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GraphMP: I/O-Efficient Big Graph Analytics on a
Single Commodity Machine

Peng Sun, Yonggang Wen, Ta Nguyen Binh Duong and Xiaokui Xiao

Abstract—Recent studies showed that single-machine graph processing systems can be as highly competitive as cluster-based
approaches on large-scale problems. While several out-of-core graph processing systems and computation models have been proposed,
the high disk I/O overhead could significantly reduce performance in many practical cases. In this paper, we propose GraphMP to tackle
big graph analytics on a single machine. GraphMP achieves low disk I/O overhead with three techniques. First, we design a vertex-centric
sliding window (VSW) computation model to avoid reading and writing vertices on disk. Second, we propose a selective scheduling
method to skip loading and processing unnecessary edge shards on disk. Third, we use a compressed edge cache mechanism to fully
utilize the available memory of a machine to reduce the amount of disk accesses for edges. Extensive evaluations have shown that
GraphMP could outperform existing single-machine out-of-core systems such as GraphChi, X-Stream and GridGraph by up to 30, and
can be as highly competitive as distributed graph engines like Pregel+, PowerGraph and Chaos.

Index Terms—Graph Processing, Big Data, Parallel Computing, Vertex-Centric Programming Model

F

1 INTRODUCTION

IN the era of “Big Data”, many real-world problems, such
as social network analytics and collaborative recommen-

dation, can be represented as graph computing problems [1].
Analyzing large-scale graphs has attracted considerable in-
terest in both academia and industry. However, researchers
are facing significant challenges in processing big graphs,
which contain billions of vertices and hundreds of billions of
edges, with popular big data analysis tools like MapReduce
[2] and Spark [3], since these general-purpose frameworks
cannot leverage inherent interdependencies within graph
data and common patterns of iterative graph algorithms for
performance optimization [4], [5], [6].

To tackle this challenge, researchers have proposed many
dedicated in-memory graph processing systems over multi-
core, heterogeneous and distributed infrastructures. These
systems usually adopt a vertex-centric programming model
(which allows users to think like a vertex when designing
parallel graph applications), and should always manage the
entire input graph and all intermediate data in memory.
Specifically, Ligra [7], Galois [8], GraphMat [9] and Polymer
[10] could handle generic graphs with 1-20 billion edges on
a single multi-core machine. Some single-machine systems,
e.g., [11], [12], [13], [14], [15], [16], [17], [18], [19], could
leverage heterogeneous devices, such as graphics processing
unit (GPU), field-programmable gate array (FPGA) and
Xeon Phi, to scale up graph processing performance.

To process big graphs, which cannot be fully loaded into
the memory of a single commodity machine, three types of
distributed graph engines could scale out in-memory graph
processing to a cluster:
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• Xiaokui Xiao is with School of Computing, National University of
Singapore, Singapore. Email: xkxiao@nus.edu.sg

• Pregel-like systems, e.g., [20], [21], [22], [23], [24], assign
each vertex and its out-going edges to a machine, and
provide interaction between vertices using message
passing along edges.

• PowerGraph [25], PowerLyra [26] and GraphX [27]
adopt the GAS (Gather-Apply-Scatter) model to im-
prove load balance when processing power-law graphs:
they split a vertex into multiple replicas, and parallelize
the computation for it on different machines.

• GraphPad [28] and CombBLAS [29] express common
graph analyses in generalized sparse matrix-vector
multiplication (SpMV) operations, and leverage high-
performance computing (HPC) techniques to speed up
large-scale SpMV.

However, current in-memory graph processing systems re-
quire a costly investment in powerful computing infrastruc-
ture to handle big graphs. For example, GraphX needs more
than 16TB memory to handle a 10-billion-edge graph [30].

Out-of-core systems, which maintain just a small portion
of vertices and/or edges in memory, provide cost-effective
solutions for big graph analytics. Single-machine engines,
such as GraphChi [31], X-Stream [32], VENUS [33] and
GridGraph [34], break the input graph into a set of shards,
each of which contains all required information to update
its associated vertices. In many cases, an out-of-core graph
engine processes all shards in an iteration, and usually uses
three stages to execute a shard:

• Loading this shard’s associated vertices into memory;
• Processing this shard’s edges from disk for updating its

associated vertices;
• Writing updated vertices or edges back to disk.

These three stages would generate a huge amount of disk
accesses, which may become performance bottleneck [4].
To reduce disk I/O cost, many out-of-core graph compu-
tation models have been proposed. Representative exam-
ples include the parallel sliding window model (PSW) of
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TABLE 1
Existing approaches for large-scale graph processing.

Single Machine (CPU) Single Machine (GPU) Cluster
Data Storage In-Memory Out-of-Core (use HDD if not indicated) In-Memory Out-of-Core In-Memory Out-of-Core

Approaches

Ligra [7]
Galois [8]

GraphMat [9]
Polymer [10]

GraphChi [31]
X-Stream [32]
VENUS [33]

GridGraph [34]

GraphMP (Use SSD)
FlashGraph [35]
TurboGraph [36]

Medusa [11]
Gunrock [13]

MapGraph [14]
gGraph [15]

(Use SSD)
GTS [16]

GGraph [15]

Pregel-like: [20]
[21] [22] [23] [24]

GAS: [25] [26] [27]
SpMV: [28] [29]

(Use HDD)
GraphD [37]
Chaos [38]

Pregelix [39]
Scale (#edges) 1-20 Billion ∼100 Billion ∼100 Billion ∼100 Billion 0.1-4 Billion 4-64 Billion 5-1000 Billion ∼1 Trillion
Speed (#edges/s) 1-2 Billion 5-100 Million 20M-2.2B 20-400 Million 1-7 Billion ∼0.4 Billion 1-7 Billion 5-200 Million
Platform Cost Medium Low Medium Medium High Medium High Medium

GraphChi, the edge-centric scatter-gather (ESG) model of
X-Stream, the vertex-centric streamlined processing (VSP)
model of VENUS, and the dual sliding windows (DSW)
model of GridGraph. These approaches try to exploit the se-
quential bandwidth of hard disks and to reduce the amount
of disk accesses. Nonetheless, current out-of-core graph en-
gines still have much lower performance (5-100M edges/s)
than that of in-memory graph engines (1-2B edges/s), as
shown in Table 1. While Pregelix [39], Chaos [38] and
GraphD [37] scale out out-of-core graph processing to mul-
tiple machines, their processing performance could not be
significantly improved due to the high disk I/O cost.

In this paper, we propose GraphMP, a novel out-of-core
graph processing system, to tackle big graph analytics on a
single commodity machine1 based on our previous work
[40]. GraphMP employs three techniques to fully utilize
available memory resources, and thus significantly reduces
disk I/O overhead. First, we design a vertex-centric slid-
ing window (VSW) computation model to avoid reading
and writing vertices on hard disks. Specifically, GraphMP
breaks the input graph’s vertices into disjoint intervals. Each
interval is associated with a shard, which contains all edges
that have destination vertex in that interval. During the
computation, GraphMP manages all vertices of a graph in
the main memory, slides a window on vertices from disks,
and processes edges shard by shard. When processing a
specific shard, GraphMP first loads it into memory, then
executes user-defined functions on it to update correspond-
ing vertices. Thus, GraphMP does not need to read or
write vertices on hard disks until the end of the program,
since all of them are stored in memory. Compared to [40],
we enhance selective scheduling and compressed edge
caching to further reduce disk I/O overhead. Specifically,
with selective scheduling, inactive shards, which would not
update any vertices, can be skipped to avoid unnecessary
disk accesses. Compressed edge cache mechanism could
fully utilize available memory resources to cache as many
as shards in memory. If a shard is cached, GraphMP would
not access it from hard disks.

As shown in Figure 1, GraphMP can be distinguished
from other single-machine graph engines as follows:

• Compared to CPU-based in-memory approaches like
GraphMat and Ligra, GraphMP does not need to man-

1. It is common for current commodity single machine to have more
than 64GB memory. For example, a single EC2 M4 instance can have up
to 256GB memory. In this work, GraphMP is deployed on a Dell R720
server with two Intel Xeon E5-2620 processors (12 cores in total), 128GB
memory and 4x4TB HDDs (RAID5).

Disk I/O Overhead of a Single-Machine Graph Processing System 
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GraphMP (VSW Model + Shard Caching)

Ligra, GraphMat (exceed the memory capacity when processing big graphs)

GridGraph (DSW Model)
VENUS (VSP Model)

X-Stream(ESG Model)

GraphChi (PSW Model)

Typical memory capacity of single machines

Fig. 1. Compared to in-memory systems like Ligra, GraphMP can handle
big graphs on a single machine, since it does not store all graph data
in memory. Compared to existing out-of-core systems (e.g., GraphChi,
X-Stream, VENUS, GridGraph), GraphMP could fully utilize available
memory of a typical server to reduce disk I/O overhead.

age all edges in memory, so that it can handle big graph
anlytics beyond the memory limit (real-world graphs
usually contain much more edges than vertices).

• Compared to existing HDD-based out-of-core systems
like GraphChi and GridGraph, GraphMP requires more
memory to manage all vertices for low disk I/O over-
head. Most of the time, this is not a problem as a single
commodity machine can easily fit all vertices of a big
graph into memory. Take PageRank as an example,
a graph with 1.1 billion vertices needs about 22.1GB
memory to manage all vertex values.

• Compared to graph engines like Gunrock and GTS,
which use hetergeneous computation and storage de-
vices (e.g., PCIe/NVMe SSD, GPU, FPGA and Xeon
Phi), GraphMP is designed for big graph analytics on a
commodity machine with just CPUs and HDDs.

We implement GraphMP using C++ and OpenMP, which
is available at https://github.com/cap-ntu/Graphee, Ex-
tensive evaluations on a testbed have shown that GraphMP
performs much better than existing single-machine out-of-
core approaches, and has competitive performance to pop-
ular in-memory and distributed solutions. When running
PageRank, single source shortest path (SSSP) and weakly
connected components (CC) on a graph with 1.1 billion ver-
tices, which is the largest web graph dataset could be down-
loaded from http://law.di.unimi.it/datasets.php, GraphMP
can outperform GraphChi, X-Stream and GridGraph by a
factor of up to 30.

The rest of the paper is structured as follows. In section
2, we present the system design of GraphMP. Section 3
gives quantitative comparison between our approach with
other graph processing systems. The evaluation results are
detailed in Section 4. We conclude the paper in section 5.

http://law.di.unimi.it/datasets.php
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Interval(0)

……

0 i1 i2 |V|ip

shard(P-1)

Γin(ip)

Γin(|V|-1)

…

shard(1)

Γin(i1)

Γin(i2-1)

…

shard(0)

Γin(0)

Γin(i1-1)

…

Interval(1) Interval(P-1)

Fig. 2. The input graph’s vertices are divided into P intervals. Each
interval is associated with a shard, which stores all edges that have des-
tination vertex in that interval. GraphMP structures all edges of a shard
in key-value pairs (id(v),Γin(v)), and stores them in the Compressed
Sparse Row format.

2 SYSTEM DESIGN

In this section, we introduce the system design of GraphMP,
and show how GraphMP handles big graph analytics in a
single machine with vertex-centric sliding window (VSW)
model, selective scheduling and compressed edge caching.

2.1 Notations
Graph G = (V,E) contains |V | vertices and |E| edges. Each
vertex v has a unique ID id(v), a value val(v), an incoming
adjacency list Γin(v), an outgoing adjacency list Γout(v), and
a boolean field active(v). During the computation, val(v)
may be updated, and active(v) indicates whether val(v) is
updated in the last iteration. If vertex u ∈ Γin(v), u is an
incoming neighbor of v, and (u, v) is an in-edge of v. If
u ∈ Γout(v), u is an outgoing neighbor of v, and (v, u) is an
out-edge of v. din(v) = |Γin(v)| and dout(v) = |Γout(v)| are
the in-degree and out-degree of v, respectively. Let val(u, v)
denote the edge value of (u, v). In this work, if G is a
unweighted graph, val(u, v) = 1,∀(u, v) ∈ E.

2.2 Graph Sharding and Data Processing
Before vertex-centric computation, GraphMP breaks the in-
put graph into P shards in data processing stage. As shown
in Figure 2, the vertices of G = (V,E) are divided into P
disjoint intervals. Each interval is associated with a shard,
which stores all edges that have destination vertex in that
interval. For example, in Figure 2, shard(1) contains all
edges with destination vertex v, where i1 ≤ id(v) ≤ i2 − 1.
In this example, i1 is the start vertex id of shard(1), and
i2 − 1 is its end vertex id. Vertex intervals are chosen with
two policies:

• Any shard can be completely loaded into memory;
• Each shard tries to contain a similar number of edges

for workload balance during computation.
In this work, each shard approximately contains 20 millions
edges, so that a single shard roughly needs 80MB memory.
Users can use other vertex intervals for specific applications
or graph data sets.

GraphMP groups edges in a shard by their destination,
and manage them as a sparse matrix in Compressed Sparse
Row (CSR) format. One edge is treated as a non-zero entry
of the sparse matrix. The CSR format of a sparse matrix con-
tains a row array, a col array, and a val array. Specifically,
the col array stores all non-zero entries’ column indices
in row-major order. The val array contains corresponding

1 5 0 0
0 2 8 0
5 0 3 9
0 6 0 5 

0 2 4 7 9

0 1 1 2 0 2 3 1 3

1 5 2 8 5 3 9 6 5
Matrix CSR Format

row

col

val

Fig. 3. An example of using the CSR format to represent a sparse matrix.

nonzero values. The row array records each row’s start
point in col and val array. Figure 3 shows an example of
using the CSR format to represent a 4-row sparse matrix.
In this example, row[3] = 7, row[4] = 9. It means
that the last row of the matrix contains 2 nonzero entires,
whose column indices are stored in col[7] and col[8].
The corresponding values can be accessed from val[7]
and val[8]. This work maps the edges of a shard as a
sparse matrix in CSR format. For example, in Figure 2,
shard(1) can be mapped as a sparse matrix with i2 − i1
rows and |V | columns. In CSR, the col array stores all
edges’ column indices in row-major order, and the row array
records each vertex’s adjacency list distribution. If the input
graph is an unweighted graph, there is no need to construct
the val array, since all edges have the same weight. In
shard(1) of Figure 2, the incoming adjacency list of vertex
v (i1 ≤ id(v) ≤ i2-1) can be accessed from:

{col[row[id(v)− i1]], · · · , col[row[id(v) + 1− i1]− 1]}.

In addition to edge shards, GraphMP creates two meta-
data files. First, a property file contains the global infor-
mation of the represented graph, including the number of
vertices, edges and shards, and the vertex intervals. Second,
a vertex information file stores several arrays to record the
information of all vertices. It contains an array to record all
vertex values (which can be the initial or updated values),
an in-degree array and an out-degree array to store each
vertex’s in-degree and out-degree, respectively.

Algorithm 1: Compute Vertex Intervals
1 shard id = 0, vertex id = 0, edge num = 0
2 shard[shard id].start vertex id = 0
3 while vertex id < |V | do
4 edge num += Γin(Vvertex id)
5 if edge num > threshold edge num then
6 shard[shard id].end vertex id = vertex id - 1
7 shard id += 1
8 shard[shard id].start vertex id = vertex id
9 edge num = Γin(Vvertex id)

10 vertex id += 1

11 shard[shard id].end vertex id = |V | - 1

GraphMP uses three steps to preprocess a graph. In the
first step, GraphMP scans the graph to record each vertex’s
in-degree. With this information, GraphMP computes each
shard’s associated vertex interval based on Algorithm 1. In
this method, threshold edge num denotes the max number
of edges a shard could contain, which is user defined and
should be no greater than the graph’s max in-degree. With
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CPU Core 0 CPU Core 1 CPU Core 2 CPU Core 3

Shard(0) Shard(1) Shard(2) Shard(3)

Source Vertex Array Destination Vertex Array

shard(0) shard(1) shard(2) shard(P-1)

Fig. 4. The VSW computation model. GraphMP slides a window on
vertices, and makes each CPU core process a shard at a time. When
processing a shard, a CPU core continually pulls required vertex values
from memory, and pushes updated ones to another array in memory.

this simple method, GraphMP quickly divides input vertices
into a set of intervals, and each shard is allocated with a start
vertex id and an end vertex id. This method also guarantees
that each shard is small enough to be loaded into memory,
and tries to let each shard contain a similar number of edges.
In the second step, GraphMP sequentially reads graph edges
from disk, and appends each edge to a shard file based on its
destination and computed vertex intervals. In the third step,
GraphMP transforms all shard files to the CSR format, and
persists them on disk. After these three steps, all edges are
actually sorted and grouped by their destination vertices.

After the data preprocessing, GraphMP is ready to per-
form vertex-centric computation based on the VSW model.
GraphMP only needs to perform data preprocessing one
time, then could execute any graph applications using the
same partitioned data. As a comparison, GraphChi needs to
preprocess input graph again before executing a new type
of a graph application. For example, GraphChi cannot use
the same partitioned graph for PageRank to run SSSP [31].

2.3 Vertex-Centric Sliding Window Computation

GraphMP slides a window on vertices, and processes edges
shard by shard on a single machine with N CPU cores,
as shown in Figure 4 and Algorithm 2. During the com-
putation, GraphMP maintains two vertex arrays in mem-
ory until the end of the program: SrcVertexArray and
DstVertexArray. The SrcVertexArray stores latest ver-
tex values, which are the input of the current iteration. Up-
dated vertex values are written into the DstVertexArray,
which are used as the input of the next iteration. GraphMP
uses OpenMP to parallelize the computation (line 3 of Algo-
rithm 2): each CPU core processes a shard at a time. When
processing a specific shard, GraphMP first loads it into
memory (line 6), then executes user-defined vertex-centric
functions, and writes the results to the DstVertexArray
(line 7-8). Given a vertex, if its value is updated, we call it
an active vertex. Otherwise, it is inactive. After processing
all shards, GraphMP records all active vertices in a list
(line 9). This list could help GraphMP to avoid loading
and processing inactive shards in the next iteration (line 5),
which would not generate any updates (detailed in Section
2.4). The values of DstVertexArray are used as the input
of next iteration (line 10). The program terminates if it does
not generate any active vertices (line 2).

Algorithm 2: Vertex-Centric Sliding Window Model
1 init (src vertex array, dst vertex array)
2 while active ratio > 0 do
3 # pragma omp parallel for num threads(N)
4 for shard ∈ all shards do
5 if active vertex ratio > threshold active ratio or

Bloom filter[shard.id].has(active vertices) then
6 load to memory(shard)
7 for v ∈ shard.associated vertices do
8 dst vertex array[v.id]← update(v,

src vertex array)

9 active vertices = {vertices with updated values}
10 src vertex array← dst vertex array
11 active ratio← |active vertices| / vertex num

Users need to define two functions for a particular ap-
plication: Init and Update. Specifically, the Init function
takes SrcVertexArray and DstVertexArray as inputs,

Init(SrcVertexArray, DstVertexArray),

and initialize the values of all vertices. The Update function
accepts a vertex and SrcVertexArray as inputs,

Update(InputVertex, SrcVertexArray),

and should return two results: an updated vertex value
which should be stored in DstVertexArray, and a boolean
value to indicate whether the input vertex updates its value.
Specifically, this function allows the input vertex to pull the
values of its incoming neighbors from SrcVertexArray
along the in-edges, and uses them to update its value.

We implement three popular graph applications (PageR-
ank, SSSP and CC) using Init and Update in Algorithm 3.
PageRank is an algorithm used to measure the importance
of website pages. SSSP is used to find shortest paths from
a source vertex to all other vertices in the graph. CC can
detect whether any two vertices of the graph are connected
to each other by paths. In PageRank, the vertex value type
is Double to store the rank value of a vertex. The graph is
initialized before the first iteration, and the value of each
vertex is 1/vertex num (line 3-4). All vertices are set to be
active in the initialization phase (line 5). During the iterative
computation, each vertex accumulates vertex values along
its in-edges into sum (line 8-9), and sets its own rank value
to 0.15/vertex num+ 0.85 ∗ sum (line 10). The two hyper-
parameters ”0.15” and ”0.85” are adopted from Google [20],
which help the algorithms converges smoothly. In SSSP, the
vertex value type is Long to store the minimum distance
from the source vertex (for example, vertex 0). Before the
first iteration, the source vertex initializes its value to zero,
and other vertex values are initialized to ∞ (line 14-18).
Only the source vertex is set to be active in the initializa-
tion phase (line 19). During the computation, each vertex
connects its neighbor vertices along in-edges (line 22-23),
and tries to find a shorter path to the source vertex (line 24).
When running CC on undirected graphs, the vertex value
type is Long to store the subgraph ID. If two vertices have
the same subgraph ID, they are connected to each other by
paths. Before the first iteration, the value of each vertex
is initialized to its vertex ID (line 28-29). All vertices are
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Algorithm 3: PageRank, SSSP and CC in GraphMP
1 // vertex value (Double) is the rank value
2 Function PR Init(Array src vertex, Array dst vertex)
3 for i ∈ range(num vertex) do
4 src vertex[i] = dst vertex[i] = 1 / num vertex

5 active vertices = {all vertices}
6 Function PR Update(Vertex v, Array src vertex)
7 sum = 0
8 for e ∈ v.incoming neighbours do
9 sum += src vertex[e.source] / e.source.out deg

10 updated value = 0.15 / num vertex + 0.85 * sum
11 return updated value

12 // vertex value (Long) is the distance to the source vertex
13 Function SSSP Init(Array src vertex, Array dst vertex)
14 for i ∈ range(num vertex) do
15 if i == source vertex.id then
16 src vertex[i] = dst vertex[i] = 0

17 else
18 src vertex[i] = dst vertex[i] =∞

19 active vertices = {source vertex}
20 Function SSSP Update(Vertex v, Array src vertex)
21 d =∞
22 for e ∈ v.incoming neighbours do
23 d = min (src vertex[e.source] + (e,u).val, d)

24 updated value = min (d, v.value)
25 return updated value

26 // vertex value (Long) is the vertex group id
27 Function CC Init(Array src vertex, Array dst vertex)
28 for i ∈ range(num vertex) do
29 src vertex[i] = dst vertex[i] = i

30 active vertices = {all vertices}
31 Function CC Update(Vertex v, Array src vertex)
32 subgraph id =∞
33 for e ∈ v.incoming neighbours do
34 subgraph id = min (src vertex[e.source],

subgraph id)
35 updated value = min (subgraph id, v.value)
36 return updated value

set to be active in the initialization phase (line 30). During
the computation, each vertex checks the subgraph ID of its
neighbors, and overwrites its own subgraph ID with the
max vertex ID received from its neighbors. This continues
until convergence (line 33-35).

When using multiple CPU cores to process graph shards
in parallel, GraphMP does not require locks or atomic op-
erations. This property could improve the graph processing
performance considerably. As shown in Figure 4 and Algo-
rithm 2 (line 3), in each iteration, GraphMP uses one CPU
core to process a shard for updating its associated vertices,
and could process N shards in parallel when having N
GPU cores. Given a vertex v, SrcVertexArray[v.id]
may be accessed as input by multiple CPU cores at the
same time. Due to GraphMP’s graph sharding strategy
(specifically all in-edges of a vertex are managed in the same
shard), DstVertexArray[v.id] is computed from edges
located in a single shard, and could be written by a single
CPU core in each iteration. Therefore, there is no need to

01

2

34

56

ID

PR Array

Vertex
Update 

Function

Updated 
PR Array

Out-Deg

Shard 0
0 <- 1, 3
2 <- 0, 1

Shard 1
3 <- 2, 4, 5
4 <- 1, 2

Shard 2
5 <- 4, 6
6 <- 4

0.14 0.14 0.14 0.14 0.14 0.14 0.14
1 3 2 1 3 1 1

0.26 0.14 0.18 0.24 0.12 0.18 0.06

0 1 2 3 4 5 6

Fig. 5. An example of the first iteration of PageRank on GraphMP.

use locks or atomic operations to avoid data inconsistency
issues on SrcVertexArray and DstVertexArray. As a
comparison, GridGraph should use an atomic operation to
process each edge, since multiple cores may simultaneously
update the same vertex [34].

In Figure 5, we show an example of how GraphMP runs
PageRank. The input graph is partitioned into three shards,
each of which contains two vertices and their adjacency lists.
At the beginning of PageRank, all vertex values are initiated
to be 1/num vertex = 0.14. GraphMP slides a window
on vertices, and lets each CPU core process a shard at a
time. When processing shard 0 on a CPU core, GraphMP
pulls the values of vertex 1, 3 from SrcVertexArray, then
use them to compute the updated value for vertex 0, and
writes it to DstVertexArray[0]. After processing all 3
shards, GraphMP uses the values of DstVertexArray to
replace the values of SrcVertexArray, and starts the next
iteration if there are any active vertices.

2.4 System Optimizations

GraphMP employs two optimization techniques (specifi-
cally selective scheduling and compressed edge caching)
to further reduce the disk I/O overhead and improve the
graph processing performance.

2.4.1 Selective Scheduling
For many graph applications, such as PageRank, SSSP and
CC, a lot of vertices converge quickly and would not update
their values in the rest iterations. Given a shard, if all source
vertices of its associated edges are inactive, it is an inactive
shard. An inactive shard would not generate any updates in
the following iteration. Therefore, it is unnecessary to load
and process these inactive shards.

To solve this problem, we leverage Bloom filters to detect
inactive shards, so that GraphMP could avoid unnecessary
disk accesses and processing. A Bloom filter is a memory-
efficient data structure, which can rapidly test whether an el-
ement is a member of a set by using multiple hash functions.
GraphMP manages a Bloom filter for each shard to record
the source vertices of its edges. When processing a shard,
GraphMP uses its Bloom filter to check whether it contains
any active vertices. If yes, GraphMP would continue to load
and process the shard. Otherwise, GraphMP would skip it.
For example, in Figure 5, when the sliding window is moved
to shard 2, its Bloom filter could tell GraphMP whether
vertex 4, 6 have changed their values in the last iteration.
If there are no active vertices, the sliding window would
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TABLE 2
Compression ratio and processing throughput per CPU core.

Compression Ratio Throughput (MB/s)
snappy zlib-1 zlib-3 snappy zlib-1 zlib-3

Twitter 1.75 2.78 3.22 870 55 46
UK-2007 1.89 3.71 4.54 947 58 53
UK-2014 1.96 4.34 5.26 903 65 50
EU-2015 1.96 4.35 5.88 890 62 56

Size (GB)
(CSV)

Size (GB)
(raw)

Size (GB)
(snappy)

Size (GB)
(zlib-1)

Size (GB)
(zlib-3)

Twitter 24 6.5 3.7 2.3 2
UK-2007 94 23 12 6.2 5
UK-2014 874 196 100 45 37
EU-2015 1700 362 185 80 62

skip shard 2, since it cannot not update vertex 5 or 6 after
the processing.

GraphMP only enables selective scheduling when the
ratio of active vertices is lower than a threshold. If the active
vertex ratio is high, nearly all shards contain at least one
active vertex. In this case, GraphMP wastes a lot of time
on detecting inactive shards, and would not reduce any
unnecessary disk accesses. As shown in Algorithm 2 Line
5, GraphMP starts to detect inactive shards when the active
vertex ratio is lower than a threshold. In this paper, we use
0.001 as the threshold according to our experiment data.
Users can choose a better value for specific applications.

2.4.2 Compressed Edge Caching
We design a cache system in GraphMP to reduce the amount
of disk accesses for edges. The VSW computation model
requires storing all vertices and shards under processing
in the main memory. These data would not consume all
available memory resources of a single machine. For exam-
ple, given a server with 24 CPU cores and 128GB mem-
ory, when running PageRank on a graph with 1.1 billion
vertices, GraphMP uses 21GB memory to store all data,
including SrcVertexArray, DstVertexArray, the out-
degree array, Bloom filters, and the shards under processing.
It motivates us to build an in-application cache system
to fully utilize available memory to reduce the disk I/O
overhead. Specifically, when GraphMP needs to process a
shard, it first searches the cache system. If there is a cache
hit, GraphMP can process the shard without disk accesses.
Otherwise, GraphMP loads the target shard from disk, and
leaves it in the cache system if the cache system is not full.

GraphMP can compress cached shards to improve the
amount of cached edge shards and further reduce disk I/O
cost. Table 2 shows that popular compressors can efficiently
reduce the size of graph datasets. We use four real-world
graphs as inputs: Twitter, UK-2007, UK-2014 and EU-2015.
Section 4 gives more detail about these four graph datasets.
We see that zlib-3 could compress EU-2015 by a factor of
5.88. While GraphPS needs additional decompression time,
the edge cache system still provides higher throughput than
hard disks. For example, snappy can decompress an edge
shard at a rate of 903MB/s using a single CPU core. In
contrast, we can only achieve up to 310MB/s sequential disk
read speed with RAID5, and the available disk bandwidth
is shared by all CPU cores.

In this work, we use two compressors (snappy and zlib),
and consider 5 cache modes:

• Cache-0: Use system page cache without edge cache.
• Cache-1: Cache uncompressed edge shards.
• Cache-2: Cache shards compressed by snappy.
• Cache-3: Cache shards compressed by zlib-1.
• Cache-4: Cache shards compressed by zlib-3.

GraphMP can automatically select the most suitable cache
mode, considering disk I/O and decompression cost. When
having limited memory, it is crucial to select compressors
with high compression ratio for low disk I/O overhead. If
the memory is large, caching shards with low compression
ratio can reduce decompression overhead without increas-
ing disk I/O overhead. Let C denote the memory size of the
cache system, S is the input graph’s size, and γi is the esti-
mated compression ratio of cache mode-i. GraphMP selects
minimal i constrained by S/γi ≤ C . If no mode satisfies this
constraint, GraphMP uses mode-4 with highest compression
ratio. In this case, GraphMP caches as many shards as pos-
sible in memory, and reads other shards from disk during
computation. In this work, γ0 = 1, γ1 = 2, γ2 = 4, γ3 = 5,
according to Table 2.

3 THEORETICAL COMPARISON

We compare our proposed VSW model with four popular
graph computation models: the parallel sliding window
model (PSW) of GraphChi, the edge-centric scatter-gather
(ESG) model of X-Stream, the vertex-centric streamlined
processing (VSP) model of VENUS and the dual sliding win-
dows (DSW) model of GridGraph. All systems partition the
input graph into P shards or blocks, and run applications
using N CPU cores. Let C denote the size of a vertex record,
andD is the size of one edge record. For fair comparison, we
assume that the neighbors of a vertex are randomly chosen,
and the average degree is davg = |E|/|V |. We disable
selective scheduling, so that all system should process all
edges in each iteration. We use the amount of data read and
write on disk per iteration, and the memory usage as the
evaluation criteria. Table 3 summarizes the analysis results.

3.1 The PSW Model of GraphChi

Under PSW, GraphChi splits the vertices V of graph G =
(V,E) into P disjoint intervals. For each interval, GraphChi
associates a shard, which stores all the edges that have des-
tination in the interval. Edges are stored in the order of their
source. Unlike GraphMP where each vertex can access the
values of its neighbors from SrcVertexArray, GraphChi
accesses such values from the edges. Thus, the data size
of each edge in GraphChi is (C + D) [33]. In addition,
GraphChi stores updated vertex values in a single file as
flat array of user-defined type. For each iteration, GraphChi
uses three steps to process a shard: (1) loading its associated
vertices, in-edges and out-edges from disk into memory; (2)
updating the vertex values; and (3) writing updated vertices
and edges to disk. In step (1), GraphChi loads each vertex
(which incurs C|V | data read), and accesses in-edges and
out-edges of each vertex (which incurs 2(C + D)|E| data
read). In step (3), GraphChi writes updated vertices into
disk (which incurs C|V | data write), and writes each edge
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TABLE 3
Analysis of graph computation models. C is the size of a vertex value, D is the size of an edge value, P is the number of partitioned shards or

blocks of a graph, davg denotes the graph’s average degree, δ ≈ (1− e−davg/P )P , θ denotes GraphMP’s cache hit ratio and 0 ≤ θ ≤ 1.

Category PSW (GraphChi) ESG (X-Stream) VSP (VENUS) DSW (GridGraph) VSW (GraphMP)
Data Read C|V |+ 2(C +D)|E| C|V |+ (C +D)|E| C(1 + δ)|V |+D|E| C

√
P |V |+D|E| θD|E|

Data Write C|V |+ 2(C +D)|E| C|V |+ C|E| C|V | C
√
P |V | 0

Memory Usage (C|V |+ 2(C +D)|E|)/P C|V |/P C(2 + δ)|V |/P 2C|V |/
√
P 2C|V |+ND|E|/P

Preprocessing I/O Cost (C + 5D)|E| 2D|E| 4D|E| 6D|E| 5D|E|

twice (which incurs 2(C+D)|E| data write) if the computa-
tion updates edges in both directions. With the PSW model,
the data read and write in total are both C|V |+2(C+D)|E|.
In step (2), GraphChi needs to keep |V |/P vertices and
their in-edges, out-edges in memory for computation. The
memory usage is (C|V |+ 2(C +D)|E|)/P .

GraphChi uses 3 steps to divide a graph into P shards:
(1) counting the in-degree of each vertex (which incursD|E|
data read) and dividing vertices into P intervals , (2) writing
each edge to a temporary scratch file of the owning shard
(which incurs D|E| data read and D|E| data write); and
(3) sorting edges and writing each file in compact format
(which incurs D|E| data read and (C + D)|E| data write).
The total I/O cost of the preprocessing is (C + 5D)|E|.

3.2 The ESG Model of X-Stream
X-Stream splits the input graph’s vertices into P partitions,
each of which could fits in high-speed memory. Further-
more, X-Stream assigns edges to P partitions, such that
the edge list of a partition consists of all edges whose
source vertex is in the partitions vertex set. Then, X-Steam
processes the graph one partition at a time with two phases
under the ESG model. In phase (1), when processing a graph
partition, X-Stream first loads its associated vertices into
memory, and processes its out-edges in a streaming fashion:
generating and propagating updates (the size of an update
is C) to corresponding values on disk. In this phase, the size
of data read is C|V | + D|E|, and the size of data write is
C|E|. In phase (2), X-Stream processes all updates and uses
them to update vertex values on disk. In this phase, the size
of data read is C|E|, and the size of data write is C|V |.
With the ESG model, the data read and write in total are
C|V |+ (C+D)|E| and C|V |+C|E|, respectively. X-Stream
only needs to keep the vertices of a partition in memory, so
the memory usage is C|V |/P .

X-Stream needs one step for data preprocessing. Specif-
ically, before the computation, it reads edges from disks in
sequence, and append them to corresponding files on disks.
X-Stream does not need to sort edge lists or convert the data
structure during preprocessing. Thus, the I/O cost of the
preprocessing is 2D|E|.

3.3 The VSP Model of VENUS
VENUS evenly splits |V | vertices into P disjoint intervals.
Each interval is associated with a g-shard (which stores
all edges with destination in that interval), and a v-shard
(which contains all vertices appear in that g-shard). For
each iteration, VENUS processes g-shards and v-shards
sequentially in three steps: (1) loading a v-shard into the
main memory, (2) processing its corresponding g-shard in

a streaming fashion, (3) writing updated vertices to disk.
In step (1), VENUS needs to process all edges once, which
incurs D|E| data read. In step (3), all updated vertices are
written to disk, so the data write is C|V |. According to The-
orem 2 in [41], each vertex interval contains |V |/P vertices,
and each v-shard contains up to |V |/P + (1− e−davg/P )|V |
entries. Therefore, the data read and write are C(1+δ)|V |+
D|E| and C|V | respectively, where δ ≈ (1 − e−davg/P )P .
VENUS needs to keep a v-shard and its updated vertices in
memory, so the memory usage is C(2 + δ)|V |/P .

VENUS uses two steps for preprocessing. Since VENUS
evenly splits the set of vertices into P disjoint intervals, there
is no need to count the degree of each vertex first. Therefore,
VENUS reads the input graph data sequentially, adds each
encountered edge into a buffer according to its destination,
and writes the sorted edges into an intermediate file when
an buffer is full. The second step performs a k-way merge on
all intermediate files resulted from the first step to construct
required data structure. Thus, edges are grouped by their
destination. The I/O cost of the preprocessing is 4D|E|.

3.4 The DSW Model of GridGraph

GridGraph groups the input graph’s |E| edges into a “grid”
representation. Specifically, the |V | vertices are divided into√
P equalized vertex chunks and |E| edges are partitioned

into
√
P ×

√
P blocks according to the source and desti-

nation vertices. Each edge is placed into a block using the
following rule: the source vertex determines the row of the
block, and the destination vertex determines the column
of the block. GridGraph processes edges block by block.
GridGraph uses 3 steps to process a block in the i-th row
and j-th column: (1) loading the i-th source vertex chunk
and the j-th destination vertex chunk into memory; (2)
processing edges in a streaming fashion for updating the
destination vertices; and (3) writing the destination vertex
chunk to disk if it is not required by the next block. After
processing a column of blocks, GridGraph reads |E|/

√
P

edges and |V | vertices, and writes |V |/
√
P vertices to disk.

The data read and write are C
√
P |V |+D|E| and C

√
P |V |,

respectively. During the computation, GridGraph needs to
keep two vertex chunks in memory, so the memory usage is
2C|V |/

√
P .

GridGraph needs three steps for data processing based
on the provided program. In the first step, GridGraph reads
edges sequentially, calculates the block that an edge belongs
to, and appends the edge to the corresponding block file. To
improve I/O throughput, GridGraph combines the gener-
ated

√
P ×

√
P block files into a column-oriented file and

a row-oriented file in step 2 and step 3. The I/O cost of the
preprocessing is 6D|E|.
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3.5 The VSW Model of GraphMP

GraphMP keeps all source and destination vertices in the
main memory during the vertex-centric computation. There-
fore, GraphMP would not incur any disk write for vertices in
each iteration until the end of the program. In each iteration,
GraphMP should useN CPU cores to process P edge shards
in parallel, which incurs D|E| data read. Since GraphMP
uses a compressed edge cache mechanism, the actual size
of data read of GraphMP is θD|E|, where 0 ≤ θ ≤ 1 is
the cache miss ratio. During the computation, GraphMP
manages |V | source vertices (which are the input of the
current iteration) and |V | destination vertices (which are
the output the current iteration and the input of the next
iteration) in memory, and each CPU core loads |E|/P edges
in memory. The total memory usage is 2C|V | + ND|E|/P .
As discussed in Section 2, GraphMP needs three steps for
data preprocessing, and its I/O cost is 5D|E|.

3.6 Discussion

PSW, ESG, VSP, DSW and VSW adopt a similar way to pro-
cess large-scale graphs on a single machine: they partition a
big graph into small shards or blocks, and uses limited com-
putation resources to sequentially process these small graph
shards. As detailed in this section, each graph computation
model has its own graph sharding policy, data structure and
vertex-centric computation flow, which could significantly
affect the I/O overhead of graph applications. As shown
in Table 3, the VSW model of GraphMP could reduce the
amount of data reads and writes on disks than other models
at the cost of higher memory usage. More specifically, VSW
manages all vertices in memory and only needs to access
edges from hard disks during the computation. With the
help of compressed edge caching, VSW further reduces the
amount of data reads by caching a portion of edge shards
in memory. As a comparison, PSW, ESG, VSP and DSW
should read both vertices and edges from disks at each
iteration. Additionally, VSW could directly update vertex
values in memory without writing those data to disks.
As a compression, VSP and DSW should frequently write
updated vertices to disks. PSW and ESG need to update on-
disk edges since they use a single data structure to manage
both edges and vertices. In Section IV, we use experiments
to show that a single commodity machine could provide
sufficient memory for processing big graphs with the VSW
model. Also, GraphMP has similar data preprocessing I/O
cost with other graph engines.

4 PERFORMANCE EVALUATIONS

We evaluate the performance of GraphMP using a Dell R720
server with three applications (PageRank, SSSP, CC) and
four directed graph datasets. The physical machine contains
two Intel Xeon E5-2620 CPUs, 128GB memory, 4x4TB HDDs
(RAID5). Table 4 shows the information of used datasets:
Twitter, UK-2007, UK-2014 and EU-2015. Twitter is a social
network graph crawled in 2010 [42], showing connections
between twitter users. UK-2007 and UK-2014 are two web
graphs crawled in 2007 and 2014 respectively, showing links
between web pages in the .uk domain. EU-2015 is a web
graph crawled in 2015, showing page links in European

(a) Twitter (b) UK-2007

(c) UK-2014 (d) EU-2015

Fig. 6. The in-degree and out-degree distribution of used graph datasets.
All four graphs are power-law graphs: most vertices have relatively few
neighbors while a few have many neighbors.

TABLE 4
Graph datasets used in the experiments1.

Dataset Vertex
Num

Edge
Num

Avg
Deg

Max
Indeg

Max
Outdeg

Size
(CSV)

Twitter 42M 1.5B 35.3 0.7M 770K 25GB
UK-2007 134M 5.5B 41.2 6.3M 22.4K 93GB
UK-2014 788M 47.6B 60.4 8.6M 16.3K 0.9TB
EU-2015 1.1B 91.8B 85.7 20M 35.3K 1.7TB

1 All datasets is public on http://law.di.unimi.it/datasets.php.

Union countries. EU-2015 is our largest graph dataset, con-
taining 1.1 billion vertices and 91.8 billion edges. If we store
the raw graph in the CSV format, EU-2015 is a 1.7TB file.
All datasets are real-word power-law graphs. As shown in
Figure 6, in all four graphs, most vertices have relatively
few neighbors while a few have many neighbors. Since we
run CC on undirected graphs, we need to convert the input
directed graphs into undirected graphs, and use undirected
graphs as the input of CC.

In this section, we first evaluate the effect of GraphMP’s
selective scheduling and compressed edge caching. Then,
we compare the performance of GraphMP with GraphMat,
which is a single-machine in-memory graph system. Next,
we compare the performance of GraphMP with three popu-
lar single-machine out-of-core engines: GraphChi, X-Stream
and GridGraph. Finally, we compare the performance of
GraphMP with three distributed in-memory graph engines
(Pregel+, PowerGraph and PowerLyra) and two distributed
out-of-core systems ( GraphD and Chaos). We set up afore-
mentioned distributed engines on 9 R720 servers connected
by 10Gbps network. Each server has the same configuration
with the server used to run single-machine graph engines.

4.1 Effect of Selective Scheduling

In this set of experiments, we enable selective scheduling in
GraphMP-SS, so that it can use Bloom filters to detect and
skip inactive shards. In GraphMP-NSS, we disable selective

http://law.di.unimi.it/datasets.php
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Fig. 7. Effect of GraphMP’s selective scheduling mechanism. GraphMP-
SS enables selective scheduling. GraphMP-NSS disables the selective
scheduling mechanism. We use UK-2007 as the input, and run PageR-
ank, SSSP and CC on a single machine. The vertex activation ratio
denotes the number of active vertices of an iteration.

scheduling, so that it should process all shards in each itera-
tion. To see the effect of GraphMP’s selective scheduling, we
run PageRank, SSP and CC on UK-2007 using GraphMP-SS
and GraphMP-NSS, and compare their performance. Figure
7 shows that GraphMP’s selective scheduling could improve
the processing performance for all three applications.

As shown in Figure 7 (a1), when running PageRank on
UK-2007, many vertices converge quickly. After the 110-th
iteration, less than 0.1% of vertices update their values in an
iteration. After that iteration, GraphMP-SS enables selective
scheduling, and it continually reduces the execution time
of an iteration. In particular, GraphMP-SS only uses 1.2
seconds to execute the 200-th iteration. As a comparison,
GraphMP-NSS roughly uses 2 seconds per iteration after
the 110-th iteration. In this case, selective scheduling could
improve the processing performance of a single iteration by
a factor of up to 1.67, and improve the overall performance
by 5.8%.

From Figure 7 (b1) and (b2), we find that SSSP benefits a
lot from GraphMP’s selective scheduling mechanism. In this
experiment, GraphMP updates more than 0.1% of vertices
in a few iterations. Therefore, GraphMP-SS could continu-
ously reduce the computation time from the 15-th iteration,
and uses 0.4 seconds in the 200-th iteration. As a compari-
son, GraphMP-NSS roughly uses 1.4 seconds per iteration.
In this case, GraphMP’s selective scheduling mechanism
could speed up the computation of an iteration by a factor

0
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Fig. 8. Effect of GraphMP’s compressed edge caching. We use EU-2015
as input, run PageRank, SSSP and CC on GraphMP with different cache
modes, and capture the execution time of first 10 iterations.

of up to 2.86, and improve the overall performance of SSSP
by 50.1%.

GraphMP’s selective scheduling mechanism is enabled
after the 31-th iteration of CC, as shown in Figure 7 (c1)
and (c2). GraphMP-SS begins to outperform GraphMP-NSS
from that iteration. GraphMP-SS uses 0.8 seconds in the
200-th iteration, and GraphMP-SS uses 1.4 seconds. In this
case, GraphMP’s selective scheduling mechanism reduces
the computation time of an iteration by a factor of up to
1.75, and improves the overall performance of CC by 9.5%.

4.2 Effect of Compressed Edge Caching
To see the effect of GraphMP’s compressed edge caching,
we run PageRank, SSP and CC on EU-2015 using GraphMP
with different cache modes, and compare their performance.

As shown in Figure 8(a), when using compressors with
higher compression rate, GraphMP could cache more edge
shards in memory. Specifically, GraphMP (Cache-0) could
cache about 20% of edge shards in memory without data
compressing. In the same testbed, GraphMP (Cache-3) could
cache about 84.3% of edge shards and reduce disk I/O cost
by using zlib-1 to compress cached edge shards. GraphMP
(Cache-4) could cache all edge shards by compressing edge
shards with zlib-3. In this case, there is even no disk I/O
cost after loading all edge shards into memory.

From Figure 8(b), (c) and (d), we can see that GraphMP’s
compressed edge caching could significantly improve graph
processing performance. Since GraphMP should access all
graph data from disk for filling edge cache and constructing
Bloom filters during the first iteration, it takes more time to
complete this iteration than others. Figure 8(b) shows that
GraphMP roughly takes 48650 seconds to complete the first
10 iterations of PageRank with cache-0. The corresponding
values of cache-1, cache-2, cache-3 and cache-4 are 42075,
34077, 9678 and 5868 seconds, respectively. In this case,
GraphMP’s compressed edge caching can speed up PageR-
ank by 8.3. When running SSSP, cache-1, cache-2, cache-
3 and cache-4 could speed up the application by 1.1, 1.2,
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Fig. 9. Performance comparison between GraphMP and GraphMat. In
this experiment, we run PageRank on the Twitter dataset.

3.3 and 3.8 respectively, compared to cache-0, as shown in
Figure 8(c). In this experiment, GraphMP has less execution
time from iteration 2 to iteration 6 due to selective schedul-
ing: only a small portion of shards with active vertices are
processed. As shown in Figure 8(d), CC also benefits from
compressed edge caching. More specifically, cache-1, cache-
2, cache-3 and cache-4 could speed up CC by a factor of 1.2,
1.4, 4.2 and 8.1 respectively, when compared to cache-0.

4.3 GraphMP vs. GraphMat

We compare the performance of GraphMP with GraphMat,
which is an in-memory graph processing system. GraphMat
maps vertex-centric programs to sparse vector-matrix mul-
tiplication (SpMV) operations, and leverages sparse linear
algebra libraries and techniques to improve the performance
of large-scale graph computation. The results show that
GraphMP has competitive performance to GraphMat.

GraphMat could not process UK-2007, UK-2014 and EU-
2015 in our machine with 128GB memory. At the beginning
of a graph application, GraphMat loads all vertices and
edges into memory, and manages them with required data
structures. As shown in Figure 9, when running PageRank
on Twitter, GraphMat uses up to 122GB memory for data
loading. When processing UK-2007, UK-2014 and EU-2015
in our machine, GraphMat can easily crash caused by out-
of-memory. As a comparison, GraphMP could efficiently
process all 4 datasets in a single machine.

From Figure 9, we can find that GraphMat’s data loading
phases use 390 seconds to load the Twitter dataset into
memory. Since GraphMat does not require the input graph’s
edges to be ordered, there is an expensive sorting process to
build required data structures for SpMV during the data
loading phase. As a comparison, GraphMP uses a separated
data preprocessing stage to sort and group the input graph’s
edges, and could reuse these data in different applications.
Thus, GraphMP uses 7.3GB memory (including Bloom fil-
ters and edge cache) to run PageRank on Twitter, and takes
about 30 seconds to complete the first iteration, which con-
tains the compressed edge cache filling time and Bloom filter
construction time. In addition, GraphMP needs additional
340.2 seconds for data preprocessing.

Since GraphMP performs costly edge sorting in a sep-
arated data preprocessing stage and GraphMat sorts edges
at the beginning of an application, we compare the perfor-
mance of GraphMat with GraphMP in two cases. In the first
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Fig. 10. Performance comparison between GraphMP and GraphMat to
run PageRank, SSSP and CC on the Twitter dataset. Vertex activation
ratio denotes the ratio of active vertices of an iteration. In this figure,
the first iteration’s execution time does not include data loading time or
initialization time for fair comparison.

case, we do not consider data loading overhead for both sys-
tems. In GraphMat, we start to measure the execution time
when all vertices and edges are loaded into memory and
all data structures are constructed. In GraphMP, we do not
consider the time used for filling edge cache and construct-
ing Bloom filters. Figure 10 shows vertex activation ratio
and running time of each iteration when running PageRank,
SSSP and CC on Twitter. We can see that GraphMat takes
28 seconds to complete the first 120 iterations of PageRank,
and GraphMP uses 22 seconds. GraphMat takes 1.3 seconds
to complete the first 15 iterations of SSSP, while GraphMP
needs 9.9s. When running CC, GraphMat takes 1.5 seconds
to complete the first 25 iterations, while GraphMP uses 2.1
seconds. In the second case, we consider data loading and
data preprocessing overhead in both systems. Specifically,
we add data preprocessing time of GraphMP to the total
execution time. In this case, GraphMat takes 418 seconds
for running PageRank, while GraphMP uses 366 seconds.
GraphMat takes 349 seconds to run SSSP, while GraphMP
needs 361s. When running CC in our testbed, GraphMat
takes 382 seconds, while GraphMP uses 373 seconds.

4.4 GraphMP vs. GraphChi, X-Stream and GridGraph

In this set of experiments, we compare the performance of
GraphMP with three out-of-core graph processing systems:
GraphChi, X-Stream and GridGraph. We do not use VENUS,
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TABLE 5
Performance comparison between GraphMP with other systems (application: PageRank; time unit: minutes; time collection: first 10 iterations).

Dataset Single-Machine Out-of-Core Distributed In-Memory Distributed Out-of-Core GraphMP
GraphChi X-Stream GridGraph Pregel+ PowerGraph PowerLyra GraphD Chaos NoCache Cache

Twitter 7.35 22.62 2.73 1.15 0.92 0.78 2.02 3.64 0.76 0.67
UK-2007 18.71 148.27 7.57 5.49 3.22 2.55 13.38 14.11 2.99 2.90
UK-2014 473.33 1413.35 675.73 - - - 543.82 389.90 336.45 46.36
EU-2015 970.67 2856.78 1162.63 - - - 2267.43 751.09 797.98 94.48

TABLE 6
Performance comparison between GraphMP with other systems (application: SSSP; time unit: minutes; time collection: first 10 iterations).

Dataset Single-Machine Out-of-Core Distributed In-Memory Distributed Out-of-Core GraphMP
GraphChi X-Stream GridGraph Pregel+ PowerGraph PowerLyra GraphD Chaos NoCache Cache

Twitter 21.35 7.66 14.35 0.17 1.11 0.75 0.26 2.66 0.59 0.51
UK-2007 64.45 31.23 38.07 1.29 2.72 2.49 1.36 4.25 2.49 2.35
UK-2014 647.58 697.43 507.63 - - - 589.64 371.08 261.04 46.50
EU-2015 1627.43 1478.75 514.62 - - - 2120.22 627.23 320.00 77.19

TABLE 7
Performance comparison between GraphMP with other systems (application: CC; time unit: minutes; time collection: first 10 iterations).

Dataset Single-Machine Out-of-Core Distributed In-Memory Distributed Out-of-Core GraphMP
GraphChi X-Stream GridGraph Pregel+ PowerGraph PowerLyra GraphD Chaos NoCache Cache

Twitter 21.23 11.78 16.67 1.57 1.39 1.06 2.66 4.85 0.60 0.55
UK-2007 61.15 115.94 35.82 7.81 4.24 4.07 16.12 18.79 2.82 2.79
UK-2014 635.97 1628.00 533.63 - - - 466.60 414.76 219.92 44.31
EU-2015 1553.70 2691.37 867.45 - - - 2172.95 735.02 451.74 91.25

since it is not open source. We run PageRank, SSSP and
CC on Twitter, UK-2007, UK-2014 and EU-2015, and record
their processing time of the first 10 iterations and memory
usage. GraphMP-C denotes the system with compressed
edge caching, and GraphMP-NC denotes the system with-
out compressed edge caching. For fair comparison and sim-
plicity, the first iteration’s execution time of each application
includes data loading and initialization time.

Table 5, 6 and 7 show the execution time of each iteration
with different systems, datasets and applications. We could
observe that GraphMP can considerably improve the graph
processing performance, especially when dealing with big
graphs. In Graph-C, the performance gain comes from
three contributions: VSW model, selective scheduling, and
compressed edge caching. When running PageRank on EU-
2015, GraphMP-NC could outperform GraphChi, X-Steam
and GridGraph by 1.21x, 3.58x and 1.46x, respectively. If
we enable compressed edge caching, GraphMP-C further
improves the processing performance, and outperforms
GraphChi, X-Steam and GridGraph by 10.28x, 30.27x and
12.32x to run PageRank on EU-2015, respectively. When
running SSSP, only a small part of vertices may update their
values in an iteration. With selective scheduling, GraphMP-
NC and GraphMP-C could skip loading and processing
inactive shards to reduce the disk I/O overhead and pro-
cessing time. GraphMP-NC could respectively outperform
GraphChi, X-Steam and GridGraph by 5.09x, 4.62x and
1.61x for running SSSP on EU-2015. GraphMP’s compressed
edge caching mechanism could further reduce disk I/O
overhead, and reduce the processing time. Thus, GraphMP-
C could outperform GraphChi, X-Steam and GridGraph
by 21.08x, 19.16x and 6.67x for running SSSP on EU-2015,
respectively. When running CC on EU-2015, GraphMP-NC

TABLE 8
Preprocessing time comparison between GraphChi, GridGraph,

X-Stream and GraphMP (time unit: minutes).

Graphchi Gridgraph X-Stream GraphMP
Twitter 11.08 4.83 3.38 5.67

UK-2007 45.42 23.98 14.20 20.93
UK-2014 453.07 422.02 130.41 313.18
EU-2015 1031.02 766.03 218.37 523.41

could outperform GraphChi, X-Steam and GridGraph by
3.42x, 5.96x and 1.92x, respectively. This performance gain
is due to the VSW computation model with less disk I/O
overhead. If we enable compressed edge caching, GraphMP-
C respectively outperforms GraphChi, X-Steam and Grid-
Graph by 17.02x, 29.49x and 9.51x to run CC on EU-2015.

Table 8 shows the data preprocessing time of GraphChi,
GridGraph, X-Stream and GraphMP. We use provided data
preprocessing programs of GraphChi and GridGraph, and
use C++ to implement a new data preprocessing engine for
X-Stream, since X-Steam provides a Python script for data
preprocessing with poor performance. In this experiment,
all input graphs are stored in CSV format. From Table 8,
we can find that GraphMP would not introduce much data
preprocessing cost. When dealing with EU-2015, X-Stream
offers the best performance: it only uses 218.37 minutes to
split the input graph into partitions with required format.
GraphChi, GridGraph and GraphMP take 1031.02, 766.03
and 523.41 minutes to preprocess EU-2015, respectively.

Figure 11 shows the memory usage of each graph pro-
cessing system to run PageRank. We can see that GraphMP-
NC uses more memory than GraphChi, X-Stream and Grid-
Graph, since it keeps all source and destination vertices
in memory. For example, when running PageRank on EU-
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Fig. 11. Memory usage of 5 graph processing systems to run PageRank
on Twitter, UK-2007, UK-2014 and EU-2015. We disable compressed
cache mechanism in GraphMP-NC, and enable it in GraphMP-C.

2015, GraphChi, X-Stream and GridGraph only use 10.65GB,
1.22GB and 1.35GB memory, respectively. The correspond-
ing value of GraphMP-NC is 23.53GB. GraphChi, X-Stream
and GridGraph are designed for graph processing at scale
on a single PC rather than a commodity server or a cloud
instance. Even though our machine has 128GB memory,
these systems cannot efficiently utilize them. If we enable
compressed edge caching, GraphMP-C uses 91.37GB mem-
ory to run PageRank on EU-2015. In this case, GraphMP-C
uses about 68GB as cache. Due to compression techniques,
GraphMP-C could store all 91.8 billion edges in the cache
using 68GB memory. Thus, there are no disk accesses for
edges during the computation after the first iteration. While
GraphMP-C needs additional time for shard decompression,
it can still considerably improve the processing performance
due to the reduced disk I/O overhead.

4.5 GraphMP vs. Distributed Graph Engines
We compare the performance of GraphMP with three dis-
tributed in-memory graph engines (Pregel+, PowerGraph
and PowerLyra) and two distributed out-of-core approaches
(GraphD and Chaos). We set up aforementioned distributed
graph engines on 9 servers connected by 10Gbps network.
Each server has the same hardware and software configu-
ration with the server used to run GraphMP. The cluster
totally has 1.15TB memory and 18 physical CPUs (108
cores, 216 threads). In the experiments, we enable selective
scheduling and compressed edge caching in GraphMP.

Table 5, 6 and 7 show that GraphMP can be as highly
competitive as distributed graph processing systems. When
running PageRank on UK-2007, GraphMP outperforms
Pregel+ and PowerGraph by 1.89x and 1.11x, respectively.
In the same case, PowerLyra outperforms GraphMP by
1.13x. Compared to GraphD and Chaos, GraphMP could
speed up PageRank on UK-2007 by a factor of 4.61 and
4.86. When running SSSP on UK-2007, Pregel+ and GraphD
offer better performance than GraphMP, since they could
avoid processing inactive vertices at the level of vertex.
As a comparison, GraphMP could only perform selective
scheduling at the level of edge shards. Compared to Chaos,

GraphMP could speed up SSSP on UK-2007 by a factor
of 1.81. When running CC on UK-2007, GraphMP could
outperform Pregel+, PowerGraph, PowerLyra, GraphD and
Chaos by 2.79x, 1.52x, 1.46x, 5.78x and 6.74x, respectively.
Note that these distributed graph engines have 9x more
resources than GraphMP.

Due to memory limitation (even though the cluster has
more than 1TB memory), Pregel+, PowerGraph and Power-
Lyra crash when processing UK-2014 and EU-2015. GraphD
and Chaos can cope with UK-2014 and EU-2015 from disks.
As a comparison, GraphMP can efficiently handle UK-2014
and EU-2015 using just a single machine. With compressed
edge caching, GraphMP can manage all edges in a single
machine’s memory. Therefore, GraphMP avoids costly disk
I/O operations, and offers higher performance than GraphD
and Chaos. Compared to GraphD, GraphMP could speed up
the processing performance by a factor of 23.99, 27.46 and
23.81 to run PageRank, SSSP and CC on EU-2015. Compared
to Chaos, the corresponding speedup ratios are 7.95, 8.13
and 8.06, respectively.

5 CONCLUSION

In this paper, we tackle the challenge of big graph analytics
on a single machine. Existing out-of-core approaches have
poor performance due to the high disk I/O overhead. To
address this problem, we propose a new out-of-core graph
processing system named GraphMP. GraphMP partitions
the input graph into small shards, each of which could be
fully loaded into memory and contains a similar number
of edges. Edges with the same destination vertex appear in
the same shard. We use three techniques to improve the
graph processing performance by reducing the disk I/O
overhead. First, we design a vertex-centric sliding window
computation model to avoid reading and writing vertices on
disk. Second, we propose selective scheduling to skip load-
ing and processing unnecessary shards on disk. Third, we
use compressed edge caching to fully utilize the available
memory resources to reduce the amount of disk accesses
for edges. With these three techniques, GraphMP could ef-
ficiently support big graph analytics on a single commodity
machine. Extensive evaluations show that GraphMP could
outperform GraphChi, X-Stream and GridGraph by up to
30, and can be as highly competitive as distributed graph
engines like Pregel+, PowerGraph and Chaos.

GraphMP is designed for graph processing on normal
machines or cloud instances without special hardwares. If
large flash memory or non-volatile memory is deployed,
one may use systems like FlashGraph or Mosaic. When
having big memory (for example, in supercomputers), one
may use in-memory systems like GraphMat. If high-speed
network and big memory machines are available, one may
use distributed graph engines like Pregel+ or PowerGraph.
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