obtaining the concrete L-DFA, DROIDPF extends it
to incorporate those relevant GUI and ICC events identified
in static reduction. Our key insight is an invariant that an
activity only handles GUI events and ICC events when it is
in active state (q6 in Fig. 11). Therefore, we add the permuta-
tions of these events to the active state (availability of a GUI
item is checked before invoking its handlers, which ensures
that it is not disabled). As an example, Fig. 12 shows the
final DFA specifying the dependency relations of events in
MotivatingAct.

Based on the finalDFA,DROIDPF generates legitimate event
sequences. We remark even if the number of the sequences is
infinite due to the loops in the DFA (e.g., q01q

0
2q
0
1 in Fig. 12), the

state exploration by JPF would terminate as long as there are
finitely-many states only (not event sequences).

6.2 Incremental Driver Generation

Fig. 13 shows an overview of the driver generation process.
Given the relevant components and events, DROIDPF creates
an initial driver which only includes a set of relevant lifecycle
event sequences of the app’smain activity component (i.e., the

first component invoked when the user launches the app). By
dynamically executing the created driver, DROIDPF is able to
reach more relevant components and events. When a relevant
event is reached, DROIDPF constructs new event sequences
which are accepted by the DFA, and generates new drivers to
drive the next-round execution. When a relevant component
is reached, DROIDPF includes its lifecycle event sequences. By
iteratively executing each of the drivers, DROIDPF gradually
expands the driver set until no more components and events
can be reached, i.e., a fixedpoint is reached.

We take our running example (Fig. 2) to illustrate the gen-
eration process. Initially, DROIDPF generates a driver which
only includes the three lifecycle events of MotivatingAct
(Fig. 14a): onCreate, onStart and onPause . It then
dynamically executes the driver. When executing the
setContentView (line 7 in Fig. 2), it reaches two relevant
buttons which are registered in the layout xml file. It thus
includes the onClick events of the buttons into the new
driver (Fig. 14b). Later, it reaches the content providerCPro-
vider which is dynamically registered in line 8. It then
includes the lifecycle events of CProvider and generates
another driver which contains the present components and
events. We remark that when executing line 29, DROIDPF
parses the intent and identifies the invoked component as
DummyAct. Because DummyAct has been found irrelevant
in the static analysis step, DROIDPF does not include it into
the driver.

Algorithm. Algorithm 2 details our driver generation
algorithm. The inputs of the algorithm include the app, the
relevant components/events and a DFA. The output of the
algorithm is a set of drivers. The algorithm consists of two
steps: driver initialization (line 1-3) and expansion
process (line 4-10). The drvInit method (line 1) first
identifies the main component by parsing the app’s

Fig. 12. DFA of the MotivatingAct in Fig. 2.

Fig. 13. Driver generation process.

Fig. 14. Driver generation for MotivatingAct in Fig. 2.
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AndroidManifest.xml file. After obtaining the main
component, DROIDPF searches its lifecycle event handlers
from the relevant event set. The identified events are taken
as inputs to the drvGen which permutates the events
and generates a set of event sequences. Each of the
sequences (denoted by seq) is then used to generate a driver,
which invokes the event handlers in the order of seq.

Algorithm 2. Driver Generation Algorithm

Input: App�app, RCmpSet�relevant components,
REvntSet�relevant events, ED�dependency DFA

Output:A driver set
1 EvntSet drvInitðApp;RCmpSet;REvntSet; EDÞ
2 CmpSet EMPTY
3 DrvSet drvGenðEvntSet; CmpSet; EDÞ
4 DrvSetold  EMPTY
5 whileDrvSet 6¼ DrvSetold do
6 DrvSetold  DrvSet
7 foreach drv inDrvSet do
8 ðEvntSet; CmpSetÞ  dynExploreðdrvÞ
9 ðEvntSet; CmpSetÞ  filterðEvntSet; CmpSet; RCmpSet;

REvntSetÞ
10 DrvSet drvGenðEvntSet; CmpSet; EDÞ
11 returnDrvSet

In the expansion step (line 4-10), DROIDPF expands the
initial driver set. It starts from a dynamic
exploration (line 7-8). The dnyExplore method executes
each of the drivers in the driver set DrvSet. During the
execution, it identifies dynamically-registered compo-
nents and GUI elements.

� Components.DROIDPF considers two types of registra-
tion: instantiation and invocation by ICC. First, once a
component is instantiated dynamically, such as
CProvider in our running example (line 7, Fig. 2),
DROIDPF adds it into CmpSet. Second, when the pro-
gram invokes a new component using ICC, such as
startActivity() and startService(), the
invoked component is included.

� GUI Elements.For each GUI element that is registered
dynamically, DROIDPF adds its event handlers into
EvntSet.

After identifying new components and events, DROIDPF
selects those relevant ones for driver generation (line 9-10).

7 IMPLEMENTATION AND EVALUATION

DROIDPF has been implementedwith approximately 20 K lines
of Java code, in addition to various libraries that we employ.
Most of our engineering efforts on implementing DROIDPF are
spent on driver generation and mocking up the methods in
Android OS. The static app reduction is implemented based
on SAAF [36].We use apktool [41] to translate the DEX code of
apps into smali format, onwhich the static slicing is performed.
The events that are taken into consideration by driver genera-
tion are listed in Table 2. The mock-up Android OS is devel-
oped based on the Framework of Android 4.0. We have to
decode DEX code (i.e., .dex file format) of apps into Java byte-
code (i.e., .classfile format) compatiblewith JPF in order to exe-
cute the code. Currently we rely on dex2jar [42] (which has
99 percent retargeting success rate) and Dare [43] (which has
99.99 percent retargeting success rate) for this purpose.

In the following, we evaluate DROIDPF in terms of its
effectiveness and accuracy. In particular, we investigate the
following four research questions.

� RQ1 Effectiveness: can DROIDPF detect security and
privacy property violations in real-world apps, or
show their absence?

� RQ2 Precision: can DROIDPF achieve a correct and
precise analysis on the benchmark apps?

� RQ3 Given that DROIDPF has the mock-up OS to
enable the execution of Android apps on JPF’s JVM,
is it possible to support JPF’s diverse set of property
checkers for non-security properties?

Our evaluation subjects include the following three sets.
The first set consists of eleven small to intermediate scale
real-world apps downloaded from Google Play, Anzhi
market and F-Droid, including an ebook app (denoted by

TABLE 2
Events Supported by DroidPF

Class Name Handlers

li
fe
cy
cl
e

android.app.Activity onCreate, onDestroy, onPause, onStop, onPostResume, onRestart, onResume,
onPostCreate, onRestoreInstanceState, onSaveInstanceState, onStart

android.app.Service onBind, onCreate, onStart, onDestroy
android.app.ContentProvider onCreate
android.app.Application onCreate, onTerminate, ActivityLifecycleCallbacks
android.preference.PreferenceActivity onCreate, onDestroy, onStop, onPreferenceTreeClick

G
U
I

android.app.Activity onCreateOptionsMenu, onPrepareOptionsMenu
android.widget.EditText getText, setText
android.widget.Button performClick
android.view.View.onClickListener onClick
android.view.View.onTouchListener onTouch
android.preference.Preference.OnPreferenceChangeListener onPreferenceChange
android.preference.Preference.OnPreferenceClickListener onPreferenceClick
android.view.GestureDetector.OnGestureListener onDown, onFling, onLongPress, onSingleTapUp, onScroll

IC
C

android.app.ActivityjService onLowMemory
android.content.BroadcastReceiver onReceive
android.app.Application onConfigurationChanged, onLowMemory, onTrimMemory
android.location.LocationListener onLocationChanged, onProviderEnabled, onProviderDisabled
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ebook), a scientific calculator app and a set of apps which
requests for the location or SMS permission, such as a loca-
tion sharing app named GPSShare [44] which allows users
to share locations through SMS. These apps utilize a variety
of core functionalities supported by Android, such as access-
ing locations, accessing the IMEI and sending SMSmessages.
We select the ebook app and the calculator app because we
find that they request privileges that are not necessary for
their functionality; for example, the ebook app requests the
permissions of INTERNET and READ_PHONE_STATE. We
also select the apps requesting the location and SMS permis-
sion because we are interested in whether the user’s private
data are leaked by them. These apps are used to investigate
whether DROIDPF can identify malicious behaviors which
abuse these permissions. During the experiments, we find
that some of these apps embed third-party ad libraries, we
thus also test two ad libraries embedded by them.

The second set consists of malware samples. We test four
known malware samples released by Malware Genome Proj-
ect [3] in 2013, namely ZitMo,Geinimi, Spitmo and Zsone, and
two relatively new samples obtained from Contagio mobile,
namelyObad and Pincer. These samples violate the privilege
property by sending premium SMS messages (Geinimi,
Zsone, Obad and Pincer) and blocking incoming SMS
messages (ZitMo, Spitmo and Pincer), and privacy property
by stealing the incoming SMS messages (ZitMo and Spitmo)
and IMEI (ZitMo and Pincer). Our subject set also includes a

vulnerable open source app called InsecureBank [45], which
is embedded with harmful API calls and various behaviors of
leaking information.

The third set of apps is a comprehensive benchmark
called DroidBench [10], which has been created to evaluate
information flow analysis. It includes 111 open source apps,
some of which lead to violations of privacy properties. It
contains a suite of challenges for analysis tools to check
both false negatives and false positives, such as locations in
arrays and lists, callbacks, field and object sensitivity, ICC,
obfuscation, reflection and implicit flows.

7.1 Effectiveness of DroidPF

In our experiments, we check both privilege and privacy
properties. For privilege properties, we focus on the sensi-
tive behaviors that are not initiated by the GUI events (i.e.,
stealthy behaviors), such as blocking incoming SMS mes-
sages and sending SMS messages. For privacy properties,
we check whether the sensitive data, including device ID,
location and contacts are leaked through the network, SMS
and logs. Table 3 lists the statistics of our experiments (for
the sake of brevity, we omit most statistics of the Droid-
Bench experiments). Our experiments were conducted on a
PC with Intel Core 2 DUO CPU E6550 at 2.33 GHz and 4 GB
RAM. The verification results using DROIDPF (i.e., the coun-
terexamples or the correctness claim) have been confirmed
by manually analyzing the smali code.

TABLE 3
Statistics in Our Experiments

Subjects Static Reduction Dynamic Exploration

App name LOC #Components #Events Time(S) Exploration
Time(S)

Memory
(MBytes)

#Backtracked
States

Violation/Bug
detected?

Ebook (main app) 7.0 K 2/2 7/9 10.6 2 (4) 188 (321) 1,428 (3,900) ‘

Ebook Youmi (main view) 15.6 K 1/1 1/5 10.6 2 (13) 185 (590) 73 (5,257) @(UR)
Calculator (main Activity) 6.5 K 3/4 3/26 3.4 1 (AC) 119 (AC) 8 (AC) @(UR)
GPSShare 1.2 K 1/3 8/17 2.4 3 (172) 366 (409) 2,792 (49,556) ‘

A2DP Volume 24.5 K 6/14 23/113 16.8 10 (-) 382 (-) 674 (-) @(UR)
GPS optimisation 854 2/2 7/7 1.0 1 (-) 174 (-) 352 (-) ‘

GPS Booster 1.0 K 3/3 7/9 1.0 524 (-) 943 (-) 224,671 (-) ‘

MYPosition 3.1 K 2/3 9/12 6.8 4 (-) 422 (-) 174 (-) @(UR)
GPS Compass 7.2 K 1/1 7/7 46.8 121 (-) 3,237 (-) 160,690 (-) @(UR)
cn.waps.AppOffer 10.9 K 1/1 5/5 6.3 1(-) 160(-) 305(-) @(UR)
TinyClock 1.0 K 3/3 4/4 3.6 1 (-) 72 (-) 4 (-) ‘

SMS Spammer 340 1/1 3/3 5.9 2 (-) 72 (-) 32 (-) @(UR)
Battery level 8.2 K 1/1 8/8 6.3 235 (-) 565 (-) 18,521 (-) ‘

InsecureBanky 2.3 K 4/5 11/12 3.0 183 (184) 596 (596) 132,307 (133,809) @
ZitMo 576 1/3 3/4 2.3 6 (6) 111 (117) 393 (394) @
Geinimi 13.0 K 4/6 6/21 5.9 OM (OM) OM (OM) 2.5 K (OM) @
Spitmo 704 1/1 1/1 2.6 4 (4) 78 (78) 66 (66) @
Zsonez 29.4 K 2/4 3/10 30.5 3 (AC) 61 (AC) 113 (AC) @
Obad 80.5 K 10/11 23/28 9.6 1 (-) AC (-) AC (-) ‘

Pincer 4.3 K 11/12 12/15 4.0 29 (-) 959 (-) 1,466 (-) @

PrivateDataLeak1 211 1/1 3/3 8.6 2 (2) 78 (78) 38 (38) @
Button2 201 1/1 4/4 9.0 2 (2) 78 (78) 41 (41) @
AnonymousClass1 157 1/1 3/6 8.6 2 (2) 78 (78) 20 (177) @
LocationLeak2 171 1/1 3/6 8.7 2 (2) 78 (78) 20 (177) @

LOC: lines of code in smali, including third-party libraries; #Components: number of relevant/overall components; #Events: number of relevant/overall events;
OM: out of memory; AC: app crashed; UR: previously unreported violations/bugs. Those numbers in the brackets stand for the statistics in the exploration with-
out static reduction.
y When fed with infinite event sequence, the exploration of InsecureBank did not terminate. The statistics in this row was obtained by setting the length of
sequence as 16.
z In the experiment of full permutations, Zsone crashed due to a null reference when its onResume() is called.
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Real-World Apps. As shown in last column of Table 3,
DROIDPF successfully verifies that six of the real-world app
samples are free of property violation, and detects violations
or bugs from the remaining five. DROIDPF detects in
GPSShare that the location information is taken as a parame-
ter to invoke Andoid’s SMS activity, we do not regard it as a
“sink” since SMS activity prompts the user and will not send
out the SMS messages without the user’s consent. DROIDPF
detects that a library in the calculator app connects the
server located at http://58.221.57.115:81 to down-
load app packages. Location leakage is detected from both
A2DP Volume (through publicly accessible files) and
MYPosition (through log). SMS Spammer is detected to send
SMS messages at background. GPS Compass is reported to
have a deadlock in the app.

From the ad library GPS Compass uses (named
AppOffer), DROIDPF reports the leakage of IMSI and device
information to a server located at http://app.wapx.cn/
action/notify/click. Similar leakage is also found in
the ebook app, in which DROIDPF reports leakage of the
device ID. Our investigation reveals that its main compo-
nents do not leak the device ID. Instead, the leakage occurs
in an embedded advertising SDK named Youmi. These two
experiments show that third-party libraries may overprivi-
lege the benign apps. Studies of isolating suspicious librar-
ies from the main apps have been conducted, such as
AdSplit [46], AdDroid [7] and DroidVault [47].

Malware/Vulnerable Samples. For the malware samples,
DROIDPF identifies data leakage from four of them.

� Zsone. DROIDPF detects a trace which is initiated by
the onCreate lifecycle event of its main activity and
leads to the invocation of sendTextMessage,
which sends seemingly meaningless SMS messages
(e.g., aAHD) to four numbers (e.g., 10626213). After
further investigation of the phone numbers, we find

that those messages are used to register premium
services from the Chinese mobile networks.

� Spitmo and ZitMo. DROIDPF identifies that one of
Spitmo’s broadcast receivers (i.e., SMSReceiver)
blocks incoming SMS messages by invoking abort-

Broadcast. It also forwards the messages to a
phone number stored in the file asset/settings.

xml. In ZitMo, DROIDPF detects a similar trace.
� Geinimi. DROIDPF does not terminate on Geinimi and

we stop the exploration when the machine is out of
memory. After our manual investigation, we find
that Geinimi blocks on a loop of sending encrypted
string which contains sensitive data like IMEI and
location. The loop may cause JPF to create new
states, which leads to the out-of-memory exception.

� Pincer. DROIDPF detects thatPincer sends the device id
and the phone number to its C&C server located at
198.211.118.115:9081/Xq0jzoPa/g_L8jNgO.

php and a phone number +447937281444 once it is
started. It waits for the commands to conduct other
behaviors. We use DROIDPF to assist in recovering
these commands, andwe report this in Section 7.2.

� Obad. In order to obstruct static analysis,Obad uses a
reflection-based obfuscation technique. In particular,
it substitutes its API calls with reflection calls. At run
time, the names of the APIs are calculated in an inten-
tionally complicated way. Fig. 15 demonstrates how
it uses this method to obtain the Android OS model.
DROIDPF successfully identifies the obfuscated API
calls, although the tested malware sample crashes
due to incompatibility with Java 7’s class verifier.

� InsecureBank. From the InsecureBank, DROIDPF
identifies the leakage of sensitive data (e.g., phone
number and input data) through the channels of
HTTP, system logs and SD card.

To investigate the effect of the static reduction, we test
the main components of some apps without applying the
reduction (i.e., the numbers are in brackets in Table 3). As
shown in the table, when we take the full permutations of
the events as input to the apps, the time and space efficien-
cies decrease significantly. Nonetheless, the full exploration
may detect issues irrelevant to the checked properties. In
the experiment of the calculator app, DROIDPF detected a
bug. The app does not validate the input before parsing a
value of type double, and this causes the crash of the app
when DROIDPF clicks button “=” after clicking button “.”.

7.2 Applying DROIDPF on Malware Behavior Analysis

In Pincer case, the malware sample waits for commands
from the C&C server to activate its hidden behaviors. These
behaviors cannot be observed currently by DROIDPF if the
C&C server is no longer alive. To explore these behaviors,
the analyst has to feed the commands from the mock up OS,
yet the challenge is to figure out those commands. We have
made an attempt to apply DROIDPF to identify these com-
mands. Our idea is to borrow techniques from symbolic
execution. In particular, DROIDPF monitors the branch state-
ments and prompt the branch condition whenever a branch
statement is executed. The analyst then can manually exam-
ine the relation between the condition and data input. In this
way, the analyst can gradually figure out the commands.

Fig. 15. A code snippet extracted from the main activity of Obad. It uses
reflection to obtain the Android OS model.
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As a case study, we have applied this approach on analyz-
ingPincer. In this section, we show the usefulness of DROIDPF
in facilitating malware analysis by reporting part of Pincer’s
behaviors that we obtain with DROIDPF. Pincer uses a listener
to obtain the incoming SMS messages. If an incoming mes-
sage contains string “”command”” or if the sender matches
the phone number stored under the numbers_to_sms_

divert item in the shared preference file diverter_pref_
key.xml, it blocks the message using abortBroadcast to
prevent it from being observed by other SMS receivers. Then,
it extracts the concrete commands from the message. One of
the commands is a ping message in the JSON format
[”command”:”ping”, ”result”:”true”]. Receiving
this, the malware will send the message [”action”:

”pong”] to +447937281444 to report its liveness. Another
command is in the format of [”command”:”send_sms”,
”result”:”true”, ”phone_number”:NUMBER,

”message_text”:MESSAGE]. Receiving this, the malware
will send an SMS with MESSAGE as the body to NUMBER (this
is likely used to conduct a DDOS attack). This case study
shows that DROIDPF is useful in identifying not only the con-
crete commands but also the precise message format (or the
protocol) between themalware client and server.

In this type of analysis, DROIDPF relies on the analyst to
provide data input to satisfy the condition in each branch.
Advanced techniques such as symbolic execution and pred-
icate abstraction (J2BP [48]) could be applied to enhance this
analysis towards fully automation (discussed in Section 8).

7.3 Experiment on DroidBench

Weuse the DroidBench to evaluate DROIDPF in terms of preci-
sion, which is the most critical criteria for a verification tool.
Table 4 summarizes the test results. Overall, DROIDPF achieves
precise results. The dynamic feature of DROIDPF makes it
capable in addressing the Android-specific event-driven

execution feature. In particular, DROIDPF can precisely bind
event handlers, track dynamic (un)registrations and order the
occurrence of events. In addition, DROIDPF adopts a fine-
grained taint tracking on composite data types, such that it is
precise in detecting taint flowing through these data types.

During the exploration of DroidBench, the app FieldAn-

dObjectSensitivity_FieldSensitivity1 is crashed
due to one event sequence. Our manual inspection confirms
that the crash is caused by a use-after-free vulnerability. We
have reported this vulnerability to the author of DroidBench,
who acknowledged our finding and rectified it in the Droid-
Bench 2.0. The app ArrayToString1 crashes due to an
array index out of bound exception. DROIDPF fail to execute
six apps (labeled as � in Table 4) due to unmocked Frag-

ment. In the app Parcel1 which serializes the tainted
object, DROIDPF captures the value which is sent out
through SMS, but it loses the taint tag when the object is
serialized using native code nativeWrite*(). DROIDPF
does not terminate on VirtualDispatch1, because each
time when a button is clicked, a variable is changed, lead-
ing to infinite number of states.

7.4 Experiments on Non-Security Properties

Given that DROIDPF enables the execution of Android apps
on JPF, we have also explored whether various property
checkers of JPF can be enabled. We apply DROIDPF on two
case studies conducted by JPF-Android, a general tool that
verifies Android applications using JPF, including an app
containing deadlock and a calculator app. Since this experi-
ment does not target the detection of security errors, we
directly apply driver generation and exploration without
static reduction of the application code. DROIDPF success-
fully detects the deadlock which has been reported by JPF-
Android. It also detects an unreported bug in the calculator

TABLE 4
Results on DroidBench

App Name Result App Name Result App Name Result App Name Result

Arrays, Lists and HashMaps Callbacks Field and Object Sensitivity General Java

ArrayAccess1 AnonymousClass1 @ FieldSensitivity1&2&4 Loop1&2 @
ArrayAccess2 Button1-5 @ FieldSensitivity3 @ SourceCodeSpecific1 @
ListAccess1 LocationLeak1-3 @ InheritedObjects1 @ StaticInitialization1-3 @
HashMapAccess1 MethodOverride1 @ ObjectSensitivity1&2 Exceptions1&2&4 @
ArrayCopy1 @ MultiHandlers1 Lifecycle Exceptions3 @
ArrayToString1 @ Unregister1 BroadcastReceiverLifecycle1&2 @ UnreachableCode

MultidimensionalArray1 @ RegisterGlobal1&2 @ ActivityLifecycle1-4 @ FactoryMethods1 @
Inter-Component Communication Inter-App Communication ServiceLifecycle1&2 @ Serialization1 @
IntentSource1 @ Echoer @ ApplicationLifecycle1-3 @ StringFormatter1

IntentSink1&2 @ SendSMS @ Ordering1 StringToOutputStream1 @
ActivityCommunication1-8 @ StartActivityForResult1 @ FragmentLifecycle1&2 VirtualDispatch1 @@
BroadcastTaintAndLeak1 @ Miscellaneous Android-Specific SharedPreferenceChanged1 @ VirtualDispatch2 @
EventOrdering1 @ PrivateDataLeak1-3 @ AsynchronousEventOrdering @ VirtualDispatch3&4

ServiceCommunication1 @ DirectLeak1 @ EventOrdering1 StringPatternMatching1 �
ComponentNotInManifest1 InactiveActivity Threading StartProcessWithSecret1 @
Singletons1 @ LogNoLeak AsyncTask1 @ Implicit Flow

SharedPreferences1 @ Library1&2 @ Executor1 @ ImplicitFlow1-4 �
UnresolvableIntent1 @ PublicAPIField1&2 @ JavaThread1 @ Aliasing

Emulator Detection ApplicationModeling1 @ JavaThread2 @ Merge1

ContentProvider1 Parcel1 � Looper1 @
IMEI1 @ Obfuscation Reflection

PlayStore1 Obfuscation1 @ Reflection1-4 @

@= correct alarm, ‘= false alarm,� = missed leak, = incompatible, = bug, @ = non-termination, empty cell: no leaks expected and none reported
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leading to an app crash. The bug is caused by an unchecked
array index, which occurs when the input box is empty and
DROIDPF “presses” the backspace button.

8 LIMITATIONS AND DISCUSSION

Weacknowledge that verifyingAndroid apps is an extremely
challenging task. DROIDPF is only a step towards that goal and
it has its limitations. Alleviating them will be important
futurework for eventually ubiquitous app verification.

Limitation in Applying Model Checking.DROIDPF is based on
model checking and thus it has the limitation ofmodel check-
ing, i.e., the app (after static reduction) must have only
finitely-many states and the number of states is not beyond
the capability of current model checking techniques. Since
DROIDPF leaves the task of state exploration and state compar-
ison (to avoid exploring the same state more than once) to the
underlying JPF, DROIDPF can verify an app only if the app,
after reduction performed inDROIDPF, can be verified by JPF.

Mock-Up OS. Mocking up the underlying OS takes signifi-
cant effort in our approach. The security analyst also has to
have background of Android OS in order to incrementally
develop the mock-up to support his/her apps. This is the
major challenge that hinders DROIDPF from verifying large-
scale real-world apps and hybrid apps with native and Java-
Script code, and verifying apps in a mass manner. However,
it would be helpful to alleviate this challenge somewhat if the
analyst becomes familiar with the app to be verified such that
he/she can simplify the mock-up while preserving the
semantics relevant to the app.

Implicit Information Flow. Similar to most information
flow analysis [30], [39], DROIDPF cannot identify the implicit
leakage through control flow dependency; for example, the
value of x is leaked implicitly in this statement: if(x==1)
y=1; else y=0;. A straightforward solution is to propa-
gate the taint to y, but this may lead to over-tainting and
false-propagation problems. For future work, DROIDPF can
employ more advanced solution such as DTA++ [49].

Data Inputs. DROIDPF is perhaps not effective if the app
contains behavior which is triggered by data inputs and
which cannot be pruned through static reduction, such as
the attack behaviors enabled on a specific date or by the IMEI

of a specificmanufacturer, and ourPincer case studies which
launch attacks based on received commands. In theory, we
could always enumerate all possible values for primitive
data inputs, but would often result in state space explosion,
and for data input of type string or float, this becomes unde-
cidable. Currently, DROIDPF relies on the human interaction
for deciding the possible values of the input, like what we
show in the Pincer case study in Section 7.2. For future work,
techniques like symbolic execution [50], [51], [52], [53], [54]
can be considered to alleviate this problem.

Multithreading. The state explosion is an inherent problem
of explicit state model checking. As shown in Fig. 16,
DROIDPF becomes inscalable as the number of threads grows.
Once the number of threads becomes greater than 10, the
number of the states becomes the order of 107, and it takes
hours for DROIDPF to explore the state space. To cope with
this problem, advanced techniques such as partial order
reduction [55] and interface reduction [56] can be applied.

Event Sequences. As shown in the VirtualDispatch1

case, DROIDPF can easily end up with nontermination if there
is an event which always leads to a new state once it hap-
pens. This case can be exemplified as Fig. 17. To address this
problem, abstraction is required. In particular, further analy-
sis should be added to figure out the dependency between
the variables and the property-related behavior. If there is no
dependency, the variables should be removed from the state.

9 RELATED WORK

DROIDPF is inspired and related to multiple groups of
research.

Model Checking Implementations. Model checking techni-
ques have been used to detect security properties from soft-
ware for more than three decades. Traditional model
checkers require the analysts to manually specify the ana-
lyzed systems in particular languages or logics. However,
manual specification is often expensive and can be error-
prone. Therefore, model checking implementation-level
software has become active recently. Implementation-level
model checkers [17], [56], [57], [58], [59], [60] directly work
on the implementations of the software system by dynami-
cally exploring the state space.

Model Checking Android Apps. JPF-Android [23], [61] is a
general tool that verifies Android applications using JPF. JPF-
Android makes use of JPF’s class modeling and native
method modeling features to bound the environment of the
application created by the Android core libraries. To drive
the execution of the application, users script nondeterministic
event sequences and can also set the state of the environment.
JPF-Android supports detection of deadlock, race conditions
and runtime errors using the listeners provided by JPF. It
does not target security errors in Android apps but allows
users to specify properties in the form of Checklists to verify
that the application executes specific event sequences [61].

Fig. 16. Number of states and exploration time grow exponentially as
number of threads increases. (The statistics is collected by adjusting the
number of threads in DroidBench’s Threading_JavaThread1, with-
out explicitly applying any reduction techniques like BDD and abstraction
which JPF may support.)

Fig. 17. An event whose occurrence always leads to a new state.
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Android Application Analysis. There have been several
approaches using program analysis to analyze the security
and privacy properties of Android apps [6], [10], [12], [51],
[62], [63], [64], [65]. FlowDroid [10] is one of the most
advanced approaches, which proposes a taint analysis featur-
ing in addressingAndroid’s ubiquitous callbacks. Pegasus [62]
checks apps for the properties that can be specified in Linear
Temporal Logic (LTL). Similar to Pegasus, AppIntent [51]
aims to detect malicious behaviors by identifying whether the
suspicious behaviors are initiated by the user. CHEX [6],
SCandroid [12] and IccTA [66] are mainly devoted to inter-
component flow analysis. Although program analysis is
mature and has been proven powerful in detecting vulner-
abilities, its precision is limited by points-to analysis [67].
There are several dynamic analysis approaches to test the
apps, which is either by instrumenting the Android OS [30],
[68] or based on virtualization [69], [70]. TaintDroid [30] and
VetDroid [68] dynamically track the sensitive data flow
through the OS and apps. HARVESTER [71] uses an explore-
after-slicing approach to obtain the constant strings in the
malware samples.

The precision of DROIDPF depends on activating the appli-
cation behaviors. Its dependency-constrained event permuta-
tion approach aims to cover possible valid event sequences.
There are a few studies also attempting to solve this challenge.
SmartDroid [72] and ORBIT [73] combines static and dynamic
analysis to trigger UI events. SwiftHand [74] uses an abstract-
refinement approach to generate sequences of test inputs.
AppIntent [51] and [70] use symbolic analysis to identify
inputs to drive the analysis further. Dynodroid [75] uses an
observe-select-execute approach which selects event inputs
based on observed states to improve the coverage. A3E [15]
explores app components and mimics user actions based on
the strategy learned from the control flow graphs.

10 CONCLUSION

We present DROIDPF, which provides a framework for veri-
fying Android apps against security properties based on
targeted software model checking. We have made efforts to
address the main problems in verifying Android apps, such
as multiple entry points/event-driven execution, GUI test-
ing and path explosion. DROIDPF shows that it is feasible to
model check the software implemented in high-level lan-
guage like Java and running on a complicated OS. We hope
DROIDPF can inspire future research that brings the cutting-
edge model checking techniques from the specifications to
the implementations.
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