
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2012

Semi-automated verification of defense against SQL injection in Semi-automated verification of defense against SQL injection in

web applications web applications

Kaiping LIU
Nanyang Technological University

Hee Beng Kuan TAN
Nanyang Technological University

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
LIU, Kaiping; TAN, Hee Beng Kuan; and SHAR, Lwin Khin. Semi-automated verification of defense against
SQL injection in web applications. (2012). 2012 19th Asia-Pacific Software Engineering Conference
(APSEC): Hong Kong, December 4-7: Proceedings. 91-96.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4838

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4838&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Semi-Automated Verification of Defense against SQL
Injection in Web Applications

Kaiping Liu
School of Electrical and Electronic

Engineering
Nanyang Technological University

Singapore
kpliu@ntu.edu.sg

Hee Beng Kuan Tan
School of Electrical and Electronic

Engineering
Nanyang Technological University

Singapore
ibktan@ntu.edu.sg

Lwin Khin Shar

School of Electrical and Electronic
Engineering

Nanyang Technological University
Singapore

Shar0035@ntu.edu.sg

Abstract—Recent reports reveal that majority of the attacks to
Web applications are input manipulation attacks. Among these
attacks, SQL injection attack – malicious input is submitted to
manipulate the database in a way that was unintended by the
applications' developers – is one such attack. This paper proposes
an approach for assisting to code verification process on the
defense against SQL injection. The approach extracts all such
defenses implemented in code. With the use of the proposed
approach, developers, testers or auditors can then check the
defenses extracted from code to verify their adequacy. We have
evaluated the feasibility, effectiveness, and usefulness of the
proposed approach by a set of open-source systems. Our
experiment results showed that the proposed approach is
effective in extracting all the possible defenses
implemented/adopted by Web applications. We observed that the
proposed approach would be useful in identifying the false
positive cases resulting from other related approaches and
auditing the code in order to fix the actual vulnerable cases.

Keywords-SQL injection, vulnerabilities, code auditing,
software security, static analysis, Web applications

I. INTRODUCTION
Recent reports on security attacks consistently showed that

most security attacks to Web applications are not caused by
break-through encryption mechanisms or by hacking network
security protocols. They are caused by illegal input
manipulation – hackers enter inputs that are not intended to be
processed by a system to achieve their purpose. Such attacks
may lead to unauthorized access to sensitive data, insertion,
modification or deletion to database. This is the SQL injection
vulnerability (SQLIV), which has been ranked among the top
ten vulnerabilities over the past few years due to its popularity
and severity [1]. Reports on SQL injection attacks (SQLIA)
showed that they are mainly performed through illegal input
manipulation due to code vulnerability [2]. As an illustration, a
code snippet vulnerable to SQL injection is shown in the
following:

httpSeverletRequest request =;
String accountCode =

request.getParameter("acoountCode");
Connection con =;
String query = “SELECT * FROM Accounts WHERE

accountNo = '" + accountCode + " '";
con.execute(query);

A hacker may enter “' OR 1 = 1” as an input to
accountCode in order to produce the query string as “SELECT
* FROM Accounts WHERE accountNo = '' OR 1
= 1”. As a result, the where-clause of the query becomes a
tautology. This allows the hacker to bypass the account code
check and get access to all account records in the database.

Traditionally, input validation and input sanitization are
used to defend SQLI. In this paper, we propose a novel code
verification method which takes a different approach from
existing methods. Based on the possible coding patterns for
implementing defense against SQL injection, the proposed
approach automatically extracts all the possible such defenses
from source code by performing static analysis. The extracted
output can then be checked to verify the adequacy and identify
the potential risks. It is also possible that existing static analysis
approaches could also be incorporated into our work in order to
automate both extraction of SQL injection defenses and
detection of SQLIVs.

II. THEORY FOR EXTRACTING DEFENSE AGAINST SQL
INJECTION FROM CODE

In a Web application, a node u in a control flow graph
(CFG) such that an input submitted by user can be referenced
at u and u dominates all nodes w at which the input can also be
referenced, is called an input node. A variable in the input is
called an input variable submitted at u. A path through a CFG
is called a 1-path if it follows any loop at most one time (that is,
if it does not repeat any loop). Let w be an input node in a CFG.
An input path of w is a path from w to the exit node that does
not pass through w again. We may also call an input path of an
input node simply, an input path depending on the context used.
An input path of w is called a prime input path of w if it iterates
any loop at most one time.

In a Web application, a statement in a program that
performs a SQL operation is called an SQL operation statement
(sql-o-statement). The node in the CFG of the program that
represents the statement is called an SQL operation node (sql-
o-node). We shall also adopt some formalism of control flow
graph from [3], including dominance and transitive dominance.

2012 19th Asia-Pacific Software Engineering Conference

1530-1362/12 $26.00 © 2012 IEEE

DOI 10.1109/APSEC.2012.18

91

Published in 2012 19th Asia-Pacific Software Engineering Conference (APSEC): Hong Kong, China, December 4-7: Proceedings. pp. 91-96.
https://doi.org/10.1109/APSEC.2012.18

Figure 1. JSP code snippet for authentication

Figure 2. The CFG of the JSP code snippet for authentication

A. Extracting Defense through Input Validation
The proposed approach will extract the statements that

could be for the purpose of defending against SQL injection.
Let k be a sql-o-node in a CFG. To prevent input operated at k
from illegal manipulation that may lead to SQL injection
attack, one must ensure that only input that satisfies the
required condition will be operated at k through the use of
predicate node. Next, we shall define a terminology to
characterize such node pattern.

A predicate node d is called a validation node for k if the
following properties hold:
1) Both k and d transitively reference to a common input

variable submitted at an input node w.
2) There is a prime input path p of w that follows one branch

of d passes through k and there is no prime input path p’
of w that follows the other branch of d passes through k.

In Fig. 2, both the sql-o-node, node 12, and the predicate
node, node 9, transitively reference to the input variable,
password, submitted at the input node, node 3. The prime
input path (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, end) that
follows the branch (9, 10) of node 9 passes through node 12.
No prime input path that follows the other branch (9, 14) of
node 9 passes through node 12. Hence, node 9 is a validation
node for the sql-o-node, node 12.

Property 1 – Unprotected Sql-O-Node. Let k be a sql-o-
node in a CFG. If k transitively references to an input variable
v submitted at an input node w and there is no validation node
for k that transitively references to v, then k is unprotected
from SQL injection that may arise from manipulating value of
v.

Let k be a sql-o-node in a CFG. Let � be the set of 1-paths
through the CFG. The partition of the 1-paths in �, such that
paths, which pass through the same set of validation nodes for
k and follow the same branch at each of these nodes, are put in
the same class, is called the validation partition for k.

In the CFG shown in Fig 2, {{(entry, 1, 2, 3, 4, 5, 6, 7, 15,
end), (entry, 1, 2, 3, 4, 5, 6, 7, 15, 16, end)}, {(entry, 1, 2, 3, 4,
5, 6, 7, 8, 9, 14, 15, end), (entry, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15,
16, end)}, {(entry, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, end), (entry, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, end)}, {(entry, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 15, end), (entry, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 15, 16, end)}} is the validation partition for the sql-
o-node, node 12, in this CFG.

An input condition that will lead to the execution of a sql-o-
node is called a valid input condition of the sql-o-node. An
input condition that will not lead to the execution of a sql-o-
node is called an invalid input condition of the sql-o-node.

Property 2 – Invalid Input Condition. Let k be a sql-o-
node k in a CFG. The set of invalid input conditions for k is
IVCk = {C � X is a class in the validation partition of k such
that there is a path in X passes through some input validation
nodes for k and does not pass through k; and C = the
conjunction of all the branch conditions of branches at
validation nodes for k that any path in X follows}.

Property 3 – Valid Input Condition. Let k be a sql-o-
node k in a CFG. The set of valid input conditions for k is VCk
= {C � X is a class in the validation partition of k such that
there is a path in X passes through some input validation nodes
for k and also passes through k; and C = the conjunction of all
the branch conditions of branches at validation nodes for k that
any path in X follows}.

For the program with the CFG shown in Fig. 2, we have
already computed the validation partition for the sql-o-node,
node 12. From Property 2, IVC = {!((!userid.equals(“”)) &&
(!password.equals(“”))), ((!userid.equals(“”)) &&
(!password.equals(“”))) && (!(isNum(userid)))} is the set of
invalid input conditions for the sql-o-node. From Property 3,
{((!userid.equals(“”)) && (!password.equals(“”))) &&
(isNum(userid))} is the set of valid input conditions for the sql-
o-node.

B. Extraction of Defense through Input Filtering
Let v be a variable referenced at a sql-o-statement. Only if v

falls under one of the following two cases, then it may be
possible for v to be manipulated by a hacker:
1) v is submitted at an input node.
2) v is defined at a node that transitively reference to input

variables submitted at input nodes.
Hence, a hacker can only manipulate a variable referenced

in a sql-o-statement that falls under one of the above-
mentioned condition to attack a Web application by SQL
injection through input manipulation. We call such variable, a
potentially vulnerable variable (pv-variable) of the sql-o-

1. String formAction = request.getParameter(“formAction”);
2. String userid = request.getParameter(“userid”);
3. String password = request.getParameter(“password”);

4. String sQuery= “SELECT * FROM customer ”;
5. String sWhere= “” ;
 . . .
6. Connection con = . . . ;

7. if (formAction.equals(“Login”) {
8. password.replace(“ ‘ ”, “ ‘’ ”);
9. if ((!userid.equals(“”)) && (!password.equals(“”))) {
10. if (isNum(userid)) {
11. sWhere= “WHERE userid =“+userid+” AND

 password = ' “+password+ “ ' ”;
12. con.executeQuery(sQuery+sWhere);
13. session.setAttribute(“UserID”, userid);

 . . .
 }
 }
 else {
14. response.sendRedirect(“login.html”);
 }
 }
15. if (formAction.equals(“Logout”) {
16. session.setAttribute(“UserID”, “”);
 . . .
 }

92

statement. For example, in Fig. 1, userid and password
are pv-variables of the sql-o-statement shown at line 12.

We call a sequence of all the input filtering statements
according to their order in the program, the potentially
vulnerable input filter (or pv-input filter) for the sql-o-
statement. More formally, the pv-input filter for a sql-o-
statement k in program P is a sequence F of following
statements according to their order in P:
1) All the statements at which a pv-variable of k is

defined/submitted.
2) Statements on which statements in F are data dependent.
3) Statements on which statements in F are control dependent

such that k is not transitively control dependent on these
statements.

In the program shown in Fig. 1, the sequence of the
following statements shown at line 2, 3, 8, 11 forms the pv-
input filter for the sql-o-statement shown at line 12:

2. String userid =
request.getParameter(“userid”);

3. String password =
request.getParameter(“password”);

8. password.replace(“ ‘ ”, “ ‘’ ”);
11. sWhere= “WHERE userid =“+userid+” AND

password = ‘ “+password+ “ ’ ”;

III. THE PROPOSED CODE VERIFICATION APPROACH
Building on the theory discussed in previous section, the

proposed approach checks the defense against SQL injection
implemented in Web applications through the following two
major steps:

Step 1: Extract the defense against SQL injection
implemented automatically from code.

Step 2: Examine the extracted output to verify its
adequacy.

The algorithm for implementing the first step is shown in
Fig. 3. For each sql-o-statement k in P, the information on
defense through input validation for k is extracted based on the
theory discussed in Section 2.1 from the CFG, G, of the
program according to the algorithm shown in Fig. 4.

The algorithm in Fig. 5 shows the computation of pv-input
filter Fk for a sql-o-statement k. First, we include statements in
P at which any pv-variable of k is defined/submitted in Fk in
the same order as they appear in P. Then, each time, P is
processed iteratively to include more statements in Fk until Fk
is stabilized – that is no further statements can be included in Fk
in an iteration. In each iteration, statements in P are processed
from the first statement to the last statement sequentially as
follows. For each statement s in P, s in included in Fk if it
satisfies one of the following conditions:
1) If there is a statement in Fk that is data-dependent on s.
2) If s is a predicate node, k is not transitively control

dependent on s and there is a statement in Fk that is control
dependent on s.

From the defense against SQL injection extracted in Step 1,
the second step of the proposed approach examines whether the
input validation and input filtering implemented for each sql-o-
statement is sufficient for defending it against SQL injection. A
sql-o-statement could be defended through input validation,
input filtering or a combination of them.

In the examination of the defense through input validation,
from the output extracted in Step 1, those sql-o-statements that
are unprotected from SQL injection through some input

variables are clearly without any defense through input
validation with regards to these input variables. For each of the
remaining sql-o-statements, we examine the invalid and valid
input conditions of the sql-o-statement according to the input
format and system requirements to examine its adequacy
through input validation.

In the examination of the defense through input filtering,
from the pv-input filter for a sql-o-statement extracted from
Step 1, one needs to examine how the pv-input filter
contributes to the defense against SQL injection for the sql-o-
statement. Similarly, program slicing can be used to aid for the
comprehension of the pv-input filter through slicing on its
variables and associated statements.

Figure 3. Algorithm for extraction of defense against SQL injection

IV. EVALUATION
To evaluate the proposed approach, we have developed a

prototype tool called SQLIDE (SQL Injection Defense
Extractor) to implement the algorithm shown in Fig. 3
discussed in Section 3. With the use of prototype tool, we have
evaluated the feasibility, effectiveness, and usefulness of the
proposed approach on seven open source systems. In our
evaluation, we have compared our approach with the approach
proposed by Livshits and Lam [4] that is most commonly
referenced work for the detection of security flaws in code.

A. Prototype Tool
The prototype tool SQLIDE is developed through the use of

the Java Architecture for Bytecode Analysis (JABA) from
Georgia Institute of Technology [5] for Web-based database
applications written in Java. It consists of two major modules: a
program analyzer, and an input validation and filtering miner
(IVF miner). Program analyzer uses JABA’s APIs to analyze
Java programs. It takes the class files of a Java program as
input and builds the CFG of the program for control flow and
data flow analysis. IVF miner includes three sub-modules: an
input validation extractor (IV extractor), a pv-input filter
extractor (PVIF extractor), and a program slicer.

B. Experiment Results
Table I gives an overview of the applications experimented.

We evaluate the most precise analysis by enabling both context
sensitivity and improved object naming.

The statistics of the results are shown in Table II and III
respectively. From the tables, we can see that our proposed
approach achieve zero false positive while Livshits and Lam’s
approach produces 34.47% false positive rate. Our proposed

Algorithm extractDefenseSqlInj(P: program)
Output: The set � of defense against SQL injection for each sql-o-

statement in P.
begin
1. initialize both F and D to empty sets;
2. compute G = the CFG of P:
3. for (each sql-o-node k in G) do
4. Dk = extractInputValidation(G; k);
5. include the tuple (k, Dk) in D;
6. Fk = extractPvInputFilter(P, k);
7. include the tuple (k, Fk) in F;
 endFor;
8. � = (D, F);
9. return � ;
end;

93

approach is also more effectiveness in detecting defense of
SQL injections. Though the proposed approach extracts more
program artifacts, we observed that manual verification process
in identifying the SQLIVs is still feasible for the sizes of the
experimented applications because the two students completed
the experiment without any problem. More importantly, the
students also reported that comprehending the vulnerability is
made easier with all the implemented SQL injection defense
features extracted.

Figure 4. Algorithm for extraction of defense through input validation for a
sql-o-node

Table I. Overview of Web Applications experimented

Application Description LOC No. of
Servlets

No. of sql-o-
statements

Employee
Directory

Online employee
directory 3,035 10 19

Bookstore Online bookstore 9,551 28 71
Events Event tracking

system 3,818 13 25

Classifieds Online
management
system for
classified

5,745 19 43

Portal Portal for a club 8,803 28 60
Roomba Online hotel

room booking
system

10,251 39 158

Smacs Online
management of
casual staff

5,574 24 41

Total 46,777 161 417

Figure 5. Algorithm for extraction of pv-input filter for a sql-o-statement

Table II. Statistics of evaluation results for Livshits and Lam’s approach

Appli-
cation

#.
vulner
-able
sql-o-
stat-
ment

Traces extracted (LOC) False
posi-
tives

of
actual
vulner
-able
sql-o-
stat-
ment

From tool Confirmed for
defense against
SQL injection

Total Average
per
servlet

Total Average
per
servlet

Emp.
Dir.

12 83 8.3 56 5.6 4 8

Book-
store

38 279 9.96 181 6.46 21 17

Events 16 107 8.23 72 5.53 6 10
Classi-
fieds

34 186 9.78 110 5.78 17 17

Portal 34 264 9.42 178 6.35 10 24
Roomba 61 261 6.69 137 3.51 6 55
Smacs 40 236 9.83 83 3.45 17 23
Total 235 1,416 8.79 817 5.07 81 154

In summary, it is observed that the proposed approach
would be especially useful in identifying the false positive
cases resulting from other related static analysis approaches
and verifying the code in order to fix the actual vulnerable
cases.

V. RELATED WORK

A. Detection of SQL Injection Vulnerabilities
Approaches in this area are mainly based on static program

analysis techniques [4, 6, 7, 8, 9, 10, 11]. Some of them may be
augmented with dynamic analysis [6], string analysis [6, 9, 10],
symbolic execution [11] or alias analysis [8]. Most of these
approaches make inference on existence of security
vulnerabilities based on the following information: (1) user

Algorithm extractInputValidation(G: the CFG of a program; k: sql-o-
node in G)
Output: A tuple Dk with three elements, UPk, IVCk and VCk, where UPk =

{(v, w) � k is unprotected from SQL injection through input
variable v submitted at input node w}, IVCk is the set of invalid
input conditions for k and VCk is the set of valid input
conditions for k.

begin
1. compute V = the set of validation node for k;
2. compute � = the set of 1-path through G;
3. compute � = the input validation partition for k;
4. for (each input variable v submitted at input node w that is transitively
referenced at k) do
5. If (there is no input validation node for k that that transitively

references to v) then
6. include (v, w) in UPk;
 endIf;
 endFor;

7. for (each X in �) do
 p = a path in X;
8. if (p passes through an input validation node for k) then
9. if (p does not pass through k) then
10. include the conjunction of all the branch conditions

of branches at validation nodes for k that p
follows in IVCk;

 else
11. include the conjunction of all the branch conditions

of branches at validation nodes for k that p
follows in VCk;

 endIf;
 endIf;
 endFor;
12. Dk = (UPk, VCk, IVCk);
13. return Dk;
end;

Algorithm extractPvInputFilter(P: program, k: sql-o-statement in P)
Output: The pv-input filter Fk for k.
begin
1. initialize both F and F’ to empty sequences of statements;
2. include statements in P at which any pv-variable of k is

defined/submitted in F according to their order in P;
3. while (Fk � F’) do
4. F’ = Fk;
5. for (each statement s in P from the first statement until

the last statement) do
6. if s is not a predicate node then
7. if (there is a statement in Fk data-dependent

 on s) then
8. include s in Fk;
 endIf;
 else
9. if (k is not transitively control dependent on s)

 then
10. if (there is a statement in Fk that is

control-dependent on s) then
11. include s in Fk;
 endIf;
 endIf;
 endIf;
 endFor;
 endWhile;
12. return Fk;
end;

94

specification on vulnerability patterns in terms of the flow of external inputs to SQL statements [4]; (2) inadequate or
Table III. Statistics of evaluation results for the proposed approach

Application No. of predicate nodes from which valid and invalid
input conditions are extracted

Pv-input filter extracted (LOC) No. of
vulnerable

sql-o-
statements

From tool Confirmed for defense
against SQL injection

From tool Confirmed for defense
against SQL injection

Total Average
per servlet

Total Average per
servlet

Total Average
per servlet

Total Average per
servlet

Emp. Dir. 25 2.5 25 2.5 164 16.4 131 13.1 8
Bookstore 112 4 112 4 349 12.46 224 8 17

Events 39 3 39 3 135 10.38 87 6.69 10
Classifieds 57 3 57 3 251 13.2 154 8.10 17

Portal 72 2.57 72 2.57 394 14.07 222 7.92 24
Roomba 30 0.76 27 0.69 316 8.10 145 3.71 55
Smacs 39 1.62 39 1.62 272 11.33 139 5.79 23
Total 374 2.32 371 2.30 1,881 11.68 1,102 6.84 154

absence of sanitization mechanisms [6, 10, 11, 12]; and (3)
potential type mismatch [7] or syntax mismatch [9] between a
set of possible SQL strings due to external inputs and the
original SQL statement intended by developer. However, most
of these approaches are control flow insensitive [4, 8, 9]. Hence,
false positive cases would occur if the ‘if’-constructs
implemented by the programs could effectively prevent the
external inputs from injecting the malicious characters into
SQL statements. Most of them also do not check custom
sanitization functions [4, 8, 9, 11] but only make conservative
assumptions. As a result, relatively high false positive rate
would be introduced.

However, in contrast to the proposed approach, most of the
above approaches only highlight vulnerable SQL statements
without providing much further information. Although some
approaches provide more information to the testers, they
mainly show only the data flow traces (i.e., statements on
which variables referenced in vulnerable SQL statements are
directly or indirectly data dependent on) [4, 8, 9, 10].

B. Input Validation and Security Testing Approach
Input validation is the key to enforce input accuracy. It is

also a key to defend security attacks against Web applications.
Both specification-based and code-based approaches have been
proposed for testing the adequacy of input validation schemes
[13, 14, 15, 16, 17, 18, 19]. Specification-based input
validation testing approaches generate test cases with the aim
of exercising valid and invalid input conditions as complete as
possible [13, 14, 15, 18]. To avoid the sole dependency on user
specifications, Li et al. [15] augmented the traditional
specification-based strategy with automated extraction of input
specification through analyzing the HTML pages. However, all
these approaches’ ability to detect SQL injection vulnerabilities
still mainly depends on the completeness of user specifications
and the adequacy of test suite generated.

Works on the area of SQLIV testing approach mainly
involve injecting attack vectors into the application under test
in order to expose SQLIVs [20, 21, 22, 23, 24, 25]. Antunes et
al. [21] learn the legitimate syntax structures of SQL queries
through the executions of valid test inputs and compare them
with the syntax structures of SQL queries resulting from
executions of test inputs containing SQL injection attack
vectors. If there is any mismatch, the vulnerability of that
particular SQL query is detected. Some of the other approaches

first inject the vulnerable SQL queries into the application
under test and next exercise test inputs that contain SQL
injection attack vectors [20, 22].

The common major disadvantage of the above attack vector
injection approaches is that there may be false negative cases if
the source or the library, which is used to generate SQL
injection attack vectors, is incomplete or imperfect. In that case,
the sanitization routines implemented by the programs might
prevent all the attacks generated by these approaches. But in
actual real life attacks, some sophisticated attack vectors may
succeed in circumventing those sanitization routines. Similarly
to some approaches discussed in Section 5.1, the above
approaches only show very limited information regarding to
the SQL injection defenses implemented in the programs.
Although the purpose of the approach in [22] shares with that
of our proposed approach, it only provides information of
attack vectors and exploited vulnerabilities, which is also the
case of other approaches [20, 21, 23, 24, 25]. Since no
information on the security defense features is given, they are
not suitable for assisting SQLIV verification process.

C. Prevention of Security Attacks
Works on this area mainly incorporate dynamic monitoring

systems into server programs to ensure that the syntax of a
dynamic SQL statement built using user inputs as parameters
follows the intended structure defined in program before any
execution [26, 27, 28, 29, 30, 31]. Their approaches learn the
valid query syntax of each SQL statement based on the
following ways: (1) static analysis [26]; (2) dynamic taint
analysis [27, 28, 29]; or (3) user specification [30, 31]. Their
main drawbacks are: (1) they introduce additional overhead
into a program for the runtime check; (2) the instrumentation of
checking mechanism may introduce further complexity to the
debugging of security vulnerabilities. However, all these
approaches only serve to the protection of the deployed
systems from SQL injection attacks. In contrast, our proposed
approach intends to assist the developers or testers in verifying
or fixing the vulnerable pieces of codes during the
implementation stage.

VI. CONCLUSION
SQL injection is one of the common security threats to Web

applications. Fixing or debugging the actual cases would

95

require verification on the adequacy of already implemented
SQL injection defenses. However, code verification on the
whole source code or on the limited information provided by
existing approaches would be either labor-intensive or
inadequate. Thus, we have proposed a semi-automated
approach for extracting all the defenses against SQL injection
implemented in code to facilitate the verification process and
also identify the SQL injection vulnerabilities based on
inadequate SQL injection defenses. The approach has been
evaluated based on the applications that are commonly used for
evaluating related approaches. Results have shown that the
proposed approach is feasible for the sizes of experimented
applications and useful in assisting to SQL injection
vulnerability verification process due to its effectiveness in
extracting all the statements relevant to SQL injection defenses.
For our future work, we intend to evaluate the feasibility and
usefulness of the proposed approach based on intensive
experiments on both open-source and industrial Web
applications of larger sizes.

REFERENCES
[1] OWASP. The Ten Most Critical Web Application Security

Vulnerabilities. [Online]. Available: http://www.owasp.org/index.php/-
Category:OWASP_Top_Ten_Project

[2] C. Anley, “Advanced SQL Injection in SQL Server Applications,” White
paper, Next Generation Security Software Ltd, 2002.

[3] S. Sinha, M. Harrold, and G. Rothermel, “Interprocedural Control
Dependence,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 10, no. 2, pp. 209–254, 2001.

[4] V. Livshits and M. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis,” in Proceedings of the 14th
Conference on USENIX Security Symposium-Volume 14. USENIX
Association, 2005, pp. 18–18.

[5] A. R. Group et al., “JABA: Java Architecture for Bytecode Analysis,”
2003. [Online]. Available: http://www.cc.gatech.edu/aristotle/Tools/-
jaba.html

[6] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing Static and Dynamic
Analysis to Validate Sanitization in Web Applications,” in Proceedings
of IEEE Symposium on Security and Privacy, 2008. IEEE, 2008, pp.
387–401.

[7] C. Gould, Z. Su, and P. Devanbu, “Static Checking of Dynamically
Generated Queries in Database Applications,” in Software Engineering,
2004. ICSE 2004. Proceedings. 26th International Conference on. IEEE,
2004, pp. 645–654.

[8] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities,” in Proceedings of IEEE
Symposium on Security and Privacy, 2006. IEEE, 2006, pp. 6–pp.

[9] G. Wassermann and Z. Su, “Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities,” in ACM SIGPLAN Notices,
vol. 42, no. 6. ACM, 2007, pp. 32–41.

[10] G. Wassermann and Z. Su, “Static Detection of Cross-site Scripting
Vulnerabilities,” in In Proceedings of ACM/IEEE 30th International
Conference on Software Engineering, 2008. IEEE, 2008, pp. 171–180.

[11] Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities in
Scripting Languages,” in 15th USENIX Security Symposium, 2006, pp.
179–192.

[12] L. K. Shar and H. B. K. Tan, “Mining input sanitization patterns for
predicting sql injection and cross site scripting vulnerabilities,” in
Proceedings of the 2012 International Conference on Software
Engineering, ser. ICSE 2012. IEEE Press, 2012, pp. 1293–1296.

[13] J. Hayes and A. Offutt, “Increased Software Reliability Through Input
Validation Analysis and Testing,” in Proceedings of 10th International

Symposium on Software Reliability Engineering, 1999. IEEE, 1999, pp.
199–209.

[14] J. Hayes and J. Offutt, “Input Validation Analysis and Testing,”
Empirical Software Engineering, vol. 11, no. 4, pp. 493–522, 2006.

[15] N. Li, J. Wu, M. Jin, and C. Liu, “Web Application Model Recovery for
User Input Validation Testing,” in Proceedings of International
Conference on Software Engineering Advances, 2007. IEEE, 2007, pp.
13–13.

[16] H. Liu and H B K. Tan, “Testing Input Validation in Web Applications
Through Automated Model Recovery,” Journal of Systems and
Software, vol. 81, no. 2, pp. 222–233, 2008.

[17] H. Liu and H B K. Tan, “Covering Code Behavior on Input Validation in
Functional Testing,” Information and Software Technology, vol. 51,
no. 2, pp. 546–553, 2009.

[18] J. Offutt, Y. Wu, X. Du, and H. Huang, “Bypass Testing of Web
Applications,” in 15th International Symposium on Software Reliability
Engineering, 2004. IEEE, 2004, pp. 187–197.

[19] H. Liu and H B K. Tan, “An approach for the maintenance of input
validation,” Information and Software Technology, vol. 50, no. 5, pp.
449–461, 2008.

[20] H. Shahriar and M. Zulkernine, “MUSIC: Mutation-based SQL Injection
Vulnerability Checking,” in In Proceedings of The 8th International
Conference on Quality Software, 2008. IEEE, 2008, pp. 77–86.

[21] N. Antunes, N. Laranjeiro, M. Vieira, and H. Madeira, “Effective
Detection of SQL/XPath Injection Vulnerabilities in Web Services,” in
Proceedings of IEEE International Conference on Services Computing,
2009. IEEE, 2009, pp. 260–267.

[22] J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability & Attack
Injection for Web Applications,” in Proceedings of IEEE/IFIP
International Conference on Dependable Systems & Networks, 2009.
IEEE, 2009, pp. 93–102.

[23] A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic Creation
of SQL Injection and Cross-site Scripting Attacks,” in Proceedings of
IEEE 31st International Conference on Software Engineering, 2009.
Ieee, 2009, pp. 199–209.

[24] M. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing Web
Applications with Static and Dynamic Information Flow Tracking,” in
Proceedings of the 2008 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation. ACM, 2008, pp.
3–12.

[25] M. Martin and M. Lam, “Automatic Generation of XSS and SQL
Injection Attacks with Goal-directed Model Checking,” in Proceedings
of the 17th Conference on Security Symposium. USENIX Association,
2008, pp. 31–43.

[26] W. Halfond and A. Orso, “AMNESIA: Analysis and Monitoring for
NEutralizing SQL-injection Attacks,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2005, pp. 174–183.

[27] W. Halfond, A. Orso, and P. Manolios, “WASP: Protecting Web
Applications Using Positive Tainting and Syntax-aware Evaluation,”
IEEE Transactions on Software Engineering, vol. 34, no. 1, pp. 65–81,
2008.

[28] Z. Su and G. Wassermann, “The Essence of Command Injection Attacks
in Web Applications,” in ACM SIGPLAN Notices, vol. 41, no. 1. ACM,
2006, pp. 372–382.

[29] G. Buehrer, B. Weide, and P. Sivilotti, “Using Parse Tree Validation to
Prevent SQL Injection Attacks,” in Proceedings of the 5th International
Workshop on Software Engineering and Middleware. ACM, 2005, pp.
106–113.

[30] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo, “Securing Web
Application Code by Static Analysis and Runtime Protection,” in
Proceedings of the 13th International Conference on World Wide Web.
ACM, 2004, pp. 40–52.

[31] K. Kemalis and T. Tzouramanis, “SQL-IDS: A Specification-based
Approach for SQL-injection Detection,” in Proceedings of the 2008
ACM Symposium on Applied Computing. ACM, 2008, pp. 2153–2158.

96

	Semi-automated verification of defense against SQL injection in web applications
	Citation

	Semi-Automated Verification of Defense against SQL Injection in Web Applications

