
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2013

Towards a hybrid framework for detecting input manipulation Towards a hybrid framework for detecting input manipulation

vulnerabilities vulnerabilities

Sun DING
Nanyang Technological University

Hee Beng Kuan TAN
Nanyang Technological University

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Bindu Madhavi PADMANABHUNI
Nanyang Technological University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
DING, Sun; TAN, Hee Beng Kuan; SHAR, Lwin Khin; and PADMANABHUNI, Bindu Madhavi. Towards a
hybrid framework for detecting input manipulation vulnerabilities. (2013). 2013 20th Asia-Pacific Software
Engineering Conference (APSEC): Bangkok, December 2-5: Proceedings. 363-370.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4837

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4837&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Towards a Hybrid Framework for Detecting Input
Manipulation Vulnerabilities

Sun Ding
School of Electrical and
Electronic Engineering,
Nanyang Technological

University,Singapore
ding0037@e.ntu.edu.sg

Hee Beng Kuan Tan
School of Electrical and
Electronic Engineering,
Nanyang Technological
University, Singapore
ibktan@e.ntu.edu.sg

Lwin Khin Shar
School of Electrical and
Electronic Engineering,
Nanyang Technological
University, Singapore

shar0035@e.ntu.edu.sg

Bindu Madhavi
Padmanabhuni

School of Electrical and
Electronic Engineering,
Nanyang Technological
University, Singapore

padm0010@e.ntu.edu.sg

Abstract—Input manipulation vulnerabilities such as SQL
Injection, Cross-site scripting, Buffer Overflow vulnerabilities
are highly prevalent and pose critical security risks. As a result,
many methods have been proposed to apply static analysis,
dynamic analysis or a combination of them, to detect such
security vulnerabilities. Most of the existing methods classify
vulnerabilities into safe and unsafe. They have both false-positive
and false-negative cases. In general, security vulnerability can be
classified into three cases: (1) provable safe; (2) provable unsafe;
(3) unsure. In this paper, we propose a hybrid framework—
Detecting Input Manipulation Vulnerabilities (DIMV), to verify
the adequacy of security vulnerability defenses for input
manipulation vulnerabilities by integrating formal verification
with vulnerability prediction in a seamless way. The verification
part takes into account sink predicates and effect of domain and
custom specifications for detecting input manipulation
vulnerabilities. Proving from specification is used as far as
possible. Cases that cannot be proved are then predicted from
the signatures mined. Our evaluation shows the practicality of
the proposed framework.

Keywords— Vulnerability detection; framework; formal
verification; prediction; data mining; input validation;
specification; verification; input manipulation vulnerabilities

I. INTRODUCTION
Security vulnerabilities, such as SQL Injection (SQLI),

Cross-Site-Scripting (XSS), and Buffer Overflow are mistakes
in software that can be directly used by a hacker to gain access
to a system or network [1]. They have resulted in enormous
losses due to information leakage or customer dissatisfaction.

Security vulnerabilities are usually caused by programming
errors or inadequate security defenses. Most of the security
attacks are result of code injection from external output where
the input data is crafted carefully to be interpreted as code
rather than data to achieve devious objectives. Hackers look for
presence of vulnerable code to carry out exploits. For example,
buffer overflow vulnerabilities occur due to failure to check if
the string to be copied is larger than the allocated size of the
destination buffer. Format string exploits occur when external
inputs are passed to string formatting functions without
adequate validation. SQL Injection and cross site scripting
attacks are due to failure to validate or sanitize inputs for
presence of characters that have special meaning in their
respective domain. Path traversal, command injection and
HTTP response splitting are few other examples of input

manipulation vulnerabilities. Adequate input validation and
sanitization is the only way to thoroughly prevent illegal input
manipulation in a software system.

In this paper, we propose a hybrid framework integrating
formal verification with vulnerability prediction for automated
detection of input manipulation vulnerabilities. Formal
verification helps in proving or disproving correctness of
software expressed in terms of formal specifications by
mathematical logic. By specifying security rules as formal
specifications for each of security critical statements and
modules in a system and verifying them formally we can
conclude on the adequacy of security defense implemented in
the system. Formal proof classifies software to be “safe” or
“unsafe” where it can be proved. But, for cases when either the
security property itself cannot be proved inherently or the
theorem prover lacks information to prove it from the context
supplied to it nothing can be said about their security defense
adequacy. To complement this, we propose using vulnerability
prediction by mining static code attributes representing input
validation and sanitization regimes for such “unsure” cases.

The paper is organized as follows. Section II provides the
background relevant for the proposed approach. We present
our proposed hybrid framework for detecting input
manipulation vulnerabilities in Section III. The approach is
evaluated in Section IV. We discuss the works related to ours
in Section V and give our conclusions in Section VI.

II. BACKGROUND
Formal verification and data mining are two kinds of

techniques that used in vulnerability detection [2, 18].

On one hand, formal verification uses mathematical proof
to prove system design integrity. For vulnerability detection,
security assertions are specified and the system is verified to
check if the assertions hold on all paths leading to the potential
vulnerable statement. The emphasis is on correctness,
rigorousness and precision, but huge effort is required for
defining formal specifications and the computational model
used itself may have some limitations.

On the other hand, formal verification provides qualitative
analysis whereas prediction is quantitative. So prediction can
be used when qualitative analysis fails to reach a conclusion
and the result is not quantifiable. Vulnerability prediction
analyses can be categorized into statistical prediction and data

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.56

363

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.56

363

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.56

363

Published in Published in 2013 20th Asia-Pacific Software Engineering Conference (APSEC): Bangkok, December 2-5: Proceedings.
pp. 363-370.
https://doi.org/10.1109/APSEC.2013.56

mining. Some statistical approaches as in [2] look at version
histories and corresponding known vulnerabilities of software
for prediction. This deviates from our scope as we don’t
consider the version histories for detecting vulnerabilities in
software. Others use code or execution complexity [3] or lines
of code as metrics for prediction. In both cases the purpose is
to identify vulnerable components for testing and fixing.
Another prediction attempt is to use more comprehensive data
mining techniques. Data mining automates and sometimes
fastens the detection process but is only as effective as the
correctness of distinguishing patterns of safe and vulnerable
patterns mined and might generate many false positives and
false negatives. Data mining approaches which take into
account code semantics and domain knowledge [4, 5] rather
than just metrics as used by statistical prediction ones [3] are
more suitable for detecting presence and/or adequacy of
security defenses in the code. The mined patterns may help in
vulnerability location identification which is not possible in
statistical prediction using code metrics.

Prediction by data mining complements formal verification
by its generalization capabilities and uses patterns mined to
classify a new instance. Therefore, a hybrid approach of formal
verification and prediction using data mining has the
advantages of qualitative and quantitative capabilities for
comprehensive vulnerability detection.

III. THE PROPOSED APPROACH
Input manipulation vulnerabilities occur when the program

does not manage to validate or sanitize the illegal input.
Therefore, to examine the potential vulnerable statement, we
can focus on the part of the program that validate or sanitize
the external input before it is used to influence the data
processed by the potential vulnerable statement. Intuitively, we
call the part of program, input validation and sanitization
semi-slice.

In proposed framework, formal verification will be applied
on the software first to classify it as ‘safe’ or ‘unsafe’ or
‘unsure’. For each potential vulnerable statement that is
classified ‘unsure’, we propose mining its code attributes for
predicting vulnerabilities. Formal proof and data mining whole
system software of real-life applications is very complex. In
order to guide the proving and mining process to only relevant
code that is affected by the input we propose to restrict the
proving and mining to input validation and sanitization semi-
slice since all the statements relevant to input manipulation
vulnerability detection are captured in it.

A. Input Validation and Sanitization Semi-Slice and its
Extraction
Before proceeding to a more formal introduction of input

validation and sanitization semi-slice, we introduce some
terms. We shall adopt the formalism of control flow graph
from [6].

In a control flow graph (CFG), a node w post-dominates a
node u if and only if every path from u to the exit node
contains w. In a CFG, a node y is control dependent on a node
x if and only if x has successors x’ and x’’ such that y post-
dominates x’ but y does not post-dominate x’’. We say that

node y is transitively control dependent on node v if there
exists a sequence of nodes, v0 = v, v1, v2, …., vn = y, in the
control flow graph such that n � 1 and vj is control dependent
on vj-1 for all j, 1 � j � n. In a CFG, a node y is data dependent
on a node x if there exists a variable v such that x defines v, y
uses v and there is a path from x to y along which v is not
redefined.

Additionally, we call a variable in a program as an input
variable if it is not defined in the program solely from
constants and variables. Let v be an input variable defined at a
node x in a CFG. A node y in the CFG transitively references
to v defined at x if there is a path from x to y, a sequence of
nodes, y0 = x, y1, …, yn = y in the path and a sequence of
variables v0 = v, v1, …, vn, such that n � 1, for each j, 1 � j � n,
yj defines the variable vj and references to variable vj-1, and the
sub-path from yj-1 to yj is a definition clear path with respect to
vj-1.

A sensitive sink k is a statement in a program such that the
execution of k may lead to harmful or wrong operation if the
values of variables that k references are not restricted properly.
Correspondingly, the node that represents a sensitive sink is
called a sensitive sink node. Let k be a sensitive sink node in a
CFG. A predicate node d in the CFG is called an input
validation node of k if the following properties hold:

i. Both k and d transitively reference to a common input
variable defined at the same node

ii. Node k is transitively control dependent on d
The branch condition controlling the branch that k is on is
called a validation node constraint.

A sequence V of statements that validate the input
processed at k, is extracted from P according to the following
steps:

1. Include k in V
2. Include all nodes that define variables that are

referenced at k in V
3. Include all input validation nodes of k in V
4. P is iterated from the last statement to the first

statement statement-by-statement to extract further
statements from P in the following way until V is
invariant upon iteration – that is, until no new
statements from P is included in an iteration. In each
iteration, for each statement t k in P, if there is a
statement in V that is control or data dependent on t,
then t is included in V

These statements are included in V in the same order as
they appear in P. We call the sequence V, the input validation
and sanitization semi-slice of k.

B. Detecting Input Manipulation Vulnerabilities
In general, for any type of security vulnerability, it is

impossible to prove all cases to be either safe or unsafe. To
address this problem, we propose a hybrid framework—
Detecting Input Manipulation Vulnerabilities (DIMV), which
integrates formal proof and data mining techniques in a
seamless way:

364364364

1. First, based on given specifications for certain
vulnerabilities, DIMV proves cases to be ‘safe’ or
‘unsafe’ as far as possible.

2. Second, safe and unsafe patterns in terms of code
static attributes are then used to predict the ‘unsure’
cases.

Figure 1 gives an overview of the proposed approach. Next,
we shall introduce the details of DIMV.

Fig. 1. Overview of the Proposed Framework

1) Vulnerability Dectection from Verification
One major setback to formally prove required properties for

program is the huge effort involved in defining a formal
specification. Security vulnerabilities of code occur at some
specific types of statements. If in the code, user/external inputs
are not properly checked to ensure that the required properties
are met before processed by these statements, the inputs might
change the original intention of these statements to perform
harmful operations. The required properties are invariant for
each type of sink statements.

We therefore propose a three-level specification based
approach for vulnerability detection. A specification can be
specified by:

1. Statement type in general

2. Statement type by domain

3. Specific statement in a program

Each specification attached to a statement at these levels
will contain two elements:

� Type of vulnerability with safe and unsafe formal
properties specified if there are formal properties
available

� Prediction rules or patterns
Data Type T ::= int | float | p*| obj
Variable v ::= id: T
Constant c ::= Num | Str
Predicate predicate ::= ==|!=|<|>|�|�|contains()
Operation op ::= n_op |s_op|p_op|b_op
 n_op ::= +|-|*|/|<<|>>|%
 s_op ::= escape()
 p_op ::= ++|--|length ()|addr()
 b_op ::= AND | OR | NOT
Expression exp ::= v|vi (op vj)*
Var_Bound bound ::= (v|exp) predicate (v|exp|c)
Property Property ::= {bound}

Fig. 2. Syntax for Property Specification

The three-leveled approach caters to vulnerability detection
centered at language specific, domain specific and application /
business logic vulnerabilities. The safe and unsafe formal
properties for each type of sensitive sink statement are defined
as predicates and stored in a sink properties database. The
effort for defining these properties is only once. These
properties can be refined and expanded and are reusable.

DIMV introduces the syntax in Fig. 2 to define properties.
Each property is a set of boundaries which constraint the
variables referenced by the corresponding sink. Violating the
property may lead to sink nodes exploited. In Fig. 2, besides
those regular notations, DIMV is also built on another four
important functions:

� length(v): this function returns the length of a given
pointer or object.

� addr(v): this function returns the memory address of a
given pointer or object.

� contains(v1, v2): this functions judges whether a string
v1 contains any strings matched by the regular
expression pattern v2.

� escape (n, v1): this function encodes a given string v1
by converting certain special characters. DIMV
maintains a list of standard escaping functions. The
parameter n is the ID, set to invoke these functions for
different use cases.

Table I illustrates a part of standard functions maintained by
DIMV. Table II lists a set of sample predefined properties in
DIMV.

Table I. STANDARD ESCAPE FUCNTIONS MAINTAINED BY DIMV
ID Host Language Standard Escape Function
1 PHP htmlentities ()
2 PHP htmlspecialchars()
3 PHP mysql_real_escape ()
4 Javascript escape ()
……

Table II. SINK PROPERTIES DATABASE IN DIMV
Sensitive

Sink
Host

Language
Safe

Formal Property
Buffer Overflow Vulnerability

void * memmove(void
* dst, const void * src,
size_t num)

C/C++ (length (dst) � num) &&(
length (src) � num)

void * memset(void *
ptr, int value, size_t
num)

C/C++ length (ptr) � num

Cross Site Scripting (XSS) Vulnerability
echo var PHP escape (1,var) ==var

/* the output content var
should not contain any special
characters*/

SQL Injection Vulnerability
mysql_query(sql) PHP escape (3, sql) ==sql

/* the script sql should not
contain any special
characters*/

…….

DIMV performs the algorithm CheckVul shown in Fig. 3 to
verify a given program. For each sink node k, CheckVul gets its
safe property from database and computes k’s semi-slice V. For
every variables used by k’s safe property, CheckVul uses

365365365

symbolic evaluation over V to get these variables’ definitions.
With symbolic evaluation and constraint solving, if the safe
properties can be proved under k’s validation constraint, then a
definite conclusion on k’s vulnerability would be reached.
Cases that cannot be proved are highlighted as ‘unsure’ and are
later processed by DIMV’s vulnerability predication
component.

Take for instance, in Fig. 4 node10 is the sink node. The
sink has insufficient validation and is hence unsafe. This can be
verified using our general statement specification for memmove
depicted in Table I. Node9 is the input validation node for
node10 as both of them refer to common input variable lmov
defined at node6. Hence the validation node constraint is cvn =
(lmov � MAXSIZE). The safe property for this sink is p =
(length (dst) >= num) && (length (src) >= num). Therefore, a
generated constraint (cvn�p) will be expressed as:
(lmov � MAXSIZE) �((length(dst) >=num)&& (length (src) >= num))

After symbolic evaluation, this generated constraint would be
expressed in terms of program variables as:
(lmov � MAXSIZE) � ((ldst >= lmov) &&(MAXSIZE >= lmov))

The above constraint will be verified against a theorem prover
and the result is invalid. Therefore, the sink node node10 is
termed as “unsafe”, which means it is vulnerable to buffer
overflow attack.

Input : G
Output : result, // result could ‘safe’, ‘unsafe ’or ‘unsure’
Algorithm: CheckVul (G)
begin
 for each sink node k in G
 p=lookup (k); /* search in DIMV’s sink properties database to get the

property for k.*/
V=semi_slice(k); // get the semi-slice of k

 for each input validation node d in V
 get d’s validation node constraint cvn
 C = cvn p; // get an implication constraint
 end for

for each variable � used in C
 � =symbolic_evaluate(�, V);/* do symbolic evaluation over V to get

�’s definition */
 C = C �; // update C with variables’ definitions
 end for
 r = constraint_solve(C); //verify C against a theorem prover
 record (r, k, G); // record the analysis result
 end for
 return r;
end

Fig. 3. Vulnerability Verification Algorithm

#define MAXSIZE 40
int main() {

1. char src [MAXSIZE];
2. printf (“Enter string:\n”);
3. scanf (“%39s”,src);

4. size_t ldst = 0;
5. scanf(“%d”, &ldst);

6. size_t lmove = 0;
7. scanf(“%d”, &lmov);

8. char * dst = (char *) malloc (ldst);

9. if(lmov <= MAXSIZE) //input validation node
10. memmove(dst, src, lmov); // sink node

}
Fig. 4. Sample Code Violating a Sink’s Safe Property

At times, the specification framework may not be able to
prove or disprove the sink’s safe property. This could be due to
inadequate information for such verification condition
generation or due to absence of validation node for the sink.
Based on our previous work [4, 5], quite a number of ‘unsure’
cases are caused by functions with nondeterministic behaviors.
To reduce the effect from these functions, DIMV maintains a
function effect database for users to store predefined mock
objects and stub functions. This database is created either on
organization or project basis and can be extended as and when
required.

However, even with the above effort, in certain cases, a
definite outcome still cannot be reached and the sink will hence
be declared ‘unsure’ and will be predicted using classifier
models learned from code attributes collected from
benchmarks with known vulnerabilities.

2) Vulnerability Dectection from Prediction
We propose using code attributes for predicting cases

declared ‘unsure’ by formal verification component. This
happens at times safe or unsafe sink properties cannot be
proved as the theorem prover lacks information to prove sink
properties from the system’s context. Hence we complement
the formal verification with prediction to detect probable
vulnerabilities by taking into account the code and domain
semantics. In order to predict the vulnerability of an application
we propose using data mining schemes appropriate to the
domain/framework under consideration. Patterns in software
represent programming rules or coding style. Capturing such
patterns/features ideal for distinguishing between safe and
vulnerable software is the key to predict vulnerability with
higher probability of accuracy when encountered with new
software specimen. Our previous work in [2] shows promising
results in predicting the SQL Injection and Cross site scripting
(XSS) vulnerabilities from code attributes. This gives a
preliminary justification of the proposed framework.

An application is vulnerable if the input is not validated
properly and/or if the input sanitization regime required as
needed for respective sink is either absent or is inadequate.
Input can be validated implicitly by checking variable’s
properties (like length, range, type, sign or in case of SQL
injection and cross-site scripting attacks for presence of
characters with special meaning to domain under
consideration) or it can be performed explicitly by invoking
input sanitization schemes provided by the development
framework or custom written routines.

We suggest mining code attributes representing sink types
(such as database functions, system functions, HTML output
functions, string manipulation functions), input types (HTML
forms, environment variables, data read from data base or files,
command line inputs etc), input validation and sanitization
routines implemented for the sink. Code attributes that
characterize program code patterns that are sensitive to the
particular security issue under consideration should also be
used. For example for buffer overflow caused by format string,
a code attribute “if the format string is data dependent on an
input value", would come under such vulnerability relevant
attribute.

366366366

Vulnerability prediction is done by training prediction
models with attributes representing domain and code semantics
from benchmarks with known vulnerabilities and using it to
predict vulnerabilities on new software program specimens.

IV. EVALUATION: A CASE STUDY
Many approaches have been proposed for formal

verification and prediction of vulnerability separately. As this
paper proposes a framework for integrating verification and
prediction approaches together in a seamless way, our
evaluation is based on examining the integration of one
approach from formal verification and another one from
prediction through a case study. This case study is using DIMV
to examine XSS vulnerability in PHP programs.

Table IV. STATISTICS OF THE TEST SUBJECTS
Test Subject Description LOC Security

Advisories

Schoolmate 1.5.4 A tool for school
administration 8145 Vulnerability info

in [29]

Faqforge 1.3.2 Document creation and
management 2238 Bugtrag-43897

Utopia News Pro1.1.4 News management
System 5737 Bugtrag-15027

Phorum 5.2.18 Message board
software 12324 CVE-2008-1486

CVE-2011-4561

Cutesite 1.2.3 Content management
framework 11441 CVE-2010-5024

CVE-2010-5025

Myadmin 3.4.4 MySQL database
management 44628 PMASA-2011-14

PMASA-2011-20

Table V. DATA STATISTICS OF THE TEST SUBJECTS
Data Set #HTML

sinks
#Actual Vul. Sinks

to XSS
#Principal

Components
schoolmate-html 172 138 7
faqforge-html 115 53 7
utopia-html 86 17 9
phorum-html 237 9 9
cutesite-html 239 40 10
myadmin-html 305 20 9

A. Experiment Setting
Let us recall Fig. 1. Test subjects will be fed to DIMV and

experienced a two-stage checking: vulnerability verification
and vulnerability prediction.

� The first stage would capture cases with definite
conclusions. We implemented the symbolic
evaluation with Pixy [7] — a PHP analysis program.
We used Microsoft Z3 [8] to solve numeric
constraints; and used HAMPI [9] to solve string
constraints.

� The second stage would predict the vulnerability of
those ‘unsure’ cases. We also used Pixy to collect
required code attributes. Table III (appendix) shows
the attributes we suggested for XSS vulnerability
prediction.

The experiment was conducted over six real-world PHP-based
web applications obtained from SourceForge [10]. Table IV
shows the relevant statistics for these test subjects. To better
evaluate DIMV, we carried out a preliminary study with
manual effort to find out the actual vulnerability statistics in
each systems. Table V shows such data.

B. Result of Vulnerability Verification
Table VI shows the verification result. The Column Actual

Sinks records the confirmed vulnerabilities with each data set.
The Columns Safe, Unsafe and Unsure record the number of
detected ‘safe’ and ‘unsafe’ cases and also the number of
‘unsure’ cases. In the current implementation, we set a timeout
as 1 minute for verifying each sink, including both symbolic
evaluation and constraint solving. If the timer exceeded, that
case will be concluded as ‘unsure’. This setting is to capture
cases beyond theorem provers’ solvability.

As shown by Table VI, within the total 1154 Sinks, 801
(69.41%) sinks are detected with definite conclusions while the
rest 353(30.59%) cases fell in unsolvable situations.

Table VI. STATISTICS OF THE TEST SUBJECTS

Data Set #HTML
sinks

#Detectable #Unsure #Safe #Unsafe
schoolmate-html 172 26 95 51
faqforge-html 115 47 35 33
utopia-html 86 34 14 38
phorum-html 237 159 6 72
cutesite-html 239 153 19 67
myadmin-html 305 202 16 87

Total 1154
613 188

353(30.59%) 801 (69.41%)

We investigated the ‘unsure’ cases and discovered the
unsolvable situations mainly include:

� Insufficient information in DIMV’s function effect
database. For example, when encountered native
functions which are without function effect database,
DIMV will conclude the case as ‘unsure’. There are
268 of such cases.

� Complex string constraint. Solving string constraints is
expensive and time consuming. When DIMV run out
of time, the case will be concluded as ‘unsure’. There
are 65 of such cases.

� Implementation flaw. A precise and scalable symbolic
evaluation procedure requires decent engineering effort.
The current implementation of DIMV may generate a
small amount of runtime exceptions. There are 20 of
such cases.

� Fig. 5. Cases Encountered in DIMV Verification Stage

Figure 5 concludes the above finds. These difficulties are
the bottlenecks for many existing formal verification methods.
To overcome such bottlenecks, DIMV further processed these
unsure cases with data mining techniques.

367367367

C. Result of Vulnerability Prediction
Prediction Measure: The goal of this experiment is to test

whether it is possible to predict vulnerability for those ‘unsure’
cases. In the current implementation of DIMV, the prediction
is performed by supervised classification. To measure the
performance with standard metrics, we followed Table VII to
compute recall of detection (pd), probability of false alarm (pf),
and precision (pr).

Recall (pd) measures a classifier’s ability in finding actual
vulnerable sinks. Precision (pf) measures the actual vulnerable
sinks that are correctly predicted in terms of a percentage of
total number of sinks predicted as vulnerable. False alarm (pd)
measures cost of using the classifier: an increasing pd indicates
more false alarms or decreasing precision. Ideally, the classifier
should neither miss any actual vulnerabilities (pf ~ 1) nor throw
false alarms (pf ~ 0 , pr ~ 1).
 Table VII. PERFORMANCE MEASUREMENT

 Actual
Vulnerable Not-Vulnerable

Predicted Vulnerable True positive(tp) False positive(fp)
Not-Vulnerable False negative(fn) True negative(tn)

Recall pd = tp / (tp+fn)
False alarm pf = fp / (fp+tn)
Precision pr = tp / (tp+fp)

Data Preprocessing: Let us recall the verification result in
the sub section B. The verification stage confirmed 613 cases
as ‘safe’ and 188 cases as ‘unsafe’. Guided by Table III
(appendix), we collected the attributes related with these
(613+188=801) cases as the sample data to train classifiers.

Thereafter, we obtained data of 20 numeric attributes and 2
binary attributes. From our preliminary study, it is observed
that different numeric attributes are defined on different scales
and their distributions are highly skewed. This may cause bias
toward to some attributes (e.g. attributes with large scale
values), especially in the context of clustering where similarity
measurement combines multiple attributes scales. To overcome
this problem, we used a min-max method [11] to normalize the
collected data.

After normalization, we further processed the data with
Principle Component Analysis (PCA). PCA results in a new set
of attributes (principle components), each of which is a linear
combination of some the original attributes. PCA helps
eliminate the attributes’ inter-dependency. The new attributes
set is usually much smaller, and therefore could be more
efficiently analyzed by classifiers. In our experiments, we
applied PCA to every data set (after min-max normalization)
and used a subset of principal components as attributes such
that the selected explain at least 95% of the data variance. The
last column in Table V shows the numbers of principal
components selected

Classifiers: we used supervised learning methods and
chose two efficient classifiers for this experiment: Logistic
Regression (LR) and Multi-Layer Perceptron (MLP). These
classifiers were benchmarked as among the top classifiers in
recent studies [12]. MLP is a type of neural networks. LR is a
type of statistical regression models. Details about these
classification techniques are provided by Witten and Frank
[11]. We used two very different techniques in an attempt to

optimize accuracy. The implementation of the two classifiers
are from Weka [13], a data mining toolkit box.

Validation and Training: We first validated the classifiers
with 10-fold cross validation setup. The data is divided into ten
sets. A classifier is trained on nine sets and then tested on the
remaining set. This process is repeated ten times; each time
testing on a different set. The order of training and test set is
randomized. This test design overcomes the ordering effects
due to randomization. This is important to avoid a malignant
increase in performance by a certain ordering of training and
test data. Isolating a test set from the training set also conforms
to hold-out test design which is important to evaluate the
classifier’ capability to predict new vulnerabilities [11].

Table VIII shows the validation result. On average, the two
classifier both showed good performances with high detection
rate(LP=86%, MLP=78%) low false alarm rate (LP=3%,
MLP=3%). But on data set phorum-html, MLP could not
identify certain cases whereas LP is more stable. Therefore, we
chose LP to build a predictor to predict vulnerabilities.

Table VIII VALIDATION RESULT OF VULNERBILITY PREDICTOR
Data Set Classifier pd pf pr

schoolmate-html LP 99 3 98
MLP 99 0 100

faqforge-html LP 89 5 94
MLP 91 5 94

utopia-html LP 94 1 94
MLP 94 2 89

phorum-html LP 78 1 70
MLP 33 0 100

cutesite-html LP 68 9 61
MLP 78 8 67

myadmin-html LP 85 1 89
MLP 75 1 83

Average results on
XSS prediction

LP 86 3 84
MLP 78 3 89

Vulnerability Prediction: we used the built predictor to
predict vulnerabilities for those ‘unsure’ cases. The results are
shown in Table XI. The column #unsure sinks records the
number of ‘unsure’ sinks. The column #Predicted records the
number of predicted vulnerable sinks. The column #Correct
records the number of actual vulnerable sinks. The last two
columns #FP and #FN report the number of false positives and
false negatives. Therefore, the prediction stage captures
another 79 vulnerable sinks with a false positive rate at 14.44%
and a false negative rate at 2.22%. So we can conclude that the
performance of the vulnerability prediction is good.

Table XI VULNERABILITY PREDICTION

Data Set #unsure
sinks

#Vulnerable sinks
#Predicted #Correct #FP #FN

schoolmate 51 36 42 7 1
faqforge 33 15 17 3 1
utopia 38 3 3 0 0
phorum 72 2 3 1 0
cutesite 67 19 21 2 0
myadmin 87 4 4 0 0
Total 348 79 90 13

(14.44%)
2

(2.22%)

V. RELATED WORK
Security vulnerabilities may result in great loss due to

system failure or information leakage. A vast number of

368368368

proposals have been made to mitigate the threats of
vulnerabilities. Existing methods or tools could be mainly
categorized into four types: (1) vulnerability detection with
program analysis; (2) runtime attack prevention; (3)
vulnerability prediction with data mining; (4) hybrid
framework.

Methods of program analysis focus on detecting
vulnerabilities in source code or scripts using taint analysis
techniques. Earlier methods usually uses static analysis to
identify tainted inputs received from external data sources,
track the dataflow of tainted data, and check if any reached
sinks such as buffer writing, SQL or HTML output statements
[14, 15]. Recently, dynamic analysis techniques are integrated
to enhance the detection precision. For example, a team led by
Adam Kiezun used concolic (concrete+symbolic) execution to
capture program path constraints and a constraint solver to
generate test inputs that explored various program paths [16].
Upon reaching the sinks, they exercised two sets of inputs—
one of ordinary valid strings and the other of attack strings
from a library [17]—and checked the differences between the
resulting program behaviors.

Methods of runtime attack prevention adopt run-time
defense to prevent exploiting potential vulnerabilities of any
installed programs. These approaches aim to provide an extra
protection regardless of what the source program is. For
instance, StakeGuard [18] is such a tool that creates virtual
variables to simulate function’s return address to prevent
buffer overflow attacks. Suspicious code will be redirected to
act over the virtual variables first.

Methods of vulnerability prediction belong to a branch that
attempts to reveal the association between vulnerabilities and
certain program attributes. A classic prediction model is from
Shin et al. [19]. They used code complexity, code churn, and
developer activity attributes to predict vulnerable programs.
Their assumption was that, the more complex the code, the
higher the chances of vulnerability. Recent novel approaches
also include [2, 4, 5, 20].

In practice, it is found that a standalone approach from any
of the above categories cannot fully resolve the threads of
various vulnerabilities. Therefore, a number of hybrid
vulnerability detection frameworks have been proposed [18-
19]. Some of these for vulnerability detection approaches
integrate more than one analysis for detection purposes. Most
of the vulnerability detection proposals, in general, classify
vulnerabilities as safe or unsafe, there by incurring false
positives and false negatives. By contrast, we classify them as
‘safe’ or ‘unsafe’ or ‘unsure’ which is a more accurate
classification.

Bitblaze [21], a binary analysis platform is one of such
hybrid vulnerability detection frameworks. It integrates static
and dynamic analysis and performs symbolic evaluation on
path constraints from an execution trace to automatically
generate inputs to traverse different program paths and used it
for detecting vulnerabilities. Code Auditor [22] is another
vulnerability detection framework. It is based on constraint

analysis and model checking and can be used for detecting
buffer overflow vulnerabilities in C source code but incurs
high false positives (around 23%).

However, all these frameworks are catered to either deal
with specific language/ domain. Our proposed framework is
generic in nature. For example, specifications can be written
for any programming language constructs or assembly code
and since our three level specifications accounts for domain as
well as custom specifications it can be used to detect web
application vulnerabilities too, where the sanitization plays a
major role and since all these databases are extensible and
reusable, we can detect a wide variety of vulnerabilities using
our single proposed framework as opposed to having a
specialized framework for each vulnerability or application
programming language or domain.

VI. CONCLUSION
Existing vulnerability detection approaches classify

software as ‘safe’ or ‘unsafe’ and suffer from either false
positives or false negatives but there should be another class
‘unsure’, which is highly ignored. Hence we classify software
as ‘safe’ or ‘unsafe’ or ‘unsure’. One of our major
contributions in the paper is the proposal for a hybrid
framework seamlessly integrating formal verification with
prediction for security vulnerability detection. The results
from the proposed approach can be used as an input for the
security testing which is crucial to many software systems. In
the proposed approach, first, we use formal verification to
classify a sensitive sink as ‘safe’ or ‘unsafe’ if safe or unsafe
properties can be proved. Other vulnerable sensitive sinks will
be classified as unsure” cases. We proposed using data
mining code attributes to predict the vulnerabilities in ‘unsure’
cases. Another contribution of the paper is our proposal for
three level formal specification of statement’s safe/unsafe
usage. Writing formal specification for all statement
constructs in the programming language is a huge task. Since
security vulnerabilities only happen at sensitive sinks we limit
the specification only to such statements. Our three level
specifications capture the semantics of programming language
statement in general, domain specific requirements and
custom specifications to cater to domain and business logic
implications on vulnerabilities too. These specifications are
extensible and reusable. To evaluate our proposed approach,
we applied a case study on XSS vulnerability detection over 6
test subjects. The results prove the practicality of the proposed
framework.

REFERENCES
[1] CVE — Common Vulnerabilities and Exposures. (2013). Available:

http://cve.mitre.org
[2] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, "Predicting

vulnerable software components," presented at the Proceedings of the
14th ACM conference on Computer and communications security,
Alexandria, Virginia, USA, 2007.

[3] Y. Shin and L. Williams, "An empirical model to predict security
vulnerabilities using code complexity metrics," presented at the
Proceedings of the Second ACM-IEEE international symposium on

369369369

Empirical software engineering and measurement, Kaiserslautern,
Germany, 2008.

[4] L. K. Shar and H. B. K. Tan, "Mining input sanitization patterns for
predicting SQL injection and cross site scripting vulnerabilities,"
presented at the Proceedings of the 2012 International Conference on
Software Engineering, Zurich, Switzerland, 2012.

[5] L. K. Shar, H. B. K. Tan, and L. C. Briand, "Mining SQL injection and
cross site scripting vulnerabilities using hybrid program analysis,"
presented at the Proceedings of the 2013 International Conference on
Software Engineering, San Francisco, CA, USA, 2013.

[6] S. Sinha, M. J. Harrold, and G. Rothermel, "Interprocedural control
dependence," ACM Trans. Softw. Eng. Methodol., vol. 10, pp. 209-254,
2001.

[7] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Short Paper)," presented
at the Proceedings of the 2006 IEEE Symposium on Security and
Privacy, 2006.

[8] (2013). Z3: SMT solver. Available: http:// z3.codeplex.com/
[9] A. Kiezun, V. Ganesh, P. Guo, P. Hooimeijer, D. Akhave, S. Artzi, and

M. D. Ernst, "HAMPI: A Solver for String Constraints," presented at the
ACM International Symposium on Testing and Analysis, Chicago,
Illinois, USA, 2009.

[10] Sourceforge. (2012). Available: http://sourceforge.net/
[11] J. W. Han, M. Kamber, and J. Pei, Data Mining: Concepts and

Techniques, Third Edition: Morgan Kaufmann Publishers Inc., 2011.
[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, "Benchmarking

Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings," IEEE Trans. Softw. Eng., vol. 34, pp.
485-496, 2008.

[13] Weka3. (2013). Available: www.cs.waikato.ac.nz/ml/weka/

[14] Y. Xie and A. Aiken, "Static detection of security vulnerabilities in
scripting languages," presented at the Proceedings of the 15th
conference on USENIX Security Symposium - Volume 15, Vancouver,
B.C., Canada, 2006.

[15] G. Wassermann and Z. Su, "Static detection of cross-site scripting
vulnerabilities," presented at the Proceedings of the 30th international
conference on Software engineering, Leipzig, Germany, 2008.

[16] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, "Automatic
creation of SQL Injection and cross-site scripting attacks," presented at
the Proceedings of the 31st International Conference on Software
Engineering, 2009.

[17] OWASP. (2013). Available: http://ha.ckers.org/xss.html
[18] J. Wilander and M. Kamkar, "A Comparison of Publicly Available

Tools for Dynamic Buffer Overflow Prevention," in Network and
Distributed System Security Symposium(NDSS), 2003, pp. 149-162.

[19] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, "Evaluating
Complexity, Code Churn, and Developer Activity Metrics as Indicators
of Software Vulnerabilities," IEEE Trans. Softw. Eng., vol. 37, pp. 772-
787, 2011.

[20] M. Gegick, L. Williams, J. Osborne, and M. Vouk, "Prioritizing
software security fortification throughcode-level metrics," presented at
the Proceedings of the 4th ACM workshop on Quality of protection,
Alexandria, Virginia, USA, 2008.

[21] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z.
Liang, J. Newsome, P. Poosankam, and P. Saxena, "BitBlaze: A New
Approach to Computer Security via Binary Analysis," presented at the
Proceedings of the 4th International Conference on Information Systems
Security, Hyderabad, India, 2008.

[22] W. Lei, C. Gui, W. Jianan, Z. Pengchao, and Z. Qiang, "CodeAuditor: A
Vulnerability Detection Framework Based on Constraint Analysis and
Model Checking," in Management and Service Science, 2009. MASS
'09. International Conference on, 2009, pp. 1-4.

APPENDIX
Table III. CODE ATTRIBUTES FOR VULNERABILITY PREDICTION

Attribute
ID Attribute Name Description

Code Attribute
1 Client The number of nodes which access data from HTML request parameters
2 File The number of nodes which access data from files
3 Database The number of nodes which access data from database
4 Text-database Boolean value ‘TRUE’ if there is any text-based data accessed from database; ‘FALSE’ otherwise
5 Other-database Boolean value ‘TRUE’ if there is any data except text-based data accessed from database; ‘FALSE’ otherwise
6 Session The number of nodes which access data from persistent data objects
7 Uninit The number of nodes which reference un-initialized program variable
8 XSS-sanitization The number of nodes that apply standard sanitization functions for preventing XSS issues
9 Numeric-casting The number of nodes that type cast data into a numerical type data

10 Numeric-type-check The number of nodes that perform numeric data type check
11 Encoding The number of nodes that encode data into a certain format
12 Un-taint The number of nodes that return predefined information or information not influenced by external users
13 Boolean The number of nodes that invoke functions which return Boolean value
24 Propagate The number of nodes that propagate the tainted-ness of an input string
15 Numeric The number of nodes that invoke functions which return only numeric characters, mathematic operators, and/or dash character
16 LimitLength The number of nodes that invoke string-length limiting functions
17 URL The number of nodes that invoke path-filtering functions
18 EventHandler The number of nodes that invoke event handler filtering functions
19 HTMLTag The number of nodes that invoke HTML tag filtering functions
20 Delimiter The number of nodes that invoke delimiter filtering functions
21 AlternateEncode The number of nodes that invoke alternate character encoding filtering functions

Target Attribute
22 Vulnerable? Target attribute which indicates a class label—Vulnerable or Not-Vulnerable

370370370

	Towards a hybrid framework for detecting input manipulation vulnerabilities
	Citation

	Towards a Hybrid Framework for Detecting Input Manipulation Vulnerabilities

