
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2019

Towards generating transformation rules without examples for Towards generating transformation rules without examples for

android API replacement android API replacement

Ferdian THUNG
Singapore Management University, ferdianthung@smu.edu.sg

Hong Jin KANG
Singapore Management University, hjkang.2018@phdcs.smu.edu.sg

Lingxiao JIANG
Singapore Management University, lxjiang@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
THUNG, Ferdian; KANG, Hong Jin; JIANG, Lingxiao; and LO, David. Towards generating transformation
rules without examples for android API replacement. (2019). 2019 35th IEEE International Conference on
Software Maintenance and Evolution (ICSME): Cleveland, OH, September 30 - October 4: Proceedings.
213-217.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4824

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Towards Generating Transformation Rules without
Examples for Android API Replacement

Ferdian Thung, Hong Jin Kang, Lingxiao Jiang, and David Lo
Singapore Management University

Email: {ferdianthung, hjkang.2018, lxjiang, davidlo}@smu.edu.sg

Abstract—Deprecation of APIs in software libraries is common
when library maintainers make changes to a library and will no
longer support certain APIs in the future. When deprecation
occurs, developers whose programs depend on the APIs need
to replace the usages of the deprecated APIs sooner or later.
Often times, software documentation specifies which new APIs
the developers should use in place of a deprecated API. However,
replacing the usages of a deprecated API remains a challenge
since developers may not know exactly how to use the new APIs.
The developers would first need to understand the API changes
before they can replace the deprecated API correctly. Previous
work has proposed an approach to assist developers in deprecated
Android API replacement by learning from examples. In this
work, we also focus on Android APIs and propose an approach
named No Example API Transformation (NEAT) to generate
transformation rules that can assist developers in deprecated
API replacement even when code examples are not available (e.g.,
when the deprecation has happened recently). We have validated
the effectiveness of NEAT on generating transformation rules
for deprecated Android APIs. Using NEAT, we can generate 37
transformation rules for 37 out of a selection of 100 deprecated
APIs and have validated these rules to be correct.

Index Terms—API deprecation, API replacement, program
transformation, Android

I. INTRODUCTION

Software maintenance is a daily activity for software de-
velopers. One of the tasks that developers need to do while
maintaining a software project is to make sure that the APIs
that they use are up-to-date. However, API updates do not
always guarantee backward compatibility and the maintainers
can decide to deprecate older APIs. Thus, when APIs are
deprecated, developers need to replace the deprecated APIs
with other APIs that can provide equivalent functionality.

Many works [2], [10], [16], [17] that support deprecated
API replacement only focus on identifying APIs that can
replace a deprecated API. There has been very limited work on
recommending how a deprecated API can actually be replaced
by its replacement APIs. Lamonthe et al. [5] has proposed an
approach to assist deprecated API replacement by learning
from code change examples that have replaced deprecated
APIs. Their approach learns API migration patterns from these
examples and applies these patterns to Android applications to
replace deprecated API invocations in the applications.

In this work, we also deal with the problem of assisting
developers in replacing usages of deprecated APIs. In contrast
to the work of Lamonthe et al., we propose No Example
API Transformation (NEAT) that can provide assistance at the

time when an API deprecation occurs and no code change
example is yet available from which to learn code changes
patterns. Thus, NEAT complements Lamonthe et al.’s approach
that requires code change examples. Moreover, different from
Lamonthe et al.’s approach, NEAT produces code transforma-
tion rules based on semantic patches [3], [6], [14] that can
be easily reused, making it easier to replace deprecated APIs
across many usage locations.

NEAT assumes that the API replacement mappings from
a deprecated API to its replacement API are available, as
such mappings can be generated by previous approaches that
perform API replacement mining [2], [10], [16], [17]. The
mined mappings specify that a method A should be replaced
with a method B, but they do not specify how to actually
perform this replacement. Thus, NEAT also complements those
approaches by providing code transformation rules that specify
how deprecated API replacement can actually be realized.

NEAT uses a combination of API source code analysis,
type conversion, and heuristics. The approach distinguishes
between two cases, depending on whether or not the affected
API is an event handler (i.e., APIs that are called when an
event occur). If both APIs are non event handlers, NEAT
analyzes the source code of the API to check whether the
implementation of the deprecated API involves the usage of
the replacement API. If such an implementation exists, NEAT
generates a transformation rule based on it. Otherwise, we
heuristically match the parameters of both APIs, and convert
deprecated API parameters and/or return values to the types
used by the replacement API (if necessary). On the other hand,
if both APIs are event handlers, NEAT uses similar heuristics
to generate a transformation rule to implement the replacement
method based on the deprecated method’s implementation. To
make the generated transformation rules easily reusable, we
express them in semantic patches, which is widely adopted and
has shown to be useful in the context of C. Semantic patches
can be applied to client applications using Coccinelle [6], [14].
Specifically, since Android is typically written in Java, we
use Coccinelle4J, a recent port of Coccinelle targeting Java
programming language [3].

We evaluated NEAT on a dataset of 100 deprecated Android
APIs with identified replacements as input. We manually
validated whether the generated transformation rules can be
used to replace the deprecated APIs correctly. We found
that NEAT can generate correct transformation rules for 37
deprecated APIs. Comparing the effectiveness of NEAT to that

of automated program repair [4], [7], [12], which also needs
to transform a piece of code from a bad state to a good one
and correctly repair programs with the effectiveness of 22.69-
53.33%, our current preliminary result is promising. Note that
different from automated program repair, we do not have any
test cases and/or failures to guide our transformations.

The main contributions of our work are as follows:
1) To the best of our knowledge, we are the first to generate

transformation rules for replacing deprecated APIs when
there are no available examples to learn from.

2) We propose an approach named No Example API Trans-
formation (NEAT) to generate transformation rules given a
deprecated method and its replacement through a combi-
nation of API source code analysis, type conversion, and
some heuristics.

3) Evaluation on 100 deprecated Android APIs with identified
replacements shows that NEAT generates correct replace-
ment rules for 37 deprecated Android APIs.

II. BACKGROUND

A. Coccinelle

Coccinelle is a program matching and transformation en-
gine [6], [11], [14]. It was initially developed to automate API
evolutions in the Linux kernel. Coccinelle accepts as input a
program to transform, and a semantic patch that describes the
transformation to be performed. The semantic patch gener-
alizes the standard diff format. This is intended to make
it easy for developers to write and understand tranformation
rules, since the format should be familiar to developers. It then
transforms the input program according to the semantic patch
if the program matches it. Transformations are performed at all
matching locations. Coccinelle analyzes the program’s abstract
syntax trees and intraprocedural control flow graphs to perform
transformation.

Like Coccinelle, our work also aims to automate API
evolutions, specifically for migrating deprecated API usages
in client applications. To benefit from the fact that Coccinelle
semantic patches are readable and reusable, we use Coccinelle
in our work. Specifically, as we target Java code, we generate
semantic patches for input to Coccinelle4J [3], which is a
recent port of Coccinelle to the Java programming language.

B. Semantic Patch Language (SmPL)

Coccinelle semantic patches are written in the Semantic
Patch Language (SmPL). A semantic patch describes the code
that should be removed as lines starting with −, the code that
should be added as lines starting with +, and any necessary
surrounding code that defines the context of the code addition
and removal.

A semantic patch written in SmPL contains two parts:
(1) metavariable declarations; (2) context and change oper-
ations that are described using the declared metavariables. A
metavariable is a symbol that represents an element in the
grammar of the target programming language. As illustrated in
Figure 1, the lines surrounded by @@ declare the metavariables.
In Figure 1, arg is declared to be a metavariable that can

match any expression. The remaining lines are the context
and change operations. In this case, the patch specifies that
all calls to setBackgroundDrawable should be replaced
with a call to setBackground, while keeping the argument
of the method intact.

@@
expression view, arg;
@@
- view.setBackgroundDrawable(arg);
+ view.setBackground(arg);

Fig. 1: An example of a simplified semantic patch replacing a deprecated
method from android.view.View class

SmPL supports more features for writing semantic patches.
Further details about SmPL are available in previous work [1],
[6], [15].

III. APPROACH

NEAT focuses on one-to-one mapping (i.e., a mapping from
one deprecated API to one replacement API), and takes as
input a deprecated API signature (i.e., the method name, the
class name, and the parameters), its replacement API signature,
and the source code of the library containing the two APIs.
The output of NEAT is a semantic patch written in SmPL,
that specifies the transformation rule to replace a usage of the
deprecated API.

We observe that a deprecated API can either be designed
to be invoked from a client application, which we refer to
as use by invocation, or be designed to be implemented by a
client application as an event handler, which we refer to as
use by implementation. Different API migration strategies are
required in each case. To distinguish between these cases, we
rely on the API name; if the API name starts with on (e.g.,
onMetadataChanged, and onAudioStateChanged),
we consider it to be an event handler. We consider API
migration for each of these cases below.

A. Migrating Deprecated API Invocations

We observe that the implementation of a deprecated API
may contain the usage of the replacement API and this
implementation can be used to replace the deprecated API.
Based on this observation, NEAT first checks whether the
implementation of the deprecated API uses the replacement
API. NEAT uses different strategies to generate semantic
patches depending on the outcome of this check:

1) The replacement API is invoked in the body of the depre-
cated API: In this case, we follow the body of the deprecated
API to construct our semantic patch. Our first task is to adapt
the code of the deprecated API body to work in the context
of client applications. NEAT adapts references to public
methods and fields so that they can be accessed correctly
from the client application. It does not adapt private or
protected fields and methods since they are inaccessible
from outside the class that owns them. In such case, NEAT is
unable to generate a semantic patch following the body of the
deprecated API. In that case, it falls back on the procedure
described below in Section III-A2.

2

Semantic Patch Generation. After performing adaptations,
NEAT constructs a semantic patch as follows. If the body of
the deprecated API does not contain the use of private
or protected fields or methods, NEAT can fully adapt
the usage of replacement API for client applications and
proceeds to construct a semantic patch with two rules. The
first rule finds a method that invokes the deprecated API.
The second rule replaces the invocation of the deprecated
API with the invocation of a new private method inside the
client application. This private method contains a usage of the
replacement API that has been adapted for client applications.

2) The replacement API is not invoked in the body of the
deprecated API: In this case, NEAT considers the problem of
replacing the deprecated API as a problem of mapping and
converting the parameters and return value of the deprecated
API to those of its replacement API

Parameter mapping. NEAT first matches the parameters of
the deprecated API to the parameters of the replacement API.
It works in two stages. In the first stage, a parameter of the
deprecated API is considered to match with a parameter of
the replacement API if both have the same name and type.
In the second stage, if there are still unmatched parameters
in both the deprecated API and the replacement API, NEAT
considers two parameters to match if both have the same type.
If multiple parameters have the same type, NEAT considers
two parameters to match if they appear in the same position
when scanning the remaining parameters from left to right in
the API parameter lists.

At the end of the above two stages, we might still have
unmatched parameters, which fall into the following cases.
• Unmatched parameters in the deprecated API. In this case,

we assume that the parameters are no longer necessary.
Therefore, we do not map these parameters.

• Unmatched parameters in the replacement API. In this case,
we assign default values for the parameters according to
their types. We assign null for Object, "" for String,
0 for numbers (e.g., int), and false for boolean.

• Unmatched parameters in both APIs. In this case, if there
is exactly one unmatched parameter for both APIs, we
consider that the unmatched parameter in the deprecated API
matches with the unmatched parameter in the replacement
API. NEAT currently does not handle the case in which there
are multiple unmatched parameters.
If all parameters can be matched, matched parameters of

different types are marked for type conversion. This means
that a matched parameter in the deprecated API needs to be
converted from its original type to the type of its matched
parameter in the replacement API.

Type Conversion. Like parameters, return types of the depre-
cated API and the replacement API may require conversion. If
the return types of the deprecated API and the replacement API
are different, NEAT marks the return type of the replacement
API for conversion to the return type of the deprecated API. To
perform type conversion for all types that have been marked
for it, NEAT generates a signature graph from the source code
of the API library, which is inspired by the work of Mandelin

et al. on jungloid mining [9]. This signature graph is a directed
graph that can be traversed to convert one type to another.
The nodes in the graph are the set of types found in the
API source code. Each directed edge in the graph indicates an
operation to convert one type to another. Possible operations
include field access, method invocation, or widening. Given a
type requiring conversion, NEAT finds the shortest path from
the source type to the destination type. In case of multiple
shortest paths, NEAT selects the path that makes the most use
of members of the current type.

Semantic Patch Generation. At this point, NEAT knows
how to replace a given deprecated API invocation with its
replacement API invocation. To create a semantic patch to
make the change, NEAT considers each parameter and the
return type of the deprecated API as expressions in SmPL.
As we want to replace the deprecated API invocation, NEAT
creates a semantic patch that specifies the deletion of a
deprecated API invocation. It also specifies the addition of
the replacement API invocation and the code to convert the
required types. Furthermore, it adds import statements for all
types that are not found in the deleted lines. These may include
types of parameters of the replacement API, the return type
of the replacement API, and all types that are used in type
conversion. Also, if the deprecated API and the replacement
API belong to different classes, we assume the object of the
replacement class does not exist yet and create it using a
default constructor. The invocation of the replacement API
would also be adjusted to use the newly created object.

B. Migrating Deprecated API Implementation

When migrating a deprecated API implementation for an
event handler, NEAT follows a strategy similar to the one used
for migrating a deprecated API invocation in the case that no
usage of the replacement API is found inside the body of
the deprecated API. However, the type conversion direction
for method parameters is the opposite of the one used for
deprecated API invocation. This is to ensure that the imple-
mentation in the body of the deprecated API can be reused
in the body of the replacement API. More specifically, for a
deprecated API implementation, NEAT converts a parameter of
the replacement API from its type to the type of the matching
parameter in the deprecated API, and converts the return value
of deprecated API from its type to the return type of the
replacement API.

At this point, NEAT knows how to replace a given dep-
recated API implementation with its replacement API imple-
mentation. If the deprecated API does not return anything, the
patch replaces the declaration of the deprecated API with a
declaration of the replacement API. It then adds a piece of
code that maps and converts parameters of the replacement
API to the parameters of the deprecated API inside the body
of the replacement API. Finally, it appends the implementation
of the deprecated API.

For cases in which the deprecated API returns something,
NEAT treats the parameters of the deprecated API as identifiers
in SmPL and the return type of deprecated API as an expres-

3

sion in SmPL. The generated patch consists of two rules. The
first rule finds the implementation of the deprecated API and
records the body of the deprecated API. The second rule puts
the body of the deprecated API into a new private method with
the same name as the deprecated API as added lines in the
patch. It also generates a declaration for the deprecated API
and its body as the deleted lines in the patch, and generates a
declaration for the replacement API, a call to the new private
method, and the code to convert the required types as the
added lines in the patch.

IV. EMPIRICAL EVALUATION

A. Dataset

For our dataset, we consider the released Android versions
listed in Table I. These releases cover API levels 1-28, except
API levels 1, 2, 3, 11, and 12. We assume that different
releases with the same API level would have similar content,
particularly in terms of their APIs. We exclude API levels 1,
2, 3, 11, and 12 since there are no release versions for them.
We also exclude API level 20 since it is reserved only for
wearable devices.

TABLE I: Investigated Android Versions
Release Versions
android-9.0.0 r9, android-8.1.0 r48, android-8.0.0, android-7.1.2 r9,
android-7.0.0 r7, android-6.0.1 r9, android-5.1.1 r9, android-
5.0.2 r3, android-4.4w r1, android-4.3 r3.1, android-4.2 r1, android-
4.1.2 r2.1, android-4.0.4 r2.1, android-4.0.2 r1, android-3.2.4 r1,
android-2.3.7 r1, android-2.3.2 r1, android-2.2.3 r2.1, android-
2.1 r2.1s, android-2.0.1 r1, android-2.0 r1, android-1.6 r2

We check out the Android release versions listed in Table I.
We analyze all *.java files in each version. For each file, we
collect public methods that contain the @deprecated Javadoc
tag or the @Deprecated annotation. @deprecated is used to
document that the method is deprecated and provide comments
describing the reason a method is deprecated and what devel-
opers should do to deal with the deprecation. @Deprecated
lets compilers know about the deprecation, in which case the
compiler issues a warning when the deprecated method is used.

Given a set of methods that are deprecated for each version,
we combine them into a single set of unique deprecated
methods across the investigated Android versions. Within
this set, we identify the subset that explicitly points to the
methods in Android APIs that we should use in place of
the deprecated methods. To identify this subset, we collect
the methods for which the deprecation message contains
method references, which we consider as text of the form
of methodName(arg1, arg2, ...). We obtain a set of
843 deprecated methods and their potential replacements.

However, not all of collected deprecated methods actually
contain deprecation messages that explicitly point to the
replacement methods. We manually check the source code
of each deprecated method and drop the ones where the
method mentioned in the deprecation message is not the
correct replacement. Incorrect cases usually include a message
informing developers that the method should not be used at
all or only for testing purposes. We are interested only in an
explicit suggestion to ensure the correctness of the replacement

methods. As a preliminary evaluation, we collect the first
100 of deprecated methods with one-to-one mapping to their
replacement methods as dataset for our experiments.

B. Research Questions

RQ1. What are the differences between deprecated APIs and
their replacement APIs?

Identifying the differences between deprecated APIs and
their replacements informs us about the kinds of replacements.
We investigate the differences in class names, method names,
number of parameters, types of parameters, and return type.
RQ2. To what extent does NEAT generate semantic patches

that are correct?
We count the number of generated semantic patches that

are correct. We consider a semantic patch to be correct if it
can correctly and completely replace a deprecated API usage.

C. Results

1) RQ1. Characteristics of Replacement: We study the one-
to-one mapping replacement rules in our dataset. We find that
they involve any of the following structural differences or a
combination of them:
• Class difference. This involves replacement of a method with

one in another class. This can be the only difference when
a class is deprecated and replaced with a new class.

• Method name difference. This involves replacement of a
method with one having a different name. This may occur
when the original name had a typo, or does not well
represent the method functionality.

• Deletion of parameter(s). This involves deletion of one
or more method parameters. This may occur when the
parameter is no longer needed.

• Addition of parameter(s). This involves addition of one or
more method parameters. This may occur if several methods
having similar functionality are combined into a single
method. In this case, a flag may be added as a new parameter
to indicate which of the methods should be used.

• Return type difference. This involves replacement using
another method having a different return type. This may
occur if the return value of the replacement method contains
the return value of the deprecated method. As such, the
deprecated method is redundant.
2) RQ2. Effectiveness of Semantic Patch Generation: Given

the generated patches, we manually inspected them to check
whether they are correct. To make this assessment, we read
the documentation and the source code of both the deprecated
and replacement methods. We verified our assessment with
two PhD students who are not authors of this paper and have
more than five years of general development experience. We
found that NEAT successfully generates 37 correct semantic
patches out of the 100 deprecated APIs in our dataset, without
the need of any examples.1

In some cases, NEAT may not generate a patch for a
deprecated API due to the following reasons:

1The 37 correct semantic patches generated by NEAT are available at https:
//github.com/fthung/NEAT

4

https://github.com/fthung/NEAT
https://github.com/fthung/NEAT

• Unhandled cases. NEAT does not handle several cases such
as when a deprecated event handler method is replaced by
a non-event handler method (or vice versa).

• Type conversion failure. For both parameters and return type,
if NEAT does not find a path to convert one type to another,
it does not generate a patch.

V. RELATED WORK

Wu et al. [16] developed a tool named AURA to mine API
replacement rules using method call dependency analysis and
text similarity. Meng et al. [10] proposed HiMA, that infers
API replacement rules between two versions by aggregating
rules from each pair of consecutive revisions in the framework
history between the two versions. Yu et al. [17] develop an
approach named AUC-Miner, which mines API replacement
rules by employing context information to refine method call
dependency analysis. Li et al. [8] performed an exploratory
study on characterizing Android APIs. They have found that,
among other things, deprecated Android APIs are not always
consistently annotated and documented, and they are also
regularly removed. They have also developed a prototype
tool that can generate API replacement mappings from the
Android framework source code. In this work, given the API
replacement mappings, our approach generates transformation
rules, in the form of semantic patches, that can be used to per-
form the API replacement. Thus, our approach complements
approaches that mine API replacement mappings.

Nita and Notkin [13] proposed twinning (i.e., a technique
to manually specify program changes without modifying the
program directly) to migrate program to alternative APIs.
Zhong et al. [18] developed the tool MAM, which mines
API mappings for language migration from programs with
two versions in two programming languages. Lamonthe et
al. [5] proposed an approach that learns API migration patterns
from code examples and can apply these patterns to migrate
deprecated APIs. Lamonthe et al.’s work is the closest to ours.
Our work also deals with API migration, particularly replacing
deprecated APIs. However, different than their work, our work
focuses on the scenario in which there are no examples.

VI. CONCLUSION AND FUTURE WORK

We propose NEAT, an approach that can automatically gen-
erate transformation rules to assist replacements of deprecated
Android APIs, as soon as the APIs are labeled deprecated.
NEAT complements the approach by Lamonthe et al. [5]
that assists in replacing deprecated Android APIs by learning
from examples as it can assist developers when examples
are not available. We have tested NEAT on a dataset of 100
deprecated Android APIs with identified replacements. Our
preliminary experiments show that NEAT can produce correct
transformation rules for 37 deprecated APIs, which can help
developers in migrating the usages of these APIs. In the
future, we plan to apply NEAT on more deprecated APIs in
Android framework and other deprecated APIs beyond those
that appear in Android framework. We also plan to add more
heuristics and analysis to cover cases that are not currently

handled by our proposed approach. It will also be interesting
to combine our approach that analyzes library code with an
example-based approach (that analyzes client code) to boost
the overall effectiveness.

ACKNOWLEDGEMENT

This research was supported by the Singapore National Re-
search Foundation (award number: NRF2016-NRF-ANR003).

REFERENCES

[1] Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia L Lawall,
and Gilles Muller. A foundation for flow-based program matching:
using temporal logic and model checking. In Principles of Programming
Languages (POPL), pages 114–126. ACM, 2009.

[2] Barthélémy Dagenais and Martin P Robillard. Recommending adaptive
changes for framework evolution. TOSEM, 20(4):19, 2011.

[3] Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao
Jiang, and David Lo. Automating program transformation for Java
using semantic patches. In European Conference on Object-Oriented
Programming (ECOOP), 2019.

[4] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Au-
tomatic patch generation learned from human-written patches. In
International Conference on Software Engineering (ICSE), pages 802–
811. IEEE Press, 2013.

[5] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Chen. A4: Automatically
assisting Android API migrations using code examples. arXiv preprint
arXiv:1812.04894, 2018.

[6] Julia Lawall and Gilles Muller. Coccinelle: 10 years of automated
evolution in the Linux kernel. In USENIX Annual Technical Conference,
pages 601–614, 2018.

[7] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each. In 34th International Conference on Software
Engineering (ICSE), pages 3–13. IEEE, 2012.

[8] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques
Klein. Characterising deprecated Android APIs. In Proceedings of the
15th International Conference on Mining Software Repositories (MSR),
pages 254–264. ACM, 2018.

[9] David Mandelin, Lin Xu, Rastislav Bodık, and Doug Kimelman. Jun-
gloid mining: Helping to navigate the api jungle. In Programming
language design and implementation (POPL). ACM, 2005.

[10] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. A history-based
matching approach to identification of framework evolution. In ICSE,
pages 353–363. IEEE Press, 2012.

[11] Gilles Muller, Yoann Padioleau, Julia L Lawall, and René Rydhof
Hansen. Semantic patches considered helpful. ACM SIGOPS Operating
Systems Review, 40(3):90–92, 2006.

[12] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. Semfix: Program repair via semantic analysis. In 35th
International Conference on Software Engineering (ICSE), pages 772–
781. IEEE, 2013.

[13] Marius Nita and David Notkin. Using twinning to adapt programs to
alternative APIs. In International Conference on Software Engineering
(ICSE), volume 1, pages 205–214. IEEE, 2010.

[14] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.
Documenting and automating collateral evolutions in Linux device
drivers. In European Conference on Computer Systems (EuroSys), pages
247–260. ACM, 2008.

[15] Yoann Padioleau, Julia L Lawall, and Gilles Muller. Smpl: A domain-
specific language for specifying collateral evolutions in linux device
drivers. Electronic Notes in Theoretical Computer Science, 166:47–62,
2007.

[16] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim.
Aura: a hybrid approach to identify framework evolution. In ICSE,
volume 1, pages 325–334. IEEE, 2010.

[17] Ping Yu, Fei Yang, Chun Cao, Hao Hu, and Xiaoxing Ma. API usage
change rules mining based on fine-grained call dependency analysis. In
Internetware, page 10. ACM, 2017.

[18] Jing Zhou and Robert J Walker. API deprecation: a retrospective analysis
and detection method for code examples on the web. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ICSE), pages 266–277. ACM, 2016.

5

	Towards generating transformation rules without examples for android API replacement
	Citation

	Introduction
	Background
	Coccinelle
	Semantic Patch Language (SmPL)

	Approach
	Migrating Deprecated API Invocations
	The replacement API is invoked in the body of the deprecated API
	The replacement API is not invoked in the body of the deprecated API

	Migrating Deprecated API Implementation

	Empirical Evaluation
	Dataset
	Research Questions
	Results
	RQ1. Characteristics of Replacement
	RQ2. Effectiveness of Semantic Patch Generation

	Related Work
	Conclusion and Future Work
	References

