
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2015

Adaptive resource provisioning mechanism in VEEs for improving Adaptive resource provisioning mechanism in VEEs for improving

performance of HLA-based simulations performance of HLA-based simulations

Zengxiang LI

Wentong CAI

Stephen John TURNER

Xiaorong LI

Nguyen Binh Duong TA
Singapore Management University, donta@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LI, Zengxiang; CAI, Wentong; TURNER, Stephen John; LI, Xiaorong; and TA, Nguyen Binh Duong. Adaptive
resource provisioning mechanism in VEEs for improving performance of HLA-based simulations. (2015).
ACM Transactions on Modeling and Computer Simulation. 26, (1), 1:1-1:25.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4848

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4848&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

Adaptive Resource Provisioning Mechanism in VEEs for Improving
Performance of HLA-Based Simulations

ZENGXIANG LI, Institute of High Performance Computing, Singapore
WENTONG CAI and STEPHEN JOHN TURNER, Nanyang Technological University, Singapore
XIAORONG LI, Infocomm Development Authority of Singapore, Singapore
TA NGUYEN BINH DUONG, Ngee Ann Polytechnic, Singapore
RICK SIOW MONG GOH, Institute of High Performance Computing, Singapore

Parallel and distributed simulations (or High-Level Architecture (HLA)-based simulations) employing op-
timistic synchronization allow federates to advance simulation time freely at the risk of overoptimistic
executions and execution rollbacks. As a result, the simulation performance may degrade significantly due
to the simulation workload imbalance among federates. In this article, we investigate the execution of paral-
lel and distributed simulations on Cloud and data centers with Virtual Execution Environments (VEEs). In
order to speed up simulation execution, an Adaptive Resource Provisioning Mechanism in Virtual Execution
Environments (ArmVee) is proposed. It is composed of a performance monitor and a resource manager. The
former measures federate performance transparently to the simulation application. The latter distributes
available resources among federates based on the measured federate performance. Federates with different
simulation workloads are thus able to advance their simulation times with comparable speeds, thus are
able to avoid wasting time and resources on overoptimistic executions and execution rollbacks. ArmVee is
evaluated using a real-world simulation model with various simulation workload inputs and different pa-
rameter settings. The experimental results show that ArmVee is able to speed up the simulation execution
significantly. In addition, it also greatly reduces memory usage and is scalable.

Categories and Subject Descriptors: 1.6.8 [Simulation and Modeling]: Types of Simulation—Distributed

General Terms: Design, Algorithms, Architecture, Mechanism, Performance

Additional Key Words and Phrases: Resource provisioning, virtual execution environments, parallel and
distributed simulations, time synchronization, workload balance

ACM Reference Format:
Zengxiang Li, Wentong Cai, Stephen John Turner, Xiaorong Li, Ta Nguyen Binh Duong, and Rick Siow Mong
Goh. 2015. Adaptive resource provisioning mechanism in VEEs for improving performance of HLA-based
simulations. ACM Trans. Model. Comput. Simul. 26, 1, Article 1 (June 2015), 25 pages.
DOI: http://dx.doi.org/10.1145/2717309

1. INTRODUCTION

A parallel and distributed simulation [Fujimoto 2000], which is typically composed
of a group of sequential simulations, is usually employed to study a complex system

This work is supported by the Future Data Center Technology Thematic Strategic Research Programme of
the Singapore Agency for Science, Technology and Research (A*STAR) with grant number 112 172 0015.
Authors’ addresses: Z. Li and R. S. M. Goh, Institute of High Performance Computing, Singapore, 138632;
emails: {liz, gohsm}@ihpc.a-star.edu.sg; W. Cai and S. J. Turner, School of Computer Engineering, Nanyang
Technological University, Singapore, 639798; emails: {aswtcai, assjturner}@ntu.edu.sg; X. Li, Infocomm De-
velopment Authority of Singapore, Singapore, 117438; email: Xiaorong_LI@ida.gov.sg; T. N. B. Duong, Ngee
Ann Polytechnic, Singapore, 599489; email: tnb2@np.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1049-3301/2015/06-ART1 $15.00

DOI: http://dx.doi.org/10.1145/2717309

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

http://dx.doi.org/10.1145/2717309
http://dx.doi.org/10.1145/2717309

1:2 Z. Li et al.

in desired fidelity or to enable collaboration among a number of geographically
distributed participants. In order to support interoperability and reusability of sim-
ulation components, the High-Level Architecture (HLA), IEEE 1516 standard [IEEE
2010], is proposed. It provides a general framework to build a parallel and distributed
simulation (federation) by integrating various simulation components (federates).
Since the 1990s, parallel and distributed simulations (or HLA-based simulations) have
been widely used in both civilian applications (e.g., transportation optimization [Suh
et al. 2014]) and noncivilian applications (e.g., military training [Hannay et al. 2014]).

One of the greatest challenges in parallel and distributed simulations is time synchro-
nization, which ensures that events, either generated by the federate itself (internal
events) or received from other federates (external events), are processed in timestamp
(TS) order. Time synchronization can be conducted in either conservative [Bryant 1977;
Chandy and Misra 1979] or optimistic [Jefferson 1985] manners. In this article, we focus
on optimistic synchronization, which allows a federate to process events and to advance
simulation time freely. However, the faster federate (in terms of simulation time) may
conduct overoptimistic executions and roll back its execution on receiving messages
from the slower federate. It is generally agreed that optimistic synchronization has
good performance when all federates have comparable execution speeds (i.e., how fast
the simulation time is advanced) [D’Angelo 2011]. This usually requires that federates
should have a balanced simulation workload. Unfortunately, it is very difficult to meet
such a requirement in practice. Federates modeling different parts of the simulated
system may have different simulation workloads. For instance, federates might have
different number of Simulated Model Entities (SMEs). Moreover, the workload of each
federate might changes dynamically during the simulation execution.

Recently, we have witnessed an increased interest in moving parallel and distributed
simulations to Cloud and data centers for the purpose of obtaining large amounts of
resources at low prices. Different from the traditional execution platform, the typi-
cal building block inside Cloud or data centers is the multicore-based computers. For
instance, a computer may be installed with 4 Intel Xeon processors, each of which
may have 10 CPU cores. Thanks to the increased resources, a large number of fed-
erates are able to run on the same computer. In addition, virtualization technologies
[Barham et al. 2003] are used heavily in Cloud and data centers. In Virtual Execution
Environments(VEEs), federates are encapsulated and executed on the resident virtual
machines (VMs) with their own guest operating systems. Therefore, federates devel-
oped by different participants using different operating systems can be consolidated in
the same computer without leaking confidential information. By default, the federates
will share the resources evenly, as their resident VMs are scheduled by the hypervisor
using a fair-share scheduler. Subsequently, the simulation performance may degrade
significantly due to the simulation workload imbalance in federates [Yoginath and
Perumalla 2013]. To solve this problem, an Adaptive Resource provisioning Mechanism
in Virtual Execution Environments (ArmVee) is proposed in this article.

Our proposed ArmVee is composed of two modules: performance monitor and re-
source manager. The performance monitor, using a middleware approach, measures
federate performance (i.e., execution speed) transparently to the simulation applica-
tion. The resource manager is able to limit each VM to a certain resource share (e.g.,
percentages of scheduling time slots of one CPU core) by setting the parameters of the
default fair-share scheduler in the hypervisor. Hence, it can control the execution speed
of federates in a fine-grained manner. The resource manager periodically retrieves
performance measurements of federates from performance monitors and fetches the
available resources from hypervisor. A self-adaptive auto-regressive-moving-average
(ARMA) model, commonly used in control theory, is adopted to capture the relationship
between federate performance and the resource share of the resident VM. Based on the

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:3

Fig. 1. Overview of an HLA-based simulation and the HLA RTI interface for optimistic synchronization.

ARMA model, the resource manager is able to distribute the available resources among
the VMs, allowing their corresponding federates to have comparable execution speed.
Generally, the higher the simulation workload, the greater resource share the feder-
ate will be allocated. Since federates are proactively controlled to advance simulation
time with comparable speeds, they can avoid overoptimistic executions and execution
rollbacks. Therefore, the execution time of the whole simulation can be reduced.

In summary, ArmVee solves the problem of workload imbalance by reallocating re-
sources dynamically toward federates according to fluctuations in their simulation
workloads. Furthermore, ArmVee avoids recoding federates and is transparent to the
simulation application. It does not interrupt the simulation execution and does not
introduce additional overhead on data transfer.

As an extension of our previous work [Li et al. 2013], this article adopts the ARMA
model to replace the naive model used in the previous work, as the ARMA model cap-
tures more accurately the relationship between federate performance and VM resource
share in the presence of dynamic simulation workloads. Consequently, a new algorithm
is needed for the resource manager to distribute the available resources among fed-
erates. In addition, this article provides theoretical analysis concerned with the ad-
vantages of ArmVee on both speeding up simulation execution and reducing memory
usage. Compared with our previous work [Li et al. 2013], more experimental results
are reported to compare ARMA and naive models, to verify our theoretical analysis con-
cerned with the advantages of ArmVee, and to investigate the scalability of ArmVee.
Last, but not least, this article provides a more comprehensive literature review, for
example, the related work on speeding up simulation on multicore-based computers.

The rest of the article is organized as follows: Section 2 introduces background
knowledge on HLA-based simulations and resource provisioning in VEEs. Section 3
discusses related work on speedup parallel and distributed simulations. Section 4
illustrates the details of ArmVee, including the performance monitor and the re-
source manager. Section 5 analyzes the advantages of ArmVee theoretically. Sec-
tion 6 describes the experiment design and discusses the experimental results. Finally,
Section 7 concludes the paper and outlines some future work.

2. BACKGROUND

2.1. HLA-Based Simulations

As shown in Figure 1, an HLA-based simulation (federation) is composed of a group
of simulation components (federates). The HLA standard defines rules, formats, and
interfaces to support interoperability and reusability of the federates, which might
be developed by different participants from different organizations. The Runtime
Infrastructure (RTI), a communication middleware, implements the HLA interface
specification. An RTI component is provided by the RTI to connect each joined federate

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:4 Z. Li et al.

to the federation. It takes care of the federate’s need to exchange messages and to
request time advances. A federate invokes RTI services of its RTI component, while
the RTI component delivers callbacks to the federate. For instance, a federate sends a
message by invoking a SendInteraction RTI service, and the message is delivered to a
receiving federate in the form of a ReceiveInteraction callback.

The HLA standard supports optimistic [Jefferson 1985] synchronization through the
interfaces shown in Figure 1. An optimistic federate invokes Flush Queue Request
(FQR) service iteratively for a time advancement request. It forces the RTI to de-
liver all buffered messages to the federate. In the mean time, the RTI may send a
T imeAdvanceGrant to the federate after a federation-wide time synchronization. The
granted time, referred to as logical time of the federate, defines the lower bound of
future execution rollbacks. It can be used for fossil collection, that is, the memory space
containing checkpointed states with TS smaller than logical time can be reclaimed.
Since the federate is allowed to process events freely, its simulation time (i.e., TS of the
event being processed) might be greater than its logical time. Hence, it might receive
a straggler message whose TS is smaller than its simulation time. If so, a causality
error occurs and the federate needs to roll back its execution by discarding the overop-
timistic execution (i.e., the execution of those events with TS greater than the TS of
the straggler message). It must undo the modification on the federate state using a
federate state–saving and restoration mechanism [Jefferson 1985; Fujimoto 2000]. Ad-
ditionally, it needs to invoke Retract services to unsend those incorrect messages that
were sent during the overoptimistic execution. In the case that the messages have
been delivered to the receiving federates, the RTI informs those federates to remove
the effect of the incorrect messages through Request Retraction (RR) callbacks. This
may cause secondary execution rollbacks in the receiving federates.

2.2. Resource Provisioning Mechanisms in VEEs

In Cloud and data centers, underprovisioning of resources may cause Service Level
Agreement (SLA) violations, resulting in financial penalties; overprovisioning of re-
sources will increase cost and waste resources [Wesam et al. 2012]. To avoid these
problems, several adaptive resource provisioning mechanisms have been proposed by
exploiting the advantages of virtualization technology. Applications are allowed to rent
VMs according to their dynamic workload and Quality of Service (QoS) requirements
[Duong et al. 2012]. They are able to choose VMs with different capacities/prices and
bootup/shutdown VMs if necessary [Yang et al. 2012].

In contrast, ArmVee proposed in this article enables adaptive resource provisioning
by adjusting the capability of individual VMs dynamically according to their overlying
application workloads. In VEE, multiple VMs can be consolidated on the same com-
puter with multicore CPU and large memory. They are scheduled by a hypervisor to
share the underlying resources. Currently, we are focusing on the CPU resource that
is most important to compute-intensive simulations. ArmVee is implemented based on
the native CPU scheduler in Xen, that is, credit scheduler [Xen 2013]. By default, the
credit scheduler is a fair-share scheduler, as all VMs are assigned the same credit.
However, the assigned credit can be adjusted by setting the parameters (i.e., weight
and cap) of the credit scheduler [Xen 2013]. In the case that only the weight parameter
is set for each VM, the credit scheduler is work-conserving, which means that a VM
that has spent all of its credit will be allocated additional CPU share if there is avail-
able CPU resource. Optionally, we can use the cap parameter to specify the maximum
CPU share the VM is allowed to consume. In this case, the credit scheduler is nonwork-
conserving, which means that a VM never consumes CPU share beyond the cap even
if there is available CPU resource. Compared with the work-conserving scheduler, the
nonwork-conserving scheduler provides better performance isolation among VMs

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:5

[Schanzenbach and Casanova 2008; Barker and Shenoy 2010]. The cap value, rather
than the weight value, precisely specifies the CPU share (percentages of time slots) al-
located to a VM. In addition, changing the cap value does not introduce additional over-
head, and the new cap value can take effect immediately [Schanzenbach and Casanova
2008]. In this article, the CPU resources allocated to federates are controlled through
the fine-grained adjustment of the caps of their resident VMs. Since the cap parameter
can be adjusted through a hypercall (i.e., hypervisor API), ArmVee does not require
any modification on the hypervisor.

3. RELATED WORK

A number of research works have been conducted improving performance of parallel
and distributed simulations on traditional execution platforms. To achieve workload
balance, federates [Yuan et al. 2004; Li et al. 2007] or their SMEs [Bononi et al.
2006] are migrated between computers. However, these migration protocols require
recoding federates to provide state-saving and restoration functions and to enable
communication redirection. In addition, the migration overhead is usually considerable
due to the huge data transfer. Federates are interrupted in their executions. This may
further block the execution of the entire federation.

The performance of parallel and distributed simulations can also be improved by
efficient time synchronization. Some optimization protocols, e.g., Moving Time Win-
dow protocol [Sokol et al. 1988] and Adaptive Time Warp protocol [Panesar and
Fujimoto 1997], have been proposed to improve performance of optimistic synchroniza-
tion by blocking optimistic executions reactively. Specifically, a simulation component
is blocked if it has executed far beyond others in the same simulation execution. How-
ever, the performance of these optimization protocols are sensitive to the frequency
of global synchronization. Moreover, resources are wasted as some computers are set
to idle during the simulation execution. Different from these optimization protocols,
ArmVee proactively controls the federates to advance simulation time with comparable
speeds, thus avoiding overheads on overoptimistic execution and execution rollbacks.

Recently, Cloud and data centers have become new emerging execution platforms
for parallel and distributed simulations [Fujimoto et al. 2010]. A workload balance
mechanism [D’Angelo 2011] and an optimized synchronization protocol [Malik et al.
2009] were proposed to speed up simulation execution in the novel execution platforms.

Multicore-based computers, the building blocks of Cloud and data centers, have
increasing computation and communication capacities. In order to explore these capac-
ities, researchers have proposed designs for individual federates in a multithreaded
manner [Carothers et al. 2000]. Since all activities performed by the federate are exe-
cuted by worker threads, it has the potential to enhance the internal parallelism and
reduce the communication overhead [D’Angelo et al. 2012; Jagtap et al. 2012]. In addi-
tion, solutions to workload imbalance were proposed by global event scheduling [Chen
et al. 2011] or by reallocating different numbers of CPU cores to federates according to
their simulation workloads [Vitali et al. 2012]. In this article, federates, as sequential
simulation components [Fujimoto 2000] are developed and executed as single-threaded
processes [Martin et al. 1996]. How to extend ArmVee to multithreaded federates will
be discussed in future work.

In addition, Child and Wilsey [2012] have proposed speeding up parallel and dis-
tributed simulations relying on Dynamic Voltage and Frequency Scaling (DVFS), which
is commonly supported in multicore-based computers. They control federate perfor-
mance by adjusting the frequency and voltage of its corresponding CPU core. However,
due to the hardware limit, only four to six discrete frequency-voltage pairs are made
possible. In contrast, the virtualization technologies used in this article enable fine-
grained adjustment of CPU resources.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:6 Z. Li et al.

Fig. 2. Adaptive Resource provisioning Mechanism in Virtual Execution Environments (ArmVee).

To the best of our knowledge, limited work has been conducted to speed up parallel
and distributed simulations by harnessing virtualization technologies that are widely
deployed in Cloud and data centers. Yoginath and Perumalla [2013] have proposed a
global VM scheduler that collects the simulation time of all federates and schedules
their resident VMs in least-simulation-time-first order. Similar to ArmVee, the global
VM scheduler can improve synchronization efficiency. However, its implementation
is nontrivial, as the simulation application, the guest operating system, and the VM
scheduler in hypervisor must be modified. In contrast, ArmVee is implemented in a
transparent manner.

Similar to ArmVee, the adaptive resource-provisioning mechanisms proposed in Gong
et al. [2010], Shen et al. [2011], Kalyvianaki et al. [2009], and Padala et al. [2009] ad-
just VM capabilities dynamically. However, they are targeted at server applications
and cannot be applied directly for optimistic parallel and distributed simulations. For
instance, the workload of server applications can be predicted according to historical
CPU utilization rates [Gong et al. 2010; Shen et al. 2011], as the CPU is put in idle
status when the workload is light. In contrast, optimistic federates consume allocated
CPU resources on optimistic executions that might be rolled back in the future. Hence,
the CPU utilization rate does not represent the useful simulation workload of the fed-
erate, which should not include the overoptimistic executions and execution rollbacks.
In addition, the performance targets of server applications are well defined in SLA and
their real performance can be measured easily [Kalyvianaki et al. 2009; Padala et al.
2009]. In contrast, the performance of a parallel and distributed simulation depends
on the performance of individual federates, as well as the time synchronization among
them. Moreover, it is nontrivial to measure federate performance transparently to the
simulation application.

4. ADAPTIVE RESOURCE PROVISIONING MECHANISM IN VIRTUAL EXECUTION
ENVIRONMENT (ARMVEE)

4.1. Mechanism Overview

The overview of ArmVee is illustrated in Figure 2. Federates are encapsulated and
executed on their resident VMs. A number of VMs can be consolidated in the same
multicore-based computer. The ArmVee is composed of two modules: performance mon-
itor and resource manager.

The performance monitor, as middleware, is inserted between the federate and its
RTI component. Similar to the solutions in Wang et al. [2005] and Quaglia [2006], the

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:7

performance monitor is transparent to both the simulation application and the RTI.
By intercepting the RTI services and callbacks, the performance monitor is able to
measure the execution speed of federates.

The resource manager is developed as a bridge between the performance monitors
of federates and the hypervisor of the computer. It periodically adjusts the resource
share of VMs according to the simulation workload of their corresponding federates.
The simulation execution is divided into a number of successive control intervals and
the control interval length is a parameter used in ArmVee. In each control interval, the
resource manager retrieves execution speeds of federates through their performance
monitors and the available resources of the computer through its hypervisor. A pre-
diction model commonly used in control theory is adopted to capture the relationship
between the performance of a federate and the resource share (i.e., cap value) of its
resident VM. Consequently, the resource manager is able to calculate appropriate cap
values of those VMs, to make federates with different simulation workloads achieve
comparable execution speeds.

Compared with the scheme that evenly distributes CPU sources among federates,
ArmVee allocates less CPU resources to federates with lower workload. Hence, they can
avoid overoptimistic executions and execution rollbacks. On the other hand, ArmVee
allocates more CPU resources to federates with higher workload. Hence, the execution
time of the whole federation can be reduced. In theory, ArmVee is able to ensure that
federates advance simulation time with the same speed. Hence, federates never waste
CPU resources on the overoptimistic execution and execution rollbacks. From this point
of view, the federation would be able to obtain the optimum execution speed with the
given CPU resources.

In this article, we assume that all federates in the federation are consolidated on one
computer. In the future, we will extend our work for large-scale HLA-based simulations
executed on multiple computers. The computers are coordinated to ensure that all
federates have comparable execution speeds. In addition, some VMs may be migrated
among computers [Clark et al. 2005] if necessary to achieve workload balance.

4.2. Performance Monitor

Intuitively, the execution speed of a federate can be measured as the advanced sim-
ulation time in a control interval divided by the control interval length. However,
execution rollbacks might occur during a control interval. If so, the federate decreases
its simulation time and wastes processing time on overoptimistic executions and execu-
tion rollbacks. Hence, the execution speed measured in this manner may not accurately
characterize the useful simulation workload of the federate. In some extreme cases, the
measured execution speed might even be a negative value. To solve this problem, the
simulation execution is partitioned into epochs, which are usually much smaller than
the control interval. Only the epochs without overoptimistic executions and execution
rollbacks are taken into account for performance measurement.

As shown in Figure 2, the performance monitor as the middleware is able to intercept
the FQR services that are invoked by federates iteratively. Hence, an epoch can be
bounded by two subsequent FQR services. The requested simulation times of these
FQR services define the begTS and endTS of the epoch, respectively. Consequently,
the performance monitor can calculate the advanced simulation time (advTS) and the
elapsed execution time (exeTime) in the epoch. The epochs in current control interval
are kept in a list denoted as E. In addition, the performance monitor can also intercept
the messages and RR callbacks delivered to the federate. In the case that there is a
message or RR callback with TS smaller than the endTS of an epoch in E, the epoch
must include overoptimistic execution. It is removed from E, as it should not be taken

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:8 Z. Li et al.

Fig. 3. Example of performance measurement of a control interval in performance monitor.

into account for performance measurement. In the meantime, the epochs in which
execution rollback occurs are also removed from E.

At the end of each control interval, the performance monitor is required to measure
federate execution speed during the control interval (Algorithm 1). It is possible that
the control interval might not include any epoch, especially when the control interval
is too short and/or when the federate encounters an execution rollback. In this case, the
performance monitor simply reports an invalid value. Otherwise, the execution speed
of the federate is calculated as the sum of advanced simulation time of all epochs in
the control interval divided by the sum of execution time of those epochs.

ALGORITHM 1: Performance Monitor: Measure Execution Speed
1: if E is empty then
2: exeSpeed = InvalidV alue
3: else
4: exeSpeed =

∑
Ei∈E Ei→advT S∑

Ei∈E Ei→exeT ime

5: end if
6: Remove all elements from E
7: return exeSpeed

Figure 3 illustrates three snapshots of an optimistic federate during its execution.
As shown in Figure 2, the performance monitor intercepts the FQR services invoked
by the federates and the messages delivered to the federate. At the end of each control
interval, the resource manager informs the performance monitor to measure federate
performance and thus adjust the resources of all VMs periodically. The numbers in
the figure might be the TS of events, requested time of FQR invocations, begTS or
endTS of epochs. Usually, federates are not required to invoke an FQR service before
processing every event. That is, an epoch created in the performance monitor may
include multiple events. Epochs E1 and E2 are created on intercepting FQR(30) and
FQR(50), respectively. Before delivering the event with TS equal to 40 to the federate,
an execution rollback is detected. E2 is not considered for performance measurement,
as the execution from 40 to 49 is an overoptimistic execution. In the subsequent epoch
E3, the federate handles the execution rollback before processing events from 40 to
49. Hence, E3 is not considered for performance measurement either. After that, E4 is

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:9

created on intercepting FQR(70). On receiving the performance measurement request,
only E1 and E4 are considered for execution speed calculation in Algorithm 1.

4.3. Resource Manager

4.3.1. ARMA Model. In each control interval, the resource manager retrieves the per-
formances of federates from their performance monitors and the available resources
of the computer from its hypervisor. It is responsible for distributing the available
resources to federates and standardizes their performance. Due to the dynamic simu-
lation workload, the relationship between federate performance and VM cap is often
nonlinear. Since a nonlinear model can lead to unacceptable complexity and runtime
overhead, a common method used in control theory is to approximate the relationship
locally by a linear model. Similar to Kalyvianaki et al. [2009] and Padala et al. [2009],
a self-adaptive ARMA model is adopted to capture the relationship between federate
performance and VM cap in the presence of dynamic simulation workload.

Take the ith federate (Fi) as an example; at the kth control interval, we can predict
the execution speed of Fi (denoted as PESi(k)) using the ARMA model:

PESi(k) =
m∑

j=1

αi j × MESi(k − j) +
n∑

j=0

βi j × Ci(k − j), (1)

where MESi(k− j) and Ci(k− j) denotes, respectively, the measured execution speed and
VM cap of Fi at the (k− j)th control interval. Note that the auto-regressive weight (αi j)
and the moving-average weight (βi j) are updated in every control interval based on the
data collected in the past intervals. In our experiments (Section 6), the auto-regressive
term (m) is set to 2 and the moving-average term (n) is set to 1. These settings achieve
reasonable trade-off between model accuracy and model complexity. Since MESi(k−1),
MESi(k − 2), and Ci(k − 1) are known, Equation (1) is simplified as:

PESi(k) = βi0 × Ci(k) + �i(k), (2)

where �i(k) = αi1 × MESi(k − 1) + αi2 × MESi(k − 2) + βi1 × Ci(k − 1).
To speed up the simulation execution, the PES of all federates should be maximized

in every control interval while satisfying the constraints outlined later. First, the caps
of VMs should be constrained in a predefined range. That is,

Clow ≤ Ci(k) ≤ Chigh

(
1 ≤ i ≤ N, 1 ≤ k ≤ T

t

)
, (3)

where N denotes the federation scale, T denotes the execution time of the whole
simulation, and t denotes the control interval length. Generally, Clow � Chigh. In our
experiments, Clow is equal to 5. It ensures that federates can respond in time for the
federation-wide synchronization. Chigh is equal to 100, as federates (single-threaded
processes [Martin et al. 1996]) cannot consume more than one CPU core.

Second, the federates can consume only the available CPU resources on the computer.
For instance, if there are M CPU cores available, the total cap of VMs should not be
greater than CAP = M × 100. That is,

N∑
i=1

Ci(k) ≤ CAP
(

1 ≤ k ≤ T
t

)
. (4)

Generally, N × Clow � CAP � N × Chigh.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:10 Z. Li et al.

Third, all federates in the federation should have the same PES in the same control
interval. That is,

PESi(k) = PES(k)
(

1 ≤ i ≤ N, 1 ≤ k ≤ T
t

)
. (5)

Due to the prediction error in the ARMA model and the VM scheduling overhead in
the hypervisor, the real execution speed of federates might be slightly different from
the predicted execution speed, that is, MESi(k) ≈ PESi(k). Therefore, federates in the
federation have comparable execution speeds, thus the synchronization overhead can
be reduced significantly.

ALGORITHM 2: Resource Manager: The kth Control Interval
1: F = {F1, F2, . . . , FN};
2: for each Fi ∈ F do
3: MESi(k − 1) = Fi → measurePer f ormance();
4: if MESi(k − 1) is an invalid value then
5: MESi(k − 1) = PESi(k − 1);
6: end if
7: end for
8: for each Fi ∈ F do
9: PESi(k, Clow) = βi0 × Clow + �i(k);
10: PESi(k, Chigh) = βi0 × Chigh + �i(k);
11: end for
12: Choose Fv ∈ F where PESv(k, Clow) = maxFi∈F PESi(k, Clow);
13: Choose Fu ∈ F where PESu(k, Chigh) = minFi∈F PESi(k, Chigh);
14: PESlow(k) = PESv(k, Clow);
15: PEShigh(k) = PESu(k, Chigh);
16: Call extreme case handler (i.e., Algorithm 3)
17: while PEShigh(k) − PESlow(k) > ε do

18: PES(k) = PEShigh(k)+PESlow (k)
2 ;

19: for each Fi ∈ F do
20: Ci(k) = PES(k)−�i (k)

βi0
;

21: PESi(k) = PES(k);
22: end for
23: if

∑
Fi∈F Ci(k) < CAP then

24: PESlow(k) = PES(k);
25: else
26: PEShigh(k) = PES(k);
27: end if
28: end while

The functionality of the resource manager is illustrated in Algorithm 2. F denotes
the set of all federates in the federation. At the beginning of each (kth) control interval,
the resource manager retrieves MES of all federates at the previous ((k− 1)th) interval
from their performance monitors (Lines 2 to 7). In the case that the retrieved MES of
a federate (Fi) is an invalid value, the MES of the federate is set approximately as the
PES of the federate in the previous control interval, that is, MESi(k−1) = PESi(k−1).

Based on these performance measurements, the resource manager distributes avail-
able resources to federates in the federation for the purpose of maximizing PES of
all federates while satisfying aforementioned constraints. In other words, the resource
manager searches for the optimum setting of Ci(k), which maximizes PES(k), and in
the meantime satisfies Equations (3), (4), and (5).

Intuitively, the higher the cap value of the VM, the higher the performance of
the corresponding federate. Hence, PESi(k) increases with the increasing Ci(k), and

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:11

βi0 > 0. To meet the first constraint (Equation (3)), PESi(k) must be in the range of
[PESi(k, Clow), PESi(k, Chigh)], where PESi(k, Clow) (or PESi(k, Chigh)) denotes the PES
of the ith federate during the kth control interval if the VM cap is set to Clow (or Chigh).
That is, PESi(k, Clow) = βi0 × Clow + �i(k) and PESi(k, Chigh) = βi0 × Chigh + �i(k). In
order to meet the third constraint (Equation (5)), we see that PES(k) ≥ PESi(k, Clow)
and PES(k) ≤ PESi(k, Chigh) for each Fi ∈ F. Hence, PES(k) ≥ maxFi∈F PESi(k, Clow)
and PES(k) ≤ minFi∈F PESi(k, Chigh). Let’s denote the federates that have maximum
PESi(k, Clow) and minimum PESi(k, Chigh) as Fv and Fu, respectively (Lines 12 and
13). That is, Fv (Fu) has the lowest (highest) workload in the federation. According to
Equation (3), we can get Cv ≥ Clow and Cu ≤ Chigh, thus, PESv(k) ≥ PESv(k, Clow) and
PESu(k) ≤ PESu(k, Chigh). To satisfy Equation (5), that is, PES(k) = PESv(k) = PESu(k),
we can deduct that PESv(k, Clow) and PESu(k, Chigh) are the lower bound and upper
bound of PES(k), respectively, denoted as PEShigh(k) and PESlow(k) (Lines 14 and 15).
After that, a bisection method (Lines 17 to 28) is used to numerically search for the
maximum value of PES(k), which meets the second constraint (Equation (4)).

Before using the bisection method, the resource manager should handle the following
two extreme cases using Algorithm 3.

a. PESlow(k) is greater than PEShigh(k), that is, Fv (the federate with lowest workload)
is still faster than Fu (the federate with highest workload) even if Cv = Clow and
Cu = Chigh. This case seldom happens as Clow � Chigh. If this case occurs, the
third constraint (Equation (5)) cannot be satisfied. We simply set Cv to Clow, then
distribute the remaining CPU resources among other federates (Lines 3 and 4).
By iteratively removing Fv from F, PESlow(k) (i.e., maxFi∈F PESi(k, Clow)) decreases;
finally, we get PESlow(k) ≤ PEShigh(k) and terminate the iterative procedure.

b.
∑

Fi∈F Ci(k) < CAP when PES(k) = PEShigh(k), that is, federates cannot consume all
available CPU resources, although their execution speed is equal to the maximum
value PESu(k, Chigh). This case seldom occurs, as CAP � N × Chigh. If this case oc-
curs, we simply set Cu to Chigh, then distribute the remaining CPU resources among
other federates (Lines 12 and 13). By iteratively removing Fu from F, PEShigh(k)
increases. The iterative procedure will be terminated if

∑
Fi∈F Ci(k) ≥ CAP or

F = ∅. Similar to Case a, the third constraint (Equation (5)) cannot be satisfied
either.

ALGORITHM 3: Extreme Case Handler
while PESlow(k) > PEShigh(k) do

Cv(k) = Clow ;
F = F − Fv ;
C AP = C AP − Clow ;
Line 12 and Line 14 from Algorithm 2

end while
while F 	= ∅ do

PES(k) = PEShigh(k);
Lines 19 to Line 22 from Algorithm 2
if

∑
Fi∈F Ci(k) < CAP then

Cu(k) = Chigh;
F = F − Fu;
C AP = C AP − Chigh;
Line 13 and Line 15 from Algorithm 2

else
Break;

end if
end while

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:12 Z. Li et al.

4.3.2. Naive Model. Previously, we have deployed a naive model to capture the rela-
tionship between federate execution speed and VM cap value [Li et al. 2013]. In the
naive model, we assume that the simulation workload in the kth control interval is the
same as that in the (k−1)th control interval and that federate execution speed increases
proportionally with the increasing VM cap value, that is,

PESi(k) = MESi(k − 1) × Capi(k)
Capi(k − 1)

. (6)

Hence, the CPU resources can be distributed proportionally among federates to get
the maximum PES(k), while satisfying aforementioned constraints (i.e., Equations (3),
(4) and (5)). Compared with the naive model, the ARMA model adopted in this article
uses more historical data, taking the dynamic simulation workload into account. For
this reason, the ARMA model is expected to be more accurate than the naive model to
capture the relationship between federate execution speed and VM cap value. Hence, it
is expected to further speed up the simulation execution (refer to experimental results
reported in Section 6.2.1).

5. ADVANTAGES OF ARMVEE

5.1. Accelerating Simulation Execution

Without ArmVee, the available CPU resources are evenly distributed among federates,
that is, Ci = C = CAP

N . As federates have different simulation workload, their execution
speed measured by performance monitors are different. Suppose that Fl is the slowest
federate, that is, MESl = minFi∈FMESi. Then, MESi can be denoted as ωi × MESl,
where ωi ≥ 1. Since the federation execution is determined by the slowest federate, the
federation execution speed is equal to MESl.

With ArmVee, the CPU resources are distributed among federates according to their
simulation workload. It guarantees that federates have the same execution speed,
ignoring the prediction error of the ARMA model, the extreme cases handled in
Algorithm 3, and the VM scheduling overhead in hypervisor. Suppose that the exe-
cution speed of Fi and the cap value of its resident VM are denoted as MES′

i and
C ′

i, respectively. Then we get, MES′
i = MES′

l and
∑

Fi∈F C ′
i = CAP. According to the

performance evaluation in Schanzenbach and Casanova [2008], the compute rate of
VM increases proportionally with increasing cap value. Hence, for the same simulation
workload on Fl and Fi, we get

MES′
l

MESl
= C ′

l

C
and

MES′
i

MESi
= C ′

i

C
. (7)

Therefore, we can deduce that C ′
i = C ′

l
ωi

, thus,
∑
Fi∈F

C ′
i = C ′

l ×
∑
Fi∈F

1
ωi

= CAP. (8)

Consequently, the federation execution speed is equal to MES′
l, and

MES′
l = MESl × C ′

l

C
= MESl × CAP

C × ∑
Fi∈F

1
ωi

= MESl × N∑
Fi∈F

1
ωi

. (9)

Therefore, the execution speedup of ArmVee (i.e., the ratio of federation execution speed
with ArmVee vs. that without ArmVee) is

MES′
i

MESl
= N∑

Fi∈F
1
ωi

≥ 1. (10)

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:13

That is, ArmVee can always speed up the simulation execution. The more significant
the workload imbalance among federates, the greater ωi, thus the greater the execution
speedup of ArmVee.

5.2. Reducing Memory Usage

In case of future execution rollbacks, an optimistic federate should save its execu-
tion state before processing events with TS greater than its logical time. Due to time
synchronization, the logical time advancement is determined by the slowest federates
in the federation. Without ArmVee, federates advance simulation time with different
speeds. Hence, some federates may have simulation time much greater than their log-
ical time. They keep a large number of snapshots of federate state in memory. With
ArmVee, federates advance their simulation times with comparable speeds. Hence,
their simulation times are close to their logical times. They keep a small number of
snapshots of federate state in memory.

In optimistic synchronization, the infrequent state-saving approach [Lin et al. 1993;
Fujimoto 2000] is commonly adopted. According to the analysis in Lin et al. [1993]
and Fujimoto [2000], the higher the risk of execution rollbacks, the higher the op-
timum state-saving frequency. Since ArmVee is able to reduce the risk of execution
rollbacks dramatically, the optimum state-saving frequency and the memory usage
can be reduced accordingly. However, determining the optimum state-saving frequency
is nontrivial and is out of the scope of this article.

6. EXPERIMENTS AND RESULTS

6.1. Experiment Design

A Massively Multiplayer Online Games (MMOGs) ecosystem simulation model is used
in our experiments to evaluate our proposed ArmVee. Nae et al. [2008] have introduced
the concepts of the MMOGs ecosystem. In the MMOGs ecosystem, game operators rent
resources (CPU, Network, and Memory) from data centers for running the MMOGs
servers. They are able to dynamically adjust the number of resources rented according
to the workload of MMOGs (e.g., the number of players and their interactions). We
develop an HLA-based simulation to simulate the MMOGs ecosystem. It can be used to
study the effect of dynamic resource-renting schemes using different workload predic-
tion algorithms and different resource-hosting policies. The resource-renting schemes
can be evaluated using performance metrics such as resource overallocation and re-
source underallocation [Nae et al. 2008].

In the HLA-based simulation, each federate simulates all game servers in a data
center. It generates a local event to simulate the performance of the game servers
in each timestep (i.e., 10s). Each local event calculates the responding time of each
interaction initialized by players connected to the data center and measures the quality
of game experience from the perspective of those players, using the resources rented
from the data center in the corresponding timestep. The number of CPU resources
required for processing the local event thus increases proportionally with the increasing
number of players connected to the data center. In our experiments, the number of
players connected to the data centers is retrieved from the trace of RuneScape [Nae
et al. 2008]. They have a strong diurnal pattern. Therefore, the simulation workload
of the corresponding federates also have a strong diurnal pattern. In the case in which
the data centers are located in different time-zone regions, the corresponding federates
may have different simulation workloads at the same simulation time.

In addition, federates might send external events to each other to simulate the
communication between game servers located at different data centers. For instance,
game servers may replicate some parts of their game state in different data centers

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:14 Z. Li et al.

to tolerate unpredictable failures [Mason 2009]. Depending on different strategies,
state replications might be triggered due to different situations and the replication
frequency might vary in a large range. For simplicity, we assume that each external
event is triggered by an internal event. The probability of generating external events is
denoted as PExternEvent. The TS of an external event is equal to the TS of the processing
internal event plus a lookahead (LA) [Fujimoto 2000], indicating that the external event
will affect the receiving federate after LA simulation time. PExternEvent and LA are used
as the parameters in the HLA-based simulation. In our experiments, we will evaluate
the performance of a number of simulation executions with different parameter inputs,
that is, different values of PExternEvent and LA.

Optimistic synchronization is employed in the HLA-based simulation. Federates are
allowed to process three events before invoking the next FQR service. They will trigger
a federation-wide time synchronization if simulation time > logical time + 1,000. In
addition, the infrequent state-saving approach described in Fujimoto [2000] and Lin
et al. [1993] is adopted. Federates save their execution state after processing 15 events.

The simulation length is 3 days, including the first 2 days as the warm-up period. The
simulation is executed on an RTI implemented by reusing the code in SOHR [Pan et al.
2007]. For efficiency consideration, RTI components are implemented as the libraries of
their corresponding federates; the communication among RTI components is facilitated
by JAVA socket instead of the heavy Grid service invocation. Experiments are carried
out on a computer with 12 Intel Xeon 2.67GHz CPU cores, 24GB RAM, CentOS 6.2,
and Xen 4.1.2. Each federate executes on a VM with one VCPU core, 2GB RAM and
CentOS 6.2.

Two methods are investigated in our experiments. The Fixed method uses the default
credit scheduler, which shares CPU resources among VMs evenly, that is, Ci = CAP

N . The
Adaptive method employs ArmVee to adjust the caps of VMs according to simulation
workload. Without explicit specification, ArmVee adopts the ARMA model proposed in
this article rather than the naive model proposed in Li et al. [2013].

6.2. Experiment Results

Experiments are carried out to illustrate the advantages of ArmVee on both improving
simulation performance (Section 6.2.1) and reducing memory usage (Section 6.2.2).
The Fixed and Adaptive methods are compared in different simulation executions with
various real simulation workloads and different parameter settings in the HLA-based
simulation. After that, the scalability of ArmVee is investigated (Section 6.2.3). Finally,
we verify the theoretical analysis in Section 5 using synthetic simulation workloads
(Section 6.2.4).

6.2.1. Improving Simulation Performance. For simplicity, the federation scale is two (i.e.,
N = 2) and one CPU core is available for the simulation execution (i.e., CAP = 100).
Three cases of simulation workload are introduced in the two federates. Figure 4
illustrates the numbers of players connected to their corresponding data centers, which
are obtained from the trace of RuneScape [Nae et al. 2008]. In Case (i), the data centers
are located in the regions of the same time zone. In Cases (ii) and (iii), the time difference
between the data centers is around 6 and 12 hours, respectively.

In the first series of experiments, we compare the simulation execution performance
in the Fixed and Adaptive methods with the workload cases mentioned earlier. In
the Fixed method, VM caps are fixed at 50. In the Adaptive method, the VM caps
(Figure 5) are adjusted according to the simulation workloads of their correspond-
ing federates (Figure 4). In workload Case (i), federates have similar workload, thus
each federate obtains around 50% of the CPU resource. In workload Cases (ii) and
(iii), the federate with higher simulation workload obtains more CPU resource. The

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:15

Fig. 4. Simulation workload of federates: number of players connected to their corresponding data centers.

greater the difference of simulation workload, the greater the difference of assigned VM
caps.

The simulation execution performances are illustrated in Figure 6, including the
simulation execution speed, the number of execution rollbacks, and the execution effi-
ciency. The simulation execution speed is defined as the ratio of advanced simulation
time (i.e., 1 day or 86,400s) to the simulation execution time. The execution efficiency is
defined as the ratio of useful events to total events processed [Malik et al. 2009]. Besides
the useful events, a federate might process events during over-optimistic executions
and execution rollbacks. The Fixed method (Adaptive method) for workload Cases (i),
(ii) and (iii) are denoted as F(i), F(ii), and F(iii) (A(i), A(ii), and A(iii)), respectively,
in the figure. The control interval length as the parameter of ArmVee ranges from
80 to 5s. This is meaningful for the Adaptive method only. In this series of experiments,
the parameters of the HLA-based simulation are set as follows: PExternEvent = 1% and
LA = 45. Different parameter settings will be studied later.

In workload Case (i), federates have similar workloads during the simulation exe-
cution. Consequently, federates are able to advance simulation time with comparable
speeds. Hence, federates encounter a small number of execution rollbacks (Figure 6(b));
and they have high execution efficiency (Figure 6(c)). Therefore, we can observe from
Figure 6(a) that the Fixed and Adaptive methods have similar execution speed. In
workload Cases (ii) and (iii), federates have different workloads. For the Fixed method,
compared with workload Case (i), the numbers of execution rollbacks are much greater
(Figure 6(b)). Furthermore, the overoptimistic execution discarded in each execution

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:16 Z. Li et al.

Fig. 5. VM Caps in Adaptive method when the control interval length is 20s.

rollback can be significant due to the different execution speeds of federates. As a re-
sult, the execution efficiency is much lower (Figure 6(c)). Therefore, we can observe
from Figure 6(a) that the execution speeds of F(ii) and F(iii) are much lower than
that of F(i). Different from the Fixed method, federates in the Adaptive method have
comparable execution speed. They encounter less execution rollbacks (Figure 6(b)) and
have higher execution efficiency (Figure 6(c)). Therefore, ArmVee is able to speed up
simulation execution significantly, as shown in Figure 6(a).

Generally speaking, the smaller the control interval length, the more accurately
the resource manager adjusts resource shares according to simulation workload. As
a result, federates encounter less execution rollbacks (Figure 6(b)) and have higher
execution efficiency (Figure 6(c)). Therefore, we can observe from Figure 6(a) that the
execution speed in the Adaptive method decreases with the increasing control interval
length. When the control interval length is equal to 5s, the execution speedup of ArmVee
(i.e., execution speed in the Adaptive method divided by that in the Fixed method) are
1.36 and 1.32 in workload Cases (ii) and (iii), respectively. It is worth pointing out that
federates in the Adaptive method cannot avoid all execution rollbacks. This is because
they cannot advance simulation time with exactly the same speed in practice, due to
the prediction error in the ARMA model and the extreme cases handled in Algorithm 3.

The second series of experiments are carried out to compare the simulation execution
performance in Fixed and Adaptive methods with different parameter settings in the
HLA-based simulation. Due to the space limit, we only report the experimental results
for the Case (iii) simulation workload, which is quite common in the MMOGs ecosys-
tem, as the data centers are usually located at different places around the world. In

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:17

Fig. 6. Performance comparison between Fixed and Adaptive methods with various simulation workloads.

addition, the control interval length is set to 20s. Figure 7 illustrates the simulation ex-
ecution speed, number of execution rollbacks, and execution efficiency with PExternEvent
increasing from 1% to 10%. Three different LA values (i.e., 15, 45, and 105) are taken
into account. The Adaptive and Fixed methods for LA = l are denoted as A-l and F-l,
respectively.

In practice, ArmVee cannot ensure that federates advance their simulation time
with the same speed. Federates are at risk for execution rollback if the difference of
their simulation times is greater than LA. For this reason, when LA is too small (e.g.,
LA = 15), federates in the Fixed and Adaptive methods encounter a similar number of
execution rollbacks (Figure 7(b)). In the case that PExternEvent is small, the overoptimistic
execution discarded in each execution rollback is much longer in the Fixed method
than that in the Adaptive method. For this reason, the Adaptive method has a much
higher execution efficiency (Figure 7(c)) and outperforms the Fixed method significantly
(Figure 7(a)). When PExternEvent increases, the overoptimistic execution in the Fixed
method decreases as the faster federate is frequently rolled back by the slower federate
due to the straggler messages. As a result, the difference in the execution efficiency and
execution speed between Adaptive and Fixed methods decreases. The Adaptive method
may even perform worse than the Fixed method when LA = 15 and PExternEvent ≥ 9%
(Figure 7(a)),1 although the execution efficiency is still higher (Figure 7(c)). This is

1Xen 4.2 or later version provides a hypercall to change the timeslice of the CPU scheduler. Generally,
the smaller the timeslice, the more frequently VMs are scheduled, and thus, the smaller difference in the
simulation time of federates using the Adaptive method. According to our experiments, by reducing the

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:18 Z. Li et al.

Fig. 7. Performance comparison between Fixed and Adaptive methods with different parameter settings.

because, in the Fixed method, federates with low workload encounter overoptimistic
executions and thus process much more events with small event processing time.

When LA is large (e.g., LA = 105), federates in the Adaptive method with comparable
execution speed are able to avoid almost all rollbacks (Figure 7(b)). As a result, the
execution efficiency in the Adaptive method is close to a value of one and is much
higher than that in the Fixed method. Furthermore, the number of execution rollbacks
and execution efficiency are almost the same regardless of the increasing PExternEvent.
Therefore, we can observe from Figure 7(a) that ArmVee dramatically speeds up the
simulation execution. When LA = 45, the Adaptive method can still outperform the
Fixed method. However, the performance advantage decreases with the increasing
PExternEvent, as the number of execution rollbacks increases and the execution efficiency
decreases in the Adaptive method.

Figure 8 illustrates the execution speedup of ArmVee with respect to various param-
eter settings. As we can see, ArmVee achieves significant performance enhancement
except for those parameter inputs LA = 15 and PExternEvent > 6%. With the decreas-
ing PExternEvent, the execution speedup increases as the overoptimistic execution in the
Fixed method increases. With the increasing LA, the execution speedup increases as
the number of execution rollbacks in the Adaptive method decreases. In the best cases,
ArmVee is able to achieve 34% execution speedup.

timeslice from 30ms (the default value) to 10ms, the Adaptive method can outperform the Fixed method
even if LA = 15 and PExternEvent ≥ 9%.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:19

Fig. 8. Execution speedup of ArmVee.

Fig. 9. Performance comparison between naive and ARMA models.

Finally, a performance comparison is made between the naive and ARMA models
employed in the resource manager of ArmVee. Similarly, we report the experimen-
tal results for the Case (iii) simulation workload only. Figure 9(a) shows the simu-
lation execution speed with respect to the decreasing control interval length when
PExternEvent = 1% and LA = 45 (The ARMA curve in the figure is the same as the A(iii)

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:20 Z. Li et al.

Fig. 10. Trace of memory usage in Fixed and Adaptive methods.

curve in Figure 6(a)). As we can see, the ARMA model can always outperform the naive
model. The larger the control interval length, the more significant the performance
advantage. This is because the naive model cannot accurately predict the simulation
workload, especially when the control interval length is large. In contrast, the ARMA
model can capture the relationship between VM cap and federate execution speed
accurately in the presence of dynamic simulation workload. Figure 9(b) shows the sim-
ulation execution speed with respect to the increasing PExternEvent when LA = 45. (The
ARMA curve in the figure is the same as the A-45 curve in Figure 7(a)). Figure 9(c)
shows the execution speed with respect to the increasing LA when PExternEvent = 1%.
As we can see, the ARMA model can always outperform the naive model. This further
verifies that the ARMA model is more accurate than the naive model.

6.2.2. Reducing Memory Usage. As analyzed in Section 5.2, ArmVee is able to reduce the
memory usage as well. In our experiment, we trace the memory usage of VMs every
5s. The traces are illustrated in Figure 10, for the situation in which LA = 45 and
PExternEvent = 1. As we can see, the memory usage in both Fixed and Adaptive methods
changes very frequently. This is because optimistic federates save their execution states
and conduct fossil collections during the simulation execution. In the Fixed method, the
federate with lower simulation workload has a smaller sized execution state. However,
it probably executes faster, thus has to save a greater number of execution states. For
this reason, the memory usage (Figure 10(a)) does not change corresponding to the
dynamic workload (Figure 4(c)). In the Adaptive method, federates have comparable
execution speed. Hence, they have a similar number of saved execution states. Hence,
the memory usage in federates changes according to the size of their execution states,
which are determined by the simulation workload. For this reason, we can observe
similar trends between Figure 4(c) and Figure 10(b). Last, but not least, we can observe
from Figure 10 that the memory usage in the Adaptive method is smaller than that in
the Fixed method.

Figure 11(a) compares the averaged memory usage of federates with respect to the
increasing PExternEvent when LA = 45. The averaged memory usage in the Adaptive
method is almost constant regardless of the value of PExternEvent. In contrast, the av-
eraged memory usage in the Fixed method decreases with the increasing PExternEvent.
This is because the number of execution rollbacks increases (see Figure 7(b)) and each
execution rollback reclaims those saved execution states during the overoptimistic ex-
ecution. Figure 11(b) compares the averaged memory usage of federates with respect
to the increasing LA when PExternEvent = 1%. Generally, large LA will result in a large
difference of simulation times among federates. Thus, federates have a greater number

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:21

Fig. 11. Averaged memory usage in Fixed and Adaptive methods.

of saved states in case of future execution rollbacks. Therefore, we can observe that the
memory usage in both Fixed and Adaptive methods increases with the increasing LA.
Finally, we can observe from Figures 11(a) and 11(b) that the averaged memory usage
in the Adaptive method is always smaller than that in the Fixed method.

6.2.3. Investigating Scalability. In order to study the scalability of ArmVee, the feder-
ation scale N is increased from 2 to 8. The simulation workload of each federate is
obtained from the trace of RuneScape [Nae et al. 2008]. The time difference between
the data centers simulated by two subsequent federates is set to 24/N hours. Dur-
ing the simulation, a federate may send a message to one of the other federates to
simulate the communication (e.g., game state replication) between their correspond-
ing data centers. The total CPU resource for the federation execution increases with
the federation scale. Specifically, the number of CPU cores M is equal to N/2, thus
CAP = 100 × M = 50 × N. Due to space limitations, we show only the experimental
results of the situation in which LA = 105 and PExternEvent = 1. Figure 12 illustrates
the simulation execution speed, number of execution rollbacks, and execution efficiency
with the increasing federation scale. Compared with the Fixed method, the Adaptive
method encounters less execution rollbacks, has higher efficiency, and thus has much
greater execution speed. In both Fixed and Adaptive methods, the execution speed de-
creases slightly with the increasing federation scale. Hence, we can claim that ArmVee
achieves significant execution speedup and has good scalability.

6.2.4. Verifying Theoretical Analysis. Finally, to verify the theoretical analysis in Sec-
tion 5.1 on the execution speedup of ArmVee, synthetic workload is introduced to the
MMOGs simulation model. The number of players connected to each data center fol-
lows a normal distribution N(μ, σ 2). First, we consider two federates in the federation.
In the first federate (F1), μ = 300, σ = 5; in the second federate (F2), μ = 300 × W ,
σ = 5 × W , where W increases from 1 to 8. Since the event processing time increases
proportionally with the number of players, W is the ratio of simulation workload of
F2 versus that of F1. In the case that two federates are allocated with the same CPU
resource, we get MES1 = W × MES2. According to the analysis in Section 5.1, we get
ω2 = 1 and ω1 = W . Hence, in theory, the execution speedup of ArmVee is:

N∑ 1
ωi

≈ 2W
1 + W

. (11)

As shown in Figure 7, in the situation in which LA = 105 and PExternEvent = 1, federates
in the Adaptive method encounter only a few execution rollbacks, and the execution

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:22 Z. Li et al.

Fig. 12. Performance comparison between Fixed and Adaptive methods with the increasing federation scale.

Fig. 13. Execution speedup of Adaptive method over Fixed method in theory and experimental conditions.

efficiency is close to a value of one. Therefore, the execution speedup of ArmVee in the
experiment are very close to those values calculated in theory, as shown in Figure 13(a).

In addition, experiments are also carried out using the synthetic workload with
federation scale (N) increased from 2 to 8. For Fi, μ = 300 × i, σ = 5 × i. Similar
to Section 6.2.3, a federate may send a message to one of the other federates and
CAP = 50 × N. According to the analysis in Section 5.1, we get ωN = 1 and ωi ≈ N/i.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:23

Hence, in theory, the execution speedup of ArmVee is:

N∑ 1
ωi

≈ 2N
1 + N

. (12)

Similarly, as shown in Figure 13(b), the execution speedup of ArmVee in the experiment
is also close to those values calculated in theory in the situation in which LA = 105
and PExternEvent = 1.

7. CONCLUSION AND FUTURE WORK

In this article, we have proposed an Adaptive Resource provisioning Mechanism in
Virtual Execution Environment (ArmVee) for the purpose of improving performance of
optimistic parallel and distributed simulation. It is composed of a performance moni-
tor and a resource manager. The performance monitor, as a middleware, measures the
performance of individual federates transparently to the simulation application. The
resource manager adopts a prediction model used in control theory to capture the rela-
tionship between the performance of a federate and the resource share (i.e., cap value)
of the corresponding VM. Therefore, it can distribute the available resources among
federates, while ensuring that they can advance their simulation time with compa-
rable speeds. Consequently, ArmVee can avoid wasting resources on overoptimistic
executions and execution rollbacks, and the execution time of the whole federation
can be reduced. We have also analyzed theoretically the advantages of our proposed
ArmVee in both accelerating simulation execution and reducing memory usage. In or-
der to evaluate the ArmVee, experiments are carried out using a MMOGs ecosystem
simulation model in which federates are likely to have dynamic and imbalanced sim-
ulation workloads. Experimental results have shown that, in most of the investigated
cases, ArmVee can speed up the simulation executions and reduce memory usages sig-
nificantly. Experiments have also verified that ArmVee is scalable and that it is able to
achieve execution speedup close to the values calculated in our theoretical analysis.

In the future, we will extend ArmVee to support multithreaded federates that are
composed of a group of concurrent and tightly dependent threads [Jagtap et al. 2012].
Co-scheduling solutions [Weng et al. 2011; Sukwong and Kim 2011] in which virtual
CPU cores of the same VM are scheduled simultaneously will be adopted to reduce
the synchronization latency among the threads in the same federate. We will also
integrate our CPU resource controller with a memory controller [Heo et al. 2009],
disk I/O controller [Padala et al. 2009], and network controller [Popa et al. 2011] to
develop a comprehensive solution to speed up simulation executions using minimum
resources. Furthermore, ArmVee will be applied for various parallel and distributed
applications on large-scale execution environments (e.g., data centers and the Cloud),
taking workload balance and fault tolerance issues into account.

REFERENCES

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. 2003.
Xen and the art of virtualization. SIGOPS Operating Systems Review 37, 5, 164–177.

S. K. Barker and P. Shenoy. 2010. Empirical evaluation of latency-sensitive application performance in the
cloud. In Proceedings of Conference on Multimedia Systems (MMSys’10). 35–46.

L. Bononi, M. Bracuto, G. D’Angelo, and L. Donatiello. 2006. An adaptive load balancing middleware for
distributed simulation. In Proceedings of the 2006 International Conference on Frontiers of High Perfor-
mance Computing and Networking (ISPA’06). 873–883.

R. E. Bryant. 1977. Simulation of packet communication architecture computer systems. Technical Report.
Massachusetts Institute of Technology. Cambridge, MA.

C. D. Carothers, D. Bauer, and S. Pearce. 2000. ROSS: A high-performance, low memory, modular time warp
system. In Proceedings of the 14th Workshop on Parallel and Distributed Simulation (PADS’00). 53–60.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

1:24 Z. Li et al.

K. M. Chandy and J. Misra. 1979. Distributed simulation: A case study in design and verification of dis-
tributed programs. IEEE Transactions on Software Engineering 5, 5, 440–452.

L. Chen, Y. Lu, Y. Yao, S. Peng, and L. Wu. 2011. A well-balanced time warp system on multi-core environ-
ments. In Proceedings of the 2011 IEEE Workshop on Principles of Advanced and Distributed Simulation
(PADS’11). 1–9.

R. Child and P. A. Wilsey. 2012. Using DVFS to optimize time warp simulations. In Proceedingss of the 44th
Conference on Winter Simulation (WSC’12).

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. 2005. Live migra-
tion of virtual machines. In Proceedings of Conference on Symposium on Networked Systems Design &
Implementation - Volume 2 (NSDI’05). 273–286.

G. D’Angelo. 2011. Parallel and distributed simulation from many cores to the public cloud. In Proceedings
of the International Conference on High Performance Computing and Simulation (HPCS’11). 14–23.

G. D’Angelo, S. Ferretti, and M. Marzolla. 2012. Time warp on the go. In Proceedings of the 5th International
ICST Conference on Simulation Tools and Techniques (SIMUTOOLS’12). 242–248.

T. N. B. Duong, X. Li, R. S. M. Goh, X. Tang, and W. Cai. 2012. QoS-aware revenue-cost optimization
for latency-sensitive services in IaaS clouds. In Proceedings of the 16th International Symposium on
Distributed Simulation and Real Time Applications (DS-RT’12). 11–18.

R. M. Fujimoto. 2000. Parallel and Distributed Simulation Systems. Wiley Interscience, New York, NY.
R. M. Fujimoto, A. W. Malik, and A. J. Park. 2010. Parallel and distributed simulation in the cloud. SCS

Modeling and Simulation Magazine, Society for Modeling and Simulation, Intl. 1 (July 2010). Issue 3.
Z. Gong, X. Gu, and J. Wilkes. 2010. PRESS: PRedictive elastic ReSource scaling for cloud systems. In

Proceedings of International Conference on Network and Service Management (CNSM’10). 9–16.
J. E. Hannay, K. Bråthen, O. M. Mevassvik, and A. Skjeltorp. 2014. Live, virtual, constructive (LVC) sim-

ulation for land training: Concept development & experimentation (CD&E). In NATO Modeling and
Simulation Group Symposium on Integrating Modelling & Simulation in the Defence Acquisition Life-
cycle and Military Training Curriculum.

J. Heo, X. Zhu, P. Padala, and Z. Wang. 2009. Memory overbooking and dynamic control of Xen virtual ma-
chines in consolidated environments. In Proceedings of the 11th International Symposium on Integrated
Network Management (IM’09). 630–637.

IEEE. 2010. 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)–
Framework and Rules.

D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. 2012. Optimization of parallel discrete event simulator
for multi-core systems. In Proceedings of the 26th International Parallel and Distributed Processing
Symposium (IPDPS’12). 520–531.

D. R. Jefferson. 1985. Virtual time. ACM Transactions on Programming Languages and Systems 7, 3, 404–
425.

E. Kalyvianaki, T. Charalambous, and S. Hand. 2009. Self-adaptive and self-configured CPU resource pro-
visioning for virtualized servers using Kalman filters. In Proceedings of International Conference on
Autonomic Computing (ICAC’09). 117–126.

Z. Li, W. Cai, S. J. Turner, and K. Pan. 2007. Federate migration in a service oriented HLA RTI. Proceedings
of Symposium on Distributed Simulation and Real-Time Applications (DS-RT’07), 113–121.

Z. Li, X. Li, T. N. B. Duong, W. Cai, and S. J. Turner. 2013. Accelerating optimistic HLA-based simulations in
virtual execution environments. In Proceedings of ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (PADS’13).

Y. Lin, B. R. Preiss, W. M. Loucks, and E. D. Lazowska. 1993. Selecting the checkpoint interval in Time Warp
simulation. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation (PADS’93). 3–10.

A. Malik, A. Park, and R. Fujimoto. 2009. Optimistic synchronization of parallel simulations in cloud com-
puting environments. In Proceedings of the Conference on Cloud Computing (CLOUD’09). 49–56.

D. E. Martin, T. J. McBrayer, and P. A. Wilsey. 1996. WARPED: A time warp simulation kernel for analysis
and application development. In Proceedings of the 29th Hawaii International Conference on System
Sciences Volume 1: Software Technology and Architecture (HICSS’96). 383–386.

J. Mason. 2009. A Detailed Look at Data Replication Options for Disaster Recovery Planning. White Paper.
V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. Epema, and T. Fahringer. 2008. Efficient management of

data center resources for massively multiplayer online games. In Proceedings of the Conference on
Supercomputing (SC’08). 10:1–10:12.

P. Padala, K. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A. Merchant. 2009. Automated
control of multiple virtualized resources. In Proceedings of European Conference on Computer Systems
(EuroSys’09). 13–26.

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

Adaptive Resource Provisioning Mechanism in VEEs for HLA-Based Simulations 1:25

K. Pan, S. J. Turner, W. Cai, and Z. Li. 2007. A service oriented HLA RTI on the grid. In Proceedings of
Conference on Web Services (ICWS’07). 984–992.

K. S. Panesar and R. M. Fujimoto. 1997. Adaptive flow control in time warp. In Proceedings of Workshop on
Parallel and Distributed Simulation (PADS’97). 108–115.

L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica. 2011. FairCloud: Sharing the network in cloud
computing. In Proceedings of the 10th ACM Workshop on Hot Topics in Networks (HotNets’11). 22:1–
22:6.

F. Quaglia. 2006. A middleware level active replication manager for high performance HLA-based simulations
on SMP systems. In Proceedings of 10th IEEE International Symposium on Distributed Simulation and
Real-Time Applications (DS-RT’06). 219–226.

D. Schanzenbach and H. Casanova. 2008. Accuracy and Responsiveness of CPU Sharing Using Xens Cap
Values. Technical Report. Computer and Information Sciences Department, University of Hawai at
Manoa.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. 2011. CloudScale: Elastic resource scaling for multi-tenant cloud
systems. In Proceedings of Symposium on Cloud Computing (SOCC’11). 5:1–5:14.

L. M. Sokol, D. P. Briscoe, and A. P. Wieland. 1988. MTW: A strategy for scheduling discrete simulation
events for concurrent execution. In Proceedings of the SCS Multiconference on Distributed Simulation.
34–42.

W. Suh, M. P. Hunter, and R. Fujimoto. 2014. Ad hoc distributed simulation for transportation system
monitoring and near-term prediction. Simulation Modelling Practice and Theory 41, 1–14.

O. Sukwong and H. S. Kim. 2011. Is co-scheduling too expensive for SMP VMs? In Proceedings of the Sixth
Conference on Computer Systems (EuroSys’11). 257–272.

R. Vitali, A. Pellegrini, and F. Quaglia. 2012. Towards symmetric multi-threaded optimistic simulation
kernels. In Proceedings of the 26th Workshop on Principles of Advanced and Distributed Simulation
(PADS’12). 211–220.

X. Wang, S. J. Turner, M. Y. H. Low, and B. P. Gan. 2005. Optimistic synchronization in HLA-based distributed
simulation. Simulation 81, 4, 279–291.

C. Weng, Q. Liu, L. Yu, and M. Li. 2011. Dynamic adaptive scheduling for virtual machines. In Proceedings
of the 20th International Symposium on High Performance Distributed Computing (HPDC’11). 239–250.

D. Wesam, T. Ibrahim, and M. Christoph. 2012. Elastic virtual machine for fine-grained cloud resource
provisioning. Communications in Computer and Information Science Volume 269, pp 11–25.

Xen. 2013. Xen Credit Scheduler. Retrieved May 25, 2015 from http://wiki.xen.org/wiki/Credit_Scheduler.
Y. Yang, D. Shang, and J. Huang. 2012. Fixed, spot or flexi pricing: An integrated prototype for alternate cloud

computing pricing mechanisms. In Proceedings of 22nd Annual Workshop on Information Technologies
and Systems (WITS’12).

S. Yoginath and K. Perumalla. 2013. Optimized hypervisor scheduler for parallel discrete event simulations
on virtual machine platforms. In Proceedings of the 6th International ICST Conference on Simulation
Tools and Techniques (SIMUTOOLS’13).

Z. Yuan, W. Cai, Y. Low, and S. J. Turner. 2004. Federate migration in HLA-based simulation. In Proceedings
of Conference on Computational Science. 856–864.

Received November 2013; revised October 2014; accepted January 2015

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 1, Article 1, Publication date: June 2015.

http://wiki.xen.org/wiki/Credit_Scheduler

	Adaptive resource provisioning mechanism in VEEs for improving performance of HLA-based simulations
	Citation

	TOMACS2601-01

