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Abstract—The paper discusses an emerging suite of machine
intelligence services that are of increasing importance in the
highly instrumented world of the Internet of Things (IoT).
The suite, called Eugene1, would offer a form of intelligent
behavior (based on deep neural networks) to otherwise simple
embedded devices; the clients of the service. These devices
would benefit from service resources to learn from data and
to perform intelligent inference, classification, prediction, and
estimation tasks that they are too limited to carry out on their
own. The paper discusses the taxonomy of such services and
the state of implementation, as well as the various challenges
entailed, including scheduling, caching (of intelligent functions),
and cooperative learning.

I. INTRODUCTION

We aim to enable ubiquitous intelligence in a future world
of connected sensing and computing devices, seamlessly em-
bedded in our surroundings. We propose to do so using
a service, tentatively called Eugene, that endows everyday
objects with the appearance of human-like behavior and
encyclopedic knowledge. The goal is to revolutionize our
interactions with the physical world the way the Internet
revolutionized out interactions with each other. In Eugene’s
world, embedded IoT devices (or “things”) will be capable
of human-like interactions with their environment, including
speech recognition, vision, and gesture understanding. These
capabilities will bring about such features as verbal device
control, (soft) user authentication, and gesture-based human
machine communication.

Eugene would accomplish the above goals by allowing the
offloading of machine intelligence tasks. Indeed, the disparity
between the resource-constrained nature of embedded IoT
devices and the computational needs of the aforementioned
interactions suggests that data processing will be increasingly
offloaded to external servers. Today, precursors of such ser-
vices include speech recognition for home controllers (e.g.,
Amazon Echo) and language translation for mobile phones,
both done partly in the cloud. With the increasing popularity
of edge computing, external servers will likely move closer
to the clients, and some functionality will be “cached” on
the local device. A business, such as a management service
for a shopping mall, for example, might host its own edge

∗Equal contribution
1Named after Eugene Goostman, an AI simulation of a boy, claimed to

be the first machine passing the Turning test in a controvesial result of a
competition in 2014.

servers to satisfy the needs of local IoT devices. These devices
might include mall surveillance cameras, smart fitting rooms
that suggest better-fitting items to customers, audio-based
chatbots that offer directory assistance, and indeed customers’
own phones (that run the appropriate app). Inference models
that support certain interactions might be downloaded (after
simplification to reduce size) to the individual IoT devices
engaged in those interactions as a form of “caching”. Caching
appropriately trained neural network models will offer portable
intelligence for heterogenous devices that aim to run limited
intelligent inference functions locally.

We argue for realizing Eugene using deep neural networks
as the instrument of machine intelligence. This choice is moti-
vated by the emergence of deep learning as the state-of-the-art
computational intelligence solution for a large spectrum of IoT
applications [1]. Besides breakthroughs in processing images
and speech using deep learning techniques [2], [3], specific
neural network structures have been designed to fuse multiple
sensing modalities and extract temporal relationships [4]. The
increasing number of studies on applying deep learning in the
area of cyber-physical systems (CPS) and IoT [4]–[7] make it
a prime candidate for realizing the intelligent capabilities of
Eugene.

The rest of this paper is organized as follows. Section II
introduces the key functional requirements of Eugene. Chal-
lenges in the underlying system support, namely, back-end
scheduling, are presented in Section III, together with a
preliminary evaluation. We discuss challenges in supporting
cooperative intelligence in Section IV. Finally, we conclude
in Section V, and outline other possible future work.

II. CORE SERVICE REQUIREMENTS

Eugene will offload from IoT devices the training and/or
execution of machine learning algorithms, such as classifiers
or predictors, to do a myriad of common estimation and
recognition tasks based on device data such as visual inputs,
speech, or gestures. It is possible to concieve of Eugene
as a virtual machine for artificial intelligence. Like other
virtual machines (e.g., Java and Python), it would allow the
expression of processing tasks in some efficient intermediate
form. This form, we argue, is the neural network model. The
model specifies network topology and edge weights, as well as
other hyperparameters such as the type of activation functions
used. With those parameters, it becomes possible to implement



inference algorithms (specified by the model) that perform
classification, prediction, or estimation functions.

Clients would ask the service to (i) generate deep neural
network models (from client-supplied training data), (ii) help
with (automatic) labeling of data sets, and (iii) perform model
reduction (if needed for caching). Generated models might be
executed as appropriate on the server, client, or any device that
supports the “virtual machine”. System support is needed on
servers to enable efficient scheduling of inference tasks (that
execute the computed models on incoming client-supplied
data in real-time). A scheduler might maximize a suitably
defined notion of utility to improve quality of inference results.
Auxiliary functions are needed such as profiling. They will
allow enhanced (neural network) model parameterization to
improve accuracy and/or cost.

The feasibility of developing Eugene as such a general-
purpose service is attributed primarily to the general-purpose
nature of deep learning itself, making Eugene largely auto-
nomic and configuration-free. If the service requires lengthy
per-application engineering and customization, it will lose
much of its appeal. In this regard, deep learning frameworks
have at least two key advantages over alternative solutions:

• Arguably, in many scenarios, one can use laws of
physics to derive the needed inference results from sensor
data. For example, in a location estimation task, one
can double-integrate inputs that comprise accelerometer
data to obtain velocity and position. The problem with
such approaches is two-fold. First, they require that
application-specific models of underlying physical phe-
nomena be developed and given to the service. Second,
they rely on understanding accurate models of noise.
Most estimators make assumptions on the statistical dis-
tribution of noise offering accurate results only when
such assumptions are satisfied. In a complex environment,
noise is hard to model. It may be non-linear, non-
additive, correlated, and biased. Recent results in deep
learning demonstrate that the network can learn very
complex nonlinear relations, allowing better extraction of
signals from noise (even when the two are intertwined
in a complex nonlinear fashion) [4]. Best of all, such
extraction is fully automated, thus requiring no human
intervention or expertise.

• Furthermore, unlike other machine learning approaches
that rely on the design of clever input features (to support
the intended estimation or classification tasks), deep
learning has the advantage of being able to ingest raw
data directly and automatically compose relevant features
by adjusting link weights. Hence, less human effort is
consumed in feature engineering.

In a world dominated by data and computing devices, saving
human cognitive bandwidth by employing a machine is a great
trade-off. With that in-mind, we set forth to describe what
the Eugene general-purpose machine intelligence service suite
should be able to do.

A. Training and Data Labeling
Eugene will facilitate learning from data collected by the

embedded devices. These services will execute on the back-
end to produce the trained neural networks necessary for
various inference and estimation tasks. The most basic service
is to ingest labeled raw data from clients and train the eventual
neural network model on the server. Since it is expensive to
label a lot of data manually, another service would be to assist
with automatic labeling. Below we describe the underlying
challenges and possible solutions in more detail.

Training: The first challenge in implementing deep intelli-
gence as a service lies in training the neural network to support
the application of choice. In many cases, IoT devices will have
already collected large amounts of sensory data (such as video
footage from security cameras). Often, labels are available
retrospectively (such as instances of various security breaches
caught on camera). This offers opportunities for training the
system to identify (and alert to) similar instances in the future.
The feasibility of such a service was recently discussed in
DeepSense [4], a general-purpose learning framework for sen-
sor fusion systems. It integrates convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) to extract
spatio-temporal features of input signals. Sensory data are
aligned and divided into time intervals for processing. For
each interval, DeepSense first applies an individual CNN to
each sensor data stream, encoding relevant local features. A
(global) CNN is then applied to the respective outputs to model
interactions among multiple sensors for effective sensor fusion.
Next, an RNN is applied to extract temporal trends. Intelligent
IoT applications will generally need two important functions:
estimation and classification (depending on whether the sought
results are continuous or categorical, respectively). Hence, at
the last stage, either an affine transformation or a softmax
output is used by DeepSense, depending on whether the output
is an estimation or a classification result. Accordingly, it be-
comes possible to perform complex multi-sensor fusion tasks
for purposes of estimation or classification from time-series
data. The detailed mathematical formulation of the DeepSense
learning algorithm can be found in a related paper [4].

Labeling: A general disadvantage of deep learning methods
lies in the need for large amounts of labelled data. To learn
well from empirical measurements, the neural network must
be given a sufficient number of labelled examples from which
network parameters are to be estimated. Since the number
of parameters is large, so is the required number of labelled
examples. In order to make deep learning services practical,
a key challenge is thus to reduce the need for labeled data.
Eugene could address this challenge by employing a recently
proposed approach that uses Generative Adversarial Networks
(GAN) to learn from mostly unlabeled data [8]. Unlabeled
data carries information on the structure of the input space.
By overlaying it with labeled data, one can better observe the
emergence of input data clusters corresponding to different
labels. A small number of labeled points within a cluster can
thus inform the labeling of the remaining points. Using this



intuition, the GAN learns by playing a game of progressive
refinement of both the dimensions in which points are virtually
clustered and the rules for cluster separation. In this game,
one entity proposes labels for unlabeled samples, whereas
another tries to distinguish the resulting labeled samples from
the original labeled ones. As the game procedes, both entities
learn from each other ultimately producing labels that are hard
to falsify. Empirical results show that these eventual artificially
produced labels (for originally unlabaled data) help improve
accuracy of learning applications almost as much as the
ground-truth labels themselves [8]. The approach significantly
reduces reliance of the learning service on availability of
large amounts of labeled data, allowing the exploitation of
more easily attainable unlabeled data instead. The limitations
of this approach remain to be investigated, but preliminary
evidence suggests that it is effective at circumventing the lack
of sufficient data labels.

B. Model Reduction and Caching

Once trained, deep neural networks can be used to per-
form complex estimation, prediction, detection, or identifica-
tion/classification tasks. Typical networks produced by deep
learning techniques are very large. They may include several
hundreds of layers, each composed of possibly thousands of
nodes. As such, they need to execute on appropriately well-
resourced machines, resulting in communication between end-
devices (e.g., sensors making new observations) and well-
resourced back-ends every time the device needs to run the
service on a new data item. In environments where the
communication bandwidth of the end-device is not plentiful, it
is advantageous to execute some inference tasks locally. This
need calls for reducing the relevant neural network models to
a footprint that fits the end device. Hence, a model reduction
service is needed.

The feasibility of an efficient neural network model reduc-
tion service is attributed to two observations. First, it is often
the case that phenomena observed by sensors evolve over
lower-dimensional manifolds. In this case, the large neural
network is an overkill and compression is possible. Second, in
many applications, the most frequent inputs to a device com-
prise only a very small fraction of the much larger potential
input space. For example, in a service where users typically
give yes/no answers, recognizing responses such as “yes” and
“no” versus neither (referring to all other utternaces besides
these two) should be easier than distinguishing all possible
spoken words. In this scenario, neural networks produced
by deep learning methods can be reduced in size without
significant loss of accuracy in the common case. Much like
caching, a reduced network model can run locally on the
resource-limited embedded device to handle common inputs
(e.g., to recognize “yes” and “no” in the above example). The
identification of an uncommon occurrence (e.g., the occurrence
of other words) is viewed as a cache miss that triggers full
network execution on the server.

Several attempts were made to simplify deep neural net-
works after they have been trained. Commonly, a compression

service removes edges that have low weights. The removal pro-
duces a sparse matrix (to represent the neural network), where
most of the cells are zeros. The sparsity of the matrix allows
for reductions in storage and computation time. Unfortunately,
prior work has shown that these reductions do not scale propor-
tionally to the fraction of zero entries in the sparse matrix [5].
This is because sparse matrix algebra is not as efficient as
dense matrix algebra. Hence, as the matrix becomes sparse,
additional overhead is introduced to take advatage of sparsity
(compared to when it was dense), thereby offsetting some
of the savings. A promissing solution for a model reduction
service is one that removes nodes instead of edges in the neural
network to fix the above sparse matrix problem. Removal of
entire nodes from the neural network is equivalent to removal
of entire rows/columns from the corresponding matrix. This
produces a new matrix that is also dense, but that has smaller
dimensions. The approach was shown to be significantly more
effective at reducing resource consumption without degrading
quality [5]. The resulting compact neural network models are
therefore suitable for execution on resource-limited nodes.

To automate caching, Eugene must decide on what con-
stitutes frequent inference tasks. The inference models (i.e.,
neural networks) pertaining to those specific tasks can then
be reduced and cached. For example, in a vision-based item
identification system executed in a smart refrigerator, the
most common items entered might end up being beer and
pop bottles. Recognizing that the most common classification
results point to those specific items, Eugene (running on the
server) may retrain a neural network with only those items
as positive examples, compress the result, and download the
compressed model to the device. Several interesting questions
arise in implementing this mechanism. For example, when
exactly should the system decide that an item or set of items
are frequent? How small or large should the set of items be to
make it worth developing a reduced model for? How to auto-
matically adapt answers to the above two questions according
to the capability of the local device, and the bandwith of its
communication link? Finally, when should the cached model
be removed from the device? These questions are a topic of
future work.

C. Execution Profiling

On the server side, execution efficiency considerations
suggest the need to understand the relation between neural
network structure and execution overhead. Prior work has
shown that simply counting the number of neural network
parameters and/or the total FLOPs involved in processing
does not lead to good estimates of execution time because
the relation between these predictors and execution time is
highly non-linear [9]. Table I (reproduced from [9]) shows
that networks with the same number of FLOPs (e.g., CNN1
and CNN2) can differ significantly in execution time. In fact,
networks with fewer FLOPs can take longer to execute (e.g.,
CNN3 compared to CNN4).

Understanding the causes of nonlinear relations between
network parameter settings and the resulting execution time,



TABLE I: Execution time of convolutional layers with 3× 3 kernel
size, stride 1, same padding, and 224× 224 input image size on the

Nexus 5 phone.

in channel out channel FLOPs Time (ms)

CNN1 8 32 452.4 M 114.9
CNN2 32 8 452.4 M 300.2
CNN3 66 32 3732.3 M 908.3
CNN4 43 64 4863.3 M 751.7

energy, and memory consumption is thus key to developing
efficient deep learning service implementations. One may
leverage recent work [9] that addressed the above challenge
by implementing an automated profiling system that breaks
execution models into piece-wise linear regions, and uses
regression over the (automatically identified) relevant neural
network parameters within each region to develop a predictive
model of execution time in that region. A similar approach
can be developed for modeling/minimizing energy or memory
consumption. Such a profiling tool would optimize perfor-
mance on the server side (as it will typically not have access
to profiling results on the client). For example, leveraging
the identified nonlinear behavior, it might become possible
to increase neural network size and accuracy while at the
same time reduce its execution overhead (as illustrated by
comparing CNN4 to CNN3 in Table I).

D. Result Quality Estimation

Another important challenge in realizing intelligence as a
service is to assess the quality of inference results produced
by learning models. To support mission-critical applications,
the service must offer principled uncertainty estimates that
faithfully reflect the correctness of its predictions. Methods are
needed that provide accurate uncertainty estimates in results
obtained from deep learning models. Moreover, the uncertainty
estimation must be resource efficient.

Recently, a well-calibrated and efficient uncertainty esti-
mation algorithm was proposed for multi-sensor data fusion,
called RDeepSense [6] (as an extension of DeepSense [4]). It
emits a distribution estimate instead of a point estimate at the
output layer. Intuitively speaking, the algorithm models node
outputs with random variables and estimates their distribution
parameters. Estimation of the mean of the random variable
is what traditional learning does. Estimation of the variance,
however, is what yields confidence in results. A smaller
estimated variance corresponds to a higher confidence in the
computed mean.

Interestingly, the estimation of the mean and the estimation
of the variance are interrelated. Typically, the estimator jointly
determines both by minimizing some error function. The
choice of that function has an important effect on estimation
accuracy of the two parameters. Specifically, using common
error functions, such as the mean square error, was shown
underestimate the uncertainty. This is so because such an
estimator predicts a very accurate mean value. If the mean
value is estimated well, the variance observed around that
mean on training data is small and may thus underestimate

variance encountered later during testing. In contrast, when
using a nonlinear error function, such as the negative log-
likelihood, the estimated mean is often biased (because the
nonlinearity penalizes erring on one side more than erring
on the other, causing the estimated mean to drift towards
the heavily penalized side). The biased (i.e., incorrect) mean
estimate results in increased measured variance around the
mean, leading to an artificially inflated uncertainty estimate.

One can exploit the above intuition to arrive at an estimate
of variance that neither underestimates nor overestimates the
true value. The idea is to use a weighted sum of the above two
error functions (namely, mean square error and negative log-
likelihood) as the combined loss function [8]. The weights
are adjusted (calibrated) such that the underestimation and
overestimation roughly cancel out. RDeepSense was shown to
generate very good uncertainty estimates that allow defining
accurate confidence intervals for outputs of the deep learner.

The ability to compute confidence in deep learning results
offers another interesting resource optimization possibility.
Namely, one may structure a deep neural network into stages,
each consisting of several layers, and compute confidence in
(intermediate) results after each stage. Once a high-enough
confidence is reported, it becomes possible to skip the exe-
cution of the remaining stages. For example, consider a deep
neural network whose job is to identify the presence of humans
in a landscape. The presence of humans may be easier to
identify in some images than others. Consequently, it could
be that fewer stages need to be executed for some images to
reach an acceptable level of confidence in results. We return
to this topic again when we describe challenges in back-end
scheduling that aims to maximize total utility of the service.

E. Run-time Inference

It remains to describe the challenges in implementing the
run-time inference service itself. The goal is to perform
inference with a required degree of quality. The service would
accept data from end devices that choose to offload inference
processing to the server, and return inference results together
with a confidence estimate. An important design consideration
is scalability, which calls for execution efficiency. Recent
studies on deep learning have shown that improvements in
result accuracy diminish with increased depth of the neural
network [2]. Hence, efficiency considerations suggest that once
the desired quality is achieved, the service should refrain from
executing additional layers.

One idea would be to schedule inference tasks in a way
that optimizes total utility. The resulting overall run-time
inference architecture is described in Figure 1. As shown in
Figure 1, the deep neural network is separated into multiple
layers. These layers are grouped into a small number of stages
(of multiple layers each). At the end of each stage, a thin
softmax function layer is attached to compute a classification
at selected internal layers, as well as confidence in such
classification. The scheduler determines how many stages to
execute to avoid diminishing returns. More on the scheduling
challenge is discussed below.



Trained with Con�dence Calibration

...
...

Stage 1 Stage 2 Stage 3

Classi�er Classi�er Classi�er

Dynamic Con�dence Curve

Stage 1 Stage 2 Stage 3

Classi�er Classi�er Classi�er

Dynamic Con�dence Curve 

Stage 1 Stage 2 Stage 3

Classi�er Classi�er Classi�er

Dynamic Con�dence Curve 

Stage

Pr
ed

ic
tio

n 
Co

n�
de

nc
e

Stage

Pr
ed

ic
tio

n 
Co

n�
de

nc
e

Stage

Pr
ed

ic
tio

n 
Co

n�
de

nc
e

Sc
he

du
lin

g 
A

lg
or

ith
m

Fig. 1: The overview of Deep Intelligence as a Service.

III. SYSTEM SUPPORT AND SERVICE UTILITY
MAXIMIZATION

While the previous section described service-level challenges
in implementing basic intelligence as a service, this section
describes challenges in the underlying system support. Specif-
ically, we focus on scheduling on the server. The challenge in
scheduling comes from the fact that the level of difficulty of
inference tasks in deep learning engines is heavily influenced
by the input data. For example, identifying a face in a picture
could be a very easy or a very difficult task, depending on the
picture. As alluded to above, one therefore needs to customize
the executed neural network depth to each data item received.
At some point, execution of additional layers reaches a point of
diminishing returns and the priority of such execution should
be reduced. This customization needs coordination between
the service and the underlying scheduler.

We argue for implementing a utility-maximizing scheduler
for Eugene’s inference tasks to improve the cost and scalability
of the service. The goal of the scheduler would indeed be to
choose the best inference depth for each task such that the
overall utility is maximized. For a proof of concept of such a
scheduler, we implemented a greedy algorithm that picks the
next task stage to execute such that the maximum increase
in accrued utility is achieved. The algorithm starts from an
empty set. In each step, the algorithm picks a stage of a
task with the maximum differential utility (where utility in
our implementation is set equal to the estimated confidence in
results). This selected stage is added to the future timeline.
A lookahead parameter, k, specifies how many items will
be added to the timeline before the scheduler quits. When
the timeline has been executed, the algorithm restarts again
with the most recent utility estimates given the current partial
execution, and selects the next k stages.

The scheduling framework is implemented in user space.
Implementing the scheduler in user space solves two key
concerns. First, it does not require changes to the operating
system, making it portable to more platforms. Second, it

enables us to integrate the scheduler with widely deployed
deep learning libraries. Specifically, we integrate it with
TensorFlow [10]. For historic reasons, we call the Eugene
scheduler RTDeepIoT.

To prevent unbounded delays, the scheduler can accept a
latency constraint that specifies how long a given task can
stay in the system before its execution needs to be finished.
A daemon process monitors the elapsed time for each task.
If the elapsed time for a task exceeds the maximum latency
constraint, the daemon process will send a signal to stop the
current computation. The process is returned to the pool and
is made available to handle new requests. No utility is accrued
for tasks that are not completed. The interaction between the
scheduler and the service framework is thus as follows:

1) Input data arrive with requests for inference. They are
assigned to one of a pool of waiting processes. The utility
of executing the next stage is computed by the service.

2) The scheduler updates its estimate of utility of future
stages and recomputes the set of stages to execute next.

3) When a stage is finished, the process sends the updated
confidence value in results of subsequent stages to the
scheduler.

4) If the process finishes all the stages of the current
inference task, it goes back to the pool and waits for
new assignments.

5) If the process cannot finish by the deadline, it will be
interrupted by the daemon process, and forced to return
to the pool.

Two challenges arise in implementing the above scheduler:
• Confidence estimation: How to estimate confidence in

neural network outputs at intermediate layers?
• Dynamic utility curve updates: How to adapt the utility

curve dynamically over time?
We discuss these two functions in more detail in the following
subsections.

A. The Utility Metric: Confidence
Consider a classification problem as a running example of

an inference task performed by a deep neural network. The
output of a neural network classifier is a vector of probabil-
ities, where the largest probability is called the classification
confidence. Ideally, a well-calibrated classification confidence
should be equal to the actual likelihood of classification
correctness. Unfortunately, most deep learning systems are not
well-calibrated in that sense. With the growing capability and
advances in deep learning, although classification accuracy
has greatly improved, the classification confidence is not as
accurate [11].

The calibration of confidence can be visually represented
by the reliability diagram [12]. As shown in Figure 2, the
diagram plots expected classification accuracy as a function of
confidence. If the neural network is perfect, then the diagram
should plot the identity function. Any deviation from a perfect
diagonal represents miscalibration.

In order to represent the degree of miscalibration with a
scalar that summarizes statistics of calibration, we introduce



the metric, Expected Calibration Error (ECE) [13]. First, we
group classification results into M bins with equal-width 1/M .
We denote Sm as the set of samples whose classification
confidence falls into the interval ((m − 1)/M,m/M ]. Then,
we can define the average accuracy of Sm as:

acc(Sm) =
1

|Sm|
∑

Si∈Sm

1(ŷi = yi), (1)

where ŷi and yi are the predicted and true label of sample Si.
Next, we define the average confidence of Sm as:

conf(Sm) =
1

|Sm|
∑

Si∈Sm

pi, (2)

where pi is the classification confidence of sample Si. The
ECE metric is defined as the weighted average of the differ-
ence between average accuracy and confidence in M bins.

ECE =

M∑
m=1

|Sm|
m

∣∣∣acc(Sm)− conf(Sm)
∣∣∣. (3)

Accurate confidence estimation has drawn growing attention
in recent studies [6], [14], [15]. However, existing efforts tend
to either underestimate or overestimate the confidence [14],
[15]. We denote by S the set of all samples. When acc(S) <
conf(S), the neural network tends to underestimate the
classification results. When acc(S) > conf(S), the neural
network tends to overestimate. The target is to make acc(S) ≈
conf(S) and ECE → 0.
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Fig. 2: The reliability diagrams of ResNet on CIFAR-10.

A natural metric to control the classification confidence is
entropy, H(pi), where pi is the vector of confidences over
all targeted classes. Therefore, we propose a simple entropy-
based regularization method for confidence calibration with
fine-tuning. We reformulate the loss function of the fine-tuning

process as:
L = CE(pi,yi) + α ·H(pi), (4)

where CE(·, ·) is the cross entropy; yi is label of sample i in
one-hot representation; and α is the hyper-parameter for the
entropy regularization. Tuning the value of α is simple. When
the confidence underestimates the accuracy, we set α < 0 and
vice-versa. Our confidence calibration method is simple but
works well in practice. Its evaluation is presented later in this
paper.

B. Dynamic Utility Updates

We define the utility of executing a stage (of a task)
as the expected increase in output confidence if the stage
is executed (compared to the confidence in output before
the stage is executed). In the previous section, we described
how confidence is estimated once a stage is executed and
its output obtained. It remains to describe how to estimate
confidence in future stage outputs before these stages are
executed. We predict confidence in results of future stages
using regression models that relate computed confidence in
results of previously executed stage(s) to predicted confidence
in results of future stages. Specifically, we choose the Gaussian
process regression model [16]. We made this choice for two
reasons. First, the Gaussian process model is the state-of-the-
art regression model. Second, Gaussian processes produce a
Gaussian distribution as the output, from which we can easily
compute the mean value and desired confidence intervals.

Using this approach, we gradually refine confidence dur-
ing the execution of inference algorithms. At the beginning,
predicted confidence in results is the same for all tasks, and
is based on overall statistics computed from training data.
However, as tasks compute results at intermediate stages, each
task obtains an updated confidence in computed results and is
thus able to update its estimate of confidence in subsequent
stage results using the aforementioned regression model.

For a three-stage neural network, as shown in Figure 1,
we train three Gaussian process regression models, p̂(2)i =

GP1 2(p
(1)
i ), p̂(3)i = GP1 3(p

(1)
i ), and p̂

(3)
i = GP2 3(p

(2)
i ),

where p
(l)
i denotes the classification confidence of sample i

at neural network stage l. These regression models are learnt
from the confidence curves of training data.

However, Gaussian process is notorious for its long infer-
ence time, which is unacceptable for a runtime predictor. For-
tunately, the inputs of these gaussian models are bounded, i.e.,
p
(l)
i ∈ [0, 1]. Therefore, we can approximate these complex

Gaussian process regression models with simple piece-wise
linear functions with two steps:

1) profiling the Gaussian process regression model with a
set of input confidences, {0, 1/M, · · · , 1}.

2) connecting these profiling points with a piece-wise linear
function.

Thus, we can use these computationally efficient piece-wise
linear functions at runtime for updating future stage confidence
estimates dynamically.
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Fig. 3: The illustration of three-stage ResNet.

With predicted future confidence computed, we have all
we need to do utility maximizing scheduling. As mentioned
earlier, the scheduler picks the stage of a task whose execution
will increase predicted confidence in results (i.e., utility) the
most. Under certain conditions (submodular utility curves and
equal stage execution times), the scheduler optimizes global
utility of the service.

C. A Proof of Concept

The feasibility and efficacy of training [4], automatic la-
beling [8], model reduction [5], and profiling [9] functions
have recently been studied and reported in the respective
citations. Hence, below, we focus on the exploitation of trained
networks; namely, the combination of quality estimation, infer-
ence, and run-time scheduling. We test these functions in the
context of an image recognition service, implemented based on
a state-of-the-art convolutional neural network (CNN) struc-
ture; namely, residual neural networks (ResNet). As shown in
Figure 3, compared to traditional CNNs, ResNets add extra
shortcut connections between convolutional layers. The whole
ResNet is divided into three stages. Except for the bottom
convolutional layer on the left side, each stage consists of
six convolutional layers with three residual shortcut connec-
tions. At the end of each stage, a simple softmax classifier
is appended, using the end-of-stage aggregated features for
classification. The network was trained on the CIFAR-10
dataset with 50000 training images.

The scheduler spawns a pool of worker processes. These
processes wait on input images to arrive. Each image rep-
resents a task submitted to the system. When an input image
arrives, it is assigned to a process in the pool. The process runs
the aforementioned deep neural network on the new input. The
execution of the process features an explicit separation into
stages. A stage might contain multiple layers. When finished,
each stage will output a tuple in the form (predicted value,
confidence). Predicted value is the classification result from
the current stage, specifying the most likely classification.
Confidence describes the likelihood that this classification is
correct. For example, a picture can be classified as a cat,
dog, or cow, with probabilities 0.6, 0.3, and 0.1, respectively.
The classification result is then (“cat”, 0.6). The confidence
in classification will then be sent to our user-level scheduler
through a named pipe in linux. When a task is finished, the
corresponding process is returned to the pool.

Note that, since our greedy algorithm tends to choose stages
with the maximum incremental utility for future execution,

tasks with lower initial classification confidence values tend
to be selected for another execution stage. This has the side-
effect of attaining better fairness as well.

To verify the effectiveness of this scheduling algorithm, we
test the scheduler with several processes running the afore-
mentioned residual neural network. Each process classifies
images from the CIFAR-10 dataset, not included in the training
set. The dataset contains images of 10 classes. Images arrive
in a randomly shuffled order. The workstation that runs the
scheduler and the classification processes has 8 Intel i7-4770
CPUs, with 32 GB memory. The evaluation is performed under
Ubuntu 16.04 with kernel version 4.13. The residual neural
network is implemented on TensorFlow 1.4.0.

Confidence Calibration & Dynamic Updates: In this exper-
iment, we compare the following three confidence calibration
methods:

1) RTDeepIoT: It refers to the entropy-based confidence
calibration method described in Equation (4).

2) RDeepSense: A state-of-the-art confidence calibration
method with dropout operations [6].

3) Uncalibrated: The original confidence estimates without
calibration.

The resulting ECE metric, defined in Equation (3), is
shown in Table II. RTDeepIoT achieves the smallest ECE
among all three stages, even compared to the state-of-the-
art RDeepSense method. The evaluation results show that the
proposed simple entropy-based confidence calibration method
can provide a good estimation of classification accuracy,
making it possible for the RTDeepIoT scheduler to optimize
utility in a more informed fashion.

TABLE II: The ECE of confidence calibration methods with
three-stage ResNet on CIFAR-10 dataset .

Uncalibrated RDeepSense RTDeepIoT
Stage 1 0.134 0.058 0.010
Stage 2 0.146 0.046 0.012
Stage 3 0.123 0.054 0.008

Next, we evaluate the quality of prediction of confidence in
results of future execution stages, based on the three regression
models, p̂(2)i = GP1 2(p

(1)
i ), p̂(3)i = GP1 3(p

(1)
i ), and p̂(3)i =

GP2 3(p
(2)
i ). The evaluation results on Mean Absolute Error

(MAE) and coefficient of determination (R2) are shown in
Table III. Overall, the method provides acceptable prediction
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Fig. 4: The scalability test for scheduling algorithms with ResNet on CIFAR-10.

result. As the number of finished stages increases, the dynamic
prediction improves. That’s to say, GP2 3 has the lowest error,
since it is used after the first two stages have already been
executed, thereby offering more accurate predictions in the
results of stage three.

TABLE III: The Mean Absolute Error (MAE) and coefficient of
determination (R2) of dynamic confidence curve prediction for

three-stage ResNet on CIFAR-10 dataset .

GP1 2 GP1 3 GP2 3

MAE 0.124 0.108 0.072
R2 0.57 0.43 0.78

Runtime Scheduling: Next, we evaluate the effectiveness
of the run-time scheduler that attempts to optimize utility
by picking the stage that maximizes the increase in pre-
dicted confidence next. Specifically, we compare the following
scheduling variants:

1) RTDeepIoT-k: this is our novel scheduler, where k the
lookahead parameter mentioned in Section III.

2) RTDeepIoT-DC-k: this is a simplified variant of our
scheduler. Instead of using dynamic confidence updates,
it assumes that the confidence will continue to increase
with the same slope. Therefore, it uses the confidence
increase in the current stage as the predicted increase per
each of the future stages.

3) RR: this is a stage-level round-robin scheduling algo-
rithm. The scheduler will select a stage to run among
all the deep learning services in a round-robin manner.

4) FIFO: this is a FIFO scheduling algorithm, where the
scheduler runs the deep learning service on images in a
first come first served manner, and runs all stages to the
end.

The results of the experiment are shown in Figure 4 (where
for readibility we break the baselines into two subsets and
compare them in two different subfigures). Both show that
our scheduling policy does better than simpler baselines,
especially FIFO and RR scheduling. The standard deviation
of classification accuracy is shown in Figure 4c. It reveals
divergence between two types of algorithms. A lower deviation

means better fairness. Our scheduling algorithm can balance
the computation fairly, even with a very biased utility curve.

IV. NEXT: COLLABORATIVE INFERENCING

The services described until now operate largely in a per-
device fashion. Services such as training, compression, caching
or profiling are offered to each individual IoT device’s neural
network pipelines. However, in many environments, IoT de-
vices are not deployed individually, but rather as a collection
of possibly heterogeneous nodes that together support an
application. In this distributed environment, how can one
support such collaborative inferencing?

A. Distributing the Inference Model

In the simplest case, the multistage nature of neural net-
works allows for an interesting possibility to share the load
between clients and servers (besides caching, described earlier
in the paper). Namely, in performing inference, it may be
possible to execute some stages of the neural network on
the client, leaving other stages to execute on the server. If
the confidence in results obtained on the client is sufficiently
high, no subsequent offloading to the server is needed. Other-
wise, processing continues on the server. The approach raises
questions regarding optimal partitioning of the model between
the client and server. An ideal partitioning should maximally
reduce client reliance on remote processing on the server,
while observing client-side resource constraints as well as
communication bandwidth constraints between the client and
server.

An extension of this collaboration model is one where
multiple distributed sensors (the clients) contribute data to be
collectively used as input to the inference process. In one
realization, clients would send their raw data to the server.
The server would execute the entire neural network model on
received data from all clients in order to compute inference
results. In many cases, however, it may be more efficient for
clients to execute some part of the inference network locally
on their own data then send intermediate results to the server
to continue model execution remotely. In the latter case, how
should the inference model be partitioned among nodes in the
distributed system? Optimal partitioning can take into account



Fig. 5: Collaborative IoT (Camera) environment & Deep
Inferencing Pipelines.

resources available on individual nodes, communication band-
width among them, as well as any end-to-end requirements
such as maximum allowable latency. Viewing neural network
models as the intermediate code representation for a virtual
machine implies potential for great flexibility in how execution
is partitioned in the distributed system. Adaptive algorithms
are needed to maximally exploit this flexibility (e.g., in mobile
or dynamic environments) where connectivity, power, and
other local resources may change over time.

B. Orchestrating Collaboration

A more interesting form of cooperative processing is one
where the distributed devices cooperate to mutually enhance
each other’s performance. For example, two cameras may
realize that they are looking at the same target (e.g., because
of the way they are positioned, and because of the location of
the target in their respective fields of view). Hence, rather than
performing target classification twice in two independent tasks,
each running on inputs from one of the cameras, it might be
possible to join the tasks for better accuracy. How and when
should one perform such a join to best enhance classification
results based on the collective data of both cameras? Note
that, individually, the two cameras might not have enough
information to conclude that they are observing the same
target (e.g., they might not know that they have overlapping
fields of view). However, the server, observing classification
outputs of the two cameras over time, may conclude that their
fields of view are indeed overlapping. This knowledge can
thereafter be used to determine if their outputs should be
processed jointly to improve accuracy of classification. The
same wisdom may apply to sensors of different modalities,
such as microphones and vibration sensors. In short, an edge
server offering intelligence as a service for a number of
IoT devices may serve the additional function of discovering
correlations among their data (e.g., inferred from correlations
in produced labels) that can thereafter be used to reconfigure,
and possibly re-train, the neural network model to better
exploit the data from these correlated sources.

Consider, for example, a set of surveillance video cameras,
deployed across a smart university campus (as illustrated in

TABLE IV: Collaborative Deep IoT Inferencing
Approach Detection Accuracy Recognition Latency
Individual 68% 550 msec
Collaborative 75.5% 25 msec

Figure 5) to support applications such as people counting
(estimating the aggregated occupancy in different parts of the
campus) or people tracking (capturing the movement trajectory
of a specific individual throughout the campus). Convention-
ally, we can envisage that each camera operates as an isolated
IoT device, applying state-of-the-art DNN-based techniques,
such as MobileNet Single-Shot Detectors (SSD) [17], to per-
form object (people) detection, followed by object (people)
identification, on each frame. Such an approach, however, has
two limitations: (a) poor processing efficiency: executing 2
independent DNNs even on a specialized edge node (e.g., In-
tel’s MovidiusTMneuromorphic co-processor) consumes ≈ 550
msecs/frame, implying a processing throughput ≤ 2fps; (b)
lower accuracy: individual cameras may often be affected by
specific context-based artifacts (e.g., occlusions, poor lighting)
that impair the object detection process.

To overcome these limitations, it is possible to explore
the notion of collaborative inferencing, where the inferencing
pipelines of different IoT devices exchange state information
in near real time and subsequently adapt their individual execu-
tion logic. As a specific illustrative example, consider Figure 5,
where each camera has a field-of-view (FoV) with varying
degrees of overlap with neighboring cameras–e.g., cameras B
and C both observe two individuals and a tree (from different
perspectives) concurrently. In this scenario, the cameras may
collaborate to improve their overall operational efficiency and
accuracy. For example, one camera that detects individual
bounding boxes (individuals) in its FoV may share those
bounding box coordinates with its neighboring cameras. The
other peer cameras can then supplement their own DNN-based
inferences with these additional object coordinates (suitably
remapped to a common coordinate space) to improve both
their detection accuracy (for people counting) and reduce their
processing latency (for individual tracking).

The collaborative paradigm described above was evaluated
with the PETS dataset [18], consisting of 8 outdoor cameras.
Table IV summarizes the performance differences between
the baseline (non-collaborative) vs. the collaborative deep
inferencing approach. We see that such collaboration is indeed
beneficial: it increases the people counting accuracy by ≥8%,
and achieves a 20-fold reduction in the average per-frame
processing latency.

C. Services for Collaborative Inferencing

To realize the benefits of such collaborative deep inferenc-
ing, we believe that it will be important to augment Eugene
to provide several new forms of functionality. These include:
• Collaboration Brokering: The collaborative video moni-

toring example provided earlier implicitly assumes that
the cameras are aware of each other’s identity & the



extent of FoV overlap. Note that such overlap need
not be concurrent: one can envisage future scenarios
where the camera views are temporally correlated with
a variable lag-e.g., two corridors at two ends of a cam-
pus building corridor are likely to observe the same
individuals 20 seconds apart. To easily support such
dense IoT deployments, it is necessary to discover such
correlations, and establish the identity of collaborators,
in a more autonomous fashion. This is where Eugene
can step in: by operating on the metadata & higher-level
inferences from individual nodes, Eugene can discover
and establish the relevant collaboration parameters–e.g.,
instructing cameras A & B to apply the collaborative
tracking mechanism discussed above, but with a time
lag of 20 seconds. Developing suitable mechanisms that
uncover such useful spatiotemporal correlations among
IoT devices, while satisfying the requirements of low
communication overheads and privacy, is an open chal-
lenge.

• Resilient Collaboration: Collaborative deep inferencing,
however, introduces a new form of failure: their oper-
ation is vulnerable to incorrect or malicious behavior
by individual IoT nodes. For example, false or noisy
bounding box estimates by one camera can reduce the
people detection accuracy of other peer cameras by over
20%. To promote practical use of such collaboration
paradigms, Eugene must also provide resiliency services
that provide protection against such adversarial behavior.
One can imagine a future where Eugene continuously
monitors the output inference streams, and the internal
parameters of relevant deep pipelines, of individual IoT
devices to first (a) proactively uncover faulty operational
situations and subsequently (b) provide suitable pipeline
modifications to compensate for such faults.

V. CONCLUSIONS AND FUTURE WORK

This paper envisioned (and described the current status of)
a novel service model, called “intelligence as a service”, to
empower future IoT applications, where simple devices with
sensing capabilities offload their machine intelligence needs
to the cloud or to an edge server, possibly caching reduced
models. We focused on deep learning as the state of the art
enabler of machine intelligence. Several service components
were presented together with related challenges at both train-
ing and inference time. As an example of system support for
this service, a scheduler was described that optimizes service
utility. Preliminary evaluation results were reported, as well as
opportunities for further work; most importantly, collaborative
inferencing.

The work opens many related research opportunities. For
example, the paper did not explicitly discuss service models
and APIs. Where will training data and labels come from?
One service model would be to define data pools (e.g., the
“Downtown Mall’s Security Cameras Pool”). Only devices
authorized to contribute to the pool can add data and/or labels
to it for purposes of neural network model training.

A question that arises when multiple devices collaborate
on the same data is how to handle rogue devices (or insider
attacks) that gain access to the data for the purpose of polluting
the pool with adversarial inputs (e.g., bad samples or wrong
labels)? Some form of anomaly detection may be needed in
order to identify input samples that differ from the rest. For
example, if samples arriving from one of the devices are often
misclassified based on models computed from other devices’
data, then one may suspect rogue behavior. Efficient solutions
are needed to implement such tests given that the number
and identity of rogue devices are unknown. How to handle
malicious devices that mix bad inputs with some amounts of
good data to avoid suspicion?

The service, as described in this paper, treats all client
devices alike and aims to offer fairness (e.g., imposes the
same maximum allowable latency constraint on all tasks). In
reality, different applications will have different demands and
constraints. For example, an interactive voice chatbot might
have significantly tighter latency constraints than an intru-
sion detection camera. A few seconds of delay in detecting
suspicious behavior is tolerable, but a similar delay before
each response in an interactive conversation might be very
distracting. The scheduler described in this paper needs to be
modified to support multiple service classes and account for
different execution cost and constraints. An appropriate pricing
structure may be needed that is informed of the true resource
cost imposed by clients of each class on the service.

We hope the work reported in this paper will help produce
early prototypes of machine intelligence services for IoT
systems, and contribute to the realization of a new smart
edge, where each device appears endowed with unlimited
knowledge and intelligent behavior. Indeed, understanding the
true potential, capabilities, and limitations of intelligence as
a service may be the first step towards revolutionizing our
interactions with physical surroundings in the near future. The
authors hope that this paper makes a step towards such an
understanding, if only by formulating some of the questions
whose answers are to be understood.
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