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Abstract—Due to increasing number of avenues for con-
ducting cross-virtual machine (VM) side-channel attacks, the
security of public IaaS cloud data centers is a growing concern.
These attacks allow an adversary to steal private information
from a target user whose VM instance is co-located with
that of the adversary. To reduce the probability of malicious
co-location, we propose a novel VM placement algorithm
called “Previously Co-Located Users First”. We perform a
theoretical and empirical analysis of our proposed algorithm
to evaluate its resource efficiency and security. Our results,
obtained using real-world cloud traces containing millions of
VM requests and thousands of actual users, indicate that
the proposed algorithm provides a significant increase in the
cloud’s co-location resistance with little compromise in resource
utilization, compared to existing approaches.

Keywords-data centers; cloud security; co-location attacks;
virtual machine placement;

I. INTRODUCTION

With the advent of cloud services, users can now request

computing resource as per their specific requirements on

demand. This type of service has benefits for both cloud

users and cloud providers. For cloud users, it obviates the

need for them to buy and maintain their own computing

hardware. For cloud providers, it enables them to generate

revenue by efficiently consolidating and renting out such

hardware to the users. In IaaS clouds, on-demand computing

service is provided in the form of Virtual Machines (VMs)

which are instantiated by the cloud provider to run on one

of many physical machines (PMs) that the cloud provider

owns. The assignment of these VMs to PMs is done by

the cloud provider using an appropriate placement algorithm

[1]. These algorithms are usually designed with the aim of

scheduling incoming VM requests on PMs in a way that

maximizes resource utilization of the data center.

The task of creating VMs and their resource management

is done using a hypervisor which runs on each PM. The

hypervisor multiplexes the resources (eg. cores, memory etc)

of the PM across multiple VMs which are running on that

PM. At the same time, it is the task of the hypervisor to

enforce a strong isolation between different VMs which are

running on the same PM. This is to ensure that each VM’s

private data is inaccessible to other co-located VMs.

Although cloud computing service has proven to be

extremely useful in the industry, it has its own caveats.

The same strategy which allows a cloud provider to effi-

ciently rent out services, by multiplexing the shared physical

infrastructure among multiple cloud users, also becomes

a breeding ground for a class of attacks known as co-

location attacks. These attacks exploit the shared nature of

public cloud infrastructure and enable a rogue VM to extract

information from other benign VMs which are running on

the same PM using side-channels present in shared physical

resources, e.g., Last Level Cache.
Ristenpart et al. [2] addressed the feasibility of such

attacks in Amazon EC2 cloud services by demonstrating

techniques to perform cloud cartography, co-location checks

and side-channel data leakage. Zhang et al. [3] demonstrated

the feasibility of side-channel attacks to extract private keys.

In [4], the authors described an attack framework using

Flush-Reload strategy to conduct side-channel attacks and

steal sensitive data in PaaS clouds. Wu et al. [5] designed

and implemented a high-bandwidth (over 700 bps) covert

channel by leveraging the use of memory bus.
In light of such developments in side-channel attack vec-

tors and newly discovered vulnerabilities such as Meltdown

[6] and Spectre [7], it has become critical to design effective

defense measures. It is important to note that an essential

prerequisite for any of such attacks is physical co-location,

i.e., a malicious user first needs to successfully co-locate

his VM with the target’s VM. In a cloud environment, the

assignment of VMs to PMs is solely controlled by the cloud

provider using a placement strategy. The cloud provider can

leverage novel strategies to make placement decisions which

not only optimize the utilization of cloud resources, but also

guarantee some level of security against co-location based

attacks. With this idea in mind, we make the following

contributions in this paper:

• We describe a metric called “Co-Location Resistance”

for quantifying the security of cloud against co-location

based attacks which is a generalization(to account for

multiple cloud users) of a metric earlier proposed [1].

• We design a new algorithm called “Previously Co-

Located Users First” with dual-objective of maximizing

cloud’s co-location resistance and resource utilization.
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• We theoretically analyze the expected co-location re-

sistance that is provided by our algorithm.

• We perform an extensive empirical analysis of our

proposed algorithm with other commonly used place-

ment algorithms using the recently released trace of

workloads from Microsoft Azure [8].

II. BACKGROUND AND RELATED WORK

A. Reducing information leakage through existing side
channels

The primary aim of the works in this category is to modify

the infrastructure (hardware, network, OS, hypervisor, etc.)

in a way which either eliminates or reduces the information

leakage through side channels. Ideas [9] [10] [11] [12] have

been proposed to redesign the CPU cache architecture in

order to defend against specific side-channel attacks.

Li et al. [13] proposed a hypervisor-based defense system

which aims to obfuscate the leaked timing information on

IaaS clouds by using 3 replicas of each guest VM, and only

permitting the observation of aggregate timing information

of these VMs. Techniques such as reducing VM preemption

frequency [14], modifying RDTSC instruction [15], and

cryptographic key partitioning across multiple VMs [16]

have also been proposed as a possible defense against cache-

based side channel attacks.

However, most of the defense approaches in this category

suffer from two major limitations: i) they require major

changes to the existing cloud infrastructure including, but

not limited to, hypervisor, guest OS and physical hardware,

and ii) they do not ensure security against currently unknown

side-channels.

B. Reducing the co-location probability of attackers with
cloud users

The primary aim of the works in this category is to design

ways to prevent or reduce the probability of co-location of a

malicious user with a benign user, which is an essential pre-

requisite for conducting co-location based attacks. Azar et al.

[1] proposed a formal model for analyzing secure placement

algorithms, and designed a Random VM placement strategy

to reduce co-location probability. Han et al. [17] proposed

a game-theoretic based model for comparing the security of

different VM placement policies against co-location attacks.

In [18], they also proposed a new allocation policy called

Previously-Selected-Servers-First (PSSF) which aims to re-

duce the probability of co-location by minimizing the spread

of user’s requested VMs.

In [19] [20], trust relationship among cloud users has been

considered wherein each user is given the freedom to choose

his own set of adversaries or trusted users; and this is taken

into account while making VM placement decisions. VM

migration based defenses [21] [22] have been proposed to

restrict co-residency and limit the amount of information

leakage due to side-channel attacks.

Compared to hardware-based defenses described in Sec-

tion II-A, the above strategies might be more feasible to

be adopted in cloud environments for two main reasons: i)

unlike hardware based defenses, they do not require any

changes to existing cloud infrastructure, and ii) they are

likely to be more resilient against arbitrary and currently

unknown side-channel attacks. However, they do have some

shortcomings: i) modified placement algorithms [1] signif-

icantly affect the resource utilization of cloud data center,

ii) migration-based defenses [21] [22] incur extra network

cost and application overhead, and iii) the effect of many

proposed strategies, e.g., [1], [23], and [24], have not been

studied on large-scale, real-world cloud workloads like the

Azure traces released in 2017 [8].

To address these issues, a co-location resistant placement

algorithm called “Previously Co-Located Users First” with

a dual-objective (maximizing resource utilization and co-

location security) has been proposed in this paper. We

evaluate the algorithm both theoretically and empirically. An

extensive, comparative analysis of the proposed algorithm

and existing placement algorithms have also been carried

out with the Azure cloud workload traces [8].

III. PROBLEM FORMULATION

A. Assumptions and Threat Model

Here we list down some of the assumptions with respect

to the capabilities of the cloud provider (CP ) :

• The CP has no prior knowledge about which users are

malicious.

• The CP has no information about the future VM

requests and has to make placement decisions on VM

requests as they arrive.

• The CP has sole control over the assignment decisions

of VMs to PMs.

• The CP doesn’t use any migration algorithm to re-

locate an already allocated VM.

Here we list down some of the assumptions with respect

to the capabilities of a malicious user (MU ) :

• Like all other cloud users, each MU is in sole control

of his own workload. He is free to decide the timing,

core and memory requirement of his VM requests.

• All MU have the ability to compromise a benign user

by leaking information through arbitrary side-channels

after a successful physical co-location with the benign

user’s VM.

• Multiple MU can coordinate among themselves in

order to compromise a particular benign user.

B. Notations

Table I lists some of the notations to be used later in this

paper:
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Table I: Notations

Notation Description
N Total number of cloud users
Pm Percentage of cloud users that are malicious
Ui A cloud user i
Vi A virtual machine instance i
V c
i Number of CPU cores occupied by Vi

V m
i Amount of memory (in GB) occupied by Vi

UVi
User who requested virtual machine instance i

Pi A physical machine instance i
P c
i Number of CPU cores in Pi

Users(Pi) Set of all users whose VMs are resident on Pi

CoLocated(Ui) Set of all users which have been
co-located with user Ui at least once

lVi
Life-time(in seconds) of Vi which is the difference

between Vi’s request-time and termination-time
lPi

Life-time(in seconds) of Pi which is the
total time during which Pi hosts at least one VM

C. Performance Metrics

1) Core Utilization (CU): The standard metric used to

evaluate online bin packing algorithms is the “number of

bins used”. In [1], the authors pointed out that “number of

bins used” (“number of physical servers” in our problem)

is not an accurate metric for the VM placement problem

as it doesn’t capture the actual amount of time for which

the physical resources have been expended in an online VM

placement scenario.

In [25], the authors showed that the energy consumption

by the CPU cores in PMs exceeds all the other resources.

Therefore, to evaluate the performance of different place-

ment algorithms with respect to resource usage, we use Core

Utilization which is defined as the ratio of the total number

of cores used by each VM weighted by their respective

lifetime to the sum of total cores of each PM weighted by

their respective lifetime.

CU =

∑
all V V c

i × lV i∑
all P P c

i × lP i
(1)

Note that the CU value indicated by (1) is a real value

ranging between 0 and 1. CU is 0 when all the PM cores

are idle and it becomes 1 when all the PM cores are being

occupied by VMs. Therefore, our aim would be to maximize

CU . In our results, we will indicate CU in the form of

percentage.

2) Co-Location Resistance (CLR): Currently, there is no

standard metric to quantify the security of a cloud data center

with respect to co-location based attacks. Azar et al. [1]

introduced the idea of “Single CL-resistance” wherein the

adversary is only interested in co-locating his VM with at

least one of the target VMs. Generalizing that idea to a cloud

environment having multiple benign and malicious users,

we define a user as SAFE if none of his VM instances

is co-located with that of a malicious user throughout the

VM placement process. We then define the Co-Location

Resistance(CLR) of the cloud as the ratio of benign users

who are SAFE to the total number of benign users. CLR can

Figure 1: Allocation outcome of an arbitrary placement algorithm
in which the malicious user (red) manages to co-locate his VMs
with VMs belonging to benign users U1 (orange) and U2 (green).
Users U3 (blue) and U4 (violet) are SAFE as none of their VMs
have been co-located with the malicious user.

also be interpreted as the probability of a randomly chosen

benign cloud user to be SAFE.

CLR =
Total no. of benign users who are SAFE

Total no. of benign users
(2)

Note that the CLR value indicated by (2) is a real value

ranging between 0 and 1. CLR is 0 when all the benign

users are UNSAFE. On the other hand, if all the benign

users are SAFE, the CLR becomes 1. Therefore, our aim

would be to maximize the CLR value. In our results, we

will indicate CLR in the form of percentage.

We now illustrate an example to explain CLR met-

ric. Assume a cloud environment consisting of 4 benign

users(U1, U2, U3, U4) and one malicious user(UA). Fig. 1

depicts the assignment of VMs(belonging to different users)

after the placement phase is complete. We notice that the

VMs belonging to UA have been allocated on Server-2 and

Server-3. On Server-2, the VMs of UA is co-located with

a VM belonging to a benign user U2. Similarly, on Server-

3, the VM of UA is co-located with 3 VMs belonging to

a benign user U1. Therefore, by our definition, all benign

users except U2 and U1 are SAFE since none of their VMs

have been co-located with that of UA. Therefore, the CLR
in this scenario as per (2) would be 2

4 .

D. Problem Statement

A multi-tenant public IaaS cloud service has N users in

total. The users belong to one of the two categories - benign

or malicious. The benign users are the normal cloud users

who request VM instances to utilize cloud resources for their

computation. The intent of malicious users is to compromise

the benign users by using co-location based attacks. In such

a cloud environment, VM requests of different resource

requirement arrive one-by-one. Each incoming VM request

V belongs to a particular user and is characterized by a

specific number of cores V c and memory V m requirement.

The Co-Location Resistant VM Placement problem is to

assign these incoming VMs to the available PMs in a way

which maximizes both CU and CLR.
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IV. PROPOSED APPROACH

A. Proposed Algorithm

We now propose a placement algorithm called “Previously

Co-Located Users First” (PCUF ) with the aim of maximiz-

ing CU and CLR of the cloud. The algorithm is invoked

whenever a new VM request arrives. It takes as input a VM

Vi, a list of live PMs live pms and a list of empty PMs

empty pms. Ucurr represents the cloud user who requested

Vi. A summary of the working of our algorithm is as follows:

• First we check whether the user Ucurr is a new cloud

user or not i.e. we check whether he has made any

VM requests in the past or not. If he is not a new

user, we construct a list of eligible pms by including

all those PMs Pj from live pms which satisfy two

conditions : i) Pj has enough resources to host Vi, and

ii) Users(Pj)\Ucurr ⊆ CoLocated(Ucurr) i.e. Pj has

resident users which are a subset of users whom Ucurr

has already been co-located with.

– If this eligible pms list is non empty, we assign

Vi to a PM belonging to eligible pms which has

least number of free cores.

– Otherwise, if eligible pms is empty, we assign Vi

to an empty PM Pk belonging to empty pms.

• On the other hand, if Ucurr is a new user and has not

requested VM instances in the past, then we proceed

as follows: we construct a list of eligible pms by

including all those PMs from live pms which have

enough resources to host Vi.

– If this eligible pms list is not empty, we assign

Vi to a random PM belonging to eligible pms.

This random selection is done in order to make it

difficult for a malicious user to get co-located with

their intended target user.

– Otherwise, if eligible pms is empty, we assign Vi

to an empty PM Pk belonging to empty pms.

In essence, the algorithm gives preference to those PMs

which are currently hosting VMs belonging to the users

who have already been co-located with Ucurr in the past.

The reason for choosing PMs in such a way is to limit the

number of benign users that a malicious user can be co-

located with. We believe that doing so would significantly

affect the probability of a specific user to get co-located with

an adversary. While deallocating a VM Vi from PM Pj , we

check whether Pj has any remaining VMs after deallocating

Vi. If there are no remaining VMs on Pj , we remove Pj from

live pms and insert it into empty pms.

B. Theoretical Analysis

We will now describe a formula for CLRtheoretical
pcuf which

represents the expected fraction of benign users who will

remain SAFE throughout the entire VM placement phase as-

suming PCUF is used as the placement algorithm. We have

considered a cloud environment consisting of N users out

of which Nm users are malicious and Nb users are benign.

To simplify our analysis, we have assumed that a random

incoming new user would get co-located with k other users

on an average when his first VM is instantiated on a PM. The

Co-Location resistance of PCUF has been derived using

discrete probabilistic analysis1 and is described by (3)

CLRtheoretical
pcuf = 1

N

× ∑N
i=1

((
Nb−1
N−1

)min(i−1, k)

×∏N
j=i+1

(
1 − Nm

N−1 × min(j−1, k)
j−1

)
)

(3)

Given N , Pm and k (avg. no. of users that a new user

gets co-located with during his first VM allocation), we

can estimate the CLR of PCUF strategy using (3). For

example, consider a cloud data center with N = 100,

Pm = 10% and k = 2. Using N and Pm, we find

Nm = Pm

100×N = 10 and Nb = N−Nm = 90. By plugging

N , Nm, Nb and k into (3), we find that our estimated CLR
is 67.43%. In Section VI-B, we evaluate the accuracy of our

derived CLR by comparing it with empirical results.

V. EVALUATION METHODOLOGY

We have conducted our experiments on the Microsoft

Azure VM workload dataset that has been made public in

2017 by Cortez et al. [8]. The dataset contains 2,013,767

VMs over a period of 30 consecutive days. For our evalua-

tion, we use a subset of this dataset by including all the VMs

that were created and terminated between the 11th and 20th

day of the 30 day period. The results for other time intervals

of the dataset are similar and have not been presented in this

paper due to space limitations. Table II summarizes some

statistics related to the dataset which we have used for our

evaluation.

Table II: Azure Workload Statistics

Characteristics Count
Workload Duration 10 consecutive days

Total number of VMs 619846
Total number of subscriptions 1884

Maximum number of running VMs at any time instant 16990
Average lifetime of VMs 4.08 hrs

The main features in the workload that are relevant for

evaluating VM placement algorithms include VM id, Sub-

scription id, VM Start time, VM Stop time, VM core count

and VM memory (in GB). We map each subscription id to

a unique cloud user in our evaluation. In our experiments,

it has been assumed that all PMs have the same core and

memory size - 32 cores and 224 GB respectively, which

is equal to twice the configuration of largest VM present

in the dataset. Table III summarizes the statistics related to

VM core and memory configuration.

1Due to space constraint, we have to omit the detailed analysis
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Table III: Azure VM Instance Types

VM cores VM memory (in GB) VM count

1
0.75 12119
1.75 280069

2 221

2

3.5 163702
4 80
14 61
16 6

4

7 69627
8 11
28 98
32 10

8

14 67137
16 6
56 26609
64 5

16 112 85

Unfortunately, the workload dataset has no information

about which subscriptions were used for conducting co-

location based attacks. Therefore, for our evaluation purpose,

we randomly map Pm% of the subscriptions to malicious

users, while the rest are mapped to benign users. After this,

we form a sequence of VM start and stop events, sort the

events as per their timestamp and then invoke VM placement

algorithm for each event sequentially. We repeat this for all

the events and then finally compute the CU and CLR of

the cloud as per the equations described in Section III-C.

We repeat each experiment 20 times so that we can have a

different set of malicious users for each experiment. We then

compute the average CU and CLR over all 20 experiments

and use this average value as our final estimate.

VI. RESULTS AND ANALYSIS

A. Comparison of CU and CLR among different standard
placement algorithms

We compare PCUF with 3 most commonly used VM

placement policies - Best-Fit (BF ), Worst-Fit (WF ) and

Random Placement (RP ). BF assigns an incoming VM

to a live PM having the least remaining free cores, WF
assigns it to a live PM having the most remaining free cores,

RP assigns it to a live PM selected uniformly at random.

In all these policies, if no live PM has sufficient resources

to host the incoming VM, a new empty PM is started for

hosting that VM. Fig. 2 and Fig. 3 depict the CLR and CU
respectively, obtained by executing 4 different algorithms

on the Azure workload with varying Pm. We make the

following observations:

• Fig. 3 indicates that BF guarantees best CU whereas

WF has the least CU among the 4 algorithms. PCUF
is less efficient (in terms of CU ) than BF and RP
by 14.25% and 5.68% respectively and performs better

than WF by 2.55%. Note that CU value is independent

of Pm because the algorithm has no knowledge about

the category of any user.

• Fig. 2 indicates that PCUF clearly outperforms all

other algorithms in terms of CLR for all Pm. In fact,

with more than 20% malicious users in the cloud, the

CLR of BF , WF and RP is almost close to 0.

This illustrates that standard VM placement algorithms

provide almost negligible CLR compared to PCUF .

• CLR of all 4 algorithms decreases from 100 when

Pm = 0% to approximately 0 as Pm → 100%.

Increasing Pm increases the no. of malicious VMs

which in turn increases the likelihood of a benign user’s

VM to get co-located with at least one malicious VM.

From these observations, we conclude that PCUF provides

much higher CLR compared to other standard placement

algorithms with minimal compromise in CU .

B. Comparison of CLRtheoretical
pcuf and CLRazure

pcuf

We compare the CLRtheoretical
pcuf given by (3) with the

actual CLR obtained by executing PCUF on Azure dataset

which we call CLRazure
pcuf . By executing PCUF on the

Azure dataset, we observed that the average number of users

with whom a new incoming user gets co-located for the first

time is approximately 2.23. We use this value as our k while

calculating CLRtheoretical
pcuf . We set N = 1884 as per the

number of users in our Azure dataset.

Fig. 4 shows that our derived CLRtheoretical
pcuf provides

a decent approximation to CLRazure
pcuf . Specifically, we

observe that CLRazure
pcuf is strictly greater than our de-

rived CLRtheoretical
pcuf and the maximum difference between

CLRazure
pcuf and CLRtheoretical

pcuf is 9.21% at Pm = 30%.

The average difference of our derived CLRtheoretical
pcuf from

CLRazure
pcuf is 5.9%. A possible reason for this difference

might be attributed to VM de-allocation requests from users

which we have not accounted for in our theoretical analysis.

C. Comparison of CU and CLR among different co-
location resistant placement algorithms

We compare PCUF with 3 other co-location resis-

tant placement algorithms: i) Amazon’s Dedicated Instance

placement [26] which we will denote as DI , ii) CLR

placement strategy proposed by Azar et al. [1] which we

will denote as AZ, and iii) Previously Selected Servers First

(PSSF ) strategy proposed by Han et al. [18].

In DI strategy, two VMs that belong to different AWS

accounts are never co-located on the same PM. Among the

PMs owned by Uj , we consolidate Uj’s VMs using a Best-

Fit approach. AZ strategy maintains a fixed λ number of

PMs as OPEN and every new incoming VM is randomly

allocated to any one of these λ PMs. PSSF strategy is

parametrized using 2 variables - N∗ and NG. We ignore N∗

in our evaluation as it is used for tuning workload balance

which is not our objective in the current work.

Fig. 5 and Fig. 6 illustrate the CLR and CU respectively,

obtained by executing different algorithms on the Azure

workload with varying Pm. We have fixed the total number
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Figure 2: Co-Location Resistance (CLR) of PCUF and other standard placement algorithms as a function of the percentage of malicious
users (Pm). In (2a), Pm varies between 0 and 10 at increments of 1 whereas, in (2b), Pm varies between 10 and 90 at increments of 10.
PCUF consistently provides significantly higher CLR than other standard placement algorithms.
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Figure 3: Core Utilization (CU ) of PCUF and different standard
placement algorithms. In terms of CU , Best-Fit (BF ) is most
efficient whereas Worst-Fit (WF ) is least efficient. The CU of
PCUF lies between that of WF and RP .

of PMs as 16,990 (same as the maximum number of simul-

taneously live VMs described in Table II). While evaluating

AZ, we test for 4 different values of the parameter λ (5%,

10%, 15%, 20%) indicating the fraction of total PMs that are

kept OPEN at all times. Similarly, while evaluating PSSF ,

we test for 4 different values of the parameter NG (5%, 10%,

15%, 20%) indicating the group size in terms of the fraction

of total PMs in the data center. We make the following

important observations in our analysis:

• Fig. 5 indicates that as Pm increases, the CLR of all

placement algorithms (except DI) decreases for the

same reasons stated earlier in Section VI-A.

• Fig. 6 indicates that DI ranks third in terms of CU
with a value of 61.9%. All placement algorithms,

except PCUF and PSSFNG=5%, perform worse than

DI in terms of CU . Note that any approach which

provides lower CU than DI is impractical simply

because the CLR provided by DI is always 100%.

Therefore, although PSSFNG=10%(for Pm > 20%),

PSSFNG=15% and PSSFNG=20% could have better

CLR than PCUF as Fig. 5 indicates, they might not

be useful as their CU values are too low.

• Although CU of PCUF is less than that of

PSSFNG=5% by 1.69%, PCUF consistently provides

a significantly higher CLR compared to PSSFNG=5%

for all values of Pm.

From these observations, we conclude that PCUF
achieves a better balance between CU and CLR compared

to existing co-location resistant placement algorithms.

VII. CONCLUSION

In this paper, a co-location resistant VM placement al-

gorithm called “Previously Co-Located Users First” has

been described. We used core utilization and co-location

resistance metrics for quantifying the resource efficiency

and security of VM placement algorithms. We performed an

extensive theoretical and empirical analysis of our proposed

algorithm using a large, real-world cloud trace. Our results

indicate that the proposed algorithm can achieve much

higher co-location resistance with little compromise in core

utilization compared to existing standard and co-location

resistant placement algorithms.

Although our approach efficiently handles the initial VM

placement problem, open challenges such as defending

against an adversary who manages to co-locate with the

target user during initial VM placement still needs to be

addressed. To effectively deal with such a scenario, it is

necessary to incorporate live-migration algorithms. Another
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Figure 4: Theoretically derived CLR for PCUF (CLRtheoretical
pcuf ) and the empirical CLR obtained by executing PCUF on Azure

dataset (CLRazure
pcuf ) as a function of percentage of malicious users (Pm). In 4a, Pm varies between 0 and 10 at increments of 1 whereas,

in 4b, Pm varies between 10 and 90 at increments of 10. CLRtheoretical
pcuf well approximates CLRazure

pcuf for smaller values of Pm but the
difference increases for larger values of Pm.
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Figure 5: Co-Location Resistance (CLR) of different co-location resistant placement algorithms - PCUF , DI , AZ (4 distinct λ values)
and PSSF (4 distict Ng values) as a function of the percentage of malicious users (Pm). In (5a), we vary Pm between 0 and 10 at
increments of 1 whereas, in (5b), we vary the Pm between 10 and 90 at increments of 10.

interesting research direction would be to design classi-

fiers to categorize users (as benign or malicious) based on

their cache statistics. These classifiers can then be used in

conjunction with placement algorithms to provide a higher

degree of isolation from malicious users.
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operating systems to mitigate cache side channels in the
cloud,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pp. 827–838, ACM,
2013.

[13] P. Li, D. Gao, and M. K. Reiter, “Stopwatch: a cloud archi-
tecture for timing channel mitigation,” ACM Transactions on
Information and System Security (TISSEC), vol. 17, no. 2,
p. 8, 2014.

[14] V. Varadarajan, T. Ristenpart, and M. M. Swift, “Scheduler-
based defenses against cross-vm side-channels.,” in USENIX
Security Symposium, pp. 687–702, 2014.

[15] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating
fine grained timers in xen,” in Proceedings of the 3rd ACM
workshop on Cloud computing security workshop, pp. 41–46,
ACM, 2011.

[16] E. Pattuk, M. Kantarcioglu, Z. Lin, and H. Ulusoy, “Prevent-
ing cryptographic key leakage in cloud virtual machines.,” in
USENIX Security Symposium, pp. 703–718, 2014.

[17] Y. Han, T. Alpcan, J. Chan, and C. Leckie, “Security games
for virtual machine allocation in cloud computing,” in In-
ternational Conference on Decision and Game Theory for
Security, pp. 99–118, Springer, 2013.

[18] Y. Han, J. Chan, T. Alpcan, and C. Leckie, “Using virtual ma-
chine allocation policies to defend against co-resident attacks
in cloud computing,” IEEE Transactions on Dependable and
Secure Computing, vol. 14, no. 1, pp. 95–108, 2017.

[19] Z. Afoulki, A. Bousquet, and J. Rouzaud-Cornabas, “A
security-aware scheduler for virtual machines on iaas
clouds.” http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/
RR2011/RR-2011-08.pdf, 2011.

[20] V. Natu and T. N. B. Duong, “Secure virtual machine
placement in infrastructure cloud services,” in 10th IEEE
Conference on Service-Oriented Computing and Applications,
pp. 26–33, 2017.

[21] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang, “Incentive
compatible moving target defense against vm-colocation at-
tacks in clouds,” in IFIP International Information Security
Conference, pp. 388–399, Springer, 2012.

[22] S.-J. Moon, V. Sekar, and M. K. Reiter, “Nomad: Mitigating
arbitrary cloud side channels via provider-assisted migration,”
in Proceedings of the 22nd acm sigsac conference on com-
puter and communications security, pp. 1595–1606, ACM,
2015.

[23] M. Berrima, A. K. Nasr, and N. Ben Rajeb, “Co-location
resistant strategy with full resources optimization,” in Pro-
ceedings of the 2016 ACM on Cloud Computing Security
Workshop, pp. 3–10, ACM, 2016.

[24] Y. Qiu, Q. Shen, Y. Luo, C. Li, and Z. Wu, “A secure
virtual machine deployment strategy to reduce co-residency in
cloud,” in Trustcom/BigDataSE/ICESS, 2017 IEEE, pp. 347–
354, IEEE, 2017.

[25] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and
G. Jiang, “Power and performance management of virtual-
ized computing environments via lookahead control,” Cluster
computing, vol. 12, no. 1, pp. 1–15, 2009.

[26] “AWS EC2 Dedicated Instance.” https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/dedicated-instance.html.

68


	Co-location resistant virtual machine placement in cloud data centers
	Citation

	Co- Location Resistant Virtual Machine Placement in Cloud Data Centers

