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Abstract

Incorporating smoothness constraints into feature

matching is known to enable ultra-robust matching. How-

ever, such formulations are both complex and slow, making

them unsuitable for video applications. This paper proposes

GMS (Grid-based Motion Statistics), a simple means of en-

capsulating motion smoothness as the statistical likelihood

of a certain number of matches in a region. GMS enables

translation of high match numbers into high match qual-

ity. This provides a real-time, ultra-robust correspondence

system. Evaluation on videos, with low textures, blurs and

wide-baselines show GMS consistently out-performs other

real-time matchers and can achieve parity with more so-

phisticated, much slower techniques.

1. Introduction

Feature matching is the basic input of many computer

vision algorithms. Thus its speed, accuracy and robustness

are of vital importance. Currently, there is a wide perfor-

mance gap between slow (but robust) feature matchers and

the much faster (but often unstable) real-time solutions.

The central problem lies in the coherence constraints

(neighboring pixels share similar motion) utilized in the

more powerful feature correspondence techniques. Coher-

ence is a powerful constraint but sparse features lack well

defined neighbors. This causes coherence based feature cor-

respondence [16, 42] to be both expensive to compute and

complex to implement. This paper proposes GMS (Grid-

based Motion Statistics), a means of encapsulating motion

smoothness as a statistical likelihood of having a certain

number of feature matches between a region pair. We show

GMS can rapidly and reliably differentiate true and false

matches, enabling high quality correspondence in Fig. 1.

Our paper draws inspiration from BF [16]. BF empha-

SIFT OURS

Figure 1. The highly respected SIFT [22] descriptor has difficulty

on this scene because the dog’s fur movement adds noise to local

descriptors. Although we use weaker ORB descriptors, our GMS

solution can leverage feature numbers to improve quality while

maintaining real-time performance.

sized that the apparent lack of feature matches is not due

to too few correct matches but in the difficulty of reliably

separating the true and false matches. BF demonstrated the

feasibility of achieving such a separation by using a coher-

ence measure computed with a complex minimization. In

practice, BF works very well (albeit slowly). However, it

is primarily motivated by observations and intuitions. The

lack of theoretical clarity makes improvements difficult as

researchers must rely on empirical tests on image data in-

fluenced by many fluctuating variables.

We suggest the complex smoothness constraints used

in BF and other similar techniques [30, 19, 42] can be re-

duced to a simple statement: Motion smoothness induces

correspondence clusters that are highly unlikely to occur at

random. Thus true and false matches can be differentiated
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by simply counting the number of matches in their neigh-

borhood. From the law-of-large-numbers, the partionablity

of true and false scales to infinity with match numbers. The

mathematical analysis is straight forward but the results are

potentially paradigm shifting.

Previous feature matching papers [22, 35, 2, 47] assume

that match quality primarily scales with improvements in

feature invariance/distinctiveness. GMS reveals a new di-

rection for improvement; Raw feature numbers can also

impact quality. As finding more features is simpler than

designing new descriptors, GMS potentially offers simple

solutions to previously intractable matching problems, as

illustrated in Fig. 1.

In summary, our contributions are:

• Converting the motion smoothness constraints into

statistical measures for rejecting false matches. We

show this constraint enables matching on previously

intractable scenes;

• Develop an efficient Grid-based score estimator that

can be incorporated into a real-time feature matcher;

• Demonstrate our GMS system is significantly better

than traditional SIFT [22], SURF [2] and recent, CNN

trained LIFT features [47] with standard ratio-test.

1.1. Related works

The foundational works on feature matching sought to

increase the distinctiveness/invariance of feature descriptors

and improve localization. Examples includes classic works

like SIFT [22], ORB [35], SURF [2], A-SIFT [26], Har-

ris Corners [9] and affine covariant region detectors [25].

Many of these works have GPU-acceleration [45, 40, 7] per-

mitting real (or near-real) time performance. In addition,

there are FLANN works for accelerating feature match-

ing [14, 27, 28]. Such research is still on-going, the most

recent example being CNN trained LIFT descriptors [47].

Together, these works form a core set of techniques that we

build on.

The problem with sole reliance on descriptors is the dif-

ficulty in differentiating true and false matches. This re-

sults in the elimination of a large fraction of true matches to

limit false matches [16]. RANSAC [10, 41, 5, 32, 6, 36, 15]

can leverage geometric information to alleviate this prob-

lem. However, RANSAC itself requires most false matches

to be pre-eliminated and cannot accommodate the sheer

number of false matches in the set of all nearest-neighbor

matches [17].

Recently, a number of techniques [30, 16, 17, 19, 42, 24]

have focused on separating true and false matches using

match distribution constraints. However, their formulations

result in complex smoothness constraints, which are diffi-

cult to understand and expensive to minimize. Our approach

is inspired by these works but uses a much simpler and more

easily understood statistical matching constraint. This en-

ables matching that is both robust and efficient.

More generally, our work is related to optical flow [13,

23, 4, 43, 33, 21, 1, 46], point based coherence techniques

[48, 18, 29], patch-match based matchers [12] which di-

rectly use smoothness to help match estimation. These tech-

niques can be very powerful. However, they are also much

more complicated and expensive. Finally, we acknowl-

edge the inspiration drawn from boosted learners like Ad-

aBoost [11] which integrates multiple weak-learners into a

powerful learner. GMS shares this design philosophy by us-

ing the smoothness constraint to integrate information from

multiple matches to make high quality decisions.

true match ��

false match ��
supporting matches for ���: support region in ��

�� ��

�� = 2�� = 0

�: support region in ��

Figure 2. The neighborhood of match xi is defined as {a, b}, a

pair of small support regions around the respective features. We

predict true match neighborhoods will have many more supporting

matches than false match neighborhoods.

2. Our approach

Given a pair of images taken from different views of the

same 3D scene, a feature correspondence implies a pixel

(feature point) in one image is identified as the same point

in the other image. If the motion is smooth, neighboring

pixels and features move together. This allows us to make

the following assumption:

Assumption 1. Motion smoothness causes a (small) neigh-

borhood around a true match to view the same 3D location.

Likewise, the neighborhood around a false match views ge-

ometrically different 3D locations.

Here neighborhood is defined as a pair of regions {a, b} sur-

rounding the respective image features shown in Fig. 2.

Assumption 1 implies that true match neighborhoods,

view the same 3D region and thus share many similar fea-

tures across both images. This results in the neighbor-
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hood having many supporting matches. In contrast, false

match neighborhoods view different 3D regions and have

far fewer similar features. This reduces matching support.

We encapsulate this intuition into a statistical framework

called GMS, that reliably distinguishes between true and

false matches. Sec. 3 introduces the grid algorithm for fast

neighborhood score computation, while Sec. 4 presents re-

sults and comparisons.

2.1. Notation

Image pairs {Ia, Ib} have {N,M} features respectively.

X = {x1, x2, . . . , xi, . . . , xN} is the set of all nearest-

neighbor feature matches from Ia to Ib. X has cardinality

|X | = N . Our goal is to divide X into sets of true and false

matches by analyzing the local support of each match.

Notation for the match neighborhood shown in Fig. 2 is

as follows: The respective regions in {Ia, Ib} are denoted as

{a, b}, each with {n,m} additional (excluding the original

match pair) features respectively. Xi ⊆ X is the subset of

matches between regions {a, b} of match xi. Si is a mea-

sure of neighborhood support:

Si = |Xi| − 1, (1)

where −1 removes the original match from the sum.

2.2. Basic statistical constraints

As the regions are small, we restrict our considerations to

idealized true and false region pairs, ignoring partially sim-

ilar locations. Let fa be one of the n supporting features in

regions a. Given fa has probability t of matching correctly,

our goal is to derive the arrival rate of matches to regions

{a, b} for the cases when {a, b} view the same/ different lo-

cations. Tab. 1 summarizes commonly used notations and

events while Fig. 3 illustrates fa’s event space.

To make the problem tractable, we make the assumption

Assumption 2. Given fa matches wrongly, its nearest-

neighbor match can lie in any of the M possible locations.1

Assumption 2 arises because in general, there is no a-

prior reason for a feature’s wrong nearest neighbor to favor

any image region. Assumption 2 gives

p(f b
a|ff

a ) = βm/M (2)

where m is the number of features in region b and β is a

factor added to accommodate violations of assumption 2

caused by repeated structures like a row of windows.

Let pt = p(f b
a|T ab) be the probability that, given {a, b}

view the same location, feature fa’s nearest neighbor is in

1Can also be M − 1 depending matching circumstances

(i) Notations

xi the ith feature match

fa one of the n supporting features in region a

Si neighborhood score of match xi

{pt, pf} {p(f b
a|T ab), p(f b

a|F ab)} respectively

(ii) Events

T ab regions {a, b} view the same location

F ab regions {a, b} view the different locations

f t
a fa matches correctly, p(f t

a) = t

ff
a fa matches wrongly, p(ff

a ) = 1− t

f b
a fa’s nearest-neighbor is a feature in region b

f b
a fa’s nearest-neighbor is not in region b

Table 1. Table of notations and events.

�ܾܽ �
�� ��

�
� �

�� ���ܾܽ
(i)

(ii)

Figure 3. Event space for feature fa. fa’s nearest-neighbor match

either lands in region b (event f b
a) or it does not (event f b

a). The

match is either true (event f t
a) or false (event ff

a ). (i) Given T ab,

f b
a is the union of events f t

a and some ff
a events. (ii) Given F ab,

f b
a is necessarily a subset of events ff

a .

region b. Thus,

pt = p(f b
a|T ab) =p(f t

a|T ab) + p(ff
a , f

b
a|T ab)

=p(f t
a|T ab) + p(ff

a |T ab)p(f b
a|ff

a , T
ab)

=p(f t
a) + p(ff

a )p(f
b
a|ff

a )

=t+ (1− t)βm/M

(3)

Explanation: Fig. 3(i) shows event f b
a occurs only if, fa

matches correctly, or it matches wrongly but coincidentally

lands in region b. This gives equation (3)’s first line. The

second line arises from Baye’s rule. As features are pre-

matched, p(f t
a), p(f

f
a ) are independent of T ab. Due to as-

sumption 2, p(f b
a|ff

a ) is also independent of T ab. Dropping

the conditioning T ab and substituting values from Tab. 1

and equation (2) gives the final expression.
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Neighborhood score of  false matches Neighborhood score of true matches 

 threshold 
Number of 

matches/ S mt mf 

Figure 4. Neighborhood scores of true and false matches fol-

low different distributions. If distribution means have sufficiently

large separation relative to their standard deviations, true and false

matches are potentially separable with score based thresholding.

Let pf = p(f b
a|F ab). Similar to equation (3),

pf = p(f b
a|F ab) =p(ff

a , f
b
a|F ab)

=p(ff
a |F ab)p(f b

a|ff
a , F

ab)

=p(ff
a )p(f

b
a|ff

a )

=β(1− t)(m/M)

(4)

Explanation: From Fig. 3(ii) we know event f b
a is a subset

of ff
a . Thus, p(f b

a|F ab) = p(ff
a , f

b
a|F ab), giving the first

line of equation (4). Similar to equation (3), the probabil-

ities can be expanded by Bayes rule into sub-probabilities

that are independent of F ab. Substituting values from Tab. 1

and equation (2) gives the final expression.

As the matching of each feature is independent, using

assumption 1 and equations (3),(4), we can approximate the

distribution of Si, the number of matches in a neighborhood

of match xi, with a pair of binomial distribution:

Si ∼
{

B(n, pt), if xi is true

B(n, pf ), if xi is false
(5)

While equations (5) seems complex, the important point

is that true and false matches have neighborhood scores,

S, that follow very different distributions. This means the

overall pdf of S is potentially bimodal, making S score a

useful indicator for differentiating true and false matches.

This is illustrated in Fig. 4.

2.3. Multineighborhood generalization

Motion is often smooth over a large area. However, as-

sumption 1 requires sufficiently small neighborhoods. In

over-large neighborhoods, true match neighborhoods will

include some false matching regions and vice-versa. This

reduces the separability of true-false score distributions.

Thus, generalizing assumption 1, we have:

Assumption 3. If motion is smooth over a region, a true

match allows prediction of multiple small region pairs that

view the same 3D location. Using the same prediction func-

tion on a false match will result in geometrically different

3D locations.

This gives a more generalized score

Si =

K
∑

k=1

|Xakbk | − 1 (6)

where K is the number of disjoint regions which match i
predicts move together. {ak, bk} are predicted region pairs

and Xakbk ⊆ X is the subset of matches that land on region

pairs {ak, bk}.

Assuming each region pair has {n,m} features, similar

to equations (5), assumption 3 indicates a Binomial distri-

butions of Si

Si ∼
{

B(Kn, pt), if xi is true

B(Kn, pf ), if xi is false
(7)

The respective mean and standard deviation of Si’s dis-

tribution are

{mt = Knpt, st =
√

Knt(1− pt)} if xi is true

{mf = Knpf , sf =
√

Knpf (1− pf )} if xi is false
(8)

Typically, when dealing with statistical events, we con-

sider an event at x standard deviations from the mean as

highly unlikely to happen. This is illustrated in Fig. 4 and

can be quantified with a partionability score:

P =
mt −mf

st + sf
=

Knpt −Knpf
√

Knpt(1− pt) +
√

Knpf (1− pf )
. (9)

Our goal is to design algorithms which maximize P .

2.4. Analysis

These derivations are simple. However they bring clarity

to our intuition and permit derivation of some useful results.

Quantity-Quality equivalence: The key result of these

derivations is:

P ∝
√
Kn. (10)

This means, provided mt > mf , the partionability of true

and false matches scales to infinity with n, the number

of features. i.e. Even for difficult scenes with few true

matches, if true matching locations have more matches than

random locations, we can obtain as many matches as we de-

sire, with perfect precision and recall, provided the number

of features is sufficiently large. This forms a direct link from

the assumptions 1, 2, 3 to the law-of-large-numbers. The re-

sults are interesting as most previous works assume the key

to better correspondence is increasing feature distinctive-

ness/ invariance. Instead, equation (10) shows raw feature

numbers can contribute to match quality. This makes it pos-

sible to solve challenging matching problems by increasing

feature numbers! Fig. 5 shows an example.

Motion Prediction: Often, it is impractical to simply

increase n. Equation (10) suggests an alternative is to in-

crease K by predicting more jointly moving of image re-

gions. This is the approach we utilize to build our real-time

matching system.

Practical applicability: The GMS constraint is power-

ful given a sufficiently large n. The question is whether n is

large enough in practice? Given 10, 000 evenly distributed
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SIFT + RANSAC LIFT + RANSAC ASIFT + RANSAC

OURS(5,000) without RANSAC OURS(20,000) without RANSAC OURS(50,000) without RANSAC

Figure 5. Top: Traditional feature matching focuses on increasing descriptor invariance. The most recent iteration is LIFT [47]. Thus,

A-SIFT [26], which explicitly models large deformations, has the best wide-baseline performance. Bottom: GMS achieves the same effect

with standard ORB [35] by simply increasing the number of features (indicated in brackets) . This makes ORB a viable wide-baseline

feature!

features, some typical values would be {m = n = 25, β =
1, t = 0.5,K = 1}. Thus, the mean and standard deviations

of Si in the basic constraint of equation (8) are:

{mt = 12.5, st = 2.5}, {mf = 0.03, sf = 0.176}, P = 4.7
(11)

This is a wide separation. Note that K = 1. This demon-

strates the basic GMS constraint is quite powerful at typ-

ical match numbers. It may also help explains why so

many techniques with similar formulations achieve good re-

sults [30, 16, 17, 19, 42, 24].

Relationship to descriptors: The relationship of par-

tionability with t, percentage match correctness is given by

lim
t→1

mt → Kn, lim
t→1

mf → 0, lim
t→1

P → ∞. (12)

As nearest neighbor matching tends to perfection, mt tends

to its maximum value, mf to its minimum and partionablity

to ∞. Thus, if a fixed threshold is set, GMS’s results will

be better on easier scenes with high t. This is of practical

importance as t is unknown and scene pair dependent. It

also increases GMS’s generality by allowing it to scale with

improvements in feature descriptor design.

3. Grid framework for fast scoring

This section transits the previous analysis into an effec-

tive real-time matching algorithm. Sec. 3.1 introduces the

grid framework, addressing issues like: a) Efficient score

computation through grid-cells; b) Which neighborhoods

(grid-cells) to group together; c) How many grid-cells to

use; d) How to compute an effectively threshold S. An im-

plementational overview is given in algorithm 1 and fine

details discussed in Sec. 3.2.

3.1. Griding the problem

a) Efficient score evaluation. The cost of scoring each

feature match’s neighborhood is O(N), where N is the

number of image features. This conflicts with our desire to

use as many features as possible. We address it with a grid

approximation that divides an image into G = 20×20 non-

overlapping cells. Scores of potential cell-pairs are com-

puted only once. All matches between cell-pairs deemed

true are accepted. This make score computation indepen-

dent of feature numbers i.e. O(1). In practice, many fea-

tures lie on grid edges. To accommodate this, we repeat the

algorithm 3 more times with gird patterns shifted by half

cell-width in x, y and both x and y directions.

b) Grouping match neighborhoods (cell-pairs) for ro-

bustness. As shown in equations (6), (10), grouping cell-

pairs increases partionability. We group cell-pairs using a

smooth lateral motion assumption. Thus from equation (6),

the score Sij , for cell-pair {i, j} is :

Sij =

K=9
∑

k=1

|Xikjk | (13)

where |Xikjk | is the number of matches between cells

{ik, jk} shown in Fig. 6. This solution is efficient but limits

in-plane rotational invariance. GMS is competitive with the

ratio-test at extreme rotations as shown in Fig. 8, however

performance is better at lower rotations. In practice, rotation

can often be estimated by other sensors and OpenCV 3.0 ac-

tually auto-rotates all read images to a canonical orientation

using their EXIF information. Alternatively, we also pro-

vide a scale and rotational version of the algorithm by per-

forming grid-selection over all potential scale-rotation pairs

and choosing matches from the pair with the best results.

c) How many grid-cells should be used? More grid-

cells improve match localization. However, it reduces n,
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Figure 6. 9 regions around cells {i, j} used in score evaluation.

the number of features in each cell and thus partionability.

This can be compensated by increasing K but that affects

computational time. Our theoretical and empirical results

suggest G = 20 × 20 cells for 10, 000 features. This gives

n an average value of 25. More features permit finer cells.

d) Thresholding Sij to divide cell-pairs into true and

false sets {T ,F}.

Fig. 4 shows the desired threshold can be given as τ =
mf +αsf where mf is the mean and αsf is an appropriate

number of standard deviations to ensures most wrong grid-

cells are rejected. In practice, mf is small by design, while

α is very large to ensure confident rejection of the large

number of wrong cell-pairs. With a slight abuse of notation,

the threshold can be approximated as τ ≈ α
√
sf ≈ α

√
n

This results in a single parameter thresholding function

cell-pair {i, j} ∈
{

T , if Sij > τi = α
√
ni

F , otherwise
(14)

where α = 6 is experimentally determined and ni is the

average (of the 9 grid-cells in Fig. 6) number of features

present in a single grid-cell.

3.2. Implementation details

We use OpenCV ORB features. Feature number is fixed

at 10, 000, the maximum number permissible for real-time

performance. Large, well-textured images can have more

than 10, 000 features. This causes features to be poorly dis-

tributed (clustered in a corner). Small less-textured images

can have far fewer than 10, 000 distinct features. The former

problem is addressed by resizing all images to 480 × 640.

The latter by setting FAST [34] feature thresholds to zero.

This enables matching in weakly textured environments

(see accompanying video). Nearest-neighbors are discov-

ered with brute-force Hamming distance comparisons on

the GPU. This runs in parallel with CPU-based feature de-

tection. These are the two most expensive modules. Finally,

true matches are sieved out through GMS algorithm 1. This

step takes 1ms in single thread CPU-time. Code is provided

at the link below.2.

2 CODE: https://github.com/JiawangBian/GMS-Feature-Matcher

Algorithm 1. GMS Feature Matcher

Input: One pair of images

Initialization:

1: Detect feature points and calculate their descriptors

2: For each feature in Ib, find its nearest neighbor in Ia
3: Divide two images by G grids respectively

4: for i = 1 to G do

5: j = 1;
6: for k = 1 to G do

7: if |Xik| > |Xij | then

8: j = k;
9: end if

10: end for

11: Compute Sij , τi; ⊲ Eq. (13)(14)

12: if Sij > τi then

13: Inliers = Inliers ∪ Xij ;
14: end if

15: end for

Iteration: Repeat from line 4, with gird patterns shifted by

half cell-width in the x, y and both x and y directions.

Output: Inliers

4. Experiments

GMS is an efficient, effective alternative to the tradition

ratio-test used to reject false matches. We evaluate GMS

on two metrics: a) Its recall, precision and F-measure, F =

2 · (Precision ·Recall)/(Precision+Recall), relative to the

ratio-test; b) GMS’s matchings effectiveness in improving

performance of pose estimation used in SLAM [3] and Vi-

sual Structure from Motion [39]. We compare GMS to fast

matchers like SIFT [22], SURF [2], ORB [35], USAC [31]

and powerful matchers that are orders of magnitude slower,

BF [16], BD [20], DM [44], GAIM [8], LIFT [47].

4.1. Datasets

We evaluate on four datasets, TUM [38], Strecha [37],

VGG [25] and Cabinet [38], described in Tab. 2. TUM has

six video sequences with challenging wide-baselines, low-

texture and blur. Scenes are shown in Fig. 7. Strecha [37]3

and VGG [25] are standard datasets with significant wide-

baselines and good ground-truth. Cabinet (top center in

Fig. 7) is a subset of TUM which permits separate analy-

sis on low-texture scenes.

Each TUM [38] video is divided into sets of 100 frames.

The first frame is designated as reference. All frames from

a set are matched to the reference provided their relative

rotation is less than 30 degrees. A similar process is used

on Strecha’s [37] dataset, except every image is a reference.

3Images are quarter size to accommodate slower algorithms.
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Dataset TUM [38] Strecha [37] VGG [25] Cabinet [38]

Full name
RGB-D SLAM Dataset

and Benchmark

Dense Multiview

Stereo Dataset

Affine Covariant

Regions Datasets

A subset of

TUM dataset

Image pairs 3141 500 40 578

Ground truth Camera pose, Depth Camera pose, 3D model Homography Camera pose, Depth

Description
Including all image

condition changes
Well-textured images

Viewpoint change,

zoom+rotation,blur

Low-texture images

with strong light

Table 2. Dataset details. Strecha [37] and VGG [25] are standard benchmarks. TUM [38] and Cabinet dataset are VGA resolution videos.

Figure 7. Scenes from the six TUM [38] videos. The dataset has

many challenges like low texture, blur and strong lighting.

4.2. Results

We analyze GMS’s results against alternative matchers.

Precision & Recall: We compare GMS to the traditional

ratio-test (threshold 0.66). Precision, Recall and F-measure

are tabulated in Fig. 8. GMS is red and ratio-test blue.

Each metric is denoted with a unique line style. GMS’s

F-measure is consistently much higher than the ratio-test.

This is even true on the VGG dataset which has significant

in-plane rotation. Recall from Sec. 3.1, our formulation

sacrifices rotational performance.

Performance vs speed: Matching speed is arguably as

important as performance. Fig. 10 tabulates performance-

speed trade-offs. Performance is quantified by the per-

centage of accurately estimated poses, while speed is mea-

sured as the log of time in milliseconds. A pose estimate

is deemed correct if its rotation and translation errors are

within 5 and 15 degrees respectively. Fig. 10 shows GMS

(in red) maintains high speed and performance. GMS’s per-

formance is much higher than other fast solutions and com-

parable to solutions like BF [16] and Deep-Matching [44]

which are many orders of magnitude slower. In our expe-

rience, nearly all purely feature based techniques can reach

real-time through GPU usage. With a computational cost of

1ms on CPU, GMS maintains this real-time performance.

Full matching with GMS runs at 27.8 frames per second.

Full performance curves: To ensure the fairness of

Fig. 10’s threshold choice, Fig. 11 plots performance curves

against different pose thresholds. Observe that GMS’s rela-

tive performance is unchanged.

Consistency: Prior experiments focus on average re-

sults. Fig. 12 illustrates performance variation across dif-
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Figure 8. F-measure, Recall and Precision vs baseline (distance

between image pairs). GMS is in red, ratio-test in blue. Baseline of

VGG [25] represents image-pair order. For other datasets, baseline

is represented by relative rotation in degrees. Note that GMS’s F-

measure consistently outperforms the ratio-test by a large margin.

ferent TUM [38] scenes. Each box’s central mark is the me-

dian. Box edges are the 25th and 75th percentiles. Whiskers

show performance extrema. Most fast algorithms have poor

consistency evidenced by low whiskers. GMS (in red) is the

most consistent fast algorithm. Its consistency is compara-

ble to much slower algorithms.

Video Results: GMS enables wide-baseline feature

matching on video data. Fig. 9 provides screen-shots of

videos in the supplementary.

5. Conclusion

We propose GMS, a statistical formulation for partition-

ing of true and false matches based on the number of neigh-

boring matches. While this constraint has been implic-

itly employed by other techniques, our more principled ap-

proach enables development of simpler, faster algorithms

with nearly equivalent performance. In addition, GMS sug-

gests a link between feature numbers and match quality.

This may prove an interesting research direction for han-

dling previously intractable matching problems.
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Figure 9. GMS enables real-time, wide-baseline matching on videos. These are screen-shots of videos in the supplementary.
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Figure 10. Performance vs Speed. Performance: Percentage of

correctly estimated poses. Speed: log time. GMS (red star) is

consistently in the top left, as it is efficient and has performance

comparable to techniques many orders of magnitude slower.
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Figure 11. Percentage of accurately estimated poses at different

thresholds. GMS (red) is consistently near the top. It is only

slightly inferior to BF and Deep-Matching which are orders of

magnitude slower.
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