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Abstract—Input manipulation vulnerabilities such as SQL 
Injection, Cross-site scripting, Buffer Overflow vulnerabilities 
are highly prevalent and pose critical security risks. As a result, 
many methods have been proposed to apply static analysis, 
dynamic analysis or a combination of them, to detect such 
security vulnerabilities. Most of the existing methods classify 
vulnerabilities into safe and unsafe. They have both false-positive 
and false-negative cases. In general, security vulnerability can be 
classified into three cases: (1) provable safe; (2) provable unsafe; 
(3) unsure. In this paper, we propose a hybrid framework—
Detecting Input Manipulation Vulnerabilities (DIMV), to verify 
the adequacy of security vulnerability defenses for input 
manipulation vulnerabilities by integrating formal verification 
with vulnerability prediction in a seamless way. The verification 
part takes into account sink predicates and effect of domain and 
custom specifications for detecting input manipulation 
vulnerabilities. Proving from specification is used as far as 
possible. Cases that cannot be proved are then predicted from 
the signatures mined. Our evaluation shows the practicality of 
the proposed framework.  

Keywords— Vulnerability detection; framework; formal 
verification; prediction; data mining;  input validation; 
specification; verification; input manipulation vulnerabilities 

I. INTRODUCTION 
Security vulnerabilities, such as SQL Injection (SQLI), 

Cross-Site-Scripting (XSS), and Buffer Overflow are mistakes 
in software that can be directly used by a hacker to gain access 
to a system or network [1]. They have resulted in enormous 
losses due to information leakage or customer dissatisfaction. 

Security vulnerabilities are usually caused by programming 
errors or inadequate security defenses. Most of the security 
attacks are result of code injection from external output where 
the input data is crafted carefully to be interpreted as code 
rather than data to achieve devious objectives. Hackers look for 
presence of vulnerable code to carry out exploits. For example, 
buffer overflow vulnerabilities occur due to failure to check if 
the string to be copied is larger than the allocated size of the 
destination buffer. Format string exploits occur when external 
inputs are passed to string formatting functions without 
adequate validation. SQL Injection and cross site scripting 
attacks are due to failure to validate or sanitize inputs for 
presence of characters that have special meaning in their 
respective domain. Path traversal, command injection and 
HTTP response splitting are few other examples of input 

manipulation vulnerabilities. Adequate input validation and 
sanitization is the only way to thoroughly prevent illegal input 
manipulation in a software system.  

In this paper, we propose a hybrid framework integrating 
formal verification with vulnerability prediction for automated 
detection of input manipulation vulnerabilities. Formal 
verification helps in proving or disproving correctness of 
software expressed in terms of formal specifications by 
mathematical logic. By specifying security rules as formal 
specifications for each of security critical statements and 
modules in a system and verifying them formally we can 
conclude on the adequacy of security defense implemented in 
the system. Formal proof classifies software to be “safe” or 
“unsafe” where it can be proved. But, for cases when either the 
security property itself cannot be proved inherently or the 
theorem prover lacks information to prove it from the context 
supplied to it nothing can be said about their security defense 
adequacy. To complement this, we propose using vulnerability 
prediction by mining static code attributes representing input 
validation and sanitization regimes for such “unsure” cases.  

The paper is organized as follows. Section II provides the 
background relevant for the proposed approach. We present 
our proposed hybrid framework for detecting input 
manipulation vulnerabilities in Section III. The approach is 
evaluated in Section IV. We discuss the works related to ours 
in Section V and give our conclusions in Section VI. 

II. BACKGROUND 
Formal verification and data mining are two kinds of 

techniques that used in vulnerability detection [2, 18]. 

On one hand, formal verification uses mathematical proof 
to prove system design integrity. For vulnerability detection, 
security assertions are specified and the system is verified to 
check if the assertions hold on all paths leading to the potential 
vulnerable statement. The emphasis is on correctness, 
rigorousness and precision, but huge effort is required for 
defining formal specifications and the computational model 
used itself may have some limitations.  

On the other hand, formal verification provides qualitative 
analysis whereas prediction is quantitative. So prediction can 
be used when qualitative analysis fails to reach a conclusion 
and the result is not quantifiable. Vulnerability prediction 
analyses can be categorized into statistical prediction and data 
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mining. Some statistical approaches as in [2] look at version 
histories and corresponding known vulnerabilities of software 
for prediction. This deviates from our scope as we don’t 
consider the version histories for detecting vulnerabilities in 
software. Others use code or execution complexity [3] or lines 
of code as metrics for prediction. In both cases the purpose is 
to identify vulnerable components for testing and fixing. 
Another prediction attempt is to use more comprehensive data 
mining techniques. Data mining automates and sometimes 
fastens the detection process but is only as effective as the 
correctness of distinguishing patterns of safe and vulnerable 
patterns mined and might generate many false positives and 
false negatives. Data mining approaches which take into 
account code semantics and domain knowledge [4, 5] rather 
than just metrics as used by statistical prediction ones [3] are 
more suitable for detecting presence and/or adequacy of 
security defenses in the code. The mined patterns may help in 
vulnerability location identification which is not possible in 
statistical prediction using code metrics. 

Prediction by data mining complements formal verification 
by its generalization capabilities and uses patterns mined to 
classify a new instance. Therefore, a hybrid approach of formal 
verification and prediction using data mining has the 
advantages of qualitative and quantitative capabilities for 
comprehensive vulnerability detection. 

III. THE PROPOSED APPROACH 
Input manipulation vulnerabilities occur when the program 

does not manage to validate or sanitize the illegal input.  
Therefore, to examine the potential vulnerable statement, we 
can focus on the part of the program that validate or sanitize 
the external input before it is used to influence the data 
processed by the potential vulnerable statement. Intuitively, we 
call the part of program, input validation and sanitization 
semi-slice. 

In proposed framework, formal verification will be applied 
on the software first to classify it as ‘safe’ or ‘unsafe’ or 
‘unsure’. For each potential vulnerable statement that is 
classified ‘unsure’, we propose mining its code attributes for 
predicting vulnerabilities. Formal proof and data mining whole 
system software of real-life applications is very complex. In 
order to guide the proving and mining process to only relevant 
code that is affected by the input we propose to restrict the 
proving and mining to input validation and sanitization semi-
slice since all the statements relevant to input manipulation 
vulnerability detection are captured in it. 

A. Input Validation and Sanitization Semi-Slice and its 
Extraction 
Before proceeding to a more formal introduction of input 

validation and sanitization semi-slice, we introduce some 
terms. We shall adopt the formalism of control flow graph 
from [6]. 

In a control flow graph (CFG), a node w post-dominates a 
node u if and only if every path from u to the exit node 
contains w. In a CFG, a node y is control dependent on a node 
x if and only if x has successors x’ and x’’ such that y post-
dominates x’ but y does not post-dominate x’’. We say that 

node y is transitively control dependent on node v if there 
exists a sequence of nodes, v0 = v, v1, v2, …., vn = y, in the 
control flow graph such that n � 1 and vj is control dependent 
on vj-1 for all j, 1 � j � n. In a CFG, a node y is data dependent 
on a node x if there exists a variable v such that x defines v, y 
uses v and there is a path from x to y along which v is not 
redefined. 

Additionally, we call a variable in a program as an input 
variable if it is not defined in the program solely from 
constants and variables. Let v be an input variable defined at a 
node x in a CFG. A node y in the CFG transitively references 
to v defined at x if there is a path from x to y, a sequence of 
nodes, y0 = x, y1, …, yn = y in the path and a sequence of 
variables v0 = v, v1, …, vn, such that n � 1, for each j, 1 � j � n, 
yj defines the variable vj and references to variable vj-1, and the 
sub-path from yj-1 to yj is a definition clear path with respect to 
vj-1. 

A sensitive sink k is a statement in a program such that the 
execution of k may lead to harmful or wrong operation if the 
values of variables that k references are not restricted properly. 
Correspondingly, the node that represents a sensitive sink is 
called a sensitive sink node. Let k be a sensitive sink node in a 
CFG. A predicate node d in the CFG is called an input 
validation node of k if the following properties hold: 

i. Both k and d transitively reference to a common input 
variable defined at the same node 

ii. Node k is transitively control dependent on d 
The branch condition controlling the branch that k is on is 
called a validation node constraint. 

A sequence V of statements that validate the input 
processed at k, is extracted from P according to the following 
steps: 

1. Include k in V 
2. Include all nodes that define variables that are 

referenced at k in V 
3. Include all input validation nodes of k in V 
4. P is iterated from the last statement to the first 

statement statement-by-statement to extract further 
statements from P in the following way until V is 
invariant upon iteration – that is, until no new 
statements from P is included in an iteration. In each 
iteration, for each statement t  k in P, if there is a 
statement in V that is control or data dependent on t, 
then t is included in V 

These statements are included in V in the same order as 
they appear in P. We call the sequence V, the input validation 
and sanitization semi-slice of k. 

B. Detecting Input Manipulation Vulnerabilities 
In general, for any type of security vulnerability, it is 

impossible to prove all cases to be either safe or unsafe. To 
address this problem, we propose a hybrid framework—
Detecting Input Manipulation Vulnerabilities (DIMV), which 
integrates formal proof and data mining techniques in a 
seamless way: 
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1. First, based on given specifications for certain 
vulnerabilities, DIMV proves cases to be ‘safe’ or 
‘unsafe’ as far as possible.  

2. Second, safe and unsafe patterns in terms of code 
static attributes are then used to predict the ‘unsure’ 
cases.  

Figure 1 gives an overview of the proposed approach. Next, 
we shall introduce the details of DIMV. 

 
Fig. 1. Overview of the Proposed Framework 

1) Vulnerability Dectection from Verification 
One major setback to formally prove required properties for 

program is the huge effort involved in defining a formal 
specification. Security vulnerabilities of code occur at some 
specific types of statements. If in the code, user/external inputs 
are not properly checked to ensure that the required properties 
are met before processed by these statements, the inputs might 
change the original intention of these statements to perform 
harmful operations. The required properties are invariant for 
each type of sink statements.  

We therefore propose a three-level specification based 
approach for vulnerability detection. A specification can be 
specified by: 

1. Statement type in general 

2. Statement type by domain 

3. Specific statement in a program 

Each specification attached to a statement at these levels 
will contain two elements: 

� Type of vulnerability with safe and unsafe formal 
properties specified if there are formal properties 
available 

� Prediction rules or patterns 
Data Type T ::= int | float | p*| obj 
Variable v ::= id: T 
Constant c ::= Num | Str 
Predicate predicate ::= ==|!=|<|>|�|�|contains() 
Operation op ::= n_op |s_op|p_op|b_op  
 n_op ::= +|-|*|/|<<|>>|% 
 s_op ::= escape() 
 p_op ::= ++|--|length ()|addr() 
 b_op ::= AND | OR | NOT 
Expression exp ::= v|vi (op vj)* 
Var_Bound bound ::= (v|exp) predicate  (v|exp|c) 
Property   Property ::=  {bound} 

Fig. 2. Syntax for Property Specification 

The three-leveled approach caters to vulnerability detection 
centered at language specific, domain specific and application / 
business logic vulnerabilities.  The safe and unsafe formal 
properties for each type of sensitive sink statement are defined 
as predicates and stored in a sink properties database. The 
effort for defining these properties is only once. These 
properties can be refined and expanded and are reusable.  

DIMV introduces the syntax in Fig. 2 to define properties. 
Each property is a set of boundaries which constraint the 
variables referenced by the corresponding sink. Violating the 
property may lead to sink nodes exploited. In Fig. 2, besides 
those regular notations, DIMV is also built on another four 
important functions: 

� length(v): this function returns the length of a given 
pointer or object.  

� addr(v): this function returns the memory address of a 
given pointer or object. 

� contains(v1, v2): this functions judges whether a string 
v1 contains any strings matched by the regular 
expression pattern v2. 

� escape (n, v1): this function encodes a given string v1 
by converting certain special characters. DIMV 
maintains a list of standard escaping functions. The 
parameter n is the ID, set to invoke these functions for 
different use cases.  

Table I illustrates a part of standard functions maintained by 
DIMV. Table II lists a set of sample predefined properties in 
DIMV.   

Table I. STANDARD ESCAPE FUCNTIONS MAINTAINED BY DIMV 
ID Host Language Standard Escape Function 
1 PHP htmlentities () 
2 PHP htmlspecialchars() 
3 PHP mysql_real_escape () 
4 Javascript escape () 
…… 

Table II. SINK PROPERTIES DATABASE IN DIMV  
Sensitive 

Sink  
Host  

Language 
Safe 

Formal Property 
Buffer Overflow Vulnerability  

void * memmove(void 
* dst, const void * src, 
size_t num) 

C/C++ (length (dst) � num) &&( 
length (src) � num) 

void * memset(void * 
ptr, int value, size_t 
num) 

C/C++ length (ptr) � num

Cross Site Scripting (XSS) Vulnerability
echo var PHP escape (1,var) ==var

/* the output content var 
should not contain any special 
characters*/ 

SQL Injection Vulnerability 
mysql_query(sql) PHP escape (3, sql) ==sql

/* the script sql should not 
contain any special 
characters*/

…….

DIMV performs the algorithm CheckVul shown in Fig. 3 to 
verify a given program. For each sink node k, CheckVul gets its 
safe property from database and computes k’s semi-slice V. For 
every variables used by k’s safe property, CheckVul uses 
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symbolic evaluation over V to get these variables’ definitions. 
With symbolic evaluation and constraint solving, if the safe 
properties can be proved under k’s validation constraint, then a 
definite conclusion on k’s vulnerability would be reached. 
Cases that cannot be proved are highlighted as ‘unsure’ and are 
later processed by DIMV’s vulnerability predication 
component. 

Take for instance, in Fig. 4 node10 is the sink node. The 
sink has insufficient validation and is hence unsafe. This can be 
verified using our general statement specification for memmove 
depicted in Table I. Node9 is the input validation node for 
node10 as both of them refer to common input variable lmov 
defined at node6.  Hence the validation node constraint is cvn = 
(lmov � MAXSIZE). The safe property for this sink is p = 
(length (dst) >= num) && (length (src) >= num). Therefore, a 
generated constraint (cvn�p) will be expressed as: 
(lmov � MAXSIZE) �((length(dst) >=num)&& (length (src) >= num)) 

After symbolic evaluation, this generated constraint would be 
expressed in terms of program variables as: 
(lmov � MAXSIZE) � ((ldst >= lmov) &&(MAXSIZE >= lmov)) 

The above constraint will be verified against a theorem prover 
and the result is invalid. Therefore, the sink node node10 is 
termed as “unsafe”, which means it is vulnerable to buffer 
overflow attack. 

Input        : G 
Output     : result, // result could ‘safe’, ‘unsafe ’or ‘unsure’ 
Algorithm: CheckVul (G) 
begin 
     for each sink node k in G 
           p=lookup (k); /* search in DIMV’s sink properties database to get the 

property for k.*/ 
V=semi_slice(k); // get the semi-slice of k  

          for each input validation node d in V 
               get d’s validation node constraint cvn 
               C = cvn p;  // get an implication constraint 
          end for  

for each variable � used in C 
               � =symbolic_evaluate(�, V);/* do symbolic evaluation over V to get 

�’s definition */ 
               C = C  �; // update C with variables’ definitions 
          end for 
          r = constraint_solve(C); //verify C against a  theorem prover 
          record (r, k, G);           //  record the analysis result 
    end for 
    return r; 
end 

Fig. 3. Vulnerability Verification Algorithm 

#define MAXSIZE 40 
int main() { 

1. char src [MAXSIZE]; 
2. printf (“Enter string:\n”); 
3. scanf (“%39s”,src); 

 
4. size_t  ldst = 0; 
5. scanf(“%d”, &ldst); 

 
6. size_t  lmove = 0; 
7. scanf(“%d”, &lmov); 

 
8. char * dst = (char *) malloc (ldst); 

 
9. if(lmov <= MAXSIZE)                                  //input validation node 
10.     memmove(dst, src, lmov);                         // sink node 

} 
Fig. 4. Sample Code Violating a Sink’s Safe Property 

At times, the specification framework may not be able to 
prove or disprove the sink’s safe property. This could be due to 
inadequate information for such verification condition 
generation or due to absence of validation node for the sink. 
Based on our previous work [4, 5], quite a number of ‘unsure’ 
cases are caused by functions with nondeterministic behaviors.  
To reduce the effect from these functions, DIMV maintains a 
function effect database for users to store predefined mock 
objects and stub functions. This database is created either on 
organization or project basis and can be extended as and when 
required. 

However, even with the above effort, in certain cases, a 
definite outcome still cannot be reached and the sink will hence 
be declared ‘unsure’ and will be predicted using classifier 
models learned from code attributes collected from 
benchmarks with known vulnerabilities. 

2) Vulnerability Dectection from Prediction 
We propose using code attributes for predicting cases 

declared ‘unsure’ by formal verification component. This 
happens at times safe or unsafe sink properties cannot be 
proved as the theorem prover lacks information to prove sink 
properties from the system’s context. Hence we complement 
the formal verification with prediction to detect probable 
vulnerabilities by taking into account the code and domain 
semantics. In order to predict the vulnerability of an application 
we propose using data mining schemes appropriate to the 
domain/framework under consideration. Patterns in software 
represent programming rules or coding style. Capturing such 
patterns/features ideal for distinguishing between safe and 
vulnerable software is the key to predict vulnerability with 
higher probability of accuracy when encountered with new 
software specimen. Our previous work in [2] shows  promising 
results in predicting the SQL Injection and Cross site scripting 
(XSS) vulnerabilities from code attributes. This gives a 
preliminary justification of the proposed framework. 

An application is vulnerable if the input is not validated 
properly and/or if the input sanitization regime required as 
needed for respective sink is either absent or is inadequate. 
Input can be validated implicitly by checking variable’s 
properties (like length, range, type, sign or in case of SQL 
injection and cross-site scripting attacks for presence of 
characters with special meaning to domain under 
consideration) or it can be performed explicitly by invoking 
input sanitization schemes provided by the development 
framework or custom written routines. 

We suggest mining code attributes representing sink types 
(such as database functions, system functions, HTML output 
functions, string manipulation functions), input types (HTML 
forms, environment variables, data read from data base or files, 
command line inputs etc), input validation and sanitization 
routines implemented for the sink. Code attributes that 
characterize program code patterns that are sensitive to the 
particular security issue under consideration should also be 
used. For example for buffer overflow caused by format string, 
a code attribute “if the format string is data dependent on an 
input value", would come under such vulnerability relevant 
attribute.  
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Vulnerability prediction is done by training prediction 
models with attributes representing domain and code semantics 
from benchmarks with known vulnerabilities and using it to 
predict vulnerabilities on new software program specimens.  

IV. EVALUATION: A CASE STUDY  
Many approaches have been proposed for formal 

verification and prediction of vulnerability separately. As this 
paper proposes a framework for integrating verification and 
prediction approaches together in a seamless way, our 
evaluation is based on examining the integration of one 
approach from formal verification and another one from 
prediction through a case study. This case study is using DIMV  
to examine XSS vulnerability in PHP programs. 

Table IV. STATISTICS OF THE TEST SUBJECTS 
Test Subject Description LOC Security 

Advisories 

Schoolmate 1.5.4 A tool for school 
administration 8145 Vulnerability info 

in [29] 

Faqforge 1.3.2 Document creation and 
management 2238 Bugtrag-43897 

Utopia News Pro1.1.4 News management 
System 5737 Bugtrag-15027 

Phorum 5.2.18 Message board 
software 12324 CVE-2008-1486 

CVE-2011-4561 

Cutesite 1.2.3 Content management 
framework 11441 CVE-2010-5024 

CVE-2010-5025 

Myadmin 3.4.4 MySQL database 
management 44628 PMASA-2011-14 

PMASA-2011-20 

Table V. DATA STATISTICS OF THE TEST SUBJECTS  
Data Set #HTML 

sinks 
#Actual Vul. Sinks 

to XSS 
#Principal 

Components 
schoolmate-html 172 138 7 
faqforge-html 115 53 7 
utopia-html 86 17 9 
phorum-html 237 9 9 
cutesite-html 239 40 10 
myadmin-html 305 20 9 

A. Experiment Setting 
Let us recall Fig. 1. Test subjects will be fed to DIMV and 

experienced a two-stage checking: vulnerability verification 
and vulnerability prediction.  

� The first stage would capture cases with definite 
conclusions. We implemented the symbolic 
evaluation with Pixy [7] — a PHP analysis program. 
We used Microsoft Z3 [8] to solve numeric 
constraints; and used HAMPI [9] to solve string 
constraints.  

� The second stage would predict the vulnerability of 
those ‘unsure’ cases. We also used Pixy to collect 
required code attributes. Table III (appendix) shows 
the attributes we suggested for XSS vulnerability 
prediction.  

The experiment was conducted over six real-world PHP-based 
web applications obtained from SourceForge [10]. Table IV 
shows the relevant statistics for these test subjects. To better 
evaluate DIMV, we carried out a preliminary study with 
manual effort to find out the actual vulnerability statistics in 
each systems. Table V shows such data. 

B. Result of Vulnerability Verification 
Table VI shows the verification result. The Column Actual 

Sinks records the confirmed vulnerabilities with each data set. 
The Columns Safe, Unsafe and Unsure record the number of 
detected ‘safe’ and ‘unsafe’ cases and also the number of 
‘unsure’ cases. In the current implementation, we set a timeout 
as 1 minute for verifying each sink, including both symbolic 
evaluation and constraint solving. If the timer exceeded, that 
case will be concluded as ‘unsure’. This setting is to capture 
cases beyond theorem provers’ solvability.  

As shown by Table VI, within the total 1154 Sinks, 801 
(69.41%) sinks are detected with definite conclusions while the 
rest 353(30.59%) cases fell in unsolvable situations.  

Table VI. STATISTICS OF THE TEST SUBJECTS 

Data  Set #HTML 
sinks 

#Detectable  #Unsure #Safe #Unsafe 
schoolmate-html 172 26 95 51 
faqforge-html 115 47 35 33 
utopia-html 86 34 14 38 
phorum-html 237 159 6 72 
cutesite-html 239 153 19 67 
myadmin-html 305 202 16 87 

Total 1154 
613 188 

353(30.59%) 801 (69.41%) 

We investigated the ‘unsure’ cases and discovered the 
unsolvable situations mainly include: 

� Insufficient information in DIMV’s function effect 
database. For example, when encountered native 
functions which are without function effect database, 
DIMV will conclude the case as ‘unsure’. There are 
268 of such cases. 

� Complex string constraint. Solving string constraints is 
expensive and time consuming. When DIMV run out 
of time, the case will be concluded as ‘unsure’. There 
are 65 of such cases. 

� Implementation flaw. A precise and scalable symbolic 
evaluation procedure requires decent engineering effort.  
The current implementation of DIMV may generate a 
small amount of runtime exceptions. There are 20 of 
such cases. 

          
� Fig. 5. Cases Encountered in DIMV Verification Stage 

Figure 5 concludes the above finds. These difficulties are 
the bottlenecks for many existing formal verification methods.  
To overcome such bottlenecks, DIMV further processed these 
unsure cases with data mining techniques.  
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C. Result of Vulnerability Prediction 
Prediction Measure: The goal of this experiment is to test 

whether it is possible to predict vulnerability for those ‘unsure’ 
cases.  In the current implementation of DIMV, the prediction 
is performed by supervised classification. To measure the 
performance with standard metrics, we followed Table VII to 
compute recall of detection (pd), probability of false alarm (pf), 
and precision (pr).  

Recall (pd) measures a classifier’s ability in finding actual 
vulnerable sinks. Precision (pf) measures the actual vulnerable 
sinks that are correctly predicted in terms of a percentage of 
total number of sinks predicted as vulnerable. False alarm (pd) 
measures cost of using the classifier: an increasing pd indicates 
more false alarms or decreasing precision. Ideally, the classifier 
should neither miss any actual vulnerabilities (pf ~ 1) nor throw 
false alarms (pf ~ 0 , pr ~ 1). 
 Table VII. PERFORMANCE MEASUREMENT 

 Actual 
Vulnerable Not-Vulnerable 

Predicted Vulnerable True positive(tp) False positive(fp) 
Not-Vulnerable False negative(fn) True negative(tn) 

Recall              pd  =  tp / (tp+fn) 
False alarm      pf  =  fp / (fp+tn) 
Precision         pr  = tp / (tp+fp) 

Data Preprocessing: Let us recall the verification result in 
the sub section B. The verification stage confirmed 613 cases 
as ‘safe’ and 188 cases as ‘unsafe’. Guided by Table III 
(appendix), we collected the attributes related with these 
(613+188=801) cases as the sample data to train classifiers.  

Thereafter, we obtained data of 20 numeric attributes and 2 
binary attributes. From our preliminary study, it is observed 
that different numeric attributes are defined on different scales 
and their distributions are highly skewed. This may cause bias 
toward to some attributes (e.g. attributes with large scale 
values), especially in the context of clustering where similarity 
measurement combines multiple attributes scales. To overcome 
this problem, we used a min-max method [11] to normalize the 
collected data. 

After normalization, we further processed the data with 
Principle Component Analysis (PCA). PCA results in a new set 
of attributes (principle components), each of which is a linear 
combination of some the original attributes. PCA helps 
eliminate the attributes’ inter-dependency. The new attributes 
set is usually much smaller, and therefore could be more 
efficiently analyzed by classifiers. In our experiments, we 
applied PCA to every data set (after min-max normalization) 
and used a subset of principal components as attributes such 
that the selected explain at least 95% of the data variance. The 
last column in Table V shows the numbers of principal 
components selected 

Classifiers: we used supervised learning methods and 
chose two efficient classifiers for this experiment: Logistic 
Regression (LR) and Multi-Layer Perceptron (MLP). These 
classifiers were benchmarked as among the top classifiers in 
recent studies [12]. MLP is a type of neural networks. LR is a 
type of statistical regression models. Details about these 
classification techniques are provided by Witten and Frank 
[11]. We used two very different techniques in an attempt to 

optimize accuracy. The implementation of the two classifiers 
are from Weka [13], a data mining toolkit box.  

Validation and Training: We first validated the classifiers 
with 10-fold cross validation setup. The data is divided into ten 
sets. A classifier is trained on nine sets and then tested on the 
remaining set. This process is repeated ten times; each time 
testing on a different set. The order of training and test set is 
randomized. This test design overcomes the ordering effects 
due to randomization. This is important to avoid a malignant 
increase in performance by a certain ordering of training and 
test data. Isolating a test set from the training set also conforms 
to hold-out test design which is important to evaluate the 
classifier’ capability to predict new vulnerabilities [11].  

Table VIII  shows the validation result. On average, the two 
classifier both showed good performances with high detection 
rate(LP=86%, MLP=78%) low false alarm rate (LP=3%, 
MLP=3%). But on data set phorum-html, MLP could not 
identify certain cases whereas LP is more stable. Therefore, we 
chose LP to build a predictor to predict vulnerabilities. 

Table VIII VALIDATION RESULT OF VULNERBILITY PREDICTOR 
Data Set Classifier pd pf pr 

schoolmate-html LP 99 3 98 
MLP 99 0 100 

faqforge-html LP 89 5 94 
MLP 91 5 94 

utopia-html LP 94 1 94 
MLP 94 2 89 

phorum-html LP 78 1 70 
MLP 33 0 100 

cutesite-html LP 68 9 61 
MLP 78 8 67 

myadmin-html LP 85 1 89 
MLP 75 1 83 

Average results on  
XSS prediction 

LP 86 3 84 
MLP 78 3 89 

Vulnerability Prediction: we used the built  predictor to 
predict vulnerabilities for those ‘unsure’ cases. The results are 
shown in Table XI. The column #unsure sinks records the 
number of ‘unsure’ sinks. The column #Predicted records the 
number of predicted vulnerable sinks. The column #Correct 
records the number of actual vulnerable sinks. The last two 
columns #FP and #FN report the number of false positives and 
false negatives. Therefore, the prediction stage captures 
another 79 vulnerable sinks with a false positive rate at 14.44% 
and a false negative rate at 2.22%. So we can conclude that the 
performance of the vulnerability prediction is good.  

Table XI VULNERABILITY PREDICTION 

Data  Set #unsure 
sinks 

#Vulnerable sinks 
#Predicted #Correct #FP #FN 

schoolmate 51 36 42 7 1
faqforge 33 15 17 3 1
utopia 38 3 3 0 0
phorum 72 2 3 1 0
cutesite 67 19 21 2 0
myadmin 87 4 4 0 0
Total 348 79 90 13

(14.44%)
2

(2.22%)

V. RELATED WORK 
Security vulnerabilities may result in great loss due to 

system failure or information leakage. A vast number of 
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proposals have been made to mitigate the threats of 
vulnerabilities. Existing methods or tools could be mainly 
categorized into four types: (1) vulnerability detection with 
program analysis; (2) runtime attack prevention; (3) 
vulnerability prediction with data mining; (4) hybrid 
framework. 

Methods of program analysis focus on detecting 
vulnerabilities in source code or scripts using taint analysis 
techniques. Earlier methods usually uses static analysis to 
identify tainted inputs received from external data sources, 
track the dataflow of tainted data, and check if any reached 
sinks such as buffer writing, SQL or HTML output statements 
[14, 15]. Recently, dynamic analysis techniques are integrated 
to enhance the detection precision. For example, a team led by 
Adam Kiezun used concolic (concrete+symbolic) execution to 
capture program path constraints and a constraint solver to 
generate test inputs that explored various program paths [16]. 
Upon reaching the sinks, they exercised two sets of inputs—
one of ordinary valid strings and the other of attack strings 
from a library [17]—and checked the differences between the 
resulting program behaviors.  

Methods of runtime attack prevention adopt run-time 
defense to prevent exploiting potential vulnerabilities of any 
installed programs. These approaches aim to provide an extra 
protection regardless of what the source program is. For 
instance, StakeGuard [18] is such a tool that creates virtual 
variables to simulate function’s return address to prevent 
buffer overflow attacks. Suspicious code will be redirected to 
act over the virtual variables first. 

Methods of vulnerability prediction belong to a branch that 
attempts to reveal the association between vulnerabilities and 
certain program attributes. A classic prediction model is from 
Shin et al. [19]. They used code complexity, code churn, and 
developer activity attributes to predict vulnerable programs. 
Their assumption was that, the more complex the code, the 
higher the chances of vulnerability. Recent novel approaches 
also include [2, 4, 5, 20]. 

In practice, it is found that a standalone approach from any 
of the above categories cannot fully resolve the threads of 
various vulnerabilities. Therefore, a number of hybrid 
vulnerability detection frameworks have been proposed [18-
19]. Some of these for vulnerability detection approaches 
integrate more than one analysis for detection purposes. Most 
of the vulnerability detection proposals, in general, classify 
vulnerabilities as safe or unsafe, there by incurring false 
positives and false negatives. By contrast, we classify them as 
‘safe’ or ‘unsafe’ or ‘unsure’ which is a more accurate 
classification. 

Bitblaze [21], a binary analysis platform is one of such 
hybrid vulnerability detection frameworks. It integrates static 
and dynamic analysis and performs symbolic evaluation on 
path constraints from an execution trace to automatically 
generate inputs to traverse different program paths and used it 
for detecting vulnerabilities. Code Auditor [22] is another 
vulnerability detection framework. It is based on constraint 

analysis and model checking and can be used for detecting 
buffer overflow vulnerabilities in C source code but incurs 
high false positives (around 23%).  

However, all these frameworks are catered to either deal 
with specific language/ domain. Our proposed framework is 
generic in nature. For example, specifications can be written 
for any programming language constructs or assembly code 
and since our three level specifications accounts for domain as 
well as custom specifications it can be used to detect web 
application vulnerabilities too, where the sanitization plays a 
major role and since all these databases are extensible and 
reusable, we can detect a wide variety of vulnerabilities using 
our single proposed framework as opposed to having a  
specialized framework for each vulnerability or application 
programming language or domain. 

VI. CONCLUSION 
Existing vulnerability detection approaches classify 

software as ‘safe’ or ‘unsafe’ and suffer from either false 
positives or false negatives but there should be another class 
‘unsure’, which is highly ignored. Hence we classify software 
as ‘safe’ or ‘unsafe’ or ‘unsure’. One of our major 
contributions in the paper is the proposal for a hybrid 
framework seamlessly integrating formal verification with 
prediction for security vulnerability detection. The results 
from the proposed approach can be used as an input for the 
security testing which is crucial to many software systems. In 
the proposed approach, first, we use formal verification to 
classify a sensitive sink as ‘safe’ or ‘unsafe’ if safe or unsafe 
properties can be proved. Other vulnerable sensitive sinks will 
be classified as unsure” cases. We proposed using data 
mining code attributes to predict the vulnerabilities in ‘unsure’ 
cases. Another contribution of the paper is our proposal for 
three level formal specification of statement’s safe/unsafe 
usage. Writing formal specification for all statement 
constructs in the programming language is a huge task. Since 
security vulnerabilities only happen at sensitive sinks we limit 
the specification only to such statements. Our three level 
specifications capture the semantics of programming language 
statement in general, domain specific requirements and 
custom specifications to cater to domain and business logic 
implications on vulnerabilities too. These specifications are 
extensible and reusable. To evaluate our proposed approach, 
we applied a case study on XSS vulnerability detection over 6 
test subjects. The results prove the practicality of the proposed 
framework. 
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APPENDIX 
Table III. CODE ATTRIBUTES FOR VULNERABILITY PREDICTION 

Attribute 
ID Attribute Name Description 

Code Attribute 
1 Client The number of nodes which access data from HTML request parameters 
2 File The number of nodes which access data from files 
3 Database The number of nodes which access data from database 
4 Text-database Boolean value ‘TRUE’ if there is any text-based data accessed from database; ‘FALSE’ otherwise 
5 Other-database Boolean value ‘TRUE’ if there is any data except text-based data accessed from database; ‘FALSE’ otherwise 
6 Session The number of nodes which access data from persistent data objects 
7 Uninit The number of nodes which reference un-initialized program variable 
8 XSS-sanitization The number of nodes that apply standard sanitization functions for preventing XSS issues 
9 Numeric-casting The number of nodes that type cast data into a numerical type data 

10 Numeric-type-check The number of nodes that perform numeric data type check 
11 Encoding The number of nodes that encode data into a certain format 
12 Un-taint The number of nodes that return predefined information or information not influenced by external users 
13 Boolean The number of nodes that invoke functions which return Boolean value 
24 Propagate The number of nodes that propagate the tainted-ness of an input string 
15 Numeric The number of nodes that invoke functions which return only numeric characters, mathematic operators, and/or dash character 
16 LimitLength The number of nodes that invoke string-length limiting functions 
17 URL The number of nodes that invoke path-filtering functions 
18 EventHandler The number of nodes that invoke event handler filtering functions 
19 HTMLTag The number of nodes that invoke HTML tag filtering functions 
20 Delimiter The number of nodes that invoke delimiter filtering functions 
21 AlternateEncode The number of nodes that invoke alternate character encoding filtering functions 

Target Attribute 
22 Vulnerable? Target attribute which indicates a class label—Vulnerable or Not-Vulnerable  
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