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Abstract

This paper investigates a waste collection problem with the consideration of midway disposal pattern. An artificial bee
colony (ABC)-based hybrid approach is developed to handle this problem, in which the hybrid ABC algorithm is
proposed to generate the better optimum-seeking performance while a heuristic procedure is proposed to select the
disposal trip dynamically and calculate the carbon emissions in waste collection process. The effectiveness of the
proposed approach is validated by numerical experiments. Experimental results show that the proposed hybrid approach
can solve the investigated problem effectively. The proposed hybrid ABC algorithm exhibits a better optimum-seeking
performance than four popular metaheuristics, namely a genetic algorithm, a particle swarm optimization algorithm, an
enhanced ABC algorithm and a hybrid particle swarm optimization algorithm. It is also found that the midway disposal
pattern should be used in practice because it reduces the carbon emission at most 7.16% for the investigated instances.
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1. Introduction

Municipal Solid Waste (MSW) collection is an important
public service and logistics activity [1]. It consists of the
processes of gathering wastes from different areas,
loading and transporting by vehicles, and dumping at
disposal facilities [2]. Effective MSW collection and
disposal are recognized as one of urgent requirements for
sustainable social development [3]. The Waste
Collection Problem (WCP) aims to generate effective
MSW collection solutions by yielding effective waste
collection routes for different vehicles [4], which is one
type of vehicle routing problems (VRPS) in essence [2],

[5].

Research on WCP has received increasing attention in
recent years. In Tung and Pinnoi’s study [2], vehicles
were applied to collect wastes from different collection
points under time window constraints and the full-load
wastes were dumped at a landfill. The objectives were to
optimize the travel times and distances of vehicles. Kim

et al. [6] investigated a WCP with the objective of
minimizing the number of vehicles and the total travel
time by extending the Solomon’s insertion algorithm [7].
Multiple disposal facilities, collection time windows of
customers and driver rest periods were considered in
their model. Louati [1] proposed a general MSW
collection model with the consideration of multiple
transfer stations, collection points and heterogeneous
vehicles. Comparing to the practical model, total travel
distances and operational hours were reduced by
applying this new model. Some researchers have
considered other objectives including minimizing the
total travel cost, the total transportation cost, the labor
cost, the travel distance and the number of vehicles used
[51, [8], [9], [10]. In recent years, WCPs with
sustainability-related constraints and objectives have
received increasing attention. Apaydin and Gonullu [11]
focused on the exhaust emission reduction of vehicles in
solid waste collection processes by using a software to
optimize the waste routes. Faccio
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etal.[12] presented a vehicle routing model for solid waste collec-
tion, which is helpful to reduce engine emissions, traffic congestion
and noise.

However, some realistic features in WCP have not been con-
sidered in previous studies. For example, the emissions and fuel
consumptions were calculated usually based on the travel dis-
tance without consideration of the wastes loaded on vehicles in
the collection process, which results in inaccurate emissions and
fuel consumptions. In addition, the waste disposal pattern was
considered to be a fully-loaded disposal pattern (FDP), by which
wastes were dumped only when the vehicle is fully-loaded [5,6].
In some realistic situations, when vehicles have collected a certain
amount of wastes (not fully-loaded) from several waste collection
points, they could empty themselves by dumping the wastes to
the nearest disposal facility dynamically, which is the so-called
midway disposal pattern (MDP). According to the emission model
proposed by Franceschetti et al. [13], vehicles with lower weight
of wastes could generate the less carbon emissions in waste col-
lection. Thus, after those vehicles empty themselves and start to
collect other points in MDP, their carbon emissions could decrease
largely since their total load drops dramatically. It is thus crucial
to decide when the vehicle should empty itself and which disposal
facility should be visited since the MDP is helpful to reduce carbon
emissions. However, MDP has not been considered in WCP, which
allows the vehicle to dump wastes dynamically, even if the vehicle
is not fully loaded.

This paper thus investigates a WCP with MDP and the total
carbon emission cost minimization objective, which is termed
as WCP-MDP. The investigated problem can be considered as a
VRP with dynamic disposal trips. It is well known that VRPs are
NP-hard [14-17]. Realistic features in waste collection, such as
multiple disposal facilities and midway disposal pattern, further
increase the complexity of the WCP-MDP. Various approaches
have been developed for WCPs and VRPs, including linear pro-
gramming [ 18], mixed integer programming [2,19], heuristics [10,
20], and meta-heuristics such as ant colony optimization algo-
rithm (ACO) [4,21], genetic algorithm (GA) [22,23], particle swarm
optimization algorithm (PSO) [3,24], artificial bee colony algo-
rithm (ABC) [25,26] and variable neighborhood descent algorithm
(VND) [27,28]. Due to the NP-hard nature, the WCP-MDP problem
cannot be solved effectively by mathematical programming tech-
niques and traditional heuristics within an affordable time [29].
Metaheuristics have the potentials to provide optimal or near-
optimal solutions to complex NP-hard problems within a rea-
sonable time [30-36]. In the waste collection and VRP literature,
various metaheuristics have been used to solve WCPs and VRPs,
among which GA and PSO are the most commonly used ones. It
is well-known that different parameter settings for metaheuristics
could lead to different optimization results. The metaheuristics
with less parameters are thus usually easier to use. Comparing
to PSO and GA, ABC provides a simpler parameter mechanism
for global search, which only needs to set two parameters and
has a mechanism to accelerate the convergence [26]. ABC has
been adopted to solve effectively a wide variety of optimization
problems in recent years [37-43]. Many studies have reported the
comparison results between ABC and other popular metaheuristics
such as GA and PSO, which show that ABC can provide better so-
lutions within less computation time [38,44]. We refer interested
readers to two comprehensive surveys on ABC algorithms [37,45].
However, no research has reported the application of ABC to WCPs.
This paper thus develops an ABC-based solution approach to han-
dle the investigated WCP-MDP.

Traditional metaheuristics could trap into local optimum for
large-scale optimization problems. In recent years, various hybrid
optimization techniques have been developed by integrating the
search mechanism of global search and local search, which exhib-
ited superior optimization performances to popular metaheuristics

(e.g., GA, PSO and ACO) in various real-world applications [46-
49]. The performance of hybrid optimization techniques are af-
fected by the algorithms nested for its global search and local
search. As aforementioned, ABC is a good candidate to perform
the global search. In addition, VND is an effective local search
approach [50], which has exhibited good performances in various
applications [51,52]. Thus, it is desirable to develop a hybrid op-
timization approach by integrating the global search capability of
ABC and the local search capability of VND since ABC and VND-
based hybrid approach has not been reported in the literature.

This paper contributes to the literature by (1) extending waste
collection research by considering the realistic midway disposal
pattern, and (2) developing an ABC-based hybrid approach to solve
this problem effectively. The rest of this paper is organized as
follows. In Section 2, the mathematical model of the investigated
WCP-MDP is formulated. Section 3 presents the ABC-based hybrid
approach. In Section 4, numerical experiments are presented and
experimental results are analyzed firstly to validate the effective-
ness of the proposed approach. Then we examine the carbon emis-
sion reduction generated by the MDP, and the timing of applying
VND. Finally, Section 5 concludes the paper and suggests future
research directions.

2. Problem statement
2.1. Problem description

The WCP-MDP can be defined on a directed graph G(C, A, D),
where C = {0, ..., c} is the node set of collection points, D =
{c+1, c+2,...,n}is the set of disposal facilities. Let N denotes
the set of nodes consisting of all collection points and all disposal
facilities, i.e, N = C U D. In addition, A = {(i,j) |Vi,j € N, i # j}
is the set of arcs among all collection points and disposal fa-
cilities. Each vehicle is assigned to a route with a sequence of
nodes (including waste collection points and disposal facilities).
Each collection point of the assigned route is served once and all
wastes are loaded and dumped. This research sets that a vehicle
can visit disposal facilities at most twice in a single tour. That
is, each vehicle perform the midway disposal only once at most.
This setting is reasonable in real-world waste collection practice.
First, the number of disposal facilities is usually very limited in
each single waste collection area due to cost concerns. Second,
the service area of each vehicle is usually limited and too many
disposal facilities are unnecessary. The carbon emission EC; of
traveling on arc (i, j) is equal to « - Sj;, where «($/kg) is the cost
of unit carbon emission, S;(kg) is the carbon emission incurred on
arc(i, j). This research adopts a shadow price of carbon, $120 per
ton carbon emission [53]. That is, the cost of unit carbon emission
a equals to 0.12$/kg.

The objective is to minimize the summation of carbon emission
costs (unit: $) of all vehicles. The decision variable of the WCP-
MDP is denoted by x;j. X;i is 1 if vehicle k collects wastes from
two different nodes i and j, otherwise it is 0. y; is an intermediate
variable. It is 1 if node i is collected by vehicle k, otherwise it is 0.
Notations used in this section are listed out in Appendix A.

Given a waste collection task, the carbon emission S;; on arc (i, j)
is equal to the product of the fuel emission factor 6 and the fuel
consumption §; on this arc [54], i.e., Sj = 6 - ;. The fuel emission
factor 0 is a constant, which is defined as the amount (kilogram)
of CO, emitted per liter of fuel (diesel). The fuel consumption
8 (liters) is defined by the comprehensive emissions model de-
veloped by Franceschetti et al. [13], from which the following
equation can be derived (detail is shown in Appendix B):

Sijk = pilik + p2lijwiji (1)

where p; and p; are pre-given parameters, lj is the travel distance
(m), and wyj is the total weight of vehicle (kg) composed of the curb
weight and the vehicle load.



2.2. Mathematical model

The mathematical model of the WCP-MDP is formulated as
follows:
Minimize

K
F(xi) = Z (o - Sijk - xie) (2)
subject to
n
Z Xijk = Yijk»
i=0
n
Z Xijk = Yiks
j=0
K
Zyik = 1a
k=1
K
> yu=K (6)
k=1
n

n
DY x=IPl—1, PC{l,....n};2<|P|<n—1;VkeK
i=1 j=1

Vie N,ke K (3)

VieN,keK (4)

VieC (5)

Cc
injk <2, VieD,keK (8)
i=1
C
D X =1, VieD, kekK (9)
j=0
n
L =g+ Y (xula), ¥i—jjeCkek (10)
i=0
Lx <Q, VieC,kekK (11)
Ly = 0, VieD,keK (12)
wi = M + L, Vi,jeN,kek (13)
Siik = plik + p2lijxwik, Vi,j € N,k e K (14)
Xijk, Yik € {0, 1}, Vi,je N,ke K (15)

The objective function of the model is given in (2) which mini-
mizes the total carbon emission cost of all vehicles. Constraints (3)-
(4) guarantee that each vehicle arrives and departs from any node
when it serves this node. Constraint (5) ensures that each collection
point is served once. Constraint (6) ensures that all vehicles com-
mence from the depot. Constraint (7) ensures sub-tour elimination.
Constraint (8) enforces the vehicle to visit the disposal facility at
most twice, while constraint (9) ensures that the vehicle visits the
next collection point or returns to the depot from the disposal
facility. Constraint (10) denotes the accumulated weights of any
collection point. Constraint (11) ensures that the total amount of
wastes collected in a route do not exceed the maximum load of
each vehicle. Constraint (12) ensures all the wastes on a vehicle
are dumped in the disposal facility. Constraint (13) calculates the
total load of vehicle on arc(i, j). The carbon emission on arc(i, j) is
calculated by constraint (14). Constraint (15) indicates the value
ranges of variables x;; and yj.

3. The artificial bee colony-based hybrid approach

This section presents the ABC-based hybrid approach for the
WCP-MDP problem. This approach consists of a hybrid artificial bee

colony algorithm and a midway disposal trip selection heuristic,
which is termed as HABC-MDT. The selection heuristic decides
where and when the vehicle needs to dump wastes. To achieve a
good optimum-seeking performance, the HABC hybridizes the en-
hanced artificial bee colony algorithm (EABC) developed by Szeto
et al. [55] and the variable neighborhood decent (VND) algorithm
developed by Hansen et al. [27].

3.1. Overview of the hybrid artificial bee colony algorithm

This section describes how the proposed HABC is used to solve
the WCP-MDP. The flow chart of proposed HABC-MDT is presented
in Fig. 1. First, the parameters are initialized in step 1. The initial
population G, for the investigated WCP-MDP are generated by
random permutation in step 2. The fitness of each individual in the
initial population is evaluated by the MDT procedure described in
Section 3.4 in step 3. Then some neighborhood operators (i.e., ran-
dom swap, random insertion, reversing a sequence et al.) described
in the EABC [55] are randomly chosen to generate new populations
Gnp based on the current population in step 4. This step aims to
improve the diversity of new populations in the early stage of
HABC. The MDT procedure is reused to evaluate the new solutions
in step 5. Then, in step 6, the improved solutions are updated to
form the new population by employing the roulette wheel selec-
tion method described in [56]. In step 7, the abandon condition
is checked. If a predetermined number (limit) of operations is
reached, some bad individuals which have never generated any
improved solutions are replaced by randomly generated solutions;
otherwise, it returns to step 4. The loop in steps 4-7 is terminated
until the maximal number of neighborhood operations, denoted by
limit, are reached or the improved solution is found. Next, the VND
is employed for local search improvement of current population
by intensifying the exploitation of candidate solutions in step 8.
In step 9, the MDT procedure, same to steps 3 and 5, is used to
evaluate the new solutions obtained by local search. Then, the
greedy selection is applied to obtain the new generation in step
10. After each cycle, the termination condition is checked in step
11. If a specified maximum number t,,,q, of iterations is reached or
no better individual is generated in some consecutive iterations,
the iterative process of the HABC algorithm is terminated. The
best candidate individuals Sy are returned as the best solutions
generated by the HABC algorithm in step 12.

3.2. Initial solutions and evaluation function

We adopt giant tours to represent the sequences of waste
collection points, i.e. a random permutation of points without
delimiters. When this representation is applied for WCP-MDP, a
decoding procedure which divides the random permutation into
several sub-tours is needed. We adopt the optimal splitting proce-
dure proposed by Prins [15] to split the giant tour into sub-tours.
These sub-tours are then used for local search by applying the
neighborhood structures, which are described in Section 3.3.

The evaluation function is defined as f(x) = e(X) + ¥ - p(x),
where X denotes a candidate solution, e(x) is the carbon emission
cost of this solution, p(x) is the total violation of the capacity
constraint. The second term in the evaluation function is used to
handle capacity constraint (11), in which the penalty coefficient v
is a self-adaptive parameter. It gradually enlarges with the increase
of the number of iterations, the detail of which will be described in
Section 4.1.
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Fig. 1. Flow chart of proposed HABC-MDT.

3.3. Neighborhood structures

In the proposed HABC-MDT approach, variable neighborhood
descent (VND) algorithm is used as the local search process for
seeking better solutions based on the sub-tours obtained by the
HABC algorithm. Five neighborhood structures proposed in [49] are
applied to perform local search, namely Crossover, Swap (1, 1), Shift
(1, 0), 2-Opt and Exchange. The first three neighborhood structure
are implemented as inter-route structure while the other two
are applied as intra-route procedure within one sub-tour. These
structures are used according to the sequence presented in [49].

3.4. Midway disposal trip selection heuristic

Given the route (denoted by R) of vehicle k, the MDT selection
heuristic is used to decide when to dump the wastes and selects
the optimal disposal facilities df dynamically in evaluation pro-
cess. The inputs of this procedure contain the number of disposal
facilities (denoted by D), the number (denoted by Cy) of collection
points in route R, the matrix (denoted by MD) of distances between
any two nodes, the sequence of collection points in the route R
and other data required. In the collection process, when vehicle
k decides to dump wastes after a collection point cp1, it needs to
select an optimal disposal facility, and then collects wastes in next
collection point cp,. We define the optimal disposal facility as the
disposal facility with the minimal total distance from it to the two
adjacent collection points cp; and cp,.

The pseudo-code of this procedure is shown in Fig. 2. First, all
the parameters needed in this procedure are initialized in line 2.
Then, the for-end-loop in lines 3-10 is used to calculate the carbon
emission costs (CEC), generated by selecting the best disposal
facility after each collection point, based on Eq. (1). The collection

Pseudo-codes of MDT selection heuristic line

Begin 1
Parameter Initialization: MD, C;,D 2
For ¢=1,..,C, do 3
cdf = Select_min (cp,.cp,..) 4
EC| = Cal_cost(Ry,1, R, Riserr ) 5
sdf = Select_min (C,,0) 6
EC; = Cal_cost(Ruyu1, Rirse, » Reysar ) 7
EC; = Cal_cost( R0 ) 8
EC\pp = EC/+EC5+EC; 9
End for 10
EC\pp ::m,in ECypp 11
End 12

Fig. 2. Pseudo-code of MDT selection heuristics.

point in R is indexed by t. For collection point t, lines 4-9 calculate
the resulting total CEC ECypp if the waste collected is dumped
immediately after this point. In line 4, we select out the disposal
facility, with the minimal total distance to collection points cp; and
Cpe+1, as the current disposal facility cdf. We use R;_,; to denote a
sub-route from point i to point j. The route of each vehicle from
the depot to the disposal facility cdf can be divided into three sub-
routes: the depot 0 to point 1 (Rg_.1), point 1 to point t (Ri_¢),
and point t to the current disposal facility (R;—,cqs). The resulting
total CEC generated between the depot and cdf, denoted by EC!,
is calculated in line 5 by summing up the CECs in the three sub-
routes. Next, the vehicle dumps all collected wastes in the current
disposal facility and then visits the remaining collection points in
Ri4+1-¢, to collect wastes. In line 6, the same method used in line 4
is reused to find a selected disposal facility (sdf ) which has a total
minimal distance to the last collection point C; and the depot. Then
the CEC EC}, generated between cdf and sdf, is calculated in line 7.
EC} is 0if no sdf is selected. Line 8 calculates the CEC EC} generated
between sdf and the depot. The total CEC EC}, for collection point
t is calculated in line 9. The best CEC ECypp of MDP for route R is set
to the minimal EC},, in line 11. That is, ECypp = min, EC},;,. By so
doing, for each collection route, we select the disposal facilities for
which the minimal total CEC is generated in the tour. If t equals Cj,
the vehicle visits all collection points in Ry_,¢, and dumps wastes
only once and then returns to depot. This pattern is a typical FDP,
and its resulting CEC (ECgpp) is the summation of EC! and ECS.

4. Computational experiments and discussions
4.1. Experimental data and setting

To validate the effectiveness of the presented hybrid approach
for the WCP-MDP, we have conducted a series of experiments
for various WCP-MDP instances based on publicly available CVRP
benchmark data sets (http://neo.lcc.uma.es/vrp/vrp-instances/cap
acitated-vrp-instances/). The problem instances consider different
nodes and vehicles, ranging from 33 to 51 and 5 to 7 respectively.
For each problem instance, a group of nodes is selected randomly
to represent the disposal facilities. The number of disposal facil-
ities is assumed to equal to the number of vehicles for a specific
instance. The capacity of vehicles, the demand of each node and
the coordinate of these nodes are given in each dataset.

As for the parameters setting, the size BS of the bee colony, the
predetermined number (limit) of abandoning a specific solution
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Fig. 3. Comparison of objective value changes at different values of BS.

and the probability @ of implementing VND are set as 20, BS x
K and 0.3, respectively. Here K denotes the number of vehicles.
The detailed analyses for these parameters are presented in the
Section 4.2. To make the penalty coefficient ¥ in the evaluation
function increase with the number of iterations, it is defined as
the product of the current number of iterations and a positive
coefficient (e.g., 0.1) [26]. The experiments were carried out on a
laptop with Intel Core i7-6500U CPU @2.5 GHz and 4 GB RAM and
using MATLAB version R2013b.

4.2. Parameter analysis

As mentioned in Section 4.1, two parameters are required to
be tuned in the ABC algorithm for achieving better performance,
BS and limit. In principle, a larger BS generally results in more
parallel searches and a diversified exploration. However, the com-
putational time increases with BS, especially when the number of
iterations and limit are both large. Thus, setting appropriate values
for BS and limit is critical to the optimum-seeking process. We
conducted a series of experiments to observe and compare the
effects of different values of BS and limit on the values of objective
to be optimized (i.e., the total travel distance in CVRP).

Take CVRP instance ‘E-n51-k5’ as an example, the best known
objective value is 524.61. Figs. 3 and 4 show the comparison results
of objective value changes with iterations at different values of BS
and limit respectively. As shown in Fig. 3, the setting of bee colony
size BS = 10 leads to the objective value of 578.23, which is not
close to the best solutions. On the other hand, setting BS = 20 is
sufficient to acquire the best known solution, which also consumes
the less computational time than setting BS = 40 or 80.

We then test the performance of HABC algorithm with different
values of limit at BS = 20. To set the value of limit, there is a
tradeoff between the optimization efficiency and the computa-
tional time. It can be found from Fig. 4 that the larger limit leads
to the faster convergence speed. However, the computational time
for getting the best solution increases with the value of limit. The
value of limit is thus set to the product of BS and the number of
vehicles, which is consistent with Zhang's [26] finding.

Furthermore, we investigate the effects of probability of VND
@ and size of bee colony BS on solution quality and computa-
tional time of HABC. Two different bee colony sizes are considered
(BS = 20,40) since BS = 10 could lead to a much inferior
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Fig. 4. Comparison of objective value changes at different values of limit.

optimization performance and BS = 80 is too time-consuming.
Three different values of @ are considered, which are 0.1, 0.3 and
0.6. To determine their best combination, a series of experiments
are conducted to compare the optimization performances for each
combination of BS and &. Table 1 reports the average objective
value (AOV) of solutions, the average computational time (ACT)
and the average deviation from the best known solution (DFB) to
instance ‘E-51n-k5’ for each combination. It can be found from
Table 1, increasing BS from 20 to 40 improves the solution quality
slightly while leading to dramatically increases in computational
time, i.e., almost two times larger than those obtained at BS = 20.
In addition, at @ = 0.3, the average solution obtained by the HABC
is slightly better than those at ® = 0.1or 0.6 regardless of BS.
Therefore, to balance the computational time and the optimum-
seeking performance, and to obtain a competitive algorithm with
other algorithm, we adopted the combination of BS = 20 and
@ = 0.3 for the HABC algorithm used.

4.3. Experimental results & comparison

4.3.1. Performance comparison

To highlight the effectiveness of the proposed HABC-MDT ap-
proach, this research compared the optimum-seeking
performances of the proposed approach with four different hy-
brid approaches in terms of various WCP-MDP instances. Similar
to the proposed approach, the four approaches hybridize differ-
ent optimization techniques with the MDT selection heuristics,
which are GA-based MDT (GA-MDT) approach, PSO-based MDT
(PSO-MDT) approach, EABC-based MDT (EABC-MDT) approach
and HPSO-based MDT (HPSO-MDT), respectively. The optimization
techniques are used to generate the better waste collection routes
while the MDT selection heuristic is applied to select the disposal
trip based on the obtained collection routes. The only differ-
ence of these approaches is that different optimization techniques
are used. The four optimization techniques are (1) GA [57], (2)
PSO [49], (3) Enhanced ABC [55], and (4) hybrid PSO with VND
(HPSO) [49], respectively. GA and PSO are selected because they
are two of the most commonly used meta-heuristics for complex
combinational optimization problems. EABC and HSPO are selected
because they are representative techniques for capacitated VRPs.
Of course, many other meta-heuristics or hybrid algorithms can
also be used for comparison, but comparing more approaches are
not the focus of this paper.

The parameters of GA, PSO are provided in Table 2, while the
parameter setting of EABC is the same as the proposed HABC. To



Table 1
Optimization performance comparison at different BS and ®.

Probability Size of bee colony (BS)
of VND 20 40
[ AOV ACT DFB (%) AOV ACT DFB (%)
(min) (min)
0.1 527.93 5.05 0.63 526.79 12.37 0.42
0.3 525.83 11.07 0.23 525.63 26.65 0.19
0.6 527.26 22.07 051 526.05 39.65 0.27
Table 2
Parameters used in GA and PSO.
Approaches Parameters Settings
Crossover rate 0.75
GA Mutation rate 0.1
Population size 20
Swarm size 20
First inertia weight 0.9
PSO Last inertia weight 0.4
Personal best position acceleration constant 0.5
Global best position acceleration constant 0.5

ensure a fair comparison, the five optimization approaches use
the same termination condition, which is controlled only by the
same computation time Tp,.x. The value of Ty, is the average com-
putation time of executing repetitively the HABC-MDT approach
for each instance 30 times. To reduce the contingency of iterative
processes in the five optimization approaches, the five approaches
are run repetitively 30 times to obtain the statistical results of
objective values for each instance.

Table 3 shows the comparison results generated by the five
approaches. Due to the page limit, we only present the results of
10 representative problem instances since other instances showed
similar results. The best solutions of HABC-MDT for each instance
are shown in the column ‘Sol.’. The columns of ‘Min’, ‘Mean’ and
‘Max’ denote the minimum, average and maximum deviation of the
objective value of solutions obtained by other approaches from the
value of HABC-MDT best solutions for each instance, respectively.
According to these results, the HABC-MDT obtained the better
solutions than the other four approaches in all instances in terms
of minimum, average and maximum results in 30 runs. We have
used t-test to examine the performance difference between the
proposed method and other four methods for the 10 problem
instances. Table 4 shows the results of statistical test at significance
level of 5%. The proposed HABC-MDT generates the significantly
better results than other four approaches do for almost all in-
stances. The only two exceptions occur for problem instances ‘A-
n44-k6’ and ‘A-n48-k7’ when we compare the HABC-MDT with
the HPSO-MDT. We further use a boxplot to present the statistical
distribution of the results generated by the five approaches. Fig. 5
presents the cumulative results over all problem instances. To
make the cumulative results comparable, we use the min-max
normalization method to transform the objective values of all
problem instances into the range of [0, 1] since different problem
instances have different best objective values. In Fig. 5, the box-
plots represent the quartiles for normalized carbon emission costs
generated by five approaches respectively, which indicates that the
HABC-MDT obtains the lower minimum, median and maximum
than other approaches do. Fig. 6 shows the evolutionary trajec-
tories of the minimum of the objective values over iterations in
the optimization processes of five approaches. It indicates that the
HABC-MDT gets converged more quickly than other approaches
do since the HABC-MDT can obtain the lower carbon emissions in
each iteration. In summary, HABC-MDT outperforms the other four
approaches for handling the investigated WCP-MDP instances.
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4.3.2. Optimum-seeking performance of hybrid artificial bee colony
algorithm

To evaluate the optimum-seeking performance of the proposed
HABC algorithm, this research compared the optimization results
of this algorithm and the best known solutions based on a series of
CVRP benchmark instances. The proposed HABC algorithm found
the best known solutions to the 10 CVRP instances in Table 3 and
‘set B’ instances with less than 51 nodes (i.e., problem instances
from ‘B-n31-k5’ to ‘B-n50-k7’ in webpage: http://neo.lcc.uma.es/
vrp/vrp-instances/capacitated-vrp-instances/). Note that 50 col-
lection nodes is usually big enough in real-world waste collection
problems. According to these results, the HABC approach has a
good capability of seeking the global optima for the investigated
CVRP instances. As mentioned in Section 1, the WCP-MDP is actu-
ally a CVRP with the consideration of MDP. Therefore, the proposed
hybrid approach can solve the investigated problem effectively by
providing optimal solutions to this problem since it combines the
HABC with the MDT selection heuristics.

4.4. Carbon emission reductions generated by midway disposal pat-
tern

To evaluate the effects of MDP on carbon emission reductions,
a series of experiments have been conducted on the same 10
WCP-MDP instances to compare the carbon emission differences
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Table 3

Comparison of different algorithms for solving WCP-MDP.

Instance HABC-MDT GA-MDT PSO-MDT EABC-MDT HPSO-MDT
Sol.($) Tmax(s) Min(%) Mean(%) Max(%) Min(%) Mean(%) Max(%) Min(%) Mean(%) Max (%) Min(%) Mean(%) Max (%)
A-n33-k5 1.92 288.0 5.64 8.83 13.69 442 9.14 15.27 4.18 7.74 11.05 4.25 6.94 9.50
A-n34-k5 2.25 286.4 1.41 5.87 11.23 141 6.59 11.40 1.81 7.80 12.67 2.27 8.25 16.18
A-n36-k5 2.27 305.3 9.69 15.22 18.57 9.96 16.44 22,61 12.73 17.66 22.61 1.50 13.20 18.88
A-n37-k5 2.13 304.1 2.23 9.03 20.79 0.35 7.12 15.13 2.02 5.44 10.82 0.00 5.18 8.15
A-n38-k5 2.22 385.7 2.28 10.47 18.81 497 11.52 21.75 0.30 15.48 25.57 497 9.98 15.23
A-n39-k5 2.52 448.9 3.52 7.64 13.73 4.46 18.88 36.59 3.45 11.95 19.88 0.73 8.78 20.05
A-n44-k6  3.05 424.0 4.03 8.92 19.05 3.77 10.70 19.38 4.42 9.78 14.13 2.90 6.34 14.03
A-n45-k6  3.38 351.8 8.44 15.71 21.64 8.44 20.50 34.11 9.62 19.24 31.36 0.00 13.47 20.33
A-n48-k7  3.27 354.8 17.08 21.09 26.72 11.87 23.07 36.08 10.37 16.61 20.94 6.54 12.83 23.25
E-n51-k5 1.96 402.8 16.93 23.51 30.34 7.60 18.03 32.53 7.30 14.99 24.00 1.51 7.88 12.31
Table 4 Table 5

Statistical test results for performance comparisons between the HABC-MDT and
other approaches.

Instances  Results of t-test with HABC-MDT

GA-MDT PSO-MDT EABC-MDT HPSO-MDT

H p-value H p-value H p-value H p-value
A-n33-K5 1 0.00 1 0.00 1 0.00 1 0.00
A-n34-k5 1 0.00 1 0.00 1 0.00 1 0.00
A-n36-k5 1 0.00 1 0.00 1 0.00 1 0.00
A-n37-k5 1  0.00 1 0.00 1 0.00 1 0.00
A-n38-k5 1 0.00 1 0.00 1 0.00 1 0.00
A-n39-k5 1 0.04 1 0.00 1 0.00 1 0.01
A-nd44-k6 1  0.00 1 0.00 1 0.00 0 092
A-n45-k6 1  0.00 1 0.00 1 0.00 1 0.00
A-n48-k7 1  0.00 1 0.00 1 0.00 0 070
E-n51-k5 1 0.00 1 0.00 1 0.00 1 0.00

H: Indicates whether the proposed algorithm is significantly better. 1-significant,
0-not significant
p-value: The p-value of t-test.

between MDP and FDP. For each problem instance, thirty waste
collection scenarios are generated by the normal distribution with
specific mean value and standard deviation, each of which has dif-
ferent waste amounts in collection points. It is reasonable for simu-
lating the real-world waste collection because the waste amounts
in the same collection point could be different each day. On the
other hand, for a single scenario, there are some special conditions
which may contribute to the better results of carbon emissions
reduction led by MDP. For example, some collection points with
many wastes are exactly near to the optimal disposal facility.
However, these special conditions cannot demonstrate the effec-
tiveness of general MDP. To eliminate the contingency of these
conditions on the carbon emissions reduction led by MDP, experi-
ments are conducted based on the thirty different waste collection
scenarios.

Table 5 shows the results based on these experimental settings.
Columns of ‘Minimum’, ‘Mean’ and ‘Maximum’ present respec-
tively the minimum, mean and maximum of carbon emission re-
duction percentages, generated by two different disposal patterns
in 30 repetitive runs. It can be found from this table that the MDP
generates the less carbon emission and the reduction percentages
are between 1.14% and 7.16% for different instances. On the whole,
the reduction percentage increases with the increase of the num-
ber of collection points. The reason is, we think, that more carbon
emissions are generated in the collection routes if more wastes are
collected.

4.5. Timing of employing VND

This research hybridizes a global search process (ABC algo-
rithm) with a local search process (VND method) to seek the best

Carbon emission reductions by the midway disposal pattern in 30 repetitive runs.

Instances Carbon emission saving (%)
Minimum Mean Maximum

A-n33-K5 1.14 2.09 3.99
A-n34-k5 1.88 2.96 5.27
A-n36-k5 2.60 3.54 494
A-n37-k5 2.85 3.84 5.68
A-n38-k5 3.20 4.21 6.43
A-n39-k5 3.49 470 6.77
A-n44-k6 3.30 4.26 5.76
A-n45-k6 3.11 4.05 5.62
A-n48-k7 3.88 4.85 6.45
E-n51-k5 4.34 5.54 7.16

solutions in the solution space, which results in the increase of
computation time in the optimization process. A feasible way to
reduce the computation time is to reduce the times of running
the local search process by selecting an appropriate timing for
activating this process during the optimum-seeking process. That
is, it is crucial to determine the beginning iteration of employ-
ing VND in the EABC. To obtain the best beginning iteration of
VND, three instances are randomly selected from 10 WCP-MDP
instances to evaluate the differences of carbon emission cost at
different timings of employing VND. The beginning iterations of
employing VND are set to 1, 30, 60, 90 and 120, respectively while
the terminal iteration is set as 120. Table 6 compares the resulting
objective values and the average computation time (ACT) in these
different settings. It can be found that the relative differences in
carbon emission cost (RDC) are rather small. Take the beginning
iterations ‘30’ and ‘60’ as example. For three different instances
shown in the first column, the RDCs between beginning iteration
‘1" and ‘30’ are ‘—1.44%’, ‘1.20% and ‘1.77%’ respectively; while the
RDCs between beginning iteration ‘1’ and ‘60’ are ‘—0.48%’, ‘—0.3%’
and ‘0.44%’ respectively. However, the relative differences in aver-
age computation time (RDT) are distinctly large for all instances.
In addition, with the increase of the beginning iteration of using
VND, the ACT can get an up to 61.01% reduction. It is interesting
that, at VND = 90, the large reduction in ACT does only slightly
decrease of the optimization performance by 0.30% to 1.77%. The
reason is, we think, that this strategy has little influence on the
optimum-seeking performance because of the strong robustness
of the proposed HABC-MDT. Please note that when the beginning
iteration of VND is set to 120, the HABC procedure is actually
conducted without VND procedure since the terminal iteration
is also set as 120. Comparing to the setting of other beginning
iterations (i.e., 1, 30, 60, 90), the setting of the beginning iteration
= 120 leads to the larger increase of RDC, although it also results in
the larger RDT. It is because the VND procedure contributes to in-
tensify the exploitation of optimal solution and also consume some



Table 6
Beginning iteration of employing VND.

Instance Beginning iteration of VND

1 30 60 90 120

CE cost ($) ACT (min) RDC (%) RDT (%) RDC (%) RDT (%) RDC (%) RDT (%) RDC (%) RDT (%)
A-n33-k5 2.09 6.22 —-1.44 —4.02 —0.48 —5.63 0.96 —30.87 9.09 —62.66
A-n44-k6 3.32 14.49 1.20 —15.11 —0.30 —33.47 0.30 —44.93 9.04 —78.81
E-n51-k5 2.26 13.00 1.77 —19.00 0.44 —28.62 1.77 —61.01 14.16 —83.88

computational time. In summary, VND is a valuable component in
the proposed approach since it is helpful to largely improve the
optimization results.

5. Conclusions

This paper addressed a WCP with the consideration of midway
disposal pattern. To the best of the authors’ knowledge, this paper
is the first to consider the effects of the midway disposal pattern in
WCP, which is helpful to select a better disposal mode and reduce
carbon emissions in real-world waste collection. An enhanced arti-
ficial bee colony (EABC)-based hybrid approach, which hybridized
an ABC algorithm, a VND method and a MDT selection heuristic,
was developed to handle the WCP-MDP. To evaluate the effective-
ness of the proposed hybrid approach, we have carried out a series
of experiments from three perspectives. The first one was to com-
pare the performance of HABC-MDT with other four approaches
in solving the WCP-MDP. The computational results show that the
proposed approach is superior to the other four approaches (GA-
MDT, PSO-MDT, EABC-MDT and HPSO-MDT) in terms of the carbon
emission cost saving for all WCP-MDP instances used. The second
was to demonstrate the optimum-seeking performance of HABC
based on 10 CVRP instances, the results showed that the proposed
HABC had good capacity in handling the WCP-MDP, which can also
be used as an effective alternative to handle VRPs. The third one
was to compare the carbon emission difference generated by the
midway disposal pattern (MDP) and by the fully-loaded disposal
pattern (FDP) in waste collection. The experimental results over
10 WCP-MDP instances showed that the MDP reduced the carbon
emission by up to 7.16%, comparing with that generated by the
FDP.

Future research will use the proposed hybrid ABC algorithm to
handle the larger-scale waste collection problems or other similar
combinatorial optimization problems. The performance of pro-
posed HABC will be further compared with many other popular
hybrid approaches. To develop more efficient algorithms is also
a promising direction based on recently developed metaheuris-
tics such as thermal exchange optimization. Another promising
direction is to address the disposal facility location decision and
the effects of more midway disposals in one single tour on the
performances of waste collection solutions.
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Appendix A. Notations

i node in graph,i € N
k  vehicle, k € K

qi  waste collection demand of collection point i

K  the set of homogeneous vehicles

dj  travel distance of vehicle k from node i to node j

wij total load (include curb weight M) of vehicle k from node
i to node j

L;  the accumulated load of vehicle in collection point i

Q maximum load capacity of vehicle

EC; the carbon emission cost of traveling on arc(i, j)

Sij  carbon emission incurred on arc(i, j)

o the cost of unit carbon emission

x;ix = 1ifvehicle k collects wastes from nodes i and j,
otherwise it is 0

yik = lifnodeiis collected by vehicle k, otherwise it is 0.

Appendix B. Measurement of carbon emissions

The fuel consumption §; (liters) is defined by the comprehen-
sive emissions model developed by Franceschetti. It is formulated
as follow:

I 0.5C;pAlv? i C, !
8ﬁ=%<kNeV*+ apAlv® + (g sing + g cos¢)w> (16)
K v

1000w

where £ is fuel-to-air mass ratio, « is the heating value of a typical
diesel fuel (kJ/g), ¥ is a conversion factor from grams to liters from
(g/s) to (liter/s), k is the engine friction factor (k]/rev/liter), N, is
the engine speed (rev/s), V is the engine displacement (liter), ¢
is the air density (kg/m?), A is the frontal surface area (m?), v is
the speed of a vehicle (m/s). g is the gravitational constant (equal
to 9.81 m/s?), ¢ is the road angle, C; and C, are the coefficient of
aerodynamic drag and rolling resistance, ¢ is vehicle drive train
efficiency and @ is an efficiency parameter for diesel engines.

This research considers §;; as a function of variables  and w. We
can thus set two parameters to simplify the model as follows:

0 [kN,V  0.5C40Av?
p1=—" (17)

Ky v 1000e ™

(g sing + gC; cos ¢)
pa = 0 - - (18)
1000k Y e
We then have,

S,‘j = pll + pzlw (19)

where Sj; is the total amount of carbon emission for diesel engines
(kg), lis the travel distance (m), and w is the total weight of vehicle
(kg) which contains the curb weight and the vehicle load. The
carbon emission of vehicle k for collecting wastes on arc (i, j) is
formulated as follows.

Siik = p1li + p2lijwijk (20)
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