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Abstract 

A cloud service agreement entails the provisioning of a required set of virtual infrastructure resources 

at a specified level of availability to a client. The agreement also lays out the price charged to the client 

and a penalty to the provider when the assured availability is not met. The availability assurance involves 

backup resource provisioning and the provider needs to allocate backups cost-effectively by balancing 

the resource provisioning costs with the potential penalty costs. We develop stochastic dynamic 

optimization models of the backup resource provisioning problem, leading to cost-effective resource 

management policies in different practical settings. We present two sets of dynamic provisioning 

strategies: periodic policies where resources are adjusted at regular intervals, and aperiodic policies that 

allow flexible timing of such interventions. A closed-loop (CL) optimization model under conservative 

resource control and a certainty-equivalent (CE) optimization model under aggressive resource control 

are developed for periodic resource management. Similarly, aperiodic resource management is modeled 

using two different strategies: single intervention with single look-ahead (SISL) and multiple 

interventions with single look-ahead (MISL). Online optimization algorithms for both the periodic and 

aperiodic models are developed. The worst-case behavior of the algorithms is studied using competitive 

ratio analysis, and the expected behavior using computational investigations. Using these studies, 

managerial guidelines for choosing the best resource management strategy under different client-

specific, service-specific and system-specific resource optimization conditions are presented. We 

validate our models based on use cases constructed from Amazon EC2 with their actual pricing and 

service credit data. The practical guidelines from this study will aid contract administrators in cloud data 

centers to both efficiently formulate service level agreements and cost-effectively manage the virtual 

infrastructure resources committed in such agreements.  

Keywords: cloud computing, service level agreement (SLA), dynamic programming (DP), online 

algorithm, virtual machines (VMs), cloud resource management 
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1. Introduction   

The broad concept of cloud computing entails three fundamental models of service hosting and delivery: 

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). IaaS 

functions at the lowest level by providing virtualized computing, storage and network services that 

would support PaaS and SaaS (Colman 2013). A cloud service level agreement (SLA) for IaaS typically 

includes dynamic metrics such as infrastructure service availability, performance latency and response 

delay for emergencies, and a host of medium to long term metrics such as data security, privacy and 

integrity.1 Availability is a central commitment in all SLA abstractions―compute, network and storage 

(Cloud Standards Customer Council 2017), and a failure to meet the committed level of availability by 

a service provider results in either penalties or service credits given by the provider to the client. For 

example, Dimension Data proposes a system of service credits and other vendors such as Amazon Web 

Services (AWS) also provide similar terms to compensate clients for system downtime that exceed the 

promised level of availability in an SLA. These contractual arrangements lend valuable flexibility to a 

service provider in fulfilling the availability commitment in an SLA, especially when faced with system 

failures and other service disruptions that may be hard to predict and control.  

Central to IaaS is the concept of virtualization. Virtualization is essentially software that 

encapsulates multiple operating systems individually and enables them to co-exist and run 

independently on the same physical server platform. Each such operating system is a virtual machine 

(VM). Multiple virtual machines that are co-hosted on a physical server would execute concurrently and 

independently. Accordingly, a virtual infrastructure typically comprises of a set of virtual machines that 

are hosted on a set of physical servers; the virtual machines provide the basic functionalities of 

computing, storage and networking in the distributed cloud architecture. This IaaS model is widely 

adopted by several cloud service providers such as AWS, Google, Microsoft, Rackspace, SalesForce 

and many others.2 Under the notion of virtual infrastructures, when a client requests cloud services, the 

client requirements translate to an SLA for IaaS that broadly specify the number of VMs needed, their 

critical dynamic service-level metrics, the service window over which the metrics are evaluated, and the 

service pricing and service credit schemes (Cloud Standards Customer Council 2017).  

                                                             
1 Dimension Data Cloud Terms of Services and Related Service Levels Descriptions: 
https://www.dimensiondata.com/en-US/Solutions/Cloud/Pages/Service-level-agreement-of-Public-IaaS.aspx  
2 The Essential Guide−Infrastructure as a Service: 
http://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS  

https://www.dimensiondata.com/en-US/Solutions/Cloud/Pages/Service-level-agreement-of-Public-IaaS.aspx
http://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
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Denoting the VMs required in an SLA as primary VMs, the service provider usually builds 

redundancy in the virtual infrastructure in the form of backup VMs to ensure the availability of the 

required number of VMs at the level promised in the SLA. This redundancy enables fault-tolerance by 

checkpointing and rollback recovery, and guidelines for VM checkpointing using backups are given in 

the Microsoft communication.3 Various models of backup checkpointing exist in both literature and 

practice and the widely adopted models are the powered-on models under conventional VM failures and 

especially when critical applications are supported (Du et al. 2015). In the above context of an SLA for 

a virtual infrastructure under powered-on checkpointing, Yuan et al. (2018) address the trifecta of 

backups, VM pricing and penalty for shortfall in the assured availability in an SLA. As we increase the 

number of backup VMs, the likelihood of SLA violation decreases and hence the expected penalty cost, 

but the VM provisioning cost increases. For a given price-penalty combination, Yuan et al. (2018) derive 

the optimal level of backups to minimize the expected total cost over a contract period by balancing the 

trade-off between the VM provisioning cost and expected penalty cost.  

A limitation of the study of Yuan et al. (2018) is the single and static determination of the level 

of backups needed for a service agreement at the beginning of the contracted period, and its enforcement 

throughout the period. In the presence of practical random events such as system failures and recovery, 

such static determination could be sub-optimal in real-world data center operations, especially when 

system downtimes are common and significant. Consequently, cloud resource provisioning should be a 

dynamic rather than a static decision. As the cumulative system downtime randomly grows with the 

progression of service in a contracted period, a cloud data center needs to take advantage of the observed 

downtime information, reassess existing resource commitments, and make dynamic decisions on backup 

deployment. While such dynamic management would lead to efficient resource allocation, the challenge 

is how to time such backup adjustments and determine the optimal adjustment levels, especially under 

the transient random failure and recovery processes involved. 

Motivated by the above, we develop dynamic optimization models to guide the service provider’s 

resource provisioning strategies. By modeling the number of primary and backup VMs deployed as 

resources, and denoting the times of resource adjustment as interventions, we develop both periodic and 

aperiodic policies for dynamic resource management. In periodic resource optimization, the service 

provider would intervene regularly at fixed time intervals and may adjust the backup deployment at each 

                                                             
3 Virtual Machine Checkpoints: https://technet.microsoft.com/en-us/library/bb740891.aspx 

https://technet.microsoft.com/en-us/library/bb740891.aspx


 

4 
 

intervention. This policy leads to two implementation strategies: conservative versus aggressive backup 

VM provisioning. Under conservative provisioning, the service provider initially provides a small 

number of backup VMs when no downtime is incurred yet. As the cumulative downtime increases over 

time, the service provider becomes more concerned about potential contract violation, and consequently 

could fine-tune or even increase the number of backups if needed. Under aggressive provisioning, the 

service provider initially provides a large number of backup VMs to ensure sufficient redundant capacity 

to cope with future downtime uncertainty. As time goes by, when the service provider becomes less 

uncertain about future downtime, the level of backup deployment can be fine-tuned or even reduced if 

warranted. We develop a closed-loop (CL) stochastic dynamic optimization model of the conservative 

strategy and a certainty-equivalent (CE) dynamic optimization model of the aggressive strategy.4 The 

CL model always produces optimal solutions under all conditions. However, the CE model requires 

significantly less computational effort than the CL model. Furthermore, the CE model produces near-

optimal solutions when (1) the ratio of penalty to backup provisioning cost is relatively low, (2) the 

failure and recovery processes are less predictable 5, and (3) the availability level required in the SLA is 

high. Hence, the CE model is recommended due to its significant computational effectiveness when 

these conditions are prevalent. 

While periodic resource management focuses on how much adjustment to the backup VM 

deployment should be made when the number and timing of such adjustments are fixed, aperiodic 

resource management focuses on the quanta of VM adjustments, number of such adjustments and their 

timing all at once. Flexible timing of adjustments would bring a number of benefits, such as cost savings 

from less frequent assessments and adaptations than fixed interventions. However, the underlying 

optimization may be computationally overwhelming. Accordingly, we develop a tractable approach to 

aperiodic optimization by categorizing such policies along two dimensions: interventions and look-

aheads. A look-ahead is the determination of the expected performance over the remaining part of the 

contract period after an intervention. This optimization occurs recursively over the continuum of time, 

rolling over from intervention to intervention. Therefore, such policies could lead to multiple 

interventions that are unevenly spaced in the contract period. In this research, we develop two aperiodic 

                                                             
4  The notion of conservatism used here refers to backup VM management; hence, conservative backup VM 
management is equivalent to aggressive penalty management, and aggressive backup VM management 
corresponds to conservative penalty management. 
5 In general, the failure and recovery processes of fault-tolerant systems are more predictable than the fault-prone 
system. 
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policies denoted as Single Intervention with Single Look-ahead (SISL) and Multiple Interventions with 

Single Look-ahead (MISL). Intuitively, as the number of interventions increases, the total costs of 

aperiodic policies would decrease up to a certain optimal number of interventions, which asymptotically 

converge to the costs of frequently periodic policies. However, under conditions of (1) greater 

predictability of the failure and recovery processes, (2) not too stringent availability requirements in an 

SLA, and (3) small-sized service contracts, aperiodic policies outperform periodic policies. Our 

extensive computational studies confirm this.  

Finally, we develop online as well as offline implementation algorithms for both periodic (CL and 

CE) and aperiodic (SISL and MISL) management policies. The offline algorithm of a model solves the 

problem at the start of the planning horizon and produces solution as a pre-determined control policy 

regardless of the information revealed during the course of the contract duration. The online algorithm 

implements the first-step solution of an offline algorithm, resolves the model every time new pieces of 

information arrive dynamically and yields new control decisions using the new information. We 

implemented the online algorithms based on use cases constructed from Amazon Elastic Compute Cloud 

(EC2) with their actual pricing and service credit data. We derived practical guidelines for contract 

administrators in cloud data centers to cost-effectively manage their virtual infrastructure resources. 

The rest of the paper is organized as follows. Section 2 focuses on the research context and 

summarizes our key contributions. Section 3 reviews the relevant literature. Section 4 develops the 

periodic policies under conservative resource management and Section 5 under aggressive management. 

Section 6 develops aperiodic intervention policies under the SISL and MISL resource management. 

Section 7 presents the computational results and Section 8 further validates our models based on use 

cases constructed from Amazon EC2 service structures. Section 9 discusses the managerial implications 

of the proposed resource management policies. Section 10 concludes with directions for future research. 

The Online Supplement provides more details of our computational study and the proofs to all our 

theoretical results. 

2. Research Context and Contributions  

Cloud service providers typically offer a wide range of flexible contracts and pricing mechanisms. Based 

on a survey of 19 leading cloud service vendors across 27 types of service offerings , Kauffman et al. 

(2014) classify the state-of-the-art cloud pricing and service provision into two major categories: 

reservation-based pricing for reserved services delivery and usage-based pricing for on-demand services 
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delivery. This observation is also supported by large-scale cloud platforms such as Amazon EC2.6 For 

example, Amazon offers four classes of EC2 instances: on-demand instances, spot instances, reserved 

instances and dedicated hosts (which provide EC2 instance capacity on dedicated physical servers). 

Under on-demand pricing, customers pay for computing capacity by hour without long-term 

commitment; under spot pricing, customers request spare Amazon EC2 computing capacity for up to 

90% off the on-demand price. These two pricing models are suitable for applications with short-term, 

unpredictable workloads. In contrast, reserved instances and dedicated hosts can be purchased with the 

commitment of 1 or 3 years contract term. These models are more suitable for applications with 

relatively stable workloads for dedicated usage. Our proposed virtual infrastructure resource 

management framework is in the context of IaaS providers’ service contracts of reserved instances or 

dedicated hosts, where pre-committed VM resources are provided to clients in a service contract over a 

fixed contract period. 

We develop a multi-disciplinary approach to study the IaaS virtual infrastructure resource 

management problem in the cloud. The proposed approach draws upon research from computing 

resource optimization, algorithm design and statistical estimation of downtime distributions, together 

leading to the development of effective IT policies for cloud data centers. We model the service 

downtime allowed in an SLA as perishable commodity in the underlying service period. This leads to 

inventory-like approaches to dynamic VM management in the cloud. Drawing from the literature on 

dynamic systems control and online algorithm design, we develop effective VM resource management 

strategies that are both relevant and easily implementable in cloud data centers. Thus, our modeling 

approach integrates ideas from Management Science and Computer Science in addressing resource 

management problems in the cloud IT domain.  

The unique contributions of our research are threefold. First, we develop both periodic and 

aperiodic dynamic decision models for cloud VM provisioning under an SLA. Under the periodic focus, 

we model both conservative and aggressive approaches to address the question of how many VMs to 

allocate in a periodic manner over the contract window; and under the aperiodic focus, we develop 

dynamic approaches to concurrently address the questions of how many VMs to allocate and when to 

allocate over the contract period of an SLA. In particular, the closed-loop conservative optimization 

solution can be easily translated into a reference chart to guide backup resource provisioning in real 

                                                             
6 Amazon EC2 service offerings and pricing: https://aws.amazon.com/ec2/pricing/ 

https://aws.amazon.com/ec2/pricing/
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time. Second, we design tractable online and offline algorithms to solve for the optimal solutions with 

reasonable computational effort, which is critical to provide practical decision support for cloud service 

providers’ cost-effective resource allocation decisions. Third, using extensive computational studies we 

evaluate how the client-level parameters (i.e., service availability and contract duration), service-level 

parameters (i.e., VM requirements and VM provisioning and penalty costs) and system-level parameters 

(i.e., mean time between failures and mean time to repair of the VMs) would affect the service provider’s 

optimal resource management. These studies, together with Amazon use cases evaluation, lead to 

practical insights into the service provider’s flexible resource provisioning to minimize its total 

operational cost and a relevant policy framework to guide SLA contract administrators in their VM 

resources management under different conditions. 

3. Related Literature 

We review the literature on cloud pricing and service delivery mechanisms using the classification 

scheme of Kauffman et al. (2014). Since SLA and resource management differ across the service 

provisioning models (i.e., reserved or on-demand) and the types of service (i.e., IaaS, PaaS, and SaaS), 

we present a taxonomy of service models and pricing structures in the online supplement. Based on this 

taxonomy, we summarize the relevant literature as follows.   

Reserved Services Provisioning and Service Contracts. Recent trends in IaaS cloud focus on 

virtual infrastructure resources including computing, storage and networking that are deployed over a 

number of VMs in a distributed manner (Chowdhury and Boutaba 2010). Due to virtualization, the 

cloud infrastructure is more prone to a wide range of hardware and software failures (Gill et al. 2011). 

Since robust and failure-resilient infrastructure is critical to cloud consumers, infrastructure availability 

is the most important Quality of Service (QoS) metric in the IaaS cloud SLA for reserved services. A 

common practice to ensure infrastructure availability is to deploy redundant VMs to increase fault 

tolerance in the cloud provider’s service provision (Qiu et al. 2014). Since full redundancy is costly, a 

more effective approach is to allocate a set of backup VMs to replace the failed primary VMs as needed 

(Lu et al. 2012, Xu et al. 2012). Technically, this can be achieved by checkpointing (Goiri et al. 2010). 

The checkpointing mechanism periodically saves the execution state of a running task (e.g., a VM image 

file), and enables the task to be resumed from the latest saved state after failure occurs (Du et al. 2015). 

Zhou et al. (2017) propose a network topology-aware backup VM placement approach to minimizing 

the consumption of network communication resources when the primary VM failures need to be 

recovered by backup VMs under the k-fault-tolerance reliability constraints.  
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In the context of PaaS and SaaS, a broader range of SLAs have been studied for different 

applications hosted on the cloud infrastructure. Zhao et al. (2015) propose a consumer-centric SLA 

management framework for cloud-hosted databases. Wang et al. (2008) develop a resource management 

framework to support multi-tier web applications in shared data centers, which helps to meet different 

service quality targets at minimum operational cost. Wu et al. (2011) propose resource allocation 

algorithms for SaaS providers to schedule enterprise applications on VMs that minimize infrastructure 

cost and SLA violation. Nevertheless, most of these works consider lower-level cloud architectural 

design to support cloud-based applications, as well as QoS metrics like latency and execution time that 

affect application delivery (Goudarzi et al. 2012). In contrast, our research focuses on availability-aware 

infrastructure resource provisioning, which is the most important consideration in IaaS cloud SLAs.  

On-Demand Services Provisioning and Service Contracts. Bruneo (2014) studies QoS in IaaS 

clouds under the on-demand service model. Liu et al. (2015) define quick response time as the key QoS 

metric in the service contracts. They propose an aggressive VM provisioning strategy to minimize the 

adaptation time and maintain a high level of QoS of hosted services. Singh et al. (2017) present an SLA-

aware autonomic management framework aiming to reduce SLA violation rates for on-demand cloud 

service delivery. 

Since workload uncertainty is a key feature of the on-demand services, dynamic IaaS resource 

provisioning is an emerging research topic in cloud data center research (Bilal et al. 2014). Substantial 

amount of research in this area has studied server consolidation, optimal VM placement and sizing to 

reduce operating cost in the IaaS cloud (Bobroff et al. 2007, Ahmad et al. 2015). Silva et al. (2018) 

provide a recent survey for the approaches to optimizing VM placement and migration in the cloud 

environment. Various algorithms and frameworks have been proposed in the literature for this purpose. 

For example, Laalaoui and Al-Omari (2018) propose an iterative direct move heuristic approach for 

reassigning VMs into clusters in the IaaS cloud platform. In the context of PaaS/SaaS, Shabeera et al. 

(2017) develop a metaheuristic algorithm based on ant colony optimization to simultaneously optimize 

VM placement and location of data for hosting data-intensive applications in the cloud.  

IaaS Dynamic Resource Provisioning under Reserved/On-Demand Services. Since most 

cloud providers offer both reservation and on-demand services, Chase and Niyato (2017) consider that 

resources can be utilized under the reservation plan, or provisioned under the on-demand plan at a 

higher rate. They propose joint optimization of VMs and bandwidth allocation to account for the VM 

over- and under-provisioning risks. Similarly, Ran et al. (2017) present a dynamic instance provisioning 
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strategy by controlling the predicted overload probability of a service below a threshold level to ensure 

QoS, as well as a reserved instance provisioning strategy for further reducing the total cost. From the 

IaaS provider’s point of view, Mistry et al. (2018) propose a dynamic metaheuristic optimization model 

to compose long-term service requests under reserved instances, subject to resource and QoS constraints. 

Different from their approaches that focus on stochastic arrival of requests, we consider the uncertainty 

involved in the infrastructure availability. Although failure-aware resource management has been 

studied in the literature (Fu 2010), dynamic backup resource provisioning to fulfil service contracts in 

the IaaS cloud is an underexplored area of research. We propose an availability-aware cloud resource 

management framework to fill this research gap.  

Other Cloud-Based Business Models. In the PaaS and SaaS environment, a few studies have 

focused on resource optimization by taking into consideration the cloud consumers’ requirements. For 

example, Liu et al. (2010) study the resource allocation policies for personalization services on content 

delivery sites. The website trades off the benefit from providing optimal personalized content with long 

delay and suboptimal content with less waiting time. Johar et al. (2014) propose an optimal control 

model to determine the size and composition of the firm’s offer set to engage a customer. Our work is 

different from this line of research since we focus on cloud providers’ infrastructure resource 

management rather than cloud consumers’ personalized content offerings.  We propose a forward-

looking, dynamic optimization model for resource provisioning, and incorporate various factors 

including client-specific, system-specific, and service-specific parameters into the cloud service 

provider’s decision making. We aim to provide higher-level policy recommendations that help guide 

data center managers to choose the appropriate resource management strategy in the course of their 

availability-aware SLA execution. 

In addition to the operational cost models of resources, pricing models of services have been 

widely studied in the cloud IT domain. Cheng et al. (2016) show that price heterogeneity exists among 

different cloud computing providers because of the network latency differentials. Sen et al. (2009) 

propose a dynamic priority-based price-penalty mechanism for fulfilling the SLA, considering the users’ 

preference variance and their demand fluctuations. In addition to pricing, service contract design has 

been widely studied in various other contexts such as software outsourcing (Dey et al. 2010), online 

storage services (Das et al. 2011), and supply chain coordination (Sieke et al. 2012). In the cloud 

infrastructure, Yuan et al. (2018) study the SLA contract pricing problem based on the tradeoff between 

resource provisioning cost to ensure availability and penalty cost for potential service downtime. We 
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complement their work by focusing on efficient resource allocation under an SLA to optimize the 

service provider’s resource provisioning decisions in the dynamic cloud environment. 

Integrating methods from Operations Research and Computer Science has demonstrated great 

promise in business problem solving. Technically, our solution approach follows the multi-stage 

dynamic programming optimization models in Operations Research and online algorithms in Computer 

Science. To deal with the “curse of dimensionality” (Bellman 1957), characterized as the exponentially 

increased computational requirements to solve the dynamic programming models as the problem’s size 

increases, we employ techniques such as certainty equivalent models and limited steps of look-ahead 

models to handle the computational challenges (Bertsekas 1995). In addition, online optimization is 

crucial to provide practical decision support (Jaillet and Wagner 2012). The assessment of the solution 

of an online algorithm when compared with the solution of a corresponding ideal offline algorithm 

which knows the entire input sequence in advance, is termed as competitive analysis (Sleator and Tarjan 

1985). We show that the online algorithms developed in this research are competitive and the resource 

management strategies we propose can be used to support IaaS cloud SLA management in practice.  

4. Periodic Resource Optimization: Conservative Strategy 

The SLA considered in this research is as follows. Let the client require n VMs over contract duration 

𝑇 with a required level of service availability  𝛼 ∈ (0,1). Whenever the number of VMs available is 

less than n, the overall system of VMs in the contract is said to be down, resulting in SLA violation.  

Hence, the allowed total downtime without any penalty to the service provider by contract is 𝐵 = (1−

𝛼)𝑇. Any downtime incurred in excess of 𝐵 is denoted as penalizable downtime (Yuan et al. 2018), and 

the service provider compensates the client at the unit penalty rate 𝜋 for the penalizable downtime. 

Linear penalty functions for SLA violations in IaaS have been commonly used in the literature (Mistry 

et al. 2018). In addition, several variances of such functions (e.g. step penalty function) have been used 

in practice (e.g., Amazon EC2, Alibaba, Microsoft Azure, Google). Please see the online supplement 

for details. We further assume the cost of provisioning one VM per unit of time is ℎ.    

Without loss of generality, we assume one-to-one mapping of virtual to physical servers for a 

given client in the data center. While the same physical server may host multiple VMs, the VMs for a 

given client may be spread across different physical server racks in order to mitigate the SLA violation 

risk from single point of failure. Using the powered-on checkpointing model, we assume 𝑘 backup VMs 

are provided. The total expected cost consists of the provisioning cost of (𝑛 + 𝑘) VMs over the contract 
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period and the expected penalty of not meeting the availability guarantee. Assuming independent server 

failures, an SLA violation would occur when more than 𝑘 servers are concurrently down at a given time. 

Denoting the duration of SLA violation in a contract period 𝑇 as System Downtime, Du et al. (2015) 

model the states of the system of (𝑛 + 𝑘) VMs in terms of the number of VMs that have failed at any 

time and obtain a birth-death recurrent Markov process over the system states. Using a sample path 

randomization approach, they derive the transient probability distribution of system downtime. Since 

system steady-states may not be guaranteed in many practical data center operations, the derivation of 

the transient distribution is needed. In this research, we adapt the approach by Du et al. (2015) to obtain 

the transient downtime distribution as input to the proposed optimization models. A summary of the 

methodology is presented in the accompanying online supplement. 

Periodic resource optimization involves decisions on VM deployment at a fixed set of stages in 

the contract duration T. We denote the decision stages as 𝛿 = 1,2,…𝑆, where 𝑆 is the total number of 

stages. Although the stages need not be equally spaced in T, for the sake of simplicity in presentation 

and without loss of generality, we assume that the stages are equally spaced. A system state in stage 𝛿 

is characterized as a pair (𝑥𝛿 ,𝑘𝛿), where 𝑥𝛿 is the total incurred downtime and 𝑘𝛿 is the number of 

backup VMs at the beginning of stage 𝛿. Furthermore, 𝑥𝛿 ranges in the interval [0,
(𝛿−1)𝑇

𝑆
]  and 𝑘𝛿 =

0,1,… ,𝐾 , where 𝐾  is the maximum number of backups available for the SLA. Since there is no 

downtime to begin with stage 1, we have 𝑥1 = 0. The state transition equation is 𝑘𝛿+1 = 𝑘𝛿 +𝑢𝛿, 

where 𝑢𝛿  is the integer decision variable at the beginning of stage 𝛿 , and −𝑘𝛿 ≤ 𝑢𝛿 ≤ 𝐾 −𝑘𝛿 . 

Therefore, 𝑢𝛿(𝑥𝛿 ,𝑘𝛿) = {−𝑘𝛿 ,(−𝑘𝛿 +1),… ,0,1,2,…,𝐾 − 𝑘𝛿} . These decisions lead to the state 

transitions from any stage 𝛿 to a state in the subsequent stage as illustrated in the left panel of Figure 1.  

  

Figure 1. Staged VM Deployment and a 4-Stage Transition Paths Example  

To focus on the backup adjustment decision and to simplify our notation, we assume the number 

of primary backup VMs is fixed at 𝑛 in our theoretical model development. We denote 𝐷(𝑘) as the 

Stage 𝛿 Stage (𝛿 + 1)

𝐾
˸

˸

𝑘 + 1

𝑘𝛿 𝑘

𝑘 − 1

˸

˸

0

𝑢𝛿 = 0

𝛿: 1 2 3 4 5

𝑘: 0 0 0 0 0

1 1 1 1 1 End

2 2 2 2 2

𝑥1, 𝑘1 𝑥 , 𝑘 𝑥 , 𝑘 𝑥 , 𝑘 𝑥 , 𝑘 

𝑢1 𝑢 𝑢 𝑢 
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random downtime incurred in any given stage with 𝑘 backup VMs, and 𝑑(𝑘) the expected downtime in 

the given stage. Therefore, we have 𝑥𝛿+1 = 𝑥𝛿 +𝐷(𝑘𝛿+𝑢𝛿). The right panel of Figure 1 illustrates a 

4-stage problem with 𝐾 = 2. The top of this panel illustrates the initial states and controls in each stage, 

where stage 5 is the ending stage at which no further cost is incurred and hence, no control is necessary. 

The bottom of this panel shows the full set of transition paths.  

Denote 𝐽𝛿(𝑥𝛿 ,𝑘𝛿) as the cost-to-go function, which is the minimum expected total cost from stage 

𝛿 to the end of stage 𝑆, which is the end of the horizon. The terminal cost incurred at the end of the 

horizon is  𝐽𝑆+1(𝑥𝑆+1 ,𝑘𝑆+1)= 0. The dynamic stochastic optimization problem at any stage 𝛿, where 

𝛿 = 1,…, 𝑆 and  𝑢𝛿 the control decision is as follows:  

Problem [CL] 

𝐽𝛿(𝑥𝛿,𝑘𝛿)= min[ℎ(𝑘𝛿+𝑢𝛿)
𝑇

𝑆
+𝐸[𝜋max{0,𝑥𝛿 +𝐷(𝑘𝛿+𝑢𝛿)−max(𝐵,𝑥𝛿)}] + 𝐽𝛿+1(𝑥𝛿+1,𝑘𝛿+1)] 

s.t. 𝑥𝛿+1 = 𝑥𝛿+𝐷(𝑘𝛿 +𝑢𝛿),  𝑘𝛿+1 = 𝑘𝛿 +𝑢𝛿,  −𝑘𝛿 ≤ 𝑢𝛿 ≤ 𝐾 −𝑘𝛿, and 𝑢𝛿 is integer 

The cost-to-go function 𝐽𝛿(𝑥𝛿,𝑘𝛿) minimizes the expected total cost in the current stage 𝛿 plus the 

minimum expected total cost from stage 𝛿 + 1 to the end of the horizon 𝐽𝛿+1(𝑥𝛿+1,𝑘𝛿+1). The first term 

in the minimization function is the backup provisioning cost in stage 𝛿. The second term is the expected 

penalty cost in stage 𝛿 . Note that if 𝑥𝛿 > 𝐵, then the penalizable downtime incurred in stage 𝛿  is 

𝐷(𝑘𝛿+ 𝑢𝛿). If 𝑥𝛿≤ 𝐵, then the penalizable downtime in stage 𝛿 is max{0,𝑥𝛿+𝐷(𝑘𝛿 +𝑢𝛿)− 𝐵}.  

Closed-loop (CL) optimization derives a control policy that depends on the current state 

information on the system. Accordingly, the closed-loop solution to Problem [CL] yields rules for 

choosing 𝑢𝛿 for each stage 𝛿 with knowledge of the current level of downtime incurred 𝑥𝛿 and the 

current level of backup provision 𝑘𝛿 . Since there is no closed-form solution to characterize the closed-

loop strategy, we develop an efficient algorithm to solve for the optimal state-contingent strategies. 

Building upon the approach proposed by Du et al. (2015) to estimate transient system downtime, Section 

1 of the online supplement details our strategy to obtain the empirical estimation of system downtime 

in our current context. For any given (𝑛, 𝑘)  configuration, define 𝑓𝑘(𝜏)  and 𝐹𝑘(𝜏)  as the density 

function and cumulative distribution function of incurring 𝜏 downtime over the contract period 𝑇, and 

𝜂𝑘  as the mean percentage of downtime incurred over the contract period. We next show that the 

downtime distribution satisfies the following properties: 

Lemma 1. If the number of backup VMs 𝑘1< 𝑘 , then the downtime distribution has the following properties: (i)  

𝐹𝑘1(𝜏) ≤ 𝐹𝑘2(𝜏); that is, 𝐹𝑘1(𝜏) first-order stochastically dominates 𝐹𝑘2(𝜏); (ii) ∫ [𝐹𝑘2(𝑡)− 𝐹𝑘1(𝑡)]𝑑𝑡
𝜏

0
≥ 0; that 
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is, 𝐹𝑘1(𝜏) second-order stochastically dominates 𝐹𝑘2(𝜏); (iii) The mean percentage of downtime 𝜂𝑘1 > 𝜂𝑘2. 

These distributional properties are important to guide our numerical optimization in Section 6.  In 

particular, Lemma 1(iii) implies that all else being equal, the mean percentage of downtime (or 

equivalently, uptime) over a contract period decreases (increases) as the service provider increases the 

number of backup resources. 

4.1 Closed-Loop Optimization  

Figure 2 presents a backward-recursive algorithm to solve the optimization problem [CL] and derive the 

closed-loop solution. Using the characterization of decision stages and the states within each stage as 

described above, the algorithm finds the stage-wise, state-dependent cost function 𝐽𝛿
∗(𝑥𝛿 ,𝑘𝛿) and the 

optimal decision 𝑢𝛿
∗ (𝑥𝛿 ,𝑘𝛿). These functions are computed recursively backward in time, starting from 

stage 𝑆 and ending at stage 1. The optimal expected cost is given by the last step of the algorithm.  

Input: SLA contract parameters: contract duration 𝑇, guaranteed service level 𝛼, unit provisioning cost ℎ, 

unit penalty cost 𝜋; 
System parameters: Number of primary VMs 𝑛, server mean time between failures MTBF, server  
mean time to repair  MTTR; 

User choices: maximum number of stages 𝑆, maximum number of backup VMs 𝐾, discretization  

interval ∆𝑡 
Output: Minimum expected cost-to-go 𝐽𝛿

∗(𝑥𝛿,𝑘𝛿) and optimal policy 𝑢𝛿
∗ (𝑥𝛿,𝑘𝛿) for 𝛿 =1, …, 𝑆 

Let 𝑊 =
𝑇

𝑆
; 

Call EmpDistribution(n,k,𝑊) for 𝑘 =0,1, …, 𝐾; /* see online supplement for the EmpDistribution procedure */ 

        Get downtime probability distribution  𝑝𝑤(𝑖, 𝑛, 𝑘), for 𝑖 = 1,… , ⌈
𝑊

∆𝑡
⌉; 

Let 𝑧𝛿
𝑚𝑎𝑥= (𝛿 − 1)⌈

𝑊

∆𝑡
⌉ for 𝛿 = 1,… ,𝑆; 

Let 𝑘𝛿= 0, …, 𝐾 for 𝛿 = 1, …, 𝑆; 
Begin  

𝛿 = 𝑆;  

𝐽𝑆+1
∗ (𝑥𝑆+1,𝑘𝑆+1) = 0; 

 

 Repeat  
           Let 𝑧𝛿 = {0,1,… ,𝑧𝛿

𝑚𝑎𝑥} and denote 𝑥𝛿 = 𝑧𝛿∆𝑡 as the cumulated downtime at the beginning 

               of stage 𝛿  

          For each (𝑥𝛿,𝑘𝛿), solve Problem [CL] for 𝑢𝛿= −𝑘𝛿,… ,𝐾 −𝑘𝛿; 
          Let 𝑢𝛿

∗ (𝑥𝛿,𝑘𝛿) denote the optimal solution to [CL] 

          Let 𝐽𝛿
∗(𝑥𝛿,𝑘𝛿) denote the minimum expected cost 

          𝛿 = 𝛿 −1; 
 Until 𝛿 = 0  
End   

Figure 2. Closed-Loop Optimization Algorithm  

4.2 Online Solution Implementation  

In many multi-stage decision problems, decisions at any given stage may have to be made either with 

incomplete knowledge of the future or under not very reliable distributional assumptions on the future 

(Bertsekas 1995). In such cases, online optimization should be used (Jaillet and Wagner 2012). An 

online algorithm resolves the decision model based on sequentially arriving new information on the 
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system behavior as it evolves over time. The closed-loop resource provisioning strategy presented above 

is in essence an online algorithm implementation, where the realized downtime serves as input in a 

piece-by-piece serial fashion as the SLA contract evolves over time. Based on the observed downtime 

information, different state-contingent control decisions will be made. Therefore, by design, the 

proposed CL optimization model provides the online solutions. The following example shows the online 

implementation of the closed-loop solution.  

Assume the number of primary VMs 𝑛 = 100, and the number of backup VMs can vary from 

𝑘 = 0,1,… 3. Let the service window 𝑇 = 120. Let the mean time between failures and mean time to 

repair of a VM be as follows: 𝑀𝑇𝐵𝐹 = 2,400, and 𝑀𝑇𝑇𝑅 = 20. Using these parameters, we generated 

5,000 samples with a discrete grid  ∆𝑡 = 0.1 to derive the empirical downtime distribution. Further 

assume the cost of provisioning 1 VM per unit of time is ℎ = 1, the penalty per unit of time is 𝜋 = 100, 

and the SLA service availability requirement 𝛼 = 90%. Now, consider a 4-stage decision problem with 

this data. Figure 3 shows the optimal transition paths based on the closed-loop solution to this problem. 

The nodes denote decisions on the number of backup VMs at each stage, and the associated conditions 

on 𝑥𝛿, 𝛿 = 1,2,3,4,  are labeled on the edges.  

 

Figure 3. Optimal Transition Paths of Dynamic Resource Provisioning  

Note that the length of each stage is 30, since 𝑇 = 120, and 𝑆 = 4. Since there is no downtime to 

begin with, we have 𝑥1 = 0. The optimal closed-loop decision is to provide 2 backup VMs in the first 

stage. Given an initial allocation 𝑘1, the service provider will then adjust the provision accordingly. For 

example, if the initial allocation is 2 backups, then the service provider will not make any adjustment. 

If the initial allocation is 3 backups, then the service provider will remove 1 backup VM.  

The adjustment decision in the second stage will depend on the realized downtime in the first 

stage. As per the closed-loop solution, if the realized downtime is low (𝑥 ≤ 1), then the optimal 

1 1 1 1

2 2 2 2 2 End
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0
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decision is to remove 1 backup VM in the second stage. If the realized downtime is medium (1 < 𝑥 ≤

 . ), then the optimal decision is to keep 2 backup VMs in the second stage. If the realized downtime 

in the first stage is high ( . < 𝑥 ≤ 30), then the optimal decision is to increase to 3 backup VMs. 

Decisions for other stages can be interpreted in the same way. Figure 4 translates the optimal decision 

rules into a resource provisioning reference chart based on the observed state conditions. The horizontal 

axis shows the possible range of values for 𝑥 ∈ [0,30], 𝑥 ∈ [0, 0], and 𝑥 ∈ [0,90]. The vertical axis 

shows the optimal number of backup VMs. 

 
Figure 4. Dynamic Resource Provisioning Reference Chart  

Clearly, the closed-loop solution yields an easy reference chart to the service provider for making 

decisions on VM allocation at each stage after observing the actual accrued downtime. For example, at 

𝑡 = 90, the service provider needs to make the fourth stage decision. Using the third panel of Figure 4, 

the following decisions can easily be identified for this stage: If 𝑥 ≤ 4. , then 1 backup VM is needed; 

if 4. < 𝑥 ≤ 10.2, then 2 backups are needed; and if 𝑥 ≥ 10.2, then 3 backups are necessary.  

Clearly, our closed-loop dynamic optimization model finds the state-dependent optimal resource 

provisioning policies, based on which practical reference charts as in Figure 4 can be created. As time 

goes by, the service provider just needs to monitor the incurred downtime in real-time and make optimal 

resource adjustment decisions using the reference charts.  

Because the service provider does not have full information about the future, the online algorithm 

may not perform as well as an offline algorithm which knows the entire sequence of information in 

advance and responds optimally. The competitive ratio is defined as the maximum of the ratio between 

the cost incurred by the online algorithm and that of an ideal offline algorithm over all possible input 

sequences (Sleator and Tarjan 1985). It is also the worst-case performance ratio between the online 

algorithm and an optimal offline algorithm. We establish the following competitive ratio bound based 

on worst-case scenario analysis. The bound shows that the closed-loop optimization is competitive. 

Proposition 1. The competitive ratio for the closed-loop optimization algorithm 𝑟𝐶𝐿 is bounded by 𝑟𝐶𝐿 <

3.1 60308.61 𝑥 𝑥 𝑥 9.4 4.6 10.2 90
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1 +
𝐾

𝑛
< 2. 

5. Periodic Resource Optimization: Aggressive Strategy 

The above closed-loop optimization follows a conservative approach to VM provisioning; it begins with 

low level of backup VM provisioning and subsequently increases or adjusts the allocation as actual 

downtimes are successively realized over the stages. On the other hand, an aggressive approach would 

involve a sufficient backup provisioning to begin with, and subsequently decrease or adjust the level of 

backup VMs as actual downtimes are realized over time. Since the chances of contract violation under 

the aggressive strategy are significantly less than the conservative strategy, an expected value analysis 

of the stochastic downtime may be sufficient for the underlying optimization problem. We thus develop 

an online Certainty-Equivalent (CE) optimization model using the mean value of downtime. The CE 

model serves as both an approximation to the computationally extensive full stochastic CL model and 

an implementation of the aggressive strategy. While closed-loop optimization is purely an online 

algorithm, certainty-equivalent optimization has both online and offline counterparts. In the following 

discussion, we first present the offline model, and subsequently develop the online approach.  

5.1. Offline Certainty-Equivalent Optimization 

Certainty equivalent control applies at each stage the control that would be optimal if the uncertain 

downtime were fixed at some “typical” values, such as the mean values. It solves a deterministic optimal 

control problem at each stage. The advantage of the CE model is that the potentially expensive 

determination of the expected cost is replaced by the calculation of single stage-control trajectory. To 

develop this model, we define the following variables: 

𝐺𝛿(𝑘𝛿) = The minimum expected total cost from state 𝑘𝛿 of stage 𝛿 till the end 

Ω𝛿(𝑘𝛿)=  Total expected downtime from state 𝑘𝛿  of stage 𝛿  till the end along the path 

corresponding to 𝐺𝛿(𝑘𝛿) 

We present the optimization model underlying the certainty-equivalent approach as follows. 

Problem [CE]: 

𝐺𝛿(𝑘𝛿) = min[ℎ
𝑇

𝑆
(𝑘𝛿+𝑢𝛿) +𝜋max{0,𝑑(𝑘𝛿+𝑢𝛿)+Ω𝛿+1(𝑘𝛿+𝑢𝛿)− max{𝐵,Ω𝛿+1(𝑘𝛿+𝑢𝛿)}}

+𝐺𝛿+1(𝑘𝛿+𝑢𝛿)] 

s.t.  𝑘𝛿+1 = 𝑘𝛿+ 𝑢𝛿,  −𝑘𝛿 ≤ 𝑢𝛿 ≤ 𝐾 − 𝑘𝛿, and 𝑢𝛿 is integer. 

The cost-to-go function in Problem [CE] is similar to that of Problem [CL]. However, there are 
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several differences. First, the state variable in [CE] is (𝑘𝛿), rather than (𝑥𝛿 ,𝑘𝛿). Second, the cost 

computation is simplified. The expectation outside of the max function in [CL] is replaced by 

𝑑(𝑘𝛿 +𝑢𝛿)  and Ω𝛿+1(𝑘𝛿+𝑢𝛿) , which are mean expected downtimes. These simplifications  

significantly reduce the computation time of the CE model. Compared with the CL model, the CE model 

could be suboptimal, but is computationally more tractable because of the dramatically reduced state-

space of the dynamic programming model and hence, the computational effort. Furthermore, because 

CE model uses the mean value of the random downtime, it is a deterministic optimization. We identify 

a unique path that fully characterizes the resource provisioning and adjustment strategy. This is the 

offline solution. Proposition 2 shows that the offline CE solution is not unique, and the provision of 

backup VMs is not stage-dependent in an offline implementation. 

Proposition 2. If the optimal offline CE solution yields the backup provision sequence (𝑘1, 𝑘 ,… , 𝑘𝑆), 

then any permutation of  the sequence also provides an optimal offline backup provision. 

The intuition of Proposition 2 is as follows. Note that the deterministic downtime in stage 𝛿 is 

uniquely determined by the number of backup VMs  in that stage. In the offline implementation, since 

the service provider only implements a fixed sequence of controls, the order of the sequence does not 

matter in terms of total cost minimization. Therefore, any permutation of the sequence yields the same 

provisioning cost and penalty cost in the deterministic environment. To support an aggressive resource 

provisioning strategy, the CE solution would pick a decreasing backup provisioning sequence. This 

high initial number of backup VMs will minimize the occurrence of downtime at beginning stages of 

the contract period. The service provider will then reduce the number of backup VMs in later stages of 

the contract period if the actual incurred downtime is low.  

The offline CE solution is an open-loop solution without knowledge of the future states, thus it 

may not be optimal. However in practice, the service provider could simply choose to implement only 

the control for the first stage at the beginning of the contract period. As stages arrive over time, the 

available non-penalizable downtime 𝐵 can be updated with the observed actual downtime and the CE 

model can be re-solved with this updated information at every stage. This leads to online CE 

optimization, and is presented below.  

5.2. Online Certainty-Equivalent Optimization 

The online CE algorithm is presented in Figure 5. This algorithm consists of two passes: a forward pass 

and a backward pass. The forward pass constitutes the outer loop and the backward pass constitutes the 
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inner loop of the algorithm. The evaluation strategy is as follows. Consider any time in the contract 

period where stages 1,… , Δ − 1 have been realized, and we are at stage Δ to decide upon the allocation. 

Let 𝐶Δ denote the accrued total realized downtime from stages 1 to stage Δ. The forward-passing outer 

loop starts with Δ = 1. At each realization of stages, Δ advances to Δ+ 1 until Δ = 𝑆 +1 where it ends. 

At each advance of the outer loop, a backward-passing inner loop is performed. This inner loop starts 

from 𝛿 = 𝑆, and ends at 𝛿 = Δ. The inner loop is embedded within the outer loop, as illustrated in 

Figure 6. The solution from the inner loop is a control trajectory (𝑢Δ
∗ ,… , 𝑢𝑆

∗). But only 𝑢Δ
∗  is adopted in 

the decision making at stage Δ. In stage Δ+1, the actual downtime till then is observed, the allowable 

downtime �̂� is updated, and another CE optimization problem is solved using the inner loop.  

Outer Loop 
Begin 

        Set Δ ← 1; 𝐶Δ← 0; 𝑘Δ← 𝑘∗; 
Repeat 

Run the Inner Loop; 

Allocate (𝑘Δ+𝑢Δ
∗ ) backup servers for stage Δ; 

Observe actual downtime in stage Δ with this decision and denote it as �̂�Δ(𝑘Δ+𝑢Δ
∗ ); 

𝐶Δ+1← 𝐶∆+ �̂�(𝑘Δ+𝑢Δ
∗ ); 

𝑘Δ← 𝑘Δ+𝑢Δ
∗; 

Δ ← Δ+1; 

Until Δ = 𝑆 +1; 
End 

Inner Loop 
Begin 

�̂� = 𝑀𝑎𝑥{0,𝐵 −𝐶Δ} Allowable total downtime at the beginning of stage Δ;  

        Ω𝑆(𝑘),𝑘 = 0,… ,𝐾;  

𝐺𝑆(𝑘) = ℎ
𝑇

𝑆
𝑘 +𝜋𝑀𝑎𝑥{0,Ω𝑆(𝑘)− �̂�},𝑘 = 0, …, 𝐾;  

𝛿 = 𝑆−1; 
Repeat 

       𝐵 = �̂�; 
Solve for Problem [CE]; 
Let 𝑢𝛿

∗ denote the optimal solution to [CE]; 

Ω𝛿(𝑘) = 𝑑(𝑘 +𝑢𝛿
∗ ) +Ω𝛿+1(𝑘+𝑢𝛿

∗ ),𝑘 = 0, . . ,𝐾;  

𝛿 = 𝛿 − 1; 

Until 𝛿 = Δ−1. 
End 

Figure 5. Online Certainty-Equivalent Optimization Algorithm 

Two versions of CE optimization are possible. The first version is a simple offline CE solution 

obtained from a single complete backward pass from stage 𝑆 to stage 1 of the inner loop in Figure 5. 

The second version is the online solution presented in Figure 6.  
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Figure 6. Online Certainty-Equivalent Optimization Strategy 

Since the CE model does not assume any uncertainty, it identifies a fixed control trajectory. The 

full set of staged decisions in the offline model is implemented right at the beginning of the contract 

period. In contrast, the online CE solution could achieve better performance because the decisions are 

made in a stage-wise manner over time, after observing the actual downtime at each stage and updating 

the non-penalizable downtime accordingly. Similar to the CL optimization model, we derive the 

competitive ratio for the online CE algorithm as shown in Proposition 3.  

Proposition 3. The competitive ratio for the online CE algorithm is no lower than that under the CL 

optimization algorithm and it is bounded by 𝑟𝐶𝐿 ≤ 𝑟𝐶𝐸 < 1+
𝐾

𝑛
< 2. 

Although the competitive ratio under the CE algorithm is greater than or equal to that under the 

CL optimization, both algorithms are competitive since their competitive ratios are bounded by 2. 

6. Aperiodic Resource Optimization: Flexible Interventions 

An intervention pertains to the action of adjusting the backup allocation at any time in the contract 

period. In periodic optimization, an intervention corresponds to a decision stage whose timing is pre-

fixed; contrarily, in aperiodic resource optimization, we allow the time of intervention to be flexible 

and determined through cost optimization rather than following a set schedule. Accordingly, the 

decision problem involves two concurrent decisions: When to intervene next and how much backup to 

allocate at each intervention. This involves a triad of decisions at an intervention: the backup allocation 

from the current time till the next intervention, the time of next intervention, and the new backup 

allocation after the intervention time. The underlying optimization requires an estimation of the 

expected total cost from the current intervention time till the end of the horizon. We term the estimation 

of the cost from the next intervention time till the end as the look-ahead. The service provider may 

perform single or multiple interventions in the contract period. If the choice is to perform just a single 

intervention, then there will be just one look-ahead period. This is termed as the Single Intervention 

1 2 3 ∙    ∙    ∙ 𝑆 − 1 𝑆 End

∆ = 1 𝛿 = 𝑆,… , ∆

∆ = 2

∆ =3

𝛿 = 𝑆,… , ∆

𝛿 = 𝑆,… , ∆

∆ =S

𝛿 = 𝑆,… , ∆
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with Single Look-ahead (SISL) strategy. If the choice is to perform multiple interventions, then we 

could either employ just a single look-ahead period or recursively use multiple look-ahead in estimating 

the post-intervention costs at each intervention. We term these as Multiple Interventions with Single 

Look-ahead (MISL) and Multiple Interventions with Multiple Look-aheads (MIML) strategies, 

respectively. MIML is inherently more complex because a flexible intervention time has to be 

determined for each look-ahead period. Determining the intervention time for each future period needs 

the knowledge of the intervention time in the current period, which is unknown at the time of decision 

making. So we only focus on SISL and MISL. Our objective is to solve an aperiodic optimization 

problem that is simpler and computationally tractable. 

6.1. Single-Intervention with Single Look-Ahead (SISL) Strategy 

Assume the service provider only intervenes once over the entire contract period. Denote the 

intervention time 𝑡 ∈ [0,𝑇], and the number of backups before and after the intervention time is 𝑘1 and 

𝑘 , respectively. Denote 𝐷𝑡(𝑘1) and 𝐷𝑇−𝑡(𝑘 ) as the random downtime occurred before and after the 

intervention. The SISL decision problem is to determine an optimal intervention time 𝑡 ∗ and the optimal 

resource provisioning (𝑘1
∗,𝑘 

∗) to minimize the expected cost function 𝐶(𝑘1 ,𝑘 ,𝑡): 

Problem [SISL] 

min
𝑘1,𝑘2,𝑡

𝐶(𝑘1 ,𝑘 ,𝑡) = ℎ𝑘1𝑡+ ℎ𝑘 (𝑊− 𝑡) +𝐸[𝜋max{0,𝐷𝑡(𝑘1)+𝐷𝑇−𝑡(𝑘 )−𝐵}] 

The objective function minimizes the expected total cost over the two stages: the first two terms 

are the backup provisioning cost before and after the intervention, and the third term is the expected 

penalty cost over the two stages. Next we examine some properties of the expected cost function. 

Lemma 2. The expected cost function of SISL is symmetric: 𝐶(𝑘1 ,𝑘 ,𝑡) = 𝐶(𝑘 ,𝑘1, 𝑇 − 𝑡). 

Lemma 2 is intuitive. Because the downtime of the two stages is independent, we can simply 

switch the two stages and the symmetric property holds. Also, the random downtime incurred over the 

period 𝑇 is separable. Define 𝐷𝑡,𝑇−𝑡(𝑘1, 𝑘 )= 𝐷𝑡(𝑘1)+ 𝐷𝑇−𝑡(𝑘 ) and denote the expected downtime 

as 𝑑𝑡,𝑇−𝑡(𝑘1,𝑘 ). We have the following property. 

Lemma 3. For given (𝑘1 ,𝑘 ), the mean downtime 𝑑𝑡,𝑇−𝑡(𝑘1 ,𝑘 )= 𝑇𝜂𝑘2 + (𝜂𝑘1 −𝜂𝑘2 )𝑡.  

Immediately from Lemma 3, we know that the expected downtime with one intervention is a 

linear function of 𝑡. By Lemma 1, 𝜂𝑘1 > 𝜂𝑘2  if 𝑘1 < 𝑘 , so the mean downtime linearly increases in 𝑡. 

Similarly, the mean downtime linearly decreases in 𝑡 if 𝑘1 > 𝑘 , and is constant over 𝑡 if 𝑘1 = 𝑘 . 

Without loss of generality, we next focus on the case 𝑘1 < 𝑘  by assuming the service provider adopt 
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a conservative strategy. The case 𝑘1 > 𝑘  is the mirror case of 𝑘1 < 𝑘 . 

Lemma 4. If 𝑘1 < 𝑘 , then the expected penalizable downtime 𝐸[𝑚𝑎𝑥[0,𝐷𝑡,𝑇−𝑡(𝑘1,𝑘 )−𝐵]] is either 

linearly increasing in 𝑡 or convex in 𝑡.  

Define Φ𝑘(𝜏) as the normalized cumulative downtime distribution function when 𝑘 backups are 

provided, where 𝜏 is interpreted as percentage of downtime incurred over the contract period rather than 

the real downtime. Based on Lemma 4, the following Proposition shows that the cost function is well-

behaved in 𝑡 and the unique optimal solution exists.  

Proposition 4. If 𝑘1 < 𝑘 , then the expected cost function 𝐶(𝑘1, 𝑘 ,𝑡) has the following properties: 

(i) If Φ𝑘1
(1− 𝛼) = 1, then 𝐶(𝑘1,𝑘 ,𝑡) is a linear and strictly decreasing function of 𝑡;  

(ii) If Φ𝑘2
(1− 𝛼) < 1 , then 𝐶(𝑘1 ,𝑘 ,𝑡)  is a linear and strictly increasing function of 𝑡  If 

𝜋

ℎ
>

𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

; otherwise, 𝐶(𝑘1,𝑘 , 𝑡) is a linear and strictly decreasing function of 𝑡 if 

𝜋

ℎ
<

𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

. 

(iii) If Φ𝑘2
(1− 𝛼) = 1 and Φ𝑘1

(1− 𝛼) < 1, then 𝐶(𝑘1,𝑘 , 𝑡) is convex in 𝑡.  

Note that when 𝑡 = 0, the total number of backups is 𝑘 , and when 𝑡 = 𝑇, the total number of 

backups is 𝑘1. There are three cases. Proposition 4(i) shows that, if no penalty would be incurred when 

𝑘1  backups are provided over the entire time period 𝑇, or equivalently, 𝑘1  is so high such that all 

occurrences of its normalized percentage of downtime are below the critical threshold 1− 𝛼 (the same 

holds for 𝑘 ), then the expected penalizable downtime is always 0 as 𝑡 increases. The total expected cost 

only consists of the resource provisioning cost, which linearly increases in 𝑘. So as 𝑡 increases, the total 

provisioning cost decreases.  

Proposition 4(ii) shows that, if 𝑘  is not large enough such that there is positive probability that 

the normalized percentage of downtime in some cases would exceed the critical value 1 −𝛼 (the same 

holds for 𝑘1), then the expected penalizable downtime is linear in 𝑡 and the expected total cost is also 

linear in 𝑡  in this case. If the per unit penalty cost is relatively more expensive than the per unit 

provisioning cost such that the condition 
𝜋

ℎ
>

𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

 is satisfied, then the expected 

penalty cost dominates the provisioning cost and thus the total cost increases in 𝑡. Otherwise, if the 

provisioning cost is relatively higher than the penalty cost, the total cost decreases in 𝑡.  

Proposition 4(iii) shows the scenario where 𝑘  is large enough so that no penalty would be 

incurred if 𝑘  backups are provided over the entire time period 𝑇, but 𝑘1 is not large enough so that 
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some penalty would be incurred if 𝑘1 backups are provided over the entire time period 𝑇. Since the 

provisioning cost decreases in 𝑡 whereas the expected penalty is convex and increases in 𝑡 under this 

case, the expected total cost is convex in 𝑡. There exists an optimal intervention time to trade off the 

total provisioning cost against the expected penalty cost. In sum, the optimal intervention time can be 

identified as follows. 

Proposition 5. Assume 𝑘1 < 𝑘 . The optimal intervention time occurs at: 

(i) 𝑡∗ = 0 if Φ𝑘2
(1−𝛼) < 1 and 

𝜋

ℎ
>

𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

; 

(ii) 𝑡∗ = �̃� if Φ𝑘2
(1− 𝛼) = 1, Φ𝑘1

(1−𝛼) < 1, and  
𝜋

ℎ
>

𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

; 

(iii) 𝑡∗ = 𝑇  if any of the following cases holds: a) Φ𝑘1
(1−𝛼) = 1; b) Φ𝑘2

(1−𝛼) < 1  and 
𝜋

ℎ
<

𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

; or c) Φ𝑘2
(1− 𝛼) = 1 , Φ𝑘1

(1− 𝛼) < 1 , and  
𝜋

ℎ
<

𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

. 

Note that the threshold value 
𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

 is determined by the backup provisioning 

choices, their corresponding downtime distributions, as well as the availability requirement, but is 

independent of the penalty to provisioning cost ratio 
𝜋

ℎ
. All else being equal, if per unit penalty is likely 

more expensive than the per unit of resource provision, then the service provider tends to intervene early 

to provide higher number of backups and avoid possible penalty cost.   

When providing 𝑘1 backups over the entire contract period 𝑇 would incur penalty, but providing 

𝑘  backups would not, then the optimal intervention time �̃� is the time when the combined downtime 

variable 𝐷𝑡,𝑇−𝑡(𝑘1,𝑘 )= 𝐷𝑡(𝑘1)+𝐷𝑇−𝑡(𝑘 )  just starts to have non-zero probability of incurring 

penalizable downtime. The condition 
𝜋

ℎ
>

𝑘2−𝑘1

𝜂𝑘1−𝜂𝑘2+∫ [Φ𝑘1
(𝜏)−Φ𝑘2

(𝜏)]𝑑𝜏
1−𝛼
0

 suggests that, to warrant the 

intervention, the savings from the reduced downtime as well as the penalty cost should be larger than 

the additional provisioning cost. 

Under the conditions specified in Proposition 5, 𝑡 ∗ = 0 and 𝑡 ∗ = 𝑇  can be easily identified. 

Given (𝑘1,𝑘 ), it might be optimal to keep the number of backup VMs constant over the entire period. 

When the cost function 𝐶(𝑘1, 𝑘 ,𝑡) is convex in 𝑡, the optimal intervention time occurs at �̃�, where �̃� is 

defined in the online supplement. Although we can theoretically characterize this time, we still need to 

design an efficient algorithm to empirically search for it because the intervention time is affected by the 

empirical downtime distribution, which is a function of the number of backup VMs provided.  
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6.2. The SISL Algorithm 

When the empirical downtime distribution satisfies conditions specified in Proposition 5(ii), we need 

to search for the optimal intervention time. This could involve significant computational effort as the 

intervention time is a continuous decision variable. We propose an efficient, offline, two-step approach 

to solve this problem as shown in Figure 7. The inner loop employs a search algorithm to find the 

optimal solution 𝐶(𝑘1,𝑘 , 𝑡
∗) for any given (𝑘1,𝑘 ) combinations. The outer loop enumerates the 

limited number of (𝑘1,𝑘 ) combinations to find the global optimal 𝐶(𝑘1
∗,𝑘 

∗ ,𝑡 ∗).  

Input: maximum number of backups K and contract duration T; 

Output: 𝐼(𝑘1
∗,𝑘 

∗ , 𝑡∗) and corresponding total cost 𝑇𝐶; 
Main: SISL(T) 
Begin 

      𝐼 = (0,0,0); 
      𝑇𝐶 =𝐺, where 𝐺 is a very large number; 

      For 𝑘 = 0,… , 𝐾, do 
            Compute 𝐶(𝑘, 𝑘,𝑇)= ℎ𝑘𝑇+𝐸[𝜋max{0, 𝐷𝑇(𝑘) −𝐵}]; 
            If 𝐶(𝑘, 𝑘, 𝑇) < 𝑇𝐶 then  
                   𝑇𝐶 = 𝐶(𝑘,𝑘, 𝑇); 
                   𝐼 = (𝑘, 𝑘, 𝑇); 
            End If 

      End  

      For 𝑘1= 0,… ,𝐾 −1, do 
            For 𝑘 = 𝑘1+1,… , 𝐾, do 
     If conditions in Proposition 5(i) are satisfied 

          𝑡∗ = 0; 

                       𝐶(𝑘1,𝑘 , 𝑡
∗); 

                  Elseif conditions in Proposition 5(iii) are satisfied 

                       𝑡∗ = 𝑇; 

                       𝐶(𝑘1,𝑘 , 𝑡
∗); 

                  Else  

                       Call Search (𝑘1,𝑘 ,T); /*the search algorithm is executed under conditions in Proposition 5(ii)*/ 
                  End 

                  If 𝐶(𝑘1,𝑘 , 𝑡
∗) <𝑇𝐶 then  

                       𝑇𝐶 = 𝐶(𝑘1,𝑘 , 𝑡
∗); 

                       𝐼 = (𝑘1 ,𝑘 ,𝑡
∗); 

                  End If    
            End 

      End 
End  

Figure 7. Offline SISL Algorithm  

Note that there are (𝐾 + 1)  possible combinations of the (𝑘1 ,𝑘 ) pairs. However, the (𝐾 + 1) 

combinations where 𝑘1 = 𝑘  can be directly solved without any intervention. This is the first part of 

the algorithm in Figure 7. Due to the symmetric property demonstrated in Lemma 2, we can further 

reduce the search by half its size. Thus, the total number of combinations in search is at most  

(𝐾+1)2−(𝐾+1)

 
=

𝐾(𝐾+1)

 
. This is the second half of the SISL algorithm in Figure 7.  

The offline SISL algorithm employs a module called Search (𝑘1 ,𝑘 ,𝑇), where we propose a 
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ternary partition search algorithm to numerically search for the optimal intervention time when 

conditions in Proposition 5(ii) are satisfied. Please refer to the online supplement for details. The online 

SISL algorithm would outperform the offline SISL algorithm due to the value of information. It follows 

the offline algorithm to implement 𝑘1 backups in stage 1 until the intervention time 𝑡1. At time 𝑡1, the 

total realized downtime 𝜏 = 𝐶1 is observed. The online algorithm then adjusts the allowable downtime 

�̂� = max [0,(1− 𝛼)𝑇− 𝐶1], based on which 𝑘  is re-optimized assuming there is no more adjustment 

in the remaining (𝑇 − 𝑡)  period. For every realized downtime 𝐶1 , we obtain the minimum cost 

𝐶(𝑘 |𝑘1, 𝐶1). The expected cost of the online SISL algorithm is computed as ∫ 𝐶(𝑘 |𝑘1,𝐶1)𝑓𝑘1(𝜏)
𝑡1
0

𝑑𝜏.  

6.3. Multiple Interventions with Single Look-Ahead (MISL) Strategy 

Under MISL, the optimal cost-to-go is approximated by assuming there is only one intervention 

opportunity in the remaining time period. Starting from 𝛿 = 1, the MISL strategy repeats the following 

steps:  (1) At the beginning of stage 𝛿 (the last intervention time 𝑡𝛿−1), the service provider determines 

(𝑘𝛿 ,𝑡𝛿 , 𝑘𝛿+1) to minimize the expected cost over the contract horizon 𝑇 − 𝑡𝛿−1, assuming there is one 

intervention in the remaining time period, based on which the service provider implements 𝑘𝛿 till the 

next intervention time 𝑡𝛿. (2) If 𝑡𝛿 = 𝑇 , following the decision 𝑘𝛿  till the end of contract period; 

otherwise, following the decision 𝑘𝛿  till 𝑡𝛿, 𝛿 = 𝛿 + 1, and repeat (1). Note that the original decision 

𝑘𝛿+1  from the previous stage may not be followed as new decisions about backup resource provision 

are made at times 𝑡𝛿. Figure 8 graphically illustrates the decision sequence. 

 
Figure 8. Diagram of MISL Strategy 

Problem [MISL] 

𝐻𝛿(𝑥𝛿 ,𝑘𝛿) = min[ℎ𝑘𝛿(𝑇− 𝑡𝛿−1)+ ℎ𝑢𝛿(𝑇 − 𝑡𝛿−1 − 𝑡)

+𝐸[𝜋max{0,𝑥𝛿+𝐷(𝑘𝛿 +𝑢𝛿)−max(𝐵, 𝑥𝛿)}+𝐻𝛿−1(𝑥𝛿−1 , 𝑘𝛿−1)]] 

s.t. 𝑥𝛿+1 = 𝑥𝛿+𝑑(𝑘𝛿+𝑢𝛿), 𝑘𝛿+1 = 𝑘𝛿 +𝑢𝛿; −𝑘𝛿 ≤ 𝑢𝛿 ≤ 𝐾 −𝑘𝛿, and 𝑢𝛿 is integer 

Here 𝐻𝛿(𝑥𝛿 ,𝑘𝛿) is the cost-to-go function and 𝑇− 𝑡𝛿−1 is the remaining contract window at the 

beginning of stage 𝛿 . 𝐻𝛿−1(𝑥𝛿−1 ,𝑘𝛿−1) is the cost incurred up to stage 𝛿 − 1 and the initial cost 

𝐻0(𝑥0 ,𝑘0)= 0. This optimization problem follows the same interpretation of the [CL] problem. The 

difference is that now the time of intervention is also a decision variable and we use a forward strategy 

to solve the problem. The full MISL model implementation is thus more challenging than CL model 

T
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because it not only depends on the observed downtime information, but needs to search for the optimal 

intervention times.  

Figure 9 shows the offline MISL algorithm, which calls for a series of SISL optimizations until 

no more intervention can be found. The online MISL algorithm involves an update of 𝐵 that is based 

on the realized downtime observed at the intervention time, rather than the expected downtime as in 

Figure 9. Consider the example in Figure 8. The online algorithm follows the offline MISL solution 

(𝑘1,𝑡1) to implement 𝑘1 backups and to intervene at 𝑡1. At 𝑡1, following the downtime distribution 

𝐹𝑘1(𝜏), the total realized downtime 𝜏 = 𝐶1 is observed. The online algorithm then adjusts the allowable 

downtime �̂� = max [0,(1− 𝛼)𝑇 −𝐶1], and resolves the offline MISL algorithm in the remaining 

period (𝑇 − 𝑡1)  to yield an optimal first-stage solution ( 𝑘 ,𝑡 ,𝑘 ) and minimum expected cost 

𝐶(𝑘 , 𝑡 ,𝑘 |𝑘1,𝐶1), where only the first part of the solution (𝑘 ,𝑡 ) will be implemented, and so on. 

Input: maximum number of backups K and contract duration T; 

Output: 𝐼𝑊 = (𝑘1
∗,𝑘 

∗, 𝑡∗) and corresponding 𝐶(𝑘1
∗,𝑘 

∗, 𝑡∗); 
Begin 

      𝑊 =𝑇; 

      While 𝑊 >0  
              Call SISL (W); 

              𝑊 =𝑊 −𝑡∗; 
              𝐵 = max [0,𝐵 − 𝑡∗𝜂𝑘1∗]; 
      End While 

End  

Figure 9. Offline MISL Algorithm  

The expected cost of the online MISL algorithm with two interventions is computed as 

∫ 𝐶(𝑘 ,𝑡 ,𝑘 |𝑘1,𝐶1)𝑓𝑘1(𝜏)
𝑡1
0

𝑑𝜏. Clearly, the expected cost of the online MISL algorithm depends on the 

realized downtime in each step of the algorithm implementation (𝐶1, 𝐶 , etc.). The state space grows 

exponentially as the number of interventions increases. However, as shown in Section 5.4 of the online 

supplement, the algorithm runs in polynomial time and thus is considered as “fast.” 

Now we turn to competitive ratio analysis. The following Proposition establishes the competitive 

ratios of both SISL and MISL online algorithms. 

Proposition 6. (i) The competitive ratio of the SISL and MISL online algorithm is the same, which is 

bounded by 2 (i.e., 𝑟𝑆𝐼𝑆𝐿 = 𝑟𝑀𝐼𝑆𝐿 < 1 +
𝐾

𝑛
< 2); (ii) The competitive ratio of SISL and MISL online 

algorithm is lower than that of the CL algorithm if the number of decision stages in CL is large enough 

(i.e., 𝑟𝑆𝐼𝑆𝐿 = 𝑟𝑀𝐼𝑆𝐿 < 𝑟𝐶𝐿 if 𝑡1
∗ >

𝑇

𝑆
). 

The competitive ratio analysis of all our online algorithms (Propositions 1,3, and 6) show that 
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our proposed solutions are competitive and perform well in the worst case scenarios. In particular, when 

the number of decision stages in the periodic intervention policy is  relatively large, the aperiodic 

intervention algorithms tend to yield better online performance than the periodic online algorithms.  

7. Computational Analyses 

In this section, we comprehensively evaluate the solution quality and computational performance of 

both the periodic and aperiodic resource optimization models under different system configurations.  

We classify the parameters of the cloud resource management problem into four general 

categories. We choose two values for each parameter in our main experiments. The first category 

includes two client-specific parameters: required service availability 𝛼 (0.9 for low availability and 0.99 

for high availability) and contract duration 𝑇 (30 days for short term and 180 days for long term). The 

second category involves two service-specific parameters: the number of primary VMs 𝑛 (100 for small 

size service contract and 1000 for large size service contract), and the penalty/provision cost ratio per 

VM (100 for low penalty and 1000 for high penalty). The third category consists of two system-specific 

operational level parameters: the mean time between failures (MTBF) of a physical server (60 days for 

failure-prone systems and 300 days for fault-tolerant systems), and the mean time to repair (half day). 

The fourth category pertains to resource optimization parameters. It involves the service provider’s 

decisions regarding the maximum number of backup VMs 𝐾 to provide, which we set as 10% of the 

number of primary backup VMs required in SLA (10%𝑛). The service provider can choose from 4 online 

algorithm choices corresponding to periodic intervention (CL and online CE) or aperiodic intervention 

(online SISL and online MISL) policies. The rationale of the experiment design and detailed solutions 

of all experiments are provided in the online supplement. We implemented our algorithms in R 3.4 (64-

bit edition). An Intel(R) Core(TM) i7-7500U 2.90 GHz processor equipped with 8GB of RAM was used 

for all experiments.  

7.1. Effect of Intervention  

Using the static, no intervention (denoted as NI) optimal solution of Yuan et al. (2018) as a benchmark, 

we first demonstrate the performance improvement under the periodic policies (the CL model and the 

online CE model denoted as CEon). Denote the expected costs under NI, CL, and CEon models as 𝐸[𝑁𝐼], 

𝐸[𝐶𝐿] , and 𝐸[𝐶𝐸𝑜𝑛 ]. We define the expected cost performance ratio as 𝑅[𝐶𝐿] =
𝐸[𝑁𝐼]−𝐸[𝐶𝐿]

𝐸 [𝑁𝐼]
 and 

𝑅[𝐶𝐸𝑜𝑛] =
𝐸[𝑁𝐼]−𝐸[𝐶𝐸𝑜𝑛 ]

𝐸[𝑁𝐼]
, respectively, to measure the relative cost reduction of the CL and CEon model 

from the no-intervention benchmark. The larger the ratio, the higher the expected cost reduction.  
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SLA Requirements MTBF Low (Fault-Prone) MTBF High (Fault-Tolerant) 

𝜋/ℎ Low 𝜋/ℎ High 𝜋/ℎ Low 𝜋/ℎ High 

n T 𝛼 𝑅[𝐶𝐿] 𝑅[𝐶𝐸𝑜𝑛] 𝑅[𝐶𝐿] 𝑅[𝐶𝐸𝑜𝑛] 𝑅[𝐶𝐿] 𝑅[𝐶𝐸𝑜𝑛] 𝑅[𝐶𝐿] 𝑅[𝐶𝐸𝑜𝑛] 

Small Short Term Low 16.5% 11.5% 38.4% 16.7% 48.1% 44.6% 43.4% -3.6% 

  High 3.4% 3.0% 15.5% 9.8% 15.3% 13.4% 20.8% 8.4% 

 Long Term  Low 17.2% 12.1% 39.0% 19.9% 49.8% 45.7% 44.8% 3.0% 

  High 7.5% 7.4% 18.9% 12.6% 20.5% 17.0% 24.7% 17.2% 

Large Short Term Low 6.6% 5.5% 11.9% 2.6% 23.6% 19.0% 23.1% -1.6% 

  High 0% 0% 6.6% 4.5% 3.0% 2.7% 14.3% 5.8% 

 Long Term Low 7.0% 5.7% 12.2% 3.5% 24.2% 19.5% 23.7% 1.8% 

  High 1.4% 1.3% 8.7% 6.6% 5.3% 5.1% 17.1% 11.1% 

 Table 1. Expected Cost Performance Ratios of CL and Online CE Models 

Table 1 shows the expected cost performance ratios under different configurations when there are 

8 decision stages to represent relatively frequent periodic interventions. Tables  A4 and A5 in the online 

supplement provides the complete model solutions and the expected costs of the NI, CL and CEon models. 

Several interesting observations can be made from Table 1. First, both the online CE model and the CL 

model have the potential to significantly reduce the expected cost due to the ability to adjust the backup 

provision dynamically over the contract duration. The highest cost reduction achieved is around 44-46% 

for the online CE model and 48-50% for the CL model when the service contract size is small, the 

availability is low, the penalty cost is low compared to provisioning cost, and in the fault-tolerant system.  

Second, we observe two scenarios where the cost performance of the online CE model is 

comparable to that of the no-intervention benchmark (-3.6% and -1.6% in Table 1). This is because the 

CE model uses the deterministic mean downtime approximation rather than the stochastic downtime 

distribution in making the dynamic adjustment decisions. Both cases occur for short-term contracts 

when the required availability is low, provision/penalty cost ratio is high, and is managed by fault-

tolerant servers. Fortunately, in such cases the CL model can significantly reduce the costs. Thus, we 

caution the contract managers of such cases and recommend CL model in these instances.  

Third, comparing the best-performing CL model with the no-intervention benchmark, we identify 

scenarios where there is little need for intervention (within 2% expected cost reduction). These scenarios 

occur when the contract size is large, the required availability is high, the penalty cost is low compared 

to provisioning cost, and in the fault-prone system. Since the expected cost reduction is limited, the 

service provider may find the computationally expensive CL model not be economically justified. In 

such cases, if the service provider still prefers to perform dynamic interventions, we recommend the 

online CE model due to the closeness of its solution to the optimum and its computational efficiency. 

On average, across all configurations the online CE model and the CL model achieved cost 

reduction of 10.4% and 19.4%, respectively. Overall, the benefits of dynamic optimization are more 
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significant for small contracts with low availability in fault-tolerant systems.  

7.2. Effect of Flexible Timing  

In the following discussion, we compare periodic and aperiodic intervention policies to examine under 

what conditions it is beneficial to perform flexible interventions. We choose the best performing CL 

model under the periodic policy as the benchmark, and compare it with online SISL and online MISL 

solutions. Obviously, the number of decision stages affects the CL solution. Since there is one 

intervention in the online SISL model by design, we choose the two-stage CL model (CL2) for its 

comparison. Note that the MISL model with two interventions establishes a performance lower bound 

of MISL policy. We use it as a conservative benchmark to compare the performance. Denote the 

corresponding three-stage CL model as CL3. Define the expected cost performance ratio of the online 

SISL and MISL models as 𝑅[𝑆𝐼𝑆𝐿𝑜𝑛 ] =
𝐸[𝐶𝐿 ]−𝐸[𝑆𝐼𝑆𝐿𝑜𝑛 ]

𝐸[𝐶𝐿 ]
 and 𝑅[𝑀𝐼𝑆𝐿𝑜𝑛 ] =

𝐸[𝐶𝐿 ]−𝐸[𝑀𝐼𝑆𝐿𝑜𝑛]

𝐸[𝐶𝐿 ]
, 

respectively. So a positive ratio indicates expected cost reduction of the aperiodic intervention over the 

periodic intervention policies. Since the contract length does not seem to significantly affect the solution, 

we focus on short-term contracts for illustration purposes. Table 2 presents expected cost performance 

ratios of the online SISL and online MISL policies under different system configurations. 

SLA 

Requirements  
MTBF Low (Fault-Prone) MTBF High (Fault-Tolerant) 

𝜋/ℎ Low 𝜋/ℎ High 𝜋/ℎ Low 𝜋/ℎ High 
n 𝛼 𝑅[𝑆𝐼𝑆𝐿𝑜𝑛]  𝑅[𝑀𝐼𝑆𝐿𝑜𝑛] 𝑅[𝑆𝐼𝑆𝐿𝑜𝑛] 𝑅[𝑀𝐼𝑆𝐿𝑜𝑛] 𝑅[𝑆𝐼𝑆𝐿𝑜𝑛]  𝑅[𝑀𝐼𝑆𝐿𝑜𝑛] 𝑅[𝑆𝐼𝑆𝐿𝑜𝑛] 𝑅[𝑀𝐼𝑆𝐿𝑜𝑛] 

Small Low -6.0% -7.5% 0.9% 1.1% 23.3% 10.7% 14.3% 20.3% 

 High -3.1% -4.2% -1.7% -0.6% -2.7% -6.8% -0.3% 2.4% 

Large Low 0.7% 0.0% -1.6% -1.6% 0.8% -0.8% -1.4% -2.3% 

 High 0.0% 0.0% -0.1% -0.5% -0.3% -0.9% 0.7% -1.2% 

Table 2. Expected Cost Performance Ratios of Online SISL and Online MISL Models  

We note that the aperiodic models may not necessarily outperform the periodic models. The main 

reason is the use of single look-ahead till the end of the horizon at each intervention stage of the MISL 

strategy. As Table 2 shows, there is a clear tradeoff between the potential gain brought by flexible timing 

and the potential loss due to the myopic single look-ahead. We find that the performance differences in 

small-sized contracts are more than those in large-sized contracts. When the contract size is small, it is 

better to use the CL model when the penalty/provisioning cost ratio is low in fault-prone systems, and 

when both the penalty/provisioning cost ratio is low and the availability is high in fault-tolerant systems.  

On average the highest cost reduction of the online SISL algorithm over CL2 model is 23.3% and 

of the online MISL algorithm over CL3 model is 20.3%, respectively. Please see Table A7 of the online 

supplement for expected costs under different models. The aperiodic models outperform the periodic 

models significantly when the contract size is small, availability is low, and in fault-tolerant systems. 
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Intuitively, this is because under these scenarios, the total required number of backups is relatively small, 

thus the marginal effect of adding or removing one backup is significant. Flexible timing allows for fine-

tuning the marginal benefit-cost trade-off and thus turns out to be beneficial.  

8. Model Validation with Amazon EC2 Service Structure  

In this section, we validate our models based on actual pricing and service credit data on dedicated hosts 

obtained from the Amazon EC2 website. Consider the case of a client requesting to contract with 

Amazon for n instances (VMs). A dedicated host is configured to support one VM at a time. For 

simplicity, we consider both small and large contract sizes, denoted by 𝑛 = {100,1000} primary VMs, 

respectively. 

The contract can have different configurations based on Amazon instance types and its 

pricing/penalty structures7. For illustration purposes, we choose the 1-year contract for the cheapest 

instance type a1 and a similar 1-year contract for the most expensive instance type p3. These instance 

type designations are from the Amazon EC2 website. The monthly price 𝑝 for one a1 VM is $206.59 

and for one p3 VM is $13,415.94.  Since service credits for violations of uptime guarantees are offered 

as fractions of the prices charged, it is realistic to consider the low-cost a1 hosts to be less fault-tolerant 

(or equivalently, more fault-prone) than the high-cost p3 hosts. Accordingly, we term the two instance 

types a1 and p3 considered in this study as fault-prone and fault-tolerant instances, respectively. As we 

do not have access to the MTBF and MTTR data from Amazon, we obtained these parameters from the 

server logs provided by the Center for Computational Research (CCR) at the University at Buffalo, 

which is a high-performance computing node. Using these parameters as surrogates for the Amazon 

data center operations, we conducted a detailed computational study of the proposed algorithms using 

their price and penalty structures for the a1 and p3 instance types. These results can be easily replicated 

if the server logs data from Amazon are available.  

Our experiment consisted of four independent factors: contract size {small, large}, level of fault-

tolerance of the instances {fault-prone, fault-tolerant}, provisioning cost {low, medium, high} and 

penalty cost {low, medium, high}. Accordingly, a fully-crossed experimental design consisting of 36 

unique treatments has been carried out. In all these treatments, we consider a one month contract 

window. We set 𝜓 = 12,000 as the number of discrete time intervals in the one month evaluation 

period, which is equivalent to about 4 minutes per interval. This is consistent with what is done in 

                                                             
7 Amazon dedicated hosts pricing: https://aws.amazon.com/ec2/dedicated-hosts/pricing/ 

https://aws.amazon.com/ec2/dedicated-hosts/pricing/
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practice to measure downtime. For example, Amazon S3 tracks and calculates the error rate (i.e., 

downtime) for each Amazon S3 service account in every 5-minute interval in the monthly billing cycle.  

Define the selling price per VM per unit time interval as  �̅� = 𝑝/𝜓. First, we assume the resource 

provisioning cost per VM per unit time is a percentage of the selling price per VM per unit time: ℎ =

{10%, 30%,50%} ∗ �̅�. These define three levels of the provisioning cost. Second, we estimate the 

penalty cost per unit time 𝜋 based on Amazon penalty-price structures. There are three cases: (1) 

Amazon pays no penalty if the monthly uptime percentage is greater than or equal to 99.95%; (2) it 

provides 10% of the monthly fee as service credit if the monthly uptime percentage is between 99% 

and 99.95%, and (3) it pays 30% of the monthly fee as service credit if the monthly uptime percentage 

is below 99%. Clearly Amazon EC2 SLA belongs to the high availability (high 𝛼) scenario. For a given 

𝑛, recall that the density and cumulative distribution functions of the random downtime for 𝑘 backup 

servers are 𝑓𝑘(𝜏) and 𝐹𝑘(𝜏), respectively. We use the baseline distribution 𝐹0(𝜏) (i.e., when no backup 

is provided) as the basis for calculating the expected unit penalty cost as follows:  

�̂� =
10%×𝑛×𝑝×[𝐹0(0.01)−𝐹0(0.00 )]+ 0%×𝑛×𝑝×[1−𝐹0(0.01)]

𝜇(𝜏 − 0.01|𝜏 ≥ 0.01)+𝑗×𝜎(𝜏 − 0.01|𝜏 ≥ 0.01) . 

Here, the numerator is the expected total service credit amount paid for 𝑛 VMs, and the denominator is    

the (expected penalizable downtime + 𝑗 ∗ standard deviation of penalizable downtime), where we set 

𝑗 = {−1,0,1} to derive three (i.e., high, medium and low) estimates of 𝜋. The expected penalizable 

downtime is computed as 𝜇(𝜏 − 0.01|𝜏 ≥ 0.01) = ∫ (𝜏− 0.01)𝑓0(𝜏)𝑑𝜏
1

0.01
, and the variance of 

penalizable downtime is calculated as 𝜎 (𝜏 − 0.01|𝜏 ≥ 0.01) = ∫ (𝜏 − 0.01) 𝑓0(𝜏)𝑑𝜏
1

0.01
− [∫ (𝜏 −

1

0.01

0.01)𝑓0(𝜏)𝑑𝜏]
 . Based on Amazon data, Table 3 shows the values of the  𝜋/ℎ ratio used in the 36 

treatments of the experiment. Together, the 36 treatments cover a wide variety of real world use cases. 

This validation can be repeated for any other system parameters in a cloud data center.   

Contract 
Size 

𝒉/𝒑 Fault-Prone VMs Fault-Tolerant VMs 

�̂�(𝒋 = 𝟏) �̂�(𝒋 = 𝟎)   �̂�(𝒋 = −𝟏) �̂�(𝒋 = 𝟏) �̂�(𝒋 = 𝟎) �̂�(𝒋 =−𝟏) 
Small 0.1 477.53 546.40 638.48 1,454.36 2,108.53 3,832.27 

0.3 159.18 182.13 212.83 484.79 702.84 1,277.42 

0.5 95.51 109.28 127.70 290.87 421.71 766.45 

Large 0.1 3,030.06 3,037.95 3,045.87 3,532.41 3,785.64 4,078.00 

0.3 1,010.02 1,012.65 1,015.29 1,177.47 1,261.88 1,359.33 

0.5 606.01 607.59 609.17 706.48 757.13 815.60 

Table 3. The 𝜋/ℎ Ratio under Different Treatments 

In practice, service providers such as Amazon typically configure the resource provisioning at 

the time the service contract is offered. They adopt a static resource provisioning strategy as required 



 

31 
 

by the service contract and may or may not deploy backups. We assume Amazon optimally chooses the 

number of backups to deploy and the deployment does not change over the one-month period. We 

implemented our periodic intervention and aperiodic intervention strategies in each of the 36 treatments 

using their respective parametric settings. We demonstrate the potential cost savings that can be 

generated using our dynamic resource provisioning framework in the following discussion. 

8.1. Periodic Model Implementation 

We compare our periodic dynamic resource provisioning model with the static model commonly used 

in practice. Table 4 presents the percentage of cost savings under different treatment conditions.  

Contract 

Size 
𝒉/𝒑 Fault-Prone VMs Fault-Tolerant VMs 

�̂�(𝒋 = 𝟏) �̂�(𝒋 = 𝟎) �̂�(𝒋 =−𝟏) �̂�(𝒋 = 𝟏) �̂�(𝒋 = 𝟎) �̂�(𝒋 = −𝟏) 
Small 0.1 13.79% 13.94% 14.14% 21.80% 23.86% 30.03% 

0.3 9.10% 11.30% 14.1% 21.79% 20.94% 21.36% 

0.5 2.93% 4.27% 6.07% 23.69% 22.22% 20.84% 

Large 0.1 9.64% 9.65% 9.67% 20.88% 21.53% 22.28% 

0.3 6.60% 6.60% 6.60% 14.66% 14.86% 15.09% 

0.5 4.80% 4.81% 4.82% 13.78% 13.85% 13.95% 

Table 4. Expected Cost Savings of Periodic Intervention over Static Backup Deployment 

Other things being equal, as the unit provisioning cost decreases and the unit penalty cost 

increases, the percentage of cost savings increases. This is not surprising because lower provisioning 

cost directly leads to operational cost savings. The high unit penalty cost justifies the benefit of using a 

dynamic adjustment strategy rather than a static provisioning strategy. Overall, the savings over the 

static model is up to 30%.     

Similar to the insights gained from the main experiments, we find that managing small contracts 

yields higher cost savings than large contracts, and fault-tolerant systems achieve higher cost savings 

than fault-prone systems. Intuitively, this is because the mean and variance of the downtime distribution 

are small in both cases, which require small number of backups. The larger marginal benefit of adjusting 

VM provisioning leads to higher cost savings.  

8.2. Aperiodic Model Implementation 

In the following, we demonstrate the benefit of implementing the aperiodic intervention strategy over 

the periodic intervention. To have a fair comparison, we should allow the MISL and CL models to have 

the same number of stages (𝑆). Since a MISL model has at least 3 stages, for illustration purposes, we 

choose 𝑆 = 3  and denote the 3-stage CL model as CL3. As the number of stages increases, the 

advantage of aperiodic intervention over periodic intervention would diminish, and this is intuitive. 

Table 5 presents the percentage of cost savings of online MISL model over CL3 model under different 
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treatment conditions, given by 
𝐸[𝐶𝐿 ]−𝐸[𝑀𝐼𝑆𝐿𝑜𝑛]

𝐸[𝐶𝐿 ]
. Note that a positive value indicates that the MISL 

model yielded lower expected cost than the CL3 model.  

Contract 
Size 

𝒉/𝒑 Fault-Prone VMs Fault-Tolerant VMs 

�̂�(𝒋 = 𝟏) �̂�(𝒋 = 𝟎) �̂�(𝒋 =−𝟏) �̂�(𝒋 = 𝟏) �̂�(𝒋 = 𝟎) �̂�(𝒋 =−𝟏) 
Small 0.1 0.49% 0.64% 0.59% -2.3% -7.9% -5.21% 

0.3 -2.29% -2.16% -1.96% 8.08% 5.7% -0.53% 

0.5 -4.03% -4.68% -6.12% 3.76% 7.5% 4.91% 

Large 0.1 -0.67% -0.67% -0.67% 0.5% 0.49% 0.31% 

0.3 -0.47% -0.47% -0.47% -0.9% -0.77% -0.63% 

0.5 -0.97% -0.98% -0.98% -1.71% -1.65% -1.58% 

Table 5. Expected Cost Savings of Aperiodic Intervention over Periodic Intervention 

We see that the highest percentage of cost savings of the aperiodic intervention over periodic 

intervention is 8.08%. This occurs for small-sized contracts with fault-tolerant VMs when the 

penalty/provisioning cost ratio is moderately high (i.e., 484.79). Based on these experimental 

assessments, a decision tree for the choice of intervention strategy by Amazon EC2 can be formulated 

as in Figure 10.  

 

Figure 10. Decision Tree Calibration of CL vs. MISL Intervention Policies   

The above analysis yields a proof-of-concept of the proposed intervention framework and 

demonstrates the efficiencies of the proposed algorithms using Amazon EC2 price/penalty data as a 

testbed of use cases, in conjunction with the system-specific parameters drawn from the CCR data. This 

study also yields a decision tree based strategy for any contract administrator to follow in the choice of 

intervention policies by appropriately calibrating them according to the prevailing contract-specific, 

system-specific and service-specific parameters.   

9. Discussion of Managerial Implications 

In this research, we develop different resource management strategies to support the cloud contract 

administrators’ needs to conservatively or aggressively manage virtual infrastructure resources, and 

preferences to periodically or aperiodically adjust the backup VMs. 
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Our CL model supports conservative resource provisioning under the periodic intervention policy. 

The CL algorithm yields a reference chart of optimal allocations for a given service agreement and the 

service provider would dynamically allocate the backup VMs according to the realized conditions during 

the course of the contract. It offers valuable guidance for cloud service providers to structure the VM 

resources in the data center based on client service agreements in a dynamic and uncertain operating 

environment. The dynamic optimization significantly outperforms static optimization (no intervention), 

especially for small contracts that require low availability in fault-tolerant systems.   

In the event where the cloud service providers prefer to use an aggressive resource management 

strategy, we recommend the use of the computationally cost-effective online CE model. Although the 

CL model would yield optimal allocations, the online CE model is quite cost-effective and yields near-

optimal allocations in most cases, and especially for large contracts when penalty/provisioning cost ratio 

is low and the required availability is high in fault-prone systems.  

In general, solving the aperiodic optimization problem is more computationally demanding than 

the periodic optimization. The trade-off between the periodic and aperiodic optimization is the additional 

cost reduction brought by flexible interventions and the increased time complexity to solve the aperiodic 

models. Based on the evaluation of use cases constructed from Amazon EC2 price and service credit 

structure, we find that it is more beneficial to employ aperiodic intervention than periodic intervention 

when managing small-sized service contracts with fault-tolerant VMs under high availability 

requirements.  

To guide contract administrators to choose between the best-performing periodic (CL) and 

aperiodic (online MISL) intervention policies, we compare their expected costs based on which we can 

construct a decision tree recommendation. This analysis serves as a proof-of-concept for any cloud data 

center to adopt our analytical strategy in SLA resource management. Through comprehensive testing of 

our model using both synthetic data and Amazon use cases, we provide collaborative evidences that our 

proposed dynamic backup resource provisioning strategy can generate significant cost savings over the 

static backup provisioning approach.  

Overall, our model is most suitable to IaaS provider’ virtual infrastructure resource management 

based on their pre-committed resource requirements in the service contracts. Our model can be applied 

to both stateless and stateful VMs as long as appropriate checkpointing strategy and backup VMs are 

used to guarantee service continuity in the case of primary VM failure. Thus, our model can be extended 

and implemented in a PaaS environment where the PaaS service providers handle both infrastructure 
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and services.  However, we note that our current model is not directly applicable to big data management 

on the cloud. For example, MapReduce proposed by Google and its open source implementation Hadoop 

are the most popular big data management frameworks today. By moving big data and its processing to 

cloud, data is stored in storage clouds and computation is done with compute clouds. The Hadoop 

distributed file system (HDFS) handles large data sets on commodity servers. Data needs to be copied 

from the location where it is stored to the instance on which the computation will occur. This will incur 

data transmission costs as well as time delay according to the size of the data transmitted. Network 

structure and data transfer latency may be some important factors to consider in such applications. In 

addition, when using a backup, there is cost involved in the frequency and volume of updates, which 

can be an important issue in service contracts design, negotiation with the clients and solution 

implementation. Since PaaS involves client-level applications, it is different from the primary goal of 

this research as we do not model the operational details such as the data replication structures and how 

the VMs are used from the client’s perspective. Extending our framework along the above discussed 

dimensions are interesting and important future research directions. 

10. Conclusion 

In this research, we develop cost-effective solutions to the optimal management of virtual infrastructure 

resources in cloud service agreements by an integration of ideas from multiple disciplines. More 

specifically, this integration involves the following concepts: (i) dynamic resource optimization from 

Operations Management, (ii) availability modelling based on sample path randomization techniques 

derived from the disciplines of Statistics and Machine Learning, and (iii) design of online algorithms 

drawn from Computer Science. We develop stochastic optimization models to support both periodic and 

aperiodic cloud infrastructure resource management strategies in a dynamic environment. We propose 

computationally efficient online algorithms that utilize their corresponding offline solutions to achieve 

both high computational performance and solution quality. We perform both competitive ratio analysis 

and expected value analysis to investigate the worst-case and average model performance, respectively. 

We further conduct comprehensive computational experiments and validate our model performance 

based on use cases constructed from Amazon EC2 price and service credit data. Findings from this 

research provide practical decision support for cloud data-center’s virtual resource management under 

flexible service agreements.  

Under the periodic intervention policy, we develop dynamic optimization models to adjust the 

provision of backup VMs based on the observed system downtime at regular time intervals. We examine 
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both a conservative strategy (the CL model) that is computationally expensive but minimizes the 

expected total operational cost, and an aggressive strategy (the CE model) that is computationally less 

expensive but would only yield near-optimal solutions. We find that the dynamic periodic intervention 

significantly outperforms its static no-intervention counterpart when service contracts are small-sized, 

require low availability and demand low contract penalty in fault-tolerant systems. In addition, we 

recommend the use of the aggressive strategy for managing large service contracts with high availability 

in fault-prone systems with low penalty/provisioning cost ratios, as it produces near optimal solution to 

the conservative strategy but is more computationally effective. 

Under the aperiodic intervention strategies, we allow flexible timing of intervention and examine 

both single intervention and multiple intervention policies. We find that the flexible intervention time is 

more beneficial than the fixed time of intervention when the size of service contract is small and 

availability is low in fault-tolerant systems. We also find that it might be sufficient to use single 

intervention rather than multiple interventions for small-sized service contracts when the 

penalty/provisioning cost ratio is low and the availability is high.  

In terms of computational performance, all our online algorithms have competitive ratios bounded 

by a factor less than 2. It shows that the algorithms we developed are economical and can achieve good 

performance guarantee at the worst-case scenarios. In terms of solution quality, the potential advantage 

of flexible timing would diminish when the number of stages in periodic intervention increases. Our 

extensive computational experiments and Amazon use cases evaluation offer us empirical evidences of 

the effectiveness and robustness of our model performance under various system-level, service-level, 

and user-level parametric conditions. We also construct a decision tree to provide intervention policy 

recommendations and managerial guidelines with insights that facilitate cloud contract administrators 

to execute their service contracts cost-effectively. This study leads to several important, viable and 

practical directions for future research. We outline some of these avenues in the following discussion. 

First, in this study, we do not explicitly model the cost of intervention and cost of server repair. 

Presumably, the server repair cost can be factored into the server provisioning cost. In this case, both 

the number of backup VMs and the intervention frequency would be reduced compared to our base 

model. Although the main insights obtained from this study would still be valid, specifically considering 

the costs of intervention and repair could affect the cost and benefit trade-offs in the service provisioning. 

It would be an interesting new dimension of investigation for future.  

Second, we assume the simpler architecture of powered-on without delay in the backup provision, 
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where a set of backup VMs regularly capture the system states from the primaries and ensure continuity 

of service when primary VMs fail. An alternative consideration is the powered-off model where a single 

large backup that periodically captures the primary VM states and is used as recovery and rollback 

mechanism in the case of VM failures. While the powered-on without delay architecture is common in 

normal data center operations, future research may consider the powered-off model, which is common 

in highly fault-resilient and high-performance computing platforms. 

Third, we focus on the Exponential failures in deriving the transient downtime distribution, which 

represents constant random failure rates in the cloud infrastructure. While exponential failures are 

common in practical data center operations, servers in certain data centers could have changing failure 

rates in their lifecycles. The case of decreasing failure rates over time can be modelled using the Weibull 

distribution which represents the infant mortality of servers. In this case, the servers more frequently 

fail during the early stages of their lifecycles and attain stability over time. Similarly, the case of 

increasing failure rates over time can be modelled using the Erlang distribution which captures the aging 

condition of servers. In this case, servers tend to fail more often as they age.  Different failure rate 

distributions will affect the server downtime empirical distribution, which in turn would affect the cloud 

service provider’s backup VM provisioning decisions. Future research on Weibull and Erlang failures 

would generate their appropriate virtual resource management strategies with richer practical insights. 

In conclusion, IaaS cloud resource management is a complex issue. Performance metrics such as 

delay, bandwidth overhead, computation overhead, reliability and security have to be taken into 

consideration in the design of resource management schemes. In addition, modeling the backup 

replication structure and user requirements at PaaS level is an interesting future research direction. 

Appendix: Notation Table 

This notation table includes all variables defined and used in the main paper and the online supplement. 

𝛼 ∈ (0,1) Required availability level (the uptime guarantee) specified in the SLA 

𝑇 Contract period over which the uptime guarantee should be fulfilled 

𝐵 = (1 −𝛼)𝑇 Total allowable downtime by SLA contract 

ℎ Provisioning cost per VM per unit of time 

𝜋 SLA violation penalty per unit of time 

𝑛 Number of primary VMs needed in the SLA contract 

𝑘 = {1,2,…𝐾} Number of backup VMs, where 𝐾 is the maximum number of backups 

𝑓𝑘(𝜏), 𝐹𝑘(𝜏) The downtime density function and cumulative distribution function 

𝜙𝑘(𝜏), Φ𝑘(𝜏) The normalized percentage of downtime density function and cumulative distribution 
function 

𝜂𝑘 Mean percentage of downtime when the number of backup VMs is 𝑘 
MTBF Mean time between failures of primary and backup servers 

MTTR Mean time to repair of primary and backup servers 

𝛿 = {1,2,… 𝑆} Index of stage, where there are total of 𝑆 decision stages 
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𝑥𝛿 Total incurred downtime at the beginning of stage 𝛿 

𝑘𝛿 Number of backup VMs at the beginning of stage 𝛿 

𝑢𝛿 ∈ [−𝑘𝛿,𝐾 − 𝑘𝛿] Backup VM adjustment decision in stage 𝛿 

𝑣(𝜏, 𝑛, 𝑘) Estimated probability distribution function of 𝜏 downtime on [0,𝑇] for an (𝑛, 𝑘) VM 

configuration  

∆𝑡 Discretized time intervals to track downtime over [0,𝑇] 

𝜓 = ⌈
𝑇

∆𝑡
⌉ The total number of discretization intervals over the contract period 𝑇 

𝐷𝑊(𝑘) Random downtime in a stage with length 𝑊 when the number of backup VMs is 𝑘 

𝑑𝑊(𝑘) Expected downtime in a stage with length 𝑊 when the number of backup VMs is 𝑘 

𝐷𝑤(𝑖, 𝑛, 𝑘) Discretized downtime in a stage with length 𝑊 

𝑝𝑤(𝑖, 𝑛, 𝑘) Discretized probability corresponding to 𝑖 number of downtime intervals in a stage 

with length 𝑊 

𝐶(𝑘1,𝑘 ,𝑡) Cost function of SISL strategy with the number of backup VM provisions before and 

after intervention as (𝑘1,𝑘 ) and the intervention time 𝑡 
𝐽𝛿(𝑥𝛿,𝑘𝛿) Cost-to-go function in stage 𝛿 of Problem [CL], which is the minimum expected total 

cost from stage 𝛿 to the end of stage 𝑆 

𝐺𝛿(𝑘𝛿) Cost-to-go function in stage 𝛿 of Problem [CE], which is the minimum expected total 
cost from stage 𝛿 to the end of stage 𝑆 

𝐻𝛿(𝑥𝛿,𝑘𝛿) Cost-to-go function in stage 𝛿 of Problem [MISL], which is the minimum expected total 
cost from stage 𝛿 to the end of stage 𝑆 

Ω𝛿(𝑘𝛿) Total expected downtime from state 𝑘𝛿 of stage 𝛿 till the end of stage 𝑆 along the path 
corresponding to 𝐺𝛿(𝑘𝛿) 

𝐶Δ Accrued total realized downtime from time 0 to stage Δ 

�̂�Δ Observed actual downtime in stage Δ 

�̂� Allowable total downtime at the beginning of stage Δ 

𝑝 Monthly price of an instance (VM) 

�̅� = 𝑝/𝜌𝑚𝑎𝑥 Selling price per VM per unit time interval 
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